WorldWideScience

Sample records for france uo2 fuel

  1. New UO2 fuel studies

    International Nuclear Information System (INIS)

    Dehaudt, P.; Lemaignan, C.; Caillot, L.; Mocellin, A.; Eminet, G.

    1998-01-01

    With improved UO 2 fuels, compared with the current PWR, one would enable to: retain the fission products, rise higher burn-ups and deliver the designed power in reactor for longer times, limit the pellet cladding interaction effects by easier deformation at high temperatures. Specific studies are made in each field to understand the basic mechanisms responsible for these improvements. Four programs on new UO 2 fuels are underway in the laboratory: advanced microstructure fuels (doped fuels), fuels containing Er 2 O 3 a burnable absorber, fuels with improved caesium retention, composite fuels. The advanced microstructure UO 2 fuels have special features such as: high grain sizes to lengthen the fission gas diffusion paths, intragranular precipitates as fission gas atoms pinning sites, intergranular silica based viscoplastic phases to improve the creep properties. The grain size growth can be obtained with a long time annealing or with corundum type oxide additives partly soluble in the UO 2 lattice. The amount of doping element compared with its solubility limit and the sintering conditions allows to obtain oxide or metallic precipitates. The fuels containing Er 2 O 3 as a burnable absorber are under irradiation in the TANOX device at the present time. Specific sintering conditions are required to improve the erbium solubility in UO 2 and to reach standard or large grain sizes. The improved caesium retention fuels are doped with SiO 2 +A1 2 O 3 or SiO 2 +ZrO 2 additives which may form stable compounds with the Cs element in accidental conditions. The composite fuels are made of UO 2 particles of about 100 μm in size dispersed in a molybdenum metallic (CERMET) or MgA1 2 O 4 ceramic (CERCER) matrix. The CERMET has a considerably higher thermal conductivity and remains ''cold'' during irradiation. The concept of double barrier (matrix+fuel) against fission products is verified for the CERMET fuel. A thermal analysis of all the irradiated rods shows that the thermal

  2. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  3. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  4. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  5. Oxidative dissolution of ADOPT compared to standard UO2 fuel

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Roth, Olivia; Jonsson, Mats

    2017-01-01

    In this work we have studied oxidative dissolution of pure UO 2 and ADOPT (UO 2 doped with Al and Cr) pellets using H 2 O 2 and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO 2 and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO 2 pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO 2. This could be attributed to differences in exposed surface area. However, fission products with low UO 2 solubility display a higher relative release from ADOPT fuel compared to standard UO 2 -fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO 2 which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO 2 fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  6. High density UO2 powder preparation for HWR fuel

    International Nuclear Information System (INIS)

    Hwang, S. T.; Chang, I. S.; Choi, Y. D.; Cho, B. R.; Kwon, S. W.; Kim, B. H.; Moon, B. H.; Kim, S. D.; Phyu, K. M.; Lee, K. A.

    1992-01-01

    The objective of this project is to study on the preparation of method high density UO 2 powder for HWR Fuel. Accordingly, it is necessary to character ize the AUC processed UO 2 powder and to search method for the preparation of high density UO 2 powder for HWR Fuel. Therefore, it is expected that the results of this study can effect the producing of AUC processed UO 2 powder having sinterability. (Author)

  7. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  8. Micrography of UO2 power of PPNY and France using JSM T-20

    International Nuclear Information System (INIS)

    Kasilani, N.S.; Hidayati; Hartati, P.

    1996-01-01

    As a quality control of processing to produce a fuel element using UO 2 powder, its necessary to be known the physical characteristic of the shape, size and surface condition of particle. This physical character influence the flow ability of powder particles and density of pellet. To create photomicrograph used a electron microscope, influenced by the condition of tools, specimen, and the skilled of the processing of pictures. The current of JSM T-20 is about 5 until 20 Kv, used 11 and 8 camera diaphragm with black and white films, specimen must be dried with electrical conductor property. The processing resulted an optimal photomicrograph. Micrograph of UO 2 powder of PPNY and France was investigated, yield a same grain form, surface structure are different, and range of size particle is 0.5 - 1.0 um. (author)

  9. Framatome-ANP France UO2 fuel fabrication. Criticality safety analysis in the light of the JCO accident

    International Nuclear Information System (INIS)

    Doucet, M.; Zheng, S.; Mouton, J.; Porte, R.

    2003-01-01

    In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The FRAMATOME-ANP production of its French low enriched (5 w/o) UO2 fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO2 blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach FRAMATOME-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (author)

  10. Oxidative dissolution of ADOPT compared to standard UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Roth, Olivia [Studsvik Nuclear AB, SE-611 82 Nyköping (Sweden); Jonsson, Mats, E-mail: matsj@kth.se [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2017-05-15

    In this work we have studied oxidative dissolution of pure UO{sub 2} and ADOPT (UO{sub 2} doped with Al and Cr) pellets using H{sub 2}O{sub 2} and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO{sub 2} and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO{sub 2} pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO{sub 2.} This could be attributed to differences in exposed surface area. However, fission products with low UO{sub 2} solubility display a higher relative release from ADOPT fuel compared to standard UO{sub 2}-fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO{sub 2} which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO{sub 2} fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  11. Analysis of UO{sub 2}-BeO fuel under transient using fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-11-01

    Recent research has appointed the need to replace the classic fuel concept, used in light water reactors. Uranium dioxide has a weak point due to the low thermal conductivity, that produce high temperatures on the fuel. The ceramic composite fuel formed of uranium dioxide (UO{sub 2}), with the addition of beryllium oxide (BeO), presents high thermal conductivity compared with UO{sub 2}. The oxidation of zirconium generates hydrogen gas that can create a detonation condition. One of the preferred options are the ferritic alloys formed of iron-chromium and aluminum (FeCrAl), that should avoid the hydrogen release due to oxidation. In general, the FeCrAl alloys containing 10 - 20Cr, 3 - 5Al, and 0 - 0.12Y in weight percent. The FeCrAl alloys should exhibit a slow oxidation kinetics due to chemical composition. Resistance to oxidation in the presence of steam is improved as a function of the content of chromium and aluminum. In this way, the thermal and mechanical properties of the UO{sub 2}-BeO-10%vol, composite fuel were coupled with FeCrAl alloys and added to the fuel codes. In this work, we examine the fuel rod behavior of UO{sub 2}-10%vol-BeO/FeCrAl, including a simulated transient of reactivity. The fuels behavior shown reduced temperature with UO{sub 2}-BeO/Zr, UO{sub 2}-BeO/FeCrAl also were compared with UO{sub 2}/Zr system. The case reactivity initiated accident analyzed, reproducing the fuel rod called VA-1 using UO{sub 2}/Zr alloys and compared with UO{sub 2}-BeO/FeCrAl. (author)

  12. Irradiation of UO2+x fuels in the TANOX device

    International Nuclear Information System (INIS)

    Dehaudt, P.; Caillot, L.; Delette, G.; Eminet, G.; Mocellin, A.

    1998-01-01

    The TANOX analytical irradiation device is presented and the first results concerning stoichiometric and hyper stoichiometric uranium dioxide fuels with two different grain sizes are given. The TANOX device is designed to obtain rapidly significant burnups in fuels at relatively low temperatures. It is placed at the periphery of the SILOE reactor and translated to adjust the irradiation power. The continuous measure of the centre-line temperature allows to control the experiment and to evaluate the thermal behaviour of the rods. A TANOX fuel rod has a length of 100 mm with 20 fuel pellets in a stainless steel cladding and is inserted in a thick aluminium alloy overcladding which is cooled by the primary water circuit reactor. These conditions of small size pellets and improved thermal exchanges have been designed to dissipate the heat power due to fission densities three to five times higher than in a PWR. The first analytical irradiation was devoted to the study of UO 2.00 , UO 2.01 and UO 2.02 fuels with standard and large grain sizes obtained by annealing. A burnup of about 9000 MWd.t -1 U was reached in these fuels. The thermal analysis shows a degraded conductivity for the UO 2.02 fuel rod due to the hyper stoichiometry. The released fractions of 85 Kr during irradiation are negligible as expected (lower than 0,1%). Some of the pellets were heat treated at 1700 deg. C for 5 hours. The gas release was analysed after 30 minutes and at the end of the treatment. The main results are as follows: the fission gas release (FGR) of the standard UO 2 varies from one sample to another; the FGR of the hyper stoichiometric fuels is of the same order of magnitude than that of the stoichiometric UO 2 fuel of normal grain sizes; the grain size increase has no effect on FGR for UO 2.00 but considerably decreases the FGR for UO 2.01 and UO 2.02 fuels. These heat treated samples are also observed to characterize the inter- and intragranular fission gas bubbles. (author)

  13. Radiation damage of UO{sub 2} fuel; Radijaciono ostecenje UO{sub 2} goriva

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M; Sigulinski, F [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Radiation damage study of fuel and fuel elements covers: study of radiation damage methods in Sweden; analysis of testing the fuel and fuel elements at the RA reactor; feasibility study of irradiation in the Institute compared to irradiation abroad in respect to the reactor possibilities. Tasks included in this study are relater to testing of irradiated UO{sub 2} and ceramic fuel elements.

  14. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  15. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    Dias, Marcio S.

    1982-06-01

    The volume, composition and release of the fission gas products were caculated for (Th, U)O 2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO 2 + 5% UO 2 fuel rods it will be produced approximated 5% more fission gas as compared to UO 2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO 2 . Under the same fuel rod operational conditions, the (Th, U)O 2 fission gas release will be smaller as compared to UO 2 . This behaviour of (Th, U)O 2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author) [pt

  16. Influence of environment on the alteration of the UO2 matrix of spent fuel in storage condition

    International Nuclear Information System (INIS)

    Gaulard, C.

    2012-01-01

    Within the framework of the geological disposal of spent nuclear fuel, research on the long term behavior of spent fuel is undertaken and in particular the study of mechanisms of UO 2 oxidation and dissolution in water-saturated host rock. Under the law program on the sustainable management of radioactive materials and waste of June 28, 2006, France was chose as the reference solution the retreatment of spent fuel and disposal in deep geological repository of vitrified final waste. Nevertheless, studies on a direct disposal of spent fuel will continue for safety. The disposal concept provides for conditioning spent fuel in a steel container whose seal is guaranteed for a period specified in the order of 10,000 years. It is also reasonable to assume that the groundwater comes into contact with the fuel after the deterioration of container and lead to the UO 2 matrix degradation and the release of radionuclides. The oxidation/dissolution of UO 2 has been studied by means electrochemical methods coupled to XPS and ICP-MS measurements.A thermodynamic and bibliographic study of U(VI)/UO 2 (s) system allowed to show the effect of the physical and chemical conditions of the solution on the system, and to show the different mechanisms proposed to describe the oxidation and the dissolution of the uranium dioxide in different media (non-complexing, carbonate and clay). The study of the oxidation/dissolution of UO 2 in acidic and non-complexing media (0.1 mol/L NaCF 3 SO 3 , pH = 3), where UO 2 2+ /UO 2 (s) predominates and the formation of precipitates is limited or even avoided, showed a mechanism with two electrochemical steps and a model characteristic of UO 2 oxidation in acidic non-complexing media. Then, the study in neutral non-complexing media (0.05 mol/L NaCl, pH = 7.5) showed a mechanism with two electrochemical steps and one chemical step (EEC) in which both electrochemical steps are similar to those proposed in acidic media. Finally, a first approach of the UO 2

  17. Fabrication of metallic channel-containing UO2 fuels

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Song, Kun Woo; Kim, Keon Sik; Jung, Youn Ho

    2004-01-01

    The uranium dioxide is widely used as a fuel material in the nuclear industry, owing to many advantages. But it has a disadvantage of having the lowest thermal conductivity of all kinds of nuclear fuels; metal, carbide, nitride. It is well known that the thermal conductivity of UO 2 fuel is enhanced by making, so called, the CERMET (ceramic-metal) composite which consists of both continuous body of highly thermal-conducting metal and UO 2 islands. The CERMET fuel fabrication technique needs metal phase of at least 30%, mostly more than 50%, of the volume of the pellet in order to keep the metal phase interconnected. This high volume fraction of metal requires such a high enrichment of U that the parasitic effect of metal should be compensated. Therefore, it is attractive to develop an innovative composite fuel that can form continuous metal phase with a small amount of metal. In this investigation, a feasibility study was made on how to make such an innovative fuel. Candidate metals (W, Mo, Cr) were selected, and fabrication process was conceptually designed from thermodynamic calculations. We have experimentally found that a metal phase envelops perfectly UO 2 grains, forming continuous channel throughout the pellet, and improving the thermal conductivity of pellet

  18. Effects of UO2 fuel microstructure and density on fuel in-reactor performance

    International Nuclear Information System (INIS)

    Hansson, L.

    1988-02-01

    The volume changes of UO 2 fuel pellets, produced by neutron irradiation, can be characterized by two processes: fission spike induced densification through pore skrinkage and later fission produced induced swelling of UO 2 matrix. In-pile densification is controlled by the initial density and microstructure of the fuel, particularly by the pore size distribution. The extent of swelling depends mainly on the amount of fission products produced, but the fission gas release as well as the swelling may be reduced by increasing the grain size of UO 2 . Fabrication of fuel pellets having certain in-reactor properties requires detailed knowledge of the effects of individual fabrication parameters. The irradiation experience of fuels fabricated by using different conversion and pelletizing methods is extensive. Based on this experience, some general characteristics of stable/well-performing fuel microstructures have been summarized

  19. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  20. Spent fuel UO2 matrix corrosion behaviour studies through alpha-doped UO2 pellets leaching

    International Nuclear Information System (INIS)

    Muzeau, B.; Jegou, C.; Broudic, V.

    2005-01-01

    Full text of publication follows: The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behaviour of the UO 2 matrix in aqueous media subjected to α-β-γ radiations. The β-γ emitters account for the most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persist over much longer time periods and must therefore be taken into account over geological disposal scale. In the present investigation the UO 2 matrix corrosion under alpha radiation is studied as a function of different parameters such as: the alpha activity, the carbonates and hydrogen concentrations,.. In order to study the effect of alpha radiolysis of water on the UO 2 matrix, 238/239 Pu doped UO 2 pellets (0.22 %wt. Pu total) were fabricated with different 238 Pu/ 239 Pu ratio to reproduce the alpha activity of a 47 GWd.t HMi -1 UOX spent fuel at different milestones in time (15, 50, 1500, 10000 and 40000 years). Undoped UO 2 pellets were also available as reference sample. Leaching experiments were conducted in deionized or carbonated water (NaHCO 3 1 mM), under Argon (O 2 2 30% gas mixture. Previous experiments conducted in deionized water under argon atmosphere, have shown a good correlation between alpha activity and uranium release for the 15-, 1500- and 40000-years alpha doped UO 2 batches. Besides, uranium release in the leachate is controlled either by the kinetics, or by the thermodynamics. Provided the solubility limit of uranium is not achieved, uranium concentration increases and is only limited by the kinetics, unless precipitation occurs and the uranium concentration remains constant over time. These controls are highly dependant on the solution chemistry (HCO 3 - , pH, Eh,..), the atmosphere (Ar, Ar/H 2 ,..), and the radiolysis strength. The experimental matrix

  1. State of the art of UO2 fuel fabrication processes

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.

    1980-01-01

    Starting from the need of UO 2 for thermal power reactors in the period from 1980 to 1990 and the role of UF 6 conversion into UO 2 within the fuel cycle, the state-of-the-art of the three established industrial processes - ADU process, AUC process, IDR process - is assessed. The number of process stages and requirements on process management are discussed. In particular, the properties of the fabricated UO 2 powders, their influence on the following pellet production and on operational behaviour of the fuel elements under reactor conditions are described. Hence, an evaluation of the three essential conversion processes is derived. (author)

  2. TRU transmutation using ThO2-UO2 and fully ceramic micro-encapsulated fuels in LWR fuel assemblies

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Sergi

    2012-01-01

    The objective of this work is to design new LWR fuel assemblies which are able to efficiently destroy TRU (transuranics) nuclide without degradation of safety aspects by using ThO 2 -UO 2 fuel pins and FCM (Fully Ceramic Micro-encapsulated) fuel pins containing TRU fuel particles. Thorium was mixed to UO 2 in order to reduce the generation of plutonium nuclides and to save the uranium resources in the UO 2 pins. Additionally, the use of thorium contributes to the extension of the fuel cycle length. All calculations were performed by using DeCART (Deterministic Core Analysis based on Ray Tracing) code. The results show that the new concept of fuel assembly has the TRU destruction rates of ∼40% and ∼25% per 1200 EFPD (Effective Full Power Day) over the TRU FCM pins and the overall fuel assembly, respectively, without degradation of FTC and MTC

  3. Preparation of UO2 fragments for fuel-debris experiments

    International Nuclear Information System (INIS)

    Tinkle, M.C.; Kircher, J.A.; Zinn, R.M.; Eash, D.T.

    1982-01-01

    A unique process was developed for preparing multi-kilogram quantities of > 90% dense fragments of enriched and depleted UO 2 sized 20 mm to 0.038 mm for fuel debris experiments. Precipitates of UO 4 . xH 2 O were treated to obtain UO 2 powders that would yield large cohesive green pieces when isostatically pressed to 206 MPa. The pressed pieces were crushed into fragments that were about 30% oversized, and heated to 1800 0 C for 24 h in H 2 . Oversizing compensates for shrinkage during densification. Effort was dramatically reduced by working on a large scale and by presizing the green UO 2 instead of directly crushing densified pellets

  4. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Linde, A. van der.

    1989-04-01

    Comparative testing of UO 2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO 2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO 2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  5. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  6. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  7. Development of ceramics based fuel, Phase I, Kinetics of UO{sub 2} sintering by vibration compacting of UO{sub 2} powder (Introductory report); Razvoj goriva na bazi keramike, I faza, Kinetika sinterovanja UO{sub 2} vibraciono kompaktiranje praha UO{sub 2} (Uvodni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO{sub 2} sintering; Vibrational compacting and sintering of UO{sub 2}; Characterisation of of UO{sub 2} powder by DDK and TGA methods; Separation of UO{sub 2} powder.

  8. Optimization of UO{sub 2} Granule Characteristics for UO{sub 2}-Mo Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjoo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The in-reactor performance, integrity, safety and accident tolerance of the nuclear fuel can be significantly affected by the thermal conductivity of the UO{sub 2} fuel pellet. The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various ways. Typically, the FGR (Fission Gas Release) can be reduced by the application of a large-grain fuel pellet because the moving path of the fission gas to the grain boundary is much longer. In addition, the mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capacity of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. In addition, the nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed in various ways. From the viewpoint of the development of fuel pellet fabrication technology, an enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the UO{sub 2} pellet. It is known that a UO{sub 2}-metal composite pellet is one of the most effective concepts. However, to maximize the effect of the metallic phase for thermal conductivity enhancement, a continuous channel of the metallic phase in the UO{sub 2} matrix must be formed. Additionally, if the fabrication process of a UO{sub 2}-metal composite pellet is compatible with a conventional sintering process, the developed technology will be favorable. To enhance the thermal conductivity of a UO{sub 2} pellet, there are the various methods for an appropriate arrangement of the high thermal conductive material in a UO{sub 2} matrix. In this

  9. Methods of modification and investigations of properties of fuel UO2

    International Nuclear Information System (INIS)

    Kurina, I.; Popov, V.; Rogov, S.; Dvoryashin, A.; Serebrennikova, O.

    2009-01-01

    In the SSC RF-IPPE the researches are carried out directed towards the uranium dioxide fuel pellets modification with the purpose of improvement of their performance parameters (increase of thermal conductivity, growth of grain for decrease gas release, decrease of interaction with coolant). The following technological methods of manufacturing of modified pellets UO 2 were used: 1) The water method including precipitation of Ammonium Polyuranate (APU) with manufacturing of simultaneously coarse and super dispersed particles, and also coprecipitation APU with additives (Cr, Ti, etc.), with the after calcination of powders, reduction to UO 2 pressing and sintering of pellets; 2) A method including addition of chemical reagent containing ammonia to the powder UO 2 manufactured under the dry or water technology; mechanical mixture; pressing and sintering of pellets. Application of the specified up methods makes manufacturing the UO 2 fuel pellets having the properties differing from pellets manufactured by industrial technology. Conclusions: 1) Properties of powders and the pellets manufactured by different technologies considerably differ; 2) Precipitate manufactured by water industrial technology, consists of phase NH 3 ·3UO 3 ·5H 2 O whereas the precipitate manufactured by nanotechnology contains in addition phase NH 3 ·2UO 3 ·3H 2 O; 3) Powders of U 3 O 8 manufactured by water nanotechnology have particles size 300-500 nm and ultra dispersive particles size ∼70-75 nm; 4) Powder UO 2 obtained by water nanotechnology differs by greater activity because all phase changes under oxidation result at lower temperatures; 5) Basic differences of properties of modified UO 2 pellets was established: decreasing of defects inside and on grains boundaries, minor porosity (pore size 0,05-0,5 μm), presence of pore of spherical form, presence of additional chemical bond U-U (presence of metal clusters), polyvalence of U; 6) Methods including addition of Cr and Ti under

  10. Measurements of thermal disadvantage factors in light-water moderated PuO2-UO2 and UO2 lattices

    International Nuclear Information System (INIS)

    Ohno, Akio; Kobayashi, Iwao; Tsuruta, Harumichi; Hashimoto, Masao; Suzaki, Takenori

    1980-01-01

    The disadvantage factor for thermal neutrons in light-water moderated PuO 2 -UO 2 and UO 2 square lattices were obtained from measurements of thermal neutron density distributions in a unit lattice cell, measured with Dy-Al wire detectors. The lattices consisted of 3.4 w/o PuO 2 .UO 2 and 2.6 w/o UO 2 fuel rods, and the water-to-fuel volume ratio within the unit cell was parametrically changed. The PuO 2 .UO 2 and UO 2 fuel rods were designed to realize equal fissile atomic number density. The disadvantage factors thus measured were 1.36 +- 0.07, 1.37 +- 0.08, 1.40 +- 0.06 and 1.38 +- 0.06 in the PuO 2 .UO 2 fuel lattices, and 1.30 +- 0.06, 1.31 +- 0.08, 1.30 +- 0.08 and 1.33 +- 0.06 in the UO 2 , for water-to-fuel volume ratios, of 1.76, 2.00, 2.38 and 2.95, respectively. This difference in disadvantage factor between PuO 2 .UO 2 and UO 2 fuel lattices corresponds to about 8%. Calculated results obtained by multigroup transport code LASER agreed well with the measured ones. (author)

  11. Fuel elements based on mixed oxides UO{sub 2} - PuO{sub 2}; Gorivni elementi na bazi mesanih oksida UO{sub 2} - PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1978-07-01

    Questions concerning utilization of plutonium as a fissionable material in fuel elements for nuclear power plants have been discussed. Characteristics and application of fuel elements with mixed UO{sub 2} - PuO{sub 2} fuel for thermal and fast breeder reactors have also been dealt with. In the presentation of technological processes for production of fuel elements based on mixed oxides specific characteristics are given with respect to the work with plutonium and relatively high production costs as compared to classical fuel elements based on sintered UO{sub 2}. (author)

  12. Synthesis and sintering of UN-UO{sub 2} fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J., E-mail: BrianJaques@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A. [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Tyburska-Püschel, Beata [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Meyer, Mitch [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Xu, Peng; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2015-11-15

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO{sub 2}, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO{sub 2} to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO{sub 2} in a planetary ball mill. UN and UN – UO{sub 2} composite pellets were sintered in Ar – (0–1 at%) N{sub 2} to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO{sub 2} composite pellets were also sintered in Ar – 100 ppm N{sub 2} to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  13. Fission gas release from ThO2 and ThO2--UO2 fuels (LWBR development program)

    International Nuclear Information System (INIS)

    Goldberg, I.; Spahr, G.L.; White, L.S.; Waldman, L.A.; Giovengo, J.F.; Pfennigwerth, P.L.; Sherman, J.

    1978-08-01

    Fission gas release data are presented from 51 fuel rods irradiated as part of the LWBR irradiations test program. The fuel rods were Zircaloy-4 clad and contained ThO 2 or ThO 2 -UO 2 fuel pellets, with UO 2 compositions ranging from 2.0 to 24.7 weight percent and fuel densities ranging from 77.8 to 98.7 percent of theoretical. Rod diameters ranged from 0.25 to 0.71 inches and fuel active lengths ranged from 3 to 84 inches. Peak linear power outputs ranged from 2 to 22 kw/ft for peak fuel burnups up to 56,000 MWD/MTM. Measured fission gas release was quite low, ranging from 0.1 to 5.2 percent. Fission gas release was higher at higher temperature and burnup and was lower at higher initial fuel density. No sensitivity to UO 2 composition was evidenced

  14. Effect of water α radiolysis on the spent nuclear fuel UO2 matrix alteration

    International Nuclear Information System (INIS)

    Lucchini, J.F.

    2001-01-01

    In the option of long term storage or direct disposal of nuclear spent fuel, it is essential to study the long-term behaviour of the spent fuel matrix (UO 2 ) in water, in presence of ionizing radiations. This work gives some knowledge elements about the impact of aerated water alpha radiolysis on UO 2 alteration. An original experiment method was used in this study. UO 2 /water interfaces were irradiated by an external He 2+ ions beam. The sequential batch dissolution tests on UO 2 samples were performed in aerated deionized water, before, during and after a-irradiation under high fluxes. A corrosion product, identified as hydrated uranium peroxide, was formed on the UO 2 surface. The uranium release was 3 to 4 orders of magnitude higher under irradiation than out of irradiation. The concentrations of the radiolysis products H 2 O 2 and H 3 O + were affected by the uranium oxide surface. They could not only explain the whole uranium release reached during irradiation in water. Leaching experiments on UO X spent fuel samples (with or without the Zircaloy clad) were also performed, in hot cells. The uranium release was relatively small, and H 2 O 2 was not detected in solution. The rates of uranium release in aerated water during one hour were calculated. They were about mg -1 .m -2 .d -1 for spent fuel and for UO 2 , and about g -1 .m -2 .d -1 for UO 2 irradiated by He 2+ ions. The comparison of the results between the two kinds of experiment shows a difference of the behaviour in water between UO 2 irradiated by He 2+ ions and spent fuel. Some hypothesis are given to explain this difference. (author)

  15. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    Gadolinium has been used as burnable poison for reactivity control in modern PWRs. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder enables longer fuel cycles and optimized fuel utilization. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The process for manufacturing UO 2 - Gd 2 O 3 generates scraps that should be reused. The main scraps are green and sintered pellets, which must be calcined to U 3 O 8 to return to the fabrication process. Also, the incorporation of Gd 2 O 3 in UO 2 requires the use of an additive to improve the sintering process, in order to achieve the physical properties specified for the mixed fuel, mainly density and microstructure. This paper describes the effect of the addition of fabrication scraps on the properties of the UO 2 -Gd 2 O 3 fuel. Aluminum hydroxide Al(OH) 3 was also incorporated to the fuel as a sintering aid. The results shown that the use of 2000 ppm of Al(OH) 3 as additive allow to fabricate good pellets with up to 10 wt% of recycled scraps. (author)

  16. Microprobe analysis of PuO2--UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Clark, W.I.; Rasmussen, D.E.; Carlson, R.L.; Highley, D.M.

    1977-01-01

    For the preirradiation characterization of FFTF UO 2 --PuO 2 fuel, a program was developed to determine the preirradiation porosity, grain structure, and microcomposition of the fuel. Two computer programs, MITRAN and MERIT, were developed to evaluate the homogeneity of the fuel. These programs use elemental composition data generated by the electron microprobe. MITRAN determines information on the size and frequency of individual regions, whereas MERIT provides an index of the thermal performance of the fuel and calculated statistical data for comparison to other fuel batches

  17. Technological aspects concerning the production procedures of UO2-Gd2O3 nuclear fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Riella, Humberto Gracher

    2007-01-01

    The direct incorporation of Gd 2 O 3 powder into UO 2 powder by dry mechanical blending is the most attractive process for producing UO 2 -Gd 2 O 3 nuclear fuel. However, previous experimental results by our group indicated that pore formation due to the Kirkendall effect delays densification and, consequently, diminishes the final density of this type of nuclear fuel. Considering this mechanism as responsible for the poor sintering behavior of UO 2 -Gd 2 O 3 fuel prepared by the mechanical blending method, it was possible to propose, discuss and, in certain cases, preliminarily test feasible adjustments in fabrication procedures that would minimize, or even totally compensate, the negative effects of pore formation due to the Kirkendall effect. This work presents these considerations. (author)

  18. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, James [Univ. of Florida, Gainesville, FL (United States); Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States)

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  19. Spent fuel UO{sub 2} matrix corrosion behaviour studies through alpha-doped UO{sub 2} pellets leaching

    Energy Technology Data Exchange (ETDEWEB)

    Muzeau, B.; Jegou, C.; Broudic, V. [CEA-Valrho DEN/DTCD/SECM Laboratoire des Materiaux et Procedes Actifs BP 17171 F-30207 Bagnols-sur-Ceze cedex (France)

    2005-07-01

    Full text of publication follows: The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behaviour of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiations. The {beta}-{gamma} emitters account for the most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persist over much longer time periods and must therefore be taken into account over geological disposal scale. In the present investigation the UO{sub 2} matrix corrosion under alpha radiation is studied as a function of different parameters such as: the alpha activity, the carbonates and hydrogen concentrations,.. In order to study the effect of alpha radiolysis of water on the UO{sub 2} matrix, {sup 238/239}Pu doped UO{sub 2} pellets (0.22 %wt. Pu total) were fabricated with different {sup 238}Pu/{sup 239}Pu ratio to reproduce the alpha activity of a 47 GWd.t{sub HMi}{sup -1} UOX spent fuel at different milestones in time (15, 50, 1500, 10000 and 40000 years). Undoped UO{sub 2} pellets were also available as reference sample. Leaching experiments were conducted in deionized or carbonated water (NaHCO{sub 3} 1 mM), under Argon (O{sub 2} < 0.1 ppm), or Ar/H{sub 2} 30% gas mixture. Previous experiments conducted in deionized water under argon atmosphere, have shown a good correlation between alpha activity and uranium release for the 15-, 1500- and 40000-years alpha doped UO{sub 2} batches. Besides, uranium release in the leachate is controlled either by the kinetics, or by the thermodynamics. Provided the solubility limit of uranium is not achieved, uranium concentration increases and is only limited by the kinetics, unless precipitation occurs and the uranium concentration remains constant over time. These controls are highly dependant on the solution chemistry

  20. Improving the Thermal Conductivity of UO2 Fuel with the Addition of Graphene

    International Nuclear Information System (INIS)

    Cho, Byoung Jin; Kim, Young Jin; Sohn, Dong Seong

    2012-01-01

    Improvement of fuel performances by increasing the fuel thermal conductivity using the BeO or W were reported elsewhere. In this paper, some major fuel performances of improved thermal conductivity oxide (ICO) nuclear fuel with the addition of 10 v/o graphene have been compared to those of standard UO 2 fuel. The fuel thermal conductivity affects many performance parameters and thus is an important parameter to determine the fuel performance. Furthermore, it also affects the performance of the fuel during reactor accidents. The improved thermal conductivity of the fuel would reduce the fuel temperature at the same power condition and would improve the fission gas release, rod internal pressure and fuel stored energy. Graphene is well known for its excellent electrical conductivity, strength and thermal conductivity. The addition of graphene to the UO 2 fuel could increase the thermal conductivity of the ICO fuel. Although the graphene material is extensively studied recently, the characteristics of the graphene material, especially the thermal properties, are not well-known yet. In this study, we used the Light Water Reactor fuel performance analysis code FRAPCON-3.2 to analyze the performance of standard UO 2 and ICO fuel

  1. Correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1982-10-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and of compressive deformation at 1870 and 1970 0 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history

  2. Effect of titania addition on the thermal conductivity of UO2 fuel [Paper IIIB-C

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Kumar, A.; Arora, K.B.S.; Pandey, V.D.; Nair, M.R.; Kamath, H.S.

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO 2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO 2 and UO 2 containing 0.05wt per cent and 0.1wt per cent TiO 2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO 2 on the thermal conductivity of UO 2 fuel. (author)

  3. Effect of titania addition on the thermal conductivity of UO2 fuel (Paper IIIB-C)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A K; Kumar, A; Arora, K B.S.; Pandey, V D; Nair, M R; Kamath, H S

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO2 and UO2 containing 0.05wt per cent and 0.1wt per cent TiO2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO2 on the thermal conductivity of UO2 fuel. 5 figures.

  4. Fabrication of Cr-doped UO2 Fuel Pellet using Liquid Phase Sintering

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Koo, Yang Hyun

    2013-01-01

    An enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the pellet. In addition, the resistance to the PCI can be increased through a plasticity increase of the pellet. Thermal conductivity of ceramic materials is generally lower than that of metallic materials. The thermal conductivity of uranium oxide which is a typical ceramic material is low as well. The steep temperature gradient in the fuel pellet results from the low thermal conductivity. Therefore, the thermal conductivity improvement of a nuclear fuel pellet can enhance the fuel performance in various aspects. The lower centerline temperature of a fuel pellet affects the enhancement of fuel safety as well as fuel pellet integrity during nuclear reactor operation. Besides, the nuclear reactor power can be uprated due to the higher safety margin. So, many researches to enhance the thermal conductivity of nuclear fuel pellet have been performed in various ways. To improve the thermal conductivity of UO 2 pellet, an appropriate arrangement of the high thermal conductive material in UO 2 matrix is one of the various methods. We intended to control a placement of chromium as the high thermal conductive material. The metallic chromium and chromium oxide were arranged in a grain boundary of UO 2 using a liquid phase sintering method. The liquid phase sintering of Cr-doped UO 2 pellet could be adjusted using a control of an oxygen potential in sintering atmosphere

  5. Physical characteristics of Gd2O3-UO2 fuel in LWR

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Kobayashi, Iwao; Furuta, Toshiro; Toba, Masao; Tsuda, Katsuhiro.

    1981-12-01

    A series of critical experiments in light water lattice were carried out on five kinds of Gadolinia-Uranium dioxide (Gd 2 O 3 -UO 2 ) test fuel rods containing 0.0, 0.05, 0.25, 1.50, 3.00 weight % of Gd 2 O 3 in Gd 2 O 3 -UO 2 . Reactivity effect, power distribution, neutron flux distribution, and temperature coefficient were measured for three types of lattices which were in shapes of annular, rectangular parallele-piped, and JPDR mockup core. The theoretical values corresponding to the measured ones were obtained by means of the design method for the FTA which is the test fuel assembly with Gd 2 O 3 -UO 2 rods for JPDR, and the accuracy was checked. In general, the calculated values were in good agreement with the measured ones. Besides, the following characteristics of Gd 2 O 3 -UO 2 rods are recognized both in measurement and calculation, i.e. (1) the effect due to gadolinia on reactivity, power distribution, and thermal neutron flux distribution are steeply saturating; the gadolinia content of only 1.50 weight % is enough to reach the almost saturated condition, (2) the relative power becomes 20% to that of normal fuel under the saturated condition, (3) the relation between the negative reactivity and the power depression effect due to gadolinia is almost linear, and (4) the interference on power depression between the adjacent gadolinia loaded rods is almost negligible, and that on reactivity effect is 15% at most. (author)

  6. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  7. Irradiation of UO{sub 2}; Ozracivanje UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-10-15

    Based on the review of the available literature concerned with UO{sub 2} irradiation, this paper describes and explains the phenomena initiated by irradiation of the UO{sub 2} fuel in a reactor dependent on the burnup level and temperature. A comprehensive review of UO{sub 2} radiation damage studies is given as a broad research program. This part includes the abilities of our reactor as well as needed elements for such study. The third part includes the defions of the specific power, burnup level and temperature in the center of the fuel element needed for planning and performing the irradiation. Methods for calculating these parameters are includedSerb. Na osnovu pregleda dostupne literature o ozracivanju UO{sub 2} u ovom radu su izlozene i objasnjene pojave koje nastaju pri ozracivanju goriva od UO{sub 2} u reaktoru do razlicitih stepena izgaranja i na razlicitim temperaturama. Pored toga, dat je pregled svih mogucih ispitivanja na radijacionom ostecenju UO{sub 2} u formi sirokog programa istrazivanja. Ovaj deo je dopunjen sudom o mogucnostima naseg reaktora kao i o elementima koji su potrebni za ovakav rad. U trecem delu su izlozeni definicija parametara: specificna snaga, stepen izgaranja i temperatura centra goriva i njihovo izracunavanje za potrebe postavljanja i izvodjenja ozracivanja (author)

  8. Critical sizes of light-water moderated UO2 and PuO2-UO2 lattices

    International Nuclear Information System (INIS)

    Tsuruta, Harumichi; Kobayashi, Iwao; Suzuki, Takenori; Ohno, Akio; Murakami, Kiyonobu

    1978-02-01

    Experimental critical sizes are presented for a total of about 250 lattices with 2.6 w/o UO 2 and 3.0 w/o PuO 2 -natural UO 2 fuel rods. The moderator was H 2 O and water-to-fuel volume ratios in the lattice cells ranged from 1.50 to 3.00 in the UO 2 lattices and from 2.42 to 5.55 in the PuO 2 -UO 2 lattices. The critical sizes were determined with the number of the fuel rods and a water level which were required to make the lattice critical in the shape of a rectangular parallelepiped over the temperature range from room temperature to 80 0 C. Reactivity variations of the PuO 2 -UO 2 lattices due to decaying of 241 Pu to 241 Am were traced during 3 years. Some critical sizes of the UO 2 and PuO 2 -UO 2 lattices with a water gap and of the UO 2 lattices with liquid poison in the moderator are also reported. Some physics parameters, such as the temperature coefficient of reactivity, the water-level worth, the reflector saving, the ratio between a migration area and an infinite multiplication factor and the critical buckling, are shown in relation to the critical sizes of the unperturbed lattices without the water gap and liquid poison. (auth.)

  9. Out-of-pile UO2/Zircaloy-4 experiments under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hofmann, P.

    1983-01-01

    Chemical interactions between UO 2 fuel and Zircaloy-4 cladding up to the melting point of zircaloy (Zry) are described. Out-of-pile UO 2 /zircaloy reaction experiments have been performed to investigate the chemical interaction behavior under possible severe fuel damage conditions (very high temperatures and external overpressure). The tests have been conducted in inert gas (1 to 80 bar) with 10-cm-long zircaloy cladding specimens filled with UO 2 pellets. The annealing temperature varied between 1000 and 1700 deg. C and the annealing period between 1 and 150 min. The extent of the chemical reaction depends decisively on whether or not good contact between UO 2 and zircaloy has been established. If solid contact exists, zircaloy reduces the UO 2 to form oxygen-stabilized α-Zr(O) and uranium metal. The uranium reacts with zircaloy to form a (U,Zr) alloy rich in uranium. The (U,Zr) alloy, which is liquid above approx. 1150 deg. C, lies between two α-Zr(O) layers. The UO 2 /zircaloy reaction obeys a parabolic rate law. The degree of chemical interaction is determined by the extent of oxygen diffusion into the cladding, and hence by the time and temperature. The affinity of zirconium for oxygen, which results in an oxygen gradient across the cladding, is the driving force for the reaction. The growth of the reaction layers can be represented in an Arrhenius diagram. The UO 2 /Zry-4 reaction occurs as rapidly as the steam/Zry-4 reaction above about 1100 deg. C. The extent of the interaction is independent of external pressure above about 10 bar at 1400 deg. C and 5 bar at 1700 deg. C. The maximum measured oxygen content of the cladding is approx. 6wt.%. Up to approx. 9 volume % of the UO 2 can be chemically dissolved by the zircaloy. In an actual fuel rod, complete release of the fission products in this region of the fuel must therefore be assumed. (author)

  10. The influence of porosity on the thermal conductivity of irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1994-12-01

    The influence of porosity on the thermal conductivity of irradiated UO 2 fuel has been determined with the Finite Element Method (FEM). Light-microscopy photographs were made of the fuel. The pore shape and the pore distribution are entered in the FEM program from these photographs. The two dimensional (2D) thermal conductivity in the plane of the photograph is obtained from the FEM calculations. The 2D thermal conductivity, that has no physical meaning itself, is the lower limit of the three dimensional (3D) thermal conductivity. For three well defined pore shapes the relation is determined between the 2D thermal conductivity and the 3D thermal conductivity. From these computations a simple relation is obtained that transfers the 2D thermal conductivity into the 3D thermal conductivity, independent of the pore shape. The influence of porosity on the 3D thermal conductivity of irradiated UO 2 fuel and UO 2 fuel doped with Nb 2 O 5 was computed with the FEM. (orig.)

  11. Fission gas release from the sintered UO{sub 2} fuel; Oslobadjanje fisionih gasova iz goriva od sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sigulinski, F; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This paper shoes the phenomena which control fission gases release from the sintered UO{sub 2} dependent of the burnup rate: ejection, release, diffusion, increased fission gas accumulation causing structural changes in the fuel. release of fission gases from the fuel for power reactors was studied as well. The influence of factors as temperature, characteristics of fuel, burnup rate and burnup level was analyzed. Prikazani su mehanizmi koji kontrolisu izdvajanje fisionih gasova iz sinterovanog UO{sub 2} pri razlicitim brzinama izgaranja: izletanje, izbijanje, difuzija, povecano izdvajanje fisionih gasova koje prati strukturne promene u gorivu. Razmatrano je proucavanje izdvajanja fisionih gasova iz goriva za reaktore snage. Analiziran je uticaj faktora kao sto su temperatura, karakteristike goriva, brzina i stepen izgaranja (author)

  12. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  13. Grain growth in UO2

    International Nuclear Information System (INIS)

    Hastings, I.J.; Scoberg, J.A.; Walden, W.

    1979-06-01

    Grain growth studies have been carried out on UO 2 to provide data for the fuel modelling program and to evaluate fuel fabricated in commissioning the Mixed Oxide Fuel Fabrication Laboratory at Chalk River Nuclear Laboratories. Fuel examined includes natural UO 2 commercially fabricated from ADU powder for CANDU reactors; natural UO 2 commercially fabricated from AU powder; natural UO 2 from ADU and AU powder, fabricated in the MOFFL; and commercially fabricated UO 2 enriched 1.7, 4.5, and 9.6 wt. percent U-235 in U. Samples were step-annealed in vacuo at 1870-2070 K for up to 32.5 h. All data fit a (grain size)sup(2.5) versus annealing time relationship. Apparent activation energy for grain growth, Q, depends on fuel type and varies from 150+-10 kJ/mol for early AU powder to 360+-10 kJ/mol for pellets from ADU fabricated in the MOFFL. Grain sizes calculated using the laboratory equation in a fuel performance code tend to be greater than those measured in irradiated natural fuel, suggesting irradiation-induced inhibition of grain growth. However, any inhibition is equivalent to that expected for a systematic 5 percent underpredicition in reactor power. (author)

  14. Leaching of irradiated CANDU UO2 fuel

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Johnson, L.H.; Lau, D.W.P.

    1980-01-01

    Irradiated fuel, leached at room temperature with distilled water and with slightly chlorinated river water, releases approx. 4% of its cesium inventory over a comparatively sort period of a few days but releases its actinides and rare earths more slowly. The matrix itself dissolves at a rate conservatively calculated to be less than approx. 2 x 10 -6 g UO 2 /cm 2 day and, with time, the leach rates of the various nuclides approach this value

  15. Qualification of power determination and in-pile measurements in the UO{sub 2} Gd{sub 2} 0{sub 2} fuel irradiation test IFA 636

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, T.; Volkov, B.; Kim, J-C.

    2004-04-15

    IFA-S36 is irradiated with the main objective of extending the database on the performance of UO{sub 2}Gd{sub 2}O{sub 2} fuel (with 8% absorbing gadolinia isotopes) compared with commercial UO{sub 2}. The rig carries 6 rods in the lower cluster (including three Gd-doped fuel rods) and 3 rods in the upper cluster (one rod with Gd-doped fuel). The rods are instrumented with expansion thermometers (ETs), fuel and cladding elongation detectors (EFs and ECs) and pressure transducers (PFs). Repeated calorimetric power measurements, physics calculations by the HELIOS code and gamma scans of selected rods in both clusters enabled the power and burnup determination to be qualified and corrected. The data suggest that as of May 2004 the power ratings in both fuels are much alike and burnups are about 30 and 34 MW/kgUO{sub 2} in the Gd-doped and ordinary UO{sub 2} rods respectively. Analysis of in-pile measurements compared with calculations shows that neutron absorption affects fuel temperature, power and burnup radial distributions in Gd-doped fuel at BOL compared with UO{sub 2} fuel. Sensitivity analyses performed with the HELIOS and FTEMP3 codes show that fuel centreline temperature in Gd-doped fuel is influenced by radial power depression, depletion of fissile materials and absorbing Gd isotopes as well as thermal conductivity of the fuel matrix and its degradation during irradiation. Analysis of the fuel dimension changes revealed densification only in the UO{sub 2} fuel whereas fuel elongation measurements in the Gd-doped fuel rods indicated essentially constant swelling with burnup. At burnups above 5 MWd/kgUO{sub 2} the swelling rate was about 0.5-O.fi % DELTAV/V per 10 MWd/kgUO{sub 2} for both fuel types. Internal pressure measured in the Gd-doped rod at BOL showed slight fuel densification and possibly He gas absorption, whereas derived swelling rate was somewhat Iarger than values obtained from the fuel elongation measurements. Cladding elongation measurements

  16. Performance evaluation of UO2-Zr fuel in power ramp tests

    International Nuclear Information System (INIS)

    Knudsen, P.; Bagger, C.

    1977-01-01

    In power reactors using UO 2 -Zr fuel, rapid power increases may lead to failures in fuel pins that have been irradiated at steady or decreasing heat loads. This paper presents results which extend the experience with power ramp performance of high burn-up fuel pins. A test fuel element containing both pellet and vipac UO 2 -Zr fuel pins was irradiated in the HBWR at Halden for effectively 2 1/2 years to an average burn-up of 21,000 MWD/te UO 2 at gradually decreasing power levels. The subsequent non-destructive characterization revealed formation of transverse cracks in the vipac fuel columns. After the HBWR irradiation, five of the fuel pins were power ramp tested individually in the DR 3 Reactor at Riso. The ramp rates in this test series were in the range 3-60 W/cm min. The maximum local heat loads seen in the ramp tests were 20-120% above the highest levels experienced at the same axial positions during the HBWR irradiation. Three pellets and one vipac fuel pin failed, whereas another vipac pin gave no indication of clad penetration. Profilometry after the ramp testing indicated the formation of small ridges for both types of fuel pins. For vipac fuel, the ridges were less regularly distributed along the pin length than for pellet fuel. Neutron radiography revealed the formation of additional transverse and longitudinal fuel cracks during the power ramps for both types of fuel pins. The observed failures seemed to be marginal since little or no indication as to the locations of the clad penetrations could be derived from the non-destructive post-irradiation examinations. The cases have been analyzed by means of the Danish fuel performance codes. The calculations, which are in general agreement with the observations, are discussed. The results of the investigations indicate qualitative similarities in over power performance of the two fuel types

  17. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  18. Densification Behavior of BN-added UO2

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Keonsik; Kim, Dong Joo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho

    2013-01-01

    Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed. Boron is commercially used as a neutron absorber fuel. A neutron absorber fuel is burned out or depleted during reactor operation. Westinghouse have been produced the Integral Fuel Burnable Absorber (IFBA) which is enriched UO 2 fuel pellets with a thin coating of zirconium diboride (ZrB 2 ) on the outer surface. Standard sintered fuel pellets are sputter coated with ZrB 2 . It is known that IFBA fuel can incur 20% to 30% additional fabrication costs. Boron-dispersed UO 2 fuel pellet made by the conventional pressing and sintering process of a powder mixture of UO 2 and B compound might be more cost-effective than IFBAs. M. G. Andrew et al. tried to sinter boron-dispersed UO 2 green pellet. However, they reported that boron-dispersed UO 2 fuel pellet is very difficult to be fabricated with a sufficient level of boron retention and high sintered density (greater than 90 % of theoretical density) because of the volatilization of boron oxide. We have investigated the densification behavior of mixtures of UO 2 and various boron compounds, such as B 4 C, BN, TiB 2 , ZrB 2 , SiB 6 , and HfB 2 . Boron compounds seemed to act as a sintering additive for UO 2 at a certain low temperature range. In this study, the densification behavior of BN-added UO 2 pellet has been investigated by sintering green pellets of a mixture of UO 2 powder and BN powder in H 2 atmosphere. A high density BN-added UO 2 pellet can be fabricated after sintering at 1200 .deg. C for more than 1 h in a H 2 atmosphere. The sintered density of BN-added UO 2 pellet can be increased up to about 95 %TD

  19. Physics of the fuel cycle. Evaluation of methods, uncertainties and estimation of the material balance for fuels UO2 and UO2-PuO2

    International Nuclear Information System (INIS)

    Monier, C.

    1997-09-01

    The research works of this thesis are aimed to evaluate the methods and the associated uncertainties for the material balances estimation of the burn-up UO 2 and MOX fuels which intervene in the fuel cycle physics. The studies carried out are used to qualify the cycle 'package' DARWIN for the PWRs material balances estimation. The elaboration and optimisation of the calculation routes are carried out following a very specific methodology, aimed at estimating the bias introduced by the modelizations simplification by a comparison with almost exact reference modelizations. Depending on the precision goals and the informations, the permissible approximation will be determined. Two calculation routes have been developed and the qualified by applying them to the used fuels isotopic analysis interpretation: one 'industry-oriented' calculation route which can calculate full UO 2 assemblies material balances with a 2 % precision on the main actinides, respecting the industrial specifications. This route must run with a reasonable calculation time and stay user-friendly; one reference calculation route for the precise interpretation of fuel samples made of pieces of burn-up MOX rods. Aiming to provide material balances with the best possible precision, this route does not have the same specifications concerning its use and its calculation time performance. (author)

  20. Microstructural change and its influence on fission gas release in high burnup UO 2 fuel

    Science.gov (United States)

    Une, K.; Nogita, K.; Kashibe, S.; Imamura, M.

    1992-06-01

    The microstructural change of UO 2 fuel pellets (burnup: 6-83 GWd/t), base irradiated under LWR conditions, has been studied by detailed postirradiation examinations. The lattice parameter near the fuel rim in the irradiated UO 2 increased with burnup and appeared to become constant beyond about 50 GWd/t. This lattice dilation was mainly due to the accumulation of radiation induced point defects. Moreover, the dislocation density in the UO 2 matrix developed progressively with burnup, and eventually the tangled dislocations organized many sub-grain boundaries in the highest burnup fuel of 83 GWd/t. This sub-grain structure induced by accumulated radiation damage was compatible in appearance with SEM fractography results which revealed sub-divided grains of sub-micron size in as-fabricated grains. The influence of burnup on 85Kr release from the UO 2 fuels has been examined by means of a postirradiation annealing technique. The higher fractional release of high burnup fuels was mainly due to the burnup dependence of the fractional burst release evolved on temperature ramp. The fractional burst release was represented in terms of the square root of burnup from 6 to 83 GWd/t.

  1. Application of boron and gadolinium burnable poison particles in UO2 and PUO2 fuels in HTRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble (fuel zone with radius of 2.5 cm surrounded with a 0.5 cm thick graphite layer) and burnable poison particles (BPPs) containing B 4 C made of pure 10 B or containing Gd 2 O 3 made of natural Gd. Two types of fuel were considered: UO 2 fuel made of 8% enriched uranium and PuO 2 fuel made of plutonium from LWR spent fuel. The radius of the BPP and the number of particles per fuel pebble were varied to find the flattest reactivity-to-time curve. For the UO 2 fuel, the reactivity swing is lowest (around 2%) for BPPs made of B 4 C with radius of 75 μm. In this case around 1070 BPPs per fuel pebble are needed. For the PuO 2 fuel to get a reactivity swing below 4%, the optimal radius of the BPP is the same, but the number of particles per fuel pebble should be around 1600. The optimal radius of the Gd 2 O 3 particles in the UO 2 fuel is about 10 times that of the B 4 C particles. The reactivity swing is around 3% when each fuel pebble contains only 9 BPPs with radius of 840 μm. The results of the Gd particles illustrate nicely the usage of black burnable poison particles introduced by Van Dam [Ann. Nuclear Energy 27 (2000) 733

  2. Sensitivity and uncertainty analysis for UO2 and MOX fueled PWR cells

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2015-01-01

    Highlights: • A method for calculating sensitivity coefficients has been improved. • The IR approximation was used in order to get accurate results. • Sensitivities and uncertainties are calculated using the improved method. • The method is applied for UO 2 and MOX fueled PWR cells. • The verification was performed by comparing our results with MCNP6 and TSUNAMI-1D. - Abstract: This paper discusses the improvement of a method for calculating sensitivity coefficients of neutronics parameters relative to infinite dilution cross-sections because the conventional method neglects resonance self-shielding effect. In this study, the self-shielding effect is taken into account by using the intermediate resonance approximation in order to get accurate results in both high and low energy groups. The improved method is applied to calculate sensitivity coefficients and uncertainties of eigenvalue responses for UO 2 and MOX (ThO 2UO 2 and PuO 2UO 2 ) fueled pressurized water reactor cells. The verification of the improved method was performed by comparing the sensitivities with MCNP6 and TSUNAMI-1D. For uncertainty, calculation comparisons were done with TSUNAMI-1D, and we demonstrate that the differences are caused by the use of different covariance matrices

  3. Irradiation of UO2

    International Nuclear Information System (INIS)

    Stevanovic, M.

    1965-10-01

    Based on the review of the available literature concerned with UO 2 irradiation, this paper describes and explains the phenomena initiated by irradiation of the UO 2 fuel in a reactor dependent on the burnup level and temperature. A comprehensive review of UO 2 radiation damage studies is given as a broad research program. This part includes the abilities of our reactor as well as needed elements for such study. The third part includes the definitions of the specific power, burnup level and temperature in the center of the fuel element needed for planning and performing the irradiation. Methods for calculating these parameters are included [sr

  4. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  5. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  6. A microstructure-dependent model for fission product gas release and swelling in UO2 fuel

    International Nuclear Information System (INIS)

    Notley, M.J.F.; Hastings, I.J.

    1979-06-01

    A model for the release of fission gas from irradiated UO2 fuel is presented. It incorporates fission gas diffusion bubble and grain boundary movement,intergranular bubble formation and interlinkage. In addition, the model allows estimates of the extent of structural change and fuel swelling. In the latter, contributions of thermal expansion, densification, solid fission products, and gas bubbles are considered. When included in the ELESIM fuel performance code, the model yields predictions which are in good agreement with data from UO2 fuel elements irradiated over a range of water-cooled reactor conditions: linear power outputs between 40 and 120 kW/m, burnups between 10 and 300 MW.h/kg U and power histories including constant, high-to-low and low-to-high power periods. The predictions of the model are shown to be most sensitive to fuel power (temperature), the selection of diffusion coefficient for fission gas in UO2 and burnup. The predictions are less sensitive to variables such as fuel restraint, initial grain size and the rate of grain growth. (author)

  7. Fission gas release and grain growth in THO2-UO2 fuel irradiated at high temperature

    International Nuclear Information System (INIS)

    Goldberg, I.; Waldman, L.A.; Giovengo, J.F.; Campbell, W.R.

    1979-01-01

    Data are presented on fission gas release and grain growth in ThO 2 -UO 2 fuels irradiated as part of the LWBR fuel element development program. These data for rods that experienced peak linear power outputs ranging from 15 to 22 KW/ft supplement fission gas release data previously reported for 51 rods containing ThO 2 and ThO 2 -UO 2 fuel irradiated at peak linear powers predominantly below 14 KW/ft. Fission gas release was relatively high (up to 15.0 percent) for the rods operated at high power in contrast to the relatively low fission gas release (0.1 to 5.2 percent) measured for the rods operated at lower power. Metallographic examination revealed extensive equiaxed grain growth in the fuel at the high power axial locations of the three rods

  8. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  9. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  10. Determination of the cationic self-diffusion coefficient in ThO2-5%UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Sabioni, A.C.S.

    1984-01-01

    The cation self-diffusion coefficient for the ThO 2 -5%UO 2 by means of the densification model developed by Assmann and Stehle was determined. The experimental data of the fuel densification, used in the calculations, were obtained from thermal resinter tests. Our result is comparable to previously published values for U and Th diffusion in polycrystalline ThO 2 and (Th, U)O 2 . (Author) [pt

  11. BURNY-SQUID, 2-D Burnup of UO2 and Mix UO2 PuO2 Fuel in X-Y or R-Z Geometry

    International Nuclear Information System (INIS)

    Rosa, I.; Zara, G.; Guidotti, R.

    1974-01-01

    1 - Nature of physical problem solved: - Multigroup neutron diffusion and burnup equations for two- to five- energy groups over a rectangular region of the x-y or r-z plane. - For a given geometry and initial enrichment, it calculates the two- to five- group flux distributions, the nuclides burnt in a time step t, and then the flux distribution again. This process is repeated until the maximum burn-up is reached. - Criticality search by uniform variation of a control isotope. - Solution of problems with fuel having different geometrical parameters, by means of super-compositions. - Recycle and restart options are available. - UO 2 and PUO 2 -UO 2 fuel can be handled. 2 - Method of solution: The zero-dimension burn-up program RIBOT-5 is coupled with the two-dimension program SQUID and alternately executed. The differential equations are solved by the difference method. 3 - Restrictions on the complexity of the problem: 200 maximum number of compositions 10,000 maximum number of mesh points 5 maximum Number of groups. 4 maximum number of super-compositions. Diagonal symmetry allowed

  12. Inspection of the UO2 special fuel for the prototype heavy water reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Miura, Makoto; Ohmori, Takuro; Yoshino, Hiroyuki; Matsui, Hiromasa; Hirosawa, Naonori

    1979-01-01

    UO 2 special fuel assemblies are the fuel for material irradiation incorporating irradiation specimens, for the prototype heavy water reactor ''FUGEN''. In order to monitor the behavior of the pressure tube material irradiated with neutrons for long time, monitoring specimens were equipped in the core. This special fuel was fabricated by the Nuclear Fuel Industries, Ltd. (NFI), and the fuel cladding tubes, the capsule guide tubes and the capsule tubes were furnished by PNC. The irradiation specimens were prepared by PNC, and incorporated into the assemblies by NFI. The inspection by PNC on the special fuel assemblies was conducted following the inspection by the maker, which was made on UO 2 pellets, fuel element and assembly parts except cladding tubes, after completing the fabrication. The specifications of the special fuel, especially for the outer and inner layer pellets, the outer and inner layer fuel elements and the fuel assemblies, are presented. The flow sheet for the inspection process and surveillance test of special fuel assemblies is illustrated. The inspection items, the materials and the quantity inspection are tabulated for the fuel elements, the fuel assemblies and the irradiation capsules, respectively. The structure of a special type fuel assembly is shown. For each inspection, the inspection methods and items and the results are explained. As for the results of inspection of the special fuel, the UO 2 pellets, fuel element parts, fuel elements, fuel assembly parts, fuel assemblies, capsules and irradiation specimens were in accordance with the specifications. Regarding the situation of the quality control in the processes, check was made with many documents, and it was recognized that the quality control was performed in the quality assurance program. (Nakai, Y.)

  13. Recycling of nuclear fuel swarf at the fabrication of UO sub(2)-pellets and its influence on the irradiation behavior

    International Nuclear Information System (INIS)

    Dias, M.S.; Lameiras, F.S.; Santos, A.M.M. dos

    1991-01-01

    From the fabrication of UO sub(2) pellets for light water reactor fuel rods, nuclear fuel scraps results in form of UO sub(2) grinding swarf and UO sub(2) sinter scraps oxidized to U sub(3)O sub(8) powder. Detailed investigations on five types of UO sub(2) pellets fabricated with different portions of this scrap kinds added to the UO sub(2) press powder showed that there is only a small influence of such scrap additions on the irradiation behavior, especially for the fission gas release. This allows to recycle the fabrication scrap in a simple and economic way. (author)

  14. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  15. On the correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1983-01-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and compressive deformation at 1870 and 1970 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history. However, for a meaningful interpretation of the data the presently available 'classical' methods of fracture mechanics are inadequate and, furthermore, sufficient additional (not yet available) information on the relations between mechanical properties and structural details are required. (author)

  16. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  17. Thoria-fuel irradiation. Program to irradiate 80% ThO2/20% UO2 ceramic pellets at the Savannah River Plant

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1982-02-01

    This report describes the fabrication of proliferation-resistant thorium oxide/uranium oxide ceramic fuel pellets and preparations at the Savannah River Laboratory (SRL) to irradiate those materials. The materials were fabricated in order to study head end process steps (decladding, tritium removal, and dissolution) which would be required for an irradiated proliferation-resistant thorium based fuel. The thorium based materials were also to be studied to determine their ability to withstand average commercial light water reactor (LWR) irradiation conditions. This program was a portion of the Thorium Fuel Cycle Technology (TFCT) Program, and was coordinated by the Oak Ridge National Laboratory (ORNL) under the Consolidated Fuel Reprocessing Program (CFRP). The fuel materials were to be irradiated in a Savannah River Plant (SRP) reactor at conditions simulating the heat ratings and burnup of a commercial LWR. The program was terminated due to a de-emphasis of the TFCT Program, following completion of the fabrication of the fuel and the modified assemblies which were to be used in the SRP reactor. The reactor grade ceramic pellets were fabricated for SRL by Battelle, Pacific Northwest Laboratories. Five fuel types were prepared: 100% UO 2 pellets (control); 80% ThO 2 /20% UO 2 pellets; approximately 80% ThO 2 /20% UO 2 + 0.25 CaO (dissolution aid) pellets; 100% UO 2 hybrid pellets (prepared from sol-gel microspheres); and 100% ThO 2 pellets (control). All of the fuel materials were transferred to SRL from PNL and were stored pending a subsequent reactivation of the TFCT Programs

  18. Heat conductance of sintered UO{sub 2}; Toplotna provodljivost sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Phenomena influencing the heat conductance of the sintered UO{sub 2} were analyzed, first of all when used as nuclear fuel. Influence of temperature, density and porosity, additives and irradiation in the reactor are shown. Based on the available literature, the measured heat conductance values were analyzed for the sintered UO{sub 2} outside the reactor and in the reactor during irradiation. Analizirane su pojave koje uticu na toplotnu provodljivost sinterovanog UO{sub 2}, pre svega, sa aspekta njegove primene kao goriva. Izlozen je uticaj temperature, gustine i poroznosti, aditiva i ozracivanja u reaktoru. Na osnovu pregleda dostupne literature kriticki su prikazani rezultati merenja toplotne provodljivosti sinterovanog UO{sub 2} van reaktora i u reaktoru pri ozracivanju (author)

  19. Contribution to the identification and the evaluation of a doped UO2 fuel with controlled oxygen potential

    International Nuclear Information System (INIS)

    Pennisi, Vanessa

    2015-01-01

    Temperature and oxygen partial pressure (PO 2 ) of nuclear oxide fuels are the main parameters governing both their thermochemical evolution in reactor and the speciation of volatile fission products such as Cs, I or Te. An innovative way to limit the risk of cladding rupture by corrosion under irradiation consists in buffering the oxygen partial pressure of the fuel under operation in a PO 2 domain where the fission gas are harmless towards Zr clad, by using solid redox buffers as additives. Niobium, with its NbO 2 /NbO and Nb 2 O 5 /NbO 2 redox couples has been found to be a promising candidate to this end. A manufacturing process of a buffered UO 2 fuel, doped with niobium has been optimized, in order to fulfill usual specifications (density, microstructure). The experimental study of the UO 2 -NbO x system has shown the existence of a liquid phase between UO 2 and NbO x at 810 C, which was not reported in the literature. The characterization of Nb containing phases present in UO 2 both in solid solution and as precipitates has lead us to propose a solubility thermodynamic model of niobium in UO 2 at 1700 C. An extensive study of the niobium precipitates shows the co-existence in the fuel of NbO 2 and NbO as major phases, together with small amounts of metallic Nb. The coexistence of niobium under two oxidation states inside the fuel is a key element of demonstration of a possible in-situ buffering effect, which is likely to impact some properties of the material that are dependent upon PO 2 , such as densification. These results confirm the promising potential of oxygen buffered fuels as regard to their performance in reactor. (author) [fr

  20. Finite element analysis of local overheating within plutonium enriched UO2 fuel rods caused by PuO2 islands

    International Nuclear Information System (INIS)

    Sarmiento, G.S.

    1980-01-01

    Within natural UO 2 fuel elements enriched with plutonium, this last material should form PuO 2 solid solutions inside the UO 2 pellets, in a wide range of concentrations. If the solutions are obtained by mechanical mixing of the oxides, PuO 2 islands are formed in the UO 2 matrix. These islands may be the source of several problems in the fuel behaviour, the most important being the overheating of the matrix in the neighbourhood of the particles. It is caused by the large fission cross section of plutonium compared with that of uranium. A detailed study of the thermal effects produced by PuO 2 particles in the UO 2 matrix and the cladding is then important for the specification of their permissible size. A portion of the fuel rods with spherical particles in the most significant places was studied. In order to obtain the dimensionless overheating of the fuel and cladding produced by the presence of those particles, the spatial distribution of temperature was calculated, solving the stationary and linear bidimensional equation of heat conducting using a finite element code. Several geometrical variables and material properties have been taken as dimensionless parameters. A satisfactory convergence of the numerical results to an asymptotic limit with a well-known exact solution, has been obtained. (orig.)

  1. UO2-PuO2 fuel pin capsule-irradiations of the test series FR 2-5a

    International Nuclear Information System (INIS)

    Dienst, W.; Goetzmann, O.; Schulz, B.

    1975-06-01

    In the capsule-irradiation test series FR 2-5a, short UO 2 -PuO 2 fuel pins (80 mm fuel length) of 7 mm diameter were irradiated in a thermal neutron flux at mean rod powers of 400 - 450 W/cm and mean cladding surface temperatures of 500 - 550 0 C to burnups of 0.6, 1.8 and 5.0 at% (U + Pu). Void volume redistribution in the fuel pins was examined in micrographs of cross-sections by measuring crack widths, central void diameters, and fuel porosity. The width of the radial cracks at the outer fuel rim was taken as a basis for measuring the irradiation-induced densification of the UO 2 -PuO 2 fuel. The result was that the final fuel density after irradiation-induced densification amounted to 92 - 94% TD and had already been reached after 0.6 at% burnup. The porosity measurement on fuel cross-sections was to show a possible dependence of the radial porosity redistribution on the initial sintered density. Examining the fuel pin diameters after irradiation showed permanent cladding strains after 5 at% burnup, which must be due to mechanical interaction with the fuel. To judge if the chemical compatibility between the fuel and the cladding of Cr-Ni-stainless steel 1.4988, the depths of chemical attack on the cladding inside was measured by micrographs of fuel pin cross-sections. (orig./GSC) [de

  2. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  3. Testing of HTR UO{sub 2} TRISO fuels in AVR and in material test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kania, Michael J., E-mail: MichaelJKania@googlemail.com [Retired from Lockheed Martin Corp, 20 Beach Road, Averill Park, NY 12018 (United States); Nabielek, Heinz, E-mail: heinznabielek@me.com [Retired from Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Verfondern, Karl [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Allelein, Hans-Josef [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, 52072 Aachen (Germany)

    2013-10-15

    The German High Temperature Reactor Fuel Development Program successfully developed, licensed and manufactured many thousands of spherical fuel elements that were used to power the experimental AVR reactor and the commercial THTR reactor. In the 1970s, this program extended the performance envelope of HTR fuels by developing and qualifying the TRISO-coated particle system. Irradiation testing in real-time AVR tests and accelerated MTR tests demonstrated the superior manufacturing process of this fuel and its irradiation performance. In the 1980s, another program direction change was made to a low enriched UO{sub 2} TRISO-coated particle system coupled with high-quality manufacturing specifications designed to meet new HTR plant design needs. These needs included requirements for inherent safety under normal operation and accident conditions. Again, the German fuel development program met and exceeded these challenges by manufacturing and qualifying the low-enriched UO{sub 2} TRISO-fuel system for HTR systems with steam generation, gas-turbine systems and very high temperature process heat applications. Fuel elements were manufactured in production scale facilities that contained near defect free UO{sub 2} TRISO coated particles, homogeneously distributed within a graphite matrix with very low levels of uranium contamination. Good irradiation performance for these elements was demonstrated under normal operating conditions to 12% FIMA and under accident conditions not exceeding 1600 °C.

  4. High 240Pu FTR/EMC experiments and analysis: Carbide fuel and UO2 blanket subassembly worths

    International Nuclear Information System (INIS)

    Ombrellaro, P.A.

    1977-06-01

    Carbide-plutonium fuel and UO 2 blanket subassembly worth measurements performed at ANL in the EMC/LWR were analyzed. Composition exchange worth calculations were performed for: (a) the replacement of high- 240 Pu fuel composition for low- 240 Pu fuel composition and carbide-plutonium fuel composition, successively, in the center subassembly of the core; (b) the replacement of low- 240 Pu fuel composition for carbide--plutonium fuel composition in one outer driver subassembly; and (c) the replacement of the radial reflector composition with UO 2 blanket composition in one subassembly of the radial reflector. The composition exchange worth calculations were performed in two-dimensional x,y geometry, using diffusion theory and perturbation theory. Each method produces about the same calculated-to-experimental bias factors

  5. Irradiation and study of irradiated full elements and sintered UO{sub 2} fuel; Ozracivanje i ispitivanje ozracenih gorivnih elemenata i goriva na bazi sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This review contains the activities related to the development of UO{sub 2} fuel elements, based on study of the processes in the fuel. This work was done during development, irradiation and testing of certain type of fuel rods and fuel assemblies. A feasibility study for irradiation of fuel elements in our country or abroad was done by analysing the defined problem and our capabilities in this field. Izlozen je pregled potrebnih radova na ozracivanju vezanih za razvoj gorivnih elemenata sa UO{sub 2} gorivom, prikazan kroz rad na osnovnim usmerenim istrazivanjima procesa i pojave u gorivu, kroz razvoj odredjenog tipa gorivnih elemenata ozracivanjem i ispitivanjem ozracenih gorivnih sipki i sklopova gorivnih elemenata. Na osnovu tako postavljenog problema i nasih mogucnosti za rad na ovom polju izvrsena je analiza celishodnosti ozracivanja gorivnih elemenata (goriva) kod nas, odnosno u inostranstvu (author)

  6. Achieving higher productivity of UO2 fuel at NUOFP through improved in-plant quality surveillance

    International Nuclear Information System (INIS)

    Meena, R.; Pramanik, D.; Sairam, S.; Rajkumar, J.V.; Rao, R.V.R.L.V.; Sinha, T.K.; Santra, N.; Rao, G.V.S.H.; Jayaraj, R.N.

    2009-01-01

    At Nuclear Fuel Complex (NFC), in the production of UO 2 fuel for PHWRs, a standard set of process parameters are monitored regularly for every lot of powder and pellet. Quality of intermediate products in the production process like UNP, ADU(dry), U 3 O 8 , UO 2+x , UO 2 granules, green pellets, sintered pellets are also regularly analysed/monitored apart from the final finished pellet and ensured to be within specified range. This range is decided by final product specifications and sometimes also based on the feed requirement in the next process in the downstream of the flow sheet. Vast experience gained over the years, behavior of various equipment under given set of conditions, feed back from the customer plants etc; have been primary criteria hither to, for defining the process conditions and chemical/physical properties of intermediate products

  7. Behaviour in air at 175-400 degrees C of irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Hastings, I.J.; McCracken, D.

    1984-09-01

    The authors extended their study of irradiated, defected UO 2 fuel elements to 200 and 400 degrees C. At 200 degrees C there was no diametral change, but at 400 degrees C we observed swelling and severe sheath splitting. Neither short-lived fission products, nor Cs-134, Cs-137 or Ru-106 above background, were detected. Maximum Kr-85 release was 4 Bq ( -6 Ci). Discharge time was 2.5 years. UO 2 fragment studies were extended to 400 degrees C. The oxidation process for unirradiated and irradiated fuel up to 300 degrees C was characterized by activation energies of 140 +- 10 and 120 +- 10 kJ/mol, respectively; enhancement of oxidation rate was confirmed in the irradiated samples. There is an apparent reduction of activation energy above about 300 degrees C. Fuel elements with artificial and natural defects showed similar oxidation and dimensional response at 250 degrees C. Behaviour of fuel fragments from the defect area of a naturally-defected element is consistent with that for fragments from intact elements when prior oxidation during the defect period is considered

  8. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  9. Thermal conductivity of the sintered UO{sub 2}; Toplotna provodljivost sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1967-04-15

    Phenomena influencing the thermal conductivity of the sintered UO{sub 2} fuel were analyzed. Influence of temperature, density and porosity, additives and irradiation in the reactor core are presented. Thermal conductivity of sintered UO{sub 2} was measured both outside the reactor and during the irradiation in the reactor. Results are discussed and analyzed based on the available literature. Analizirane su pojave koje uticu na toplotnu provodljivost sinterovanog UO{sub 2}, pre svega, sa aspekta njegove primene kao goriva. Izlozen je uticaj temperature, gustine i poroznosti, aditiva i ozracivanja u reaktoru. Na osnovu pregleda dostupne literature kriticki su prikazani rezultati merenja toplotne provodljivosti sinterovanog UO{sub 2} van reaktora i u reaktoru pri ozracivanju (author)

  10. Sintering densification of CaO–UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun [Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang, 330013, Jiangxi (China); Sun, Huidong [China Nucle Power Engineering Co., Ltd (China); Wang, Hui, E-mail: yinchanggeng5525@163.com [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China); Pan, Xiaoqiang; Li, Tongye; Liu, Jinhong; Zhang, Yong; Wang, Xinjie [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China)

    2015-10-15

    CaO-doped UO{sub 2}-10 wt% Gd{sub 2}O{sub 3} burnable poison fuel was prepared by co-precipitation reaction method. It was found that 0.3 wt% CaO-doping significantly improved the sintered density, grain sizes and crushing strength of UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets at the sintering temperature of 1650 °C in the sintering atmosphere of hydrogen for 3.5 h. In addition, homogeneous solid solution without precipitation of free phases of CaO and Gd{sub 2}O{sub 3} was successfully achieved. CaO doping in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellet system accelerated the thermally activated material transport, so the onset temperature of densification as well as the temperature of the maximum densification rate shifted to a lower temperature region. - Highlights: • A small amount of 0.3% doped CaO{sub 2} can significantly improve the sintered density. • Homogeneous solid solution forms without precipitation of free phases. • The pellet has good density, high strength and increasing grain sizes with homogeneity. • The pellet accelerates a thermally activated material transport.

  11. Technological investigation for producing UO2 powder from ADU by using rotary furnace

    International Nuclear Information System (INIS)

    Pham Duc Thai; Ngo Trong Hiep; Dam Van Tien; Vu Quang Chat; Nguyen Duy Lam; Ngo Xuan Hung; Ngo Quang Hien; Tran Duy Hai; Nguyen Van Sinh

    2003-01-01

    Uranium dioxide powder UO 2 is main material for producing UO 2 fuel ceramic pellets. The technical characteristics of UO 2 powder directly affect on mechanical and physical characteristics of UO 2 fuel ceramic pellets. Project titled 'Technological investigation for producing UO 2 powder from ADU by using rotary furnace' with the code number BO/01/03-06 for two years 2001 and 2002, on purpose to step by step perfect the technology and equipments for producing UO 2 powder, that is as nuclear fuel. This UO 2 powder may be good material for producing UO 2 fuel ceramic pellets. The results had been achieved as follows: 1. Study on the perfection of the reduction process U 3 O 8 to UO 2 in the gas mixture of 3H 2 + N 2 in inactive condition. 2. Study, design and production of active device system called rotary furnace for manufacturing UO 2 powder from ADU. 3. Study on 4 steps of technology process: drying, calcination, reduction and stabilization of UO 2 powder in the system of rotary furnace from which obtained UO 2 with technical characteristics meeting basic criteria of UO 2 fuel powder. (author)

  12. Influence of radiolysis on UO2 fuel matrix dissolution under disposal conditions. Literature Study

    International Nuclear Information System (INIS)

    Ollila, K.

    2011-05-01

    The objective of this study was to examine the recent published literature on the influence of water radiolysis on UO 2 fuel matrix dissolution under the disposal conditions. The α radiation is considered to be dominating over the other types of radiations at times longer than 1000 years. The presence of the anaerobic corrosion products of iron, especially of hydrogen, has been observed to play an important role under radiolysis conditions. It is not possible to exclude gamma/beta radiolysis effects in the experiments with spent fuel, since there is not available a fuel over 100 years old. More direct measurements of α radiolysis effects have been conducted with α doped UO 2 materials. On the basis of the results of these experiments, a specific activity threshold to observe α radiolysis effects has been presented. The threshold is 1.8 x 10 7 to 3.3 x 10 7 Bq/g in anoxic 10 -3 M carbonate solution. It is dependent on the environmental conditions, such as the reducing buffer capacity of the conditions. The results of dissolution rate measurements at VTT with 233 U-doped UO 2 samples in 0.01 to 0.1 M NaCl solutions under anoxic conditions did not show any effect of α radiolysis with doping levels of 5 and 10% 233 U (3.2 x 10 7 and 6.3 x 10 7 Bq/g). Both Fe 2+ and hydrogen can act as reducing species and could react with oxidizing radiolytic species. Fe 2+ concentrations of the order of 10 -5 M can decrease the rate of H 2 O 2 production. Low dissolution rates, 2 x 10 -8 to 2 x 10 -7 /yr, have been measured in the presence of metallic Fe with 5 and 10% 233 U-doped UO 2 in 0.01 to 1 M NaCl solutions. The tests with isotope dilution method showed precipitation phenomena of U to occur during dissolution process. The concentrations of dissolved U were extremely low (≤ 8.4 x 10 -11 M). No effects of -radiolysis could be seen. It is difficult to distinguish the effects of metallic Fe, Fe 2+ or hydrogen in these tests. Hydrogen could also act as a reducing agent

  13. Cracking and relocation of UO2 fuel during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Dagbjartsson, S.J.

    1981-01-01

    Cracking and relocation of light water reactor (LWR) fuel pellets affect the axial gas flow path within nuclear reactor fuel rods and the thermal performance of the fuel. As part of the Nuclear Regulatory Commission's Water Reactor Safety Research Fuel Behavior Program, the Thermal Fuels Behavior Program of EG and G Idaho, Inc., is conducting fuel rod behavior studies in the Heavy Boiling Water Reactor in Halden, Norway. The Instrumental Fuel Assembly-430 (IFA-430) operated in that facility is a multipurpose assembly designed to provide information on fuel cracking and relocation, the long-term thermal response of LWR fuel rods subjected to various internal pressures and gas compositions, and the release of fission gases. This report presents the results of an analysis of fuel cracking and relocation phenomena as deduced from fuel rod axial gas flow and fuel temperature data from the first 6.5 GWd/tUO 2 burnup of the IFA-430

  14. Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO

    Science.gov (United States)

    Garcia, Chad B.; Brito, Ryan A.; Ortega, Luis H.; Malone, James P.; McDeavitt, Sean M.

    2017-12-01

    The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being ˜ 100 pct, or doubled, at 10 vol pct BeO.

  15. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  16. Performance of LMFBR fuel pins with (Pu,Th)O/sub 2-x/ and UO2

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1983-09-01

    The irradiation performance of (Pu,Th)O/sub 2-x/ and UO 2 fueled pins for breeder reactor application were compared to the extensive performance data base for the (U,Pu)O/sub 2-x/ fuel system. Th-Pu and 238 U- 233 U based fuel systems were candidate fuel fertile/fissile isotopic combinations for development of alternatives to the current LMFBR fuel cycle. Initial screening tests were conducted in the EBR-II to obtain comparative performance data because of the limited experience with these fuel systems. In some cases, 235 U was used as a substitute for 233 U because of the difficulties in fabrication of available 233 U due to its high gamma ray emission rate

  17. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  18. BURNY-SQUID, 2-D Burnup of UO{sub 2} and Mix UO{sub 2} PuO{sub 2} Fuel in X-Y or R-Z Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, I; Zara, G; Guidotti, R [ENEL-DCO, Via G.B. Martini, 3, 00198 Rome (Italy)

    1974-08-01

    1 - Nature of physical problem solved: - Multigroup neutron diffusion and burnup equations for two- to five- energy groups over a rectangular region of the x-y or r-z plane. - For a given geometry and initial enrichment, it calculates the two- to five- group flux distributions, the nuclides burnt in a time step t, and then the flux distribution again. This process is repeated until the maximum burn-up is reached. - Criticality search by uniform variation of a control isotope. - Solution of problems with fuel having different geometrical parameters, by means of super-compositions. - Recycle and restart options are available. - UO{sub 2} and PUO{sub 2}-UO{sub 2} fuel can be handled. 2 - Method of solution: The zero-dimension burn-up program RIBOT-5 is coupled with the two-dimension program SQUID and alternately executed. The differential equations are solved by the difference method. 3 - Restrictions on the complexity of the problem: 200 maximum number of compositions 10,000 maximum number of mesh points 5 maximum Number of groups. 4 maximum number of super-compositions. Diagonal symmetry allowed.

  19. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)

  20. Physics of the fuel cycle. Evaluation of methods, uncertainties and estimation of the material balance for fuels UO{sub 2} and UO{sub 2}-PuO{sub 2}; Physique du cycle du combustible evaluation des methodes, incertitudes et estimation du bilan matiere pour les combustibles UO{sub 2} et UO{sub 2}-PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Monier, C

    1997-09-01

    The research works of this thesis are aimed to evaluate the methods and the associated uncertainties for the material balances estimation of the burn-up UO{sub 2} and MOX fuels which intervene in the fuel cycle physics. The studies carried out are used to qualify the cycle `package` DARWIN for the PWRs material balances estimation. The elaboration and optimisation of the calculation routes are carried out following a very specific methodology, aimed at estimating the bias introduced by the modelizations simplification by a comparison with almost exact reference modelizations. Depending on the precision goals and the informations, the permissible approximation will be determined. Two calculation routes have been developed and the qualified by applying them to the used fuels isotopic analysis interpretation: one `industry-oriented` calculation route which can calculate full UO{sub 2} assemblies material balances with a 2 % precision on the main actinides, respecting the industrial specifications. This route must run with a reasonable calculation time and stay user-friendly; one reference calculation route for the precise interpretation of fuel samples made of pieces of burn-up MOX rods. Aiming to provide material balances with the best possible precision, this route does not have the same specifications concerning its use and its calculation time performance. (author)

  1. Chemical analyses and calculation of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Tetsuo; Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-08-01

    Chemical analysis activities of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  2. Dissolution of unirradiated UO2 fuel in synthetic groundwater. Final report (1996-1998)

    International Nuclear Information System (INIS)

    Ollila, K.

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled 'Source term for performance assessment of spent fuel as a waste form'. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO 2 solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO 2 solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N 2 , O 2 2 , low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO 2 pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO 2 powder showed that the increase in the salinity ( -5 M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U 3 O 8 -UO 3 ) was identified with XRD when studying possible secondary phases after the contact time of one year with all groundwater compositions. Longer contact times are needed to identify secondary phases predicted by modelling (EQ3/6). In the anoxic dissolution experiments with UO 2 pellets, the

  3. Behaviour of short-lived iodines in operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Lipsett, J.J.; Hastings, I.J.; Hunt, C.E.L.

    1984-11-01

    Sweep gas experiments have been done to determine the behaviour of short-lived fission products within operating UO 2 fuel elements at linear powers of 45, 54, and 60 KW/m, and to burnups of 70, 80, and 50 MWh/kgU respectively. Although radioiodine transport was not observed directly during normal operation, equilibrium gap inventories for I-131 were deduced from the shutdown decay behaviour of the fission gases. These inventories were a strong function of fuel power and ranged from 10 GBq (0.27 Ci) to 100 GBq (2.7 Ci) over the range tested. We conclude that the iodine inventory was adsorbed onto the fuel and/or sheath surfaces with a volatile fraction of less than 10 -2 and a charcoal-filter-penetrating fraction of less than 2x10 -4

  4. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  5. Molybdenum-UO2 cerment irradiation at 1145 K

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  6. Simulation of the neutron-physical properties of the classical UO2 fuel and of MOX fuel during the burn-up by Transuranus

    International Nuclear Information System (INIS)

    Breza, J. jr.; Necas, V.; Daoeilek, P.

    2005-01-01

    The classical nuclear fuel UO 2 is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste. The code Transuranus [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code Transuranus to simulate the neutron-physical properties of the classical UO 2 fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton. (author)

  7. Analysis of UO2 fuel structure for low and high burn-up and its impact on fission gas release

    International Nuclear Information System (INIS)

    Szuta, M.; El-Koliel, M.S.

    1999-01-01

    During irradiation, uranium dioxide (UO 2 ) fuel undergo important restructuring mainly represented by densification and swelling, void migration, equiaxed grain growth, grain subdivision, and the formation of columnar grains. The purpose of this study is to obtain a comprehensive picture of the phenomenon of equiaxed grain growth in UO 2 ceramic material. The change of the grain size in high-density uranium dioxide as a function of temperature, initial grain size, time, and burnup is calculated. Algorithm of fission gas release from UO 2 fuel during high temperature irradiation at high burnup taking into account grain growth effect is presented. Theoretical results are compared with experimental data. (author)

  8. Modeling fission gas release in high burnup ThO2-UO2 fuel

    International Nuclear Information System (INIS)

    Long, Y.; Yuan, Y.; Pilat, E.E.; Rim, C.S.; Kazimi, M.S.

    2001-01-01

    A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO 2 -UO 2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO 2 , but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)

  9. Migration behavior of palladium in UO2, (3)

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Sato, Seichi; Ohashi, Hiroshi; Ogawa, Toru; Ito, Akinori; Fukuda, Kousaku.

    1992-08-01

    Palladium (Pd) is easily released from UO 2 kernels in HTGR coated fuel particles, and reacts with SiC coating layer. In addition, Pd is one of metallic fission products in irradiation UO 2 , which constitutes in dissoluble residue in reprocessing of LWR fuels. In the present investigation, the migration of palladium in UO 2 was examined by heating diffusion pairs sandwiched Pd foil between UO 2 wafers at 1300 ∼ 1800degC. Experiments were also carried out on affinity of Pd to UP 2 and a formation of U-Pd alloy. Pd was found mainly in the pores of UO 2 . The maximum depth intruded by Pd in fairly large amount was more than 100 μm for UO 2 with 90%TD and 50μm for UO 2 with 95%TD, while the maximum length of open pores was 330 μm for UO 2 with 90%TD, and 50 m for that with 95%TD. Fused Pd wetted UO 2 very much. Pd intruded deeply into UO 2 , especially in the edge of Pd droplet. Furthermore, U was detected either in precipitates or the Pd source with α-Pd phase of U-Pd alloy containing Pd at about 10at%. This fact indicates that Pd highly reacts with UO 2 . From the above results, the transport of Pd in UO 2 was explained by the model of gaseous diffusion through pores in UO 2 , which is retarded by formation of U-Pd alloy. It is also indicated that UPd 3 forms even at the oxygen potential condition of O/U ratio, which is a little higher than 2.00 on the basis of thermodynamic calculation. (author)

  10. Effects of MnO-Al2O3 on the grain growth and high-temperature deformation strain of UO2 fuel pellets

    International Nuclear Information System (INIS)

    Kang, Ki Won; Yang, Jae Ho; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    The fabrication and high-temperature deformation strain of MnO-Al 2 O 3 -doped UO 2 pellets were studied. The effects of additive composition and amount on the microstructure evolution of a UO 2 pellet were investigated. The compressive creep behaviors of MnO-Al 2 O 3 -doped UO 2 pellets were examined. The results indicated that a MnO-Al 2 O 3 binary additive can effectively promote the grain growth of UO 2 pellets. In addition, the high-temperature deformation strain of the UO 2 pellet can be improved significantly with 1,000 ppm 95MnO-5Al 2 O 3 (mol%). The developed MnO-Al 2 O 3 -additive-containing UO 2 pellets can be a potential candidate for a high-burn-up fuel and a pellet-cladding interaction (PCI) remedy. (author)

  11. The compaction and sintering of UO_2-Zr cermet pellets

    International Nuclear Information System (INIS)

    Tri Yulianto; Meniek Rachmawati; Etty Mutiara

    2013-01-01

    An innovative fuel pellet of UO_2-Zr cermet has been developed to improve thermal conductivity of UO_2 pellet by adding small amount Zr metal in to UO_2 matrix below 10 % weight. Zirconium powder will serve for the creation of bridges or web structure during compaction and will effectively reduce contact between of UO_2 particles. Based on the theory of phase equilibrium of metals-metal oxides-ceramic, this fabrication technique may produce UO_2 pellets containing continuous metal channel on the grain boundary of UO_2 through sintering in a reduction atmosphere. The fabrication was done by varying process parameters of mixing and compaction. Characterisation of UO_2-Zr cermet pellet involved visual test, dimensional and density measurement, and ceramography test. This advanced cermet fabrication technology may address common issue with cermet fuels such as microstructure with continuous metal channel structure in the UO_2 matrix, which is more effectively than the commonly accepted microstructure involving fraction of UO_2 pellet by standard fabrication route. (author)

  12. Vibrational compacting of UO{sub 2} samples in the cladding; Vibraciono kompaktiranje uzoraka UO{sub 2} u zastitnoj kosuljici

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-12-15

    Vibrational compacting was considered as a feasible method for fuel element fabrication. This report describes calibration of the vibrational compacting device. Vibrational compacting of UO{sub 2} was investigated. Obtained densities were not higher than 42% of the theoretical value, i.e. 70% of the possible compacting density. Influence of frequency, acceleration, power and time on the compacted samples was tested. Optimal conditions for UO{sub 2} compacting were as follows: frequency range from 2500 - 4000 Hz; acceleration range from 40 - 100 Hz; maximum power; time of compacting {approx} 5 min. Comparative evaluation of UO{sub 2} and SiO{sub 2} powders was done in order to improve the future development of this method for fabrication of fuel elements.

  13. Neutronics characteristics of micro-heterogeneous ThO2-UO2 PWR cores

    International Nuclear Information System (INIS)

    Zhao, X.; Driscoll, M.J.; Kazimi, S.

    2001-01-01

    A new fuel concept, axially-micro-heterogeneous ThO 2 -UO 2 fuel, where ThO 2 fuel pellets and UO 2 fuel pellets are stacked in separate layers in the fuel rods, is being studied at MIT as an option to reduce plutonium production in LWR fuel. Very interesting neutronic behavior is observed: (1) A reactivity increase of 3% to 4% at EOL for a given 235 U inventory which results in a 20-30% increase in average core discharge burnup; (2) For certain configurations, a ''burnable poison'' effect is observed. Analysis shows that these effects are achieved due to a combination of changes in self-shielding, local fissile worth, and conversion ratio, among which self-shielding is the dominant effect at the end of a reactivity-limited burnup. Other variations of micro-heterogeneous UO 2 -ThO 2 fuel including duplex pellets, checkerboard pin distribution, and checkerboard-axial combinations have also been investigated, and their neutronic performance compared. It is concluded that the axial fuel micro-heterogeneity provides the largest gain in reactivity-limited burnup. (author)

  14. Characterization of UO2 by infrared spectroscopy

    International Nuclear Information System (INIS)

    Faeda, Kelly C.M.; Machado, Geraldo C.; Lameiras, Fernando S.

    2011-01-01

    The characterization of nuclear fuel is of great importance to minimize the effects related to burnup and temperature and to achieve stability during in-core operation. The understanding the U-O system and its thermodynamic properties has fundamental importance in nuclear industry. Many physical properties of UO 2±x depend on the ratio O / U, such as the electrical conductivity and thermal properties, as well as the diffusivities of its constituents and solutes. The U-O system presents various oxides such as UO 2±x , U 4 O 9 , U 3 O 8 , and UO 3 . The control of the O/U relation is critical to the manufacturing process of UO 2 . In this work, the infrared spectroscopy was used to identify the presence of phases in UO 2 powder samples that cannot be identified by thermogravimetry and X-ray diffraction. (author)

  15. A review of the thermophysical properties of MOX and UO2 fuels

    International Nuclear Information System (INIS)

    Carbajo, Juan J.; Yoder, Gradyon L.; Popov, Sergey G.; Ivanov, Victor K.

    2001-01-01

    A critical review of the thermophysical properties of UO 2 and MOX fuels has been completed, and the best correlations for thermophysical properties have been selected. The properties reviewed are solidus and liquidus temperatures of the uranium/plutonium dioxide system (melting and solidification temperatures), thermal expansion and density, enthalpy and specific heat, enthalpy (or heat) of fusion, and thermal conductivity. Only fuel properties have been reviewed. The selected set of property correlations was compiled to be used in thermal-hydraulic codes to perform safety calculations

  16. Effects of hyperstoichiometry and fission products on the electrochemical reactivity of UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Betteridge, J.S.; Scott, N.A.M.; Shoesmith, D.W.; Bahen, L.E.; Hocking, W.H.; Lucuta, P.G.

    1997-03-01

    The effects of hyperstoichiometry and fission products on the electrochemical reactivity Of UO 2 nuclear fuel have been systematically investigated using cyclic voltammetry and the O 2 reduction reaction. Significant constraints are placed on the active-site model for O 2 reduction by the modest impact of bulk hyperstoichiometry. Formation of the U 4 O 9 derivative phase was associated with a marked increase in transient surface oxidation/reduction processes, which probably involve localized attack and might be fostered by tensile stresses induced during oxidation. Electrocatalytic reduction Of O 2 on simulated nuclear fuel (SIMFUEL) has been determined to increase progressively with nominal burnup and pronounced enhancement of H 2 O reduction has been observed as well. Substitution of uranium by lower-valence (simulated) fission products, which was formerly considered the probable cause for this behaviour, has now been shown to merely provide good electrical conductivity. Instead, the enhanced reduction kinetics for O 2 and H 2 O on SIMFUEL can be fully accounted for by noble metals, which segregate to the UO 2 grain boundaries as micron-sized particles, despite their low effective surface area. Apparent convergence of the electrochemical properties Of UO 2 and SIMFUEL through natural corrosion likely reflects evolution toward a common active surface. (author)

  17. Determination of Gd concentration profile in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tobia, D., E-mail: dina.tobia@cab.cnea.gov.ar [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Winkler, E.L.; Milano, J.; Butera, A. [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Kempf, R. [División Caracterización de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina); Bianchi, L.; Kaufmann, F. [Departamento de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina)

    2014-08-01

    A transversal mapping of the Gd concentration was measured in UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd{sub 2}O{sub 3} reference sample. The nominal concentration in the pellets is UO{sub 2}: 7.5% Gd{sub 2}O{sub 3}. A concentration gradient was found, which indicates that the Gd{sub 2}O{sub 3} amount diminishes towards the edges of the pellets. The concentration varies from (9.3 ± 0.5)% in the center to (5.8 ± 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd{sup 3+} ions in the UO{sub 2} matrix.

  18. A comparative study of fission gas behaviour in UO2 and MOX fuels using the meteor fuel performance code

    International Nuclear Information System (INIS)

    Struzik, C.; Garcia, Ph.; Noirot, L.

    2002-01-01

    The paper reviews some of the fission-gas-related differences observed between MOX MIMAS AUC fuels and homogeneous UO 2 fuels. Under steady-state conditions, the apparently higher fractional release in MOX fuels is interpreted with the METEOR fuel performance code as a consequence of their lower thermal conductivity and the higher linear heat rates to which MOX fuel rods are subjected. Although more fundamental diffusion properties are needed, the apparently greater swelling of MOX fuel rods at higher linear heat rates can be ascribed to enhanced diffusion properties. (authors)

  19. Ceramic UO2 powder production at Cameco Corporation

    International Nuclear Information System (INIS)

    Kwong, A.K.; Kuchurean, S.M.

    1997-01-01

    This presentation covers the various aspects of ceramic grade uranium dioxide (UO 2 ) powder production at Cameco Corporation and its use as fuel and blanket fuel for heavy-water and light-water reactors, respectively. In addition, it discusses the significant production variables that affect production and product quality. It also provides an insight into how various support groups such as Quality Assurance, Analytical Services, and Technology Development fit into the quality cycle and contribute to a successful operation. The ability of Cameco to identify, measure and control the physical and chemical properties of ceramic grade UO 2 has resulted in the production of uniform quality powder. This has meant that 100% of Cameco's ceramic grade UO 2 powder produced since mid-1989 has been accepted by the fuel manufacturers. (author)

  20. Recycling process of Mn-Al doped large grain UO2 pellets

    International Nuclear Information System (INIS)

    Nam, Ik Hui; Yang, Jae Ho; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    To reduce the fuel cycle costs and the total mass of spent light water reactor (LWR) fuels, it is necessary to extend the fuel discharged burn-up. Research on fuel pellets focuses on increasing the pellet density and grain size to increase the uranium contents and the high burnup safety margins for LWRs. KAERI are developing the large grain UO 2 pellet for the same purpose. Small amount of additives doping technology are used to increase the grain size and the high temperature deformation of UO 2 pellets. Various promising additive candidates had been developed during the last 3 years and the MnO-Al 2 O 3 doped UO 2 fuel pellet is one of the most promising candidates. In a commercial UO 2 fuel pellet manufacturing process, defective UO 2 pellets or scraps are produced and those should be reused. A common recycling method for defective UO 2 pellets or scraps is that they are oxidized in air at about 450 .deg. C to make U 3 O 8 powder and then added to UO 2 powder. In the oxidation of a UO 2 pellet, the oxygen propagates along the grain boundary. The U 3 O 8 formation on the grain boundary causes a spallation of the grains. So, size and shape of U 3 O 8 powder deeply depend on the initial grain size of UO 2 pellets. In the case of Mn-Al doped large grain pellets, the average grain size is about 45μm and about 5 times larger than a typical un-doped UO 2 pellet which has grain size of about 8∼10μm. That big difference in grain size is expected to cause a big difference in recycled U 3 O 8 powder morphology. Addition of U 3 O 8 to UO 2 leads to a drop in the pellet density, impeding a grain growth and the formation of graph- like pore segregates. Such degradation of the UO 2 pellet properties by adding the recycled U 3 O 8 powder depend on the U 3 O 8 powder properties. So, it is necessary to understand the property and its effect on the pellet of the recycled U 3 O 8 . This paper shows a preliminary result about the recycled U 3 O 8 powder which was obtained by

  1. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  2. Overall models and experimental database for UO2 and MOX fuel increasing performance

    International Nuclear Information System (INIS)

    Bernard, L.C.; Blanpain, P.

    2001-01-01

    COPERNIC is an advanced fuel rod performance code developed by Framatome. It is based on the TRANSURANUS code that contains a clear and flexible architecture, and offers many modeling possibilities. The main objectives of COPERNIC are to accurately predict steady-state and transient fuel operations at high burnups and to incorporate advanced materials such as the Framatome M5-alloy cladding. An extensive development program was undertaken to benchmark the code to very high burnups and to new M5-alloy cladding data. New models were developed for the M5-alloy cladding and the COPERNIC thermal models were upgraded and improved to extend the predictions to burnups over 100 GWd/tM. Since key phenomena, like fission gas release, are strongly temperature dependent, many other models were upgraded also. The COPERNIC qualification range extends to 67, 55, 53 GWd/tM respectively for UO 2 , UO 2 -Gd 2 O 3 , and MOX fuels with Zircaloy-4 claddings. The range extends to 63 GWd/tM with UO 2 fuel and the advanced M5-alloy cladding. The paper focuses on thermal and fission gas release models, and on MOX fuel modeling. The COPERNIC thermal model consists of several submodels: gap conductance, gap closure, fuel thermal conductivity, radial power profile, and fuel rim. The fuel thermal conductivity and the gap closure models, in particular, have been significantly improved. The model was benchmarked with 3400 fuel centerline temperature data from many French and international programs. There are no measured to predicted statistical biases with respect to linear heat generation rate or burnup. The overall quality of the model is state-of-the-art as the model uncertainty is below 10 %. The fission gas release takes into account athermal and thermally activated mechanisms. The model was adapted to MOX and Gadolinia fuels. For the heterogeneous MOX MIMAS fuels, an effective burnup is used for the incubation threshold. For gadolinia fuels, a scaled temperature effect is used. The

  3. Specification of PWR UO2 pellet design parameters with the fuel performance code FRAPCON-1

    International Nuclear Information System (INIS)

    Silva, A.T.; Marra Neto, A.

    1988-08-01

    UO 2 pellet design parameters are analysed to verify their influence in the fuel basic properties and in its performance under irradiation in pressurized water reactors. Three groups of parameters are discussed: 1) content of fissionable and impurity materials; 2) stoichiometry; 3) density pore morpholoy, and microstructure. A methodology is applied with the fuel performance program FRAPCON-1 to specify these parameters. (author [pt

  4. A proposal for a unified fuel thermal conductivity model available for UO{sub 2}, (U-Pu)O{sub 2} and UO{sub 2}-GD{sub 2}O{sub 3} PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D [Electrice de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    In order to cope with the current fuel management targets which are focussed on higher discharge burnups, initial {sup 235}U fuel enrichments have been increased from 3.25% to 4%. To avoid an increase in boron concentration in the primary circuit, Gadolinium is used as a burnable poison, spread in the uranium oxide matrix of selected rods, in order to absorb the initial reactivity excess. Obviously, fuel thermal conductivity is affected when introducing any stranger element. Previously, the EDF thermomechanical code provided two different models to simulate the fuel thermal conductivity: one available for UO{sub 2} and (U-Pu)O{sub 2} fuels, the other for Gadolinia fuels, depending on the calculations to be done. No effect of the initial fuel stoichiometry was taken into account in the second model. That situation suggested the development of a unified model available for any fuels presently loaded in the EDF PWR reactors. This paper deals with the choice of the formulation, the data base used and the methodology applied for parameter fitting. Results in terms of measured versus predicted evaluation are then discussed. (author). 11 refs, 5 figs.

  5. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels

    Science.gov (United States)

    Webb, Jonathan A.; Charit, Indrajit

    2012-08-01

    The thermal conductivity of tungsten based CERMET fuels containing UO2 and UN fuel particles are determined as a function of particle geometry, stabilizer fraction and fuel-volume fraction, by using a combination of an analytical approach and experimental data collected from literature. Thermal conductivity is estimated using the Bruggeman-Fricke model. This study demonstrates that thermal conductivities of various CERMET fuels can be analytically predicted to values that are very close to the experimentally determined ones.

  6. Modeling of burnup express-estimation for UO{sub 2}-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Likhanskii, Vladimir V.; Tokarev, Sergey A.; Vilkhivskaya, Olga V., E-mail: vilhivskaya_olga@mail.ru

    2017-03-15

    Highlights: • Proposed engineering model estimates fuel burnup by {sup 134}Cs/{sup 137}Cs activity ratio. • Buildup of cesium isotopes relies on changing neutron spectrum in the core cycle. • {sup 134}Cs/{sup 137}Cs activity ratios in FAs with Gd-doped fuel rods are analyzed. • Comparison of the model calculations with the NPPs spike measurements is presented. - Abstract: The paper presents the developed engineering model of cesium isotopes production as function of UO{sub 2}-fuel burnup and an assessment of their activity ratios. The model considers the evolution of linear power of gadolinium-doped fuel rods and fuel rods surrounding them in fuel assemblies with high enrichment fuel, harder neutron spectrum, and the changes in cross-sections of neutron reactions in thermal and epithermal energy areas. Parametrical dependences in the model are based on the fuel operation data for nuclear power plants and on the detailed neutronic-physical calculations of the core. Presented are the results of the model calculations for the {sup 134}Cs/{sup 137}Cs activity ratios in fuel taking into account the parameter of hardness of the neutron spectrum during the first irradiation cycle for fuel with enrichment ranging from 3.6 wt% in {sup 235}U.

  7. UO2 - Zr chemical interaction of PHWR fuel pins under high temperature

    International Nuclear Information System (INIS)

    Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K.

    2001-01-01

    At high temperature Zircaloy clad interacts with the UO 2 fuel as well as with the steam to produce oxide layer of a-Zr(O) and ZrO 2 . This layer formation significantly reduces the structural strength of the clad. A computer code SFDCPA/MOD1 has been developed to simulate the interaction and predict the oxide layer thickness for any accidental transient condition. It is well validated with published experimental data on the isothermal and transient temperature condition. The program is applied to Indian Pressurized Heavy Water Reactor (PHWR) fuel pin under certain severe transient condition where it experiences temperature above 1000 C. The study gives an idea of the un-oxidized thickness of Zircaloy, which is an important criterion for fuel integrity. (author)

  8. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  9. Development of a kinetic model for the dissolution of the UO2 spent nuclear fuel. Application of the model to the minor radionuclides

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J.; Pablo, J. de; Eriksen, Trygve

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO 2 dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO 2 solid phases, including uraninites, unirradiated UO 2 and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO 2 sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO 2 for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO 2 matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO 2 matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates

  10. Measurement of thermal conductivity of sintered UO{sub 2} in the reactor; Merenje toplotne provodljivosti sinterovanog UO{sub 2} u reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Katanic, J; Stevanovic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1965-10-15

    Thermal conductivity is considered one of the fundamental properties of sintered UO{sub 2} fuel. Samples should be tested under real core conditions. This paper covers the methods and instruments for thermal conductivity measurement of UO{sub 2} samples in the reactor core, measurements outside the core under conditions similar to those in the core and outside the core after irradiation. Fuel samples are placed in capsules for irradiation in the reactor in-core loops.

  11. Investigation of very high burnup UO{sub 2} fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, Fabiola

    2017-03-27

    Historically, the average discharge burnup of Light Water Reactor (LWR) fuel has increased almost continuously. On one side, increase in the average discharge burnup is attractive because it contributes to decrease part of the fuel cycle costs. On the other side, it raises the practical problem of predicting the performance, longevity and properties of reactor fuel elements upon accumulation of irradiation damage and fission products both during in-reactor operation and after discharge. Performance of the fuel and structural components of the core is one of the critical areas on which the economic viability and public acceptance of nuclear energy production hinges. Along the pellet radius, the fuel matrix is subjected to extremely heterogeneous alteration and damage, as a result of temperature and burnup gradients. In particular, in the peripheral region of LWR UO{sub 2} fuel pellets, when the local burnup exceeds 50-70 GWd/tHM, a microstructural transformation starts to take place, as a consequence of enhanced accumulation of radiation damage, fission products and limited thermal recovery. The newly formed structure is commonly named High Burnup Structure (HBS). The HBS is characterised by three main features: (a) formation of submicrometric grains from the original grains, (b) depletion of fission gas from the fuel matrix, (c) steep increase in the porosity, which retains most of the gas depleted from the fuel matrix. The last two aspects rose significant attention because of the important impact of the fission gas behaviour on integral fuel performance. The porosity increase controls the gas-driven swelling, worsening the cladding loading once the fuel-cladding gap is closed. Another concern is that the large retention of fission gas within the HBS could lead to significant release at high burnups through the degradation of thermal conductivity or contribute to fuel pulverisation during accidental conditions. Need of more experimental investigations about the

  12. Statistical model for grain boundary and grain volume oxidation kinetics in UO2 spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Shaw, H.F.; Einziger, R.E.

    1989-09-01

    This paper addresses statistical characteristics for the simplest case of grain boundary/grain volume oxidation kinetics of UO 2 to U 3 O 7 for a fragment of a spent fuel pellet. It also presents a limited discussion of future extensions to this simple case to represent the more complex cases of oxidation kinetics in spent fuels. 17 refs., 1 fig

  13. Gaseous swelling of B4C and UO2 fuel: similarities and differences

    International Nuclear Information System (INIS)

    Evdokimov, I.; Khoruzhii, O.; Kourtchatov, S.; Likhanskii, V.; Matweev, L.

    2001-01-01

    A major factor limiting the resource of control rods (CRs) for WWER-1000 reactors is their radiation damage. Radiation induced embrittlement of the CRs cladding, core swelling and gaseous internal pressure in CRs result in mechanical core-cladding interaction. This work is devoted to the physical analysis of processes that control the structural changes in neutron absorber elements with B 4 C under irradiation in water reactors. Particularly, the analysis of mechanisms of the helium porosity formation in B 4 C is undertaken. In view of the deficiency of experimental data on the subject, a fruitful approach to the problem is a comparative analysis of the swelling mechanisms in B 4 C absorber and UO 2 fuel. Using this similarity a phenomenological model of fission gas behavior in boron carbide is proposed. The model predictions for radial profile of 10 B burnup under influence of thermal and epithermal neutrons are compared with experimental results. The main results show that despite the external similarity of the process of fission gas accumulation in UO 2 and in B 4 C, phenomenology of gaseous swelling is much different for the fuel and the CR core. The reason for that difference is the distinction of physical conditions in irradiated fuel and CR core

  14. An improved UO2 thermal conductivity model in the ELESTRES computer code

    International Nuclear Information System (INIS)

    Chassie, G.G.; Tochaie, M.; Xu, Z.

    2010-01-01

    This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)

  15. The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s) high burn-up spent fuel and MOX fuel

    International Nuclear Information System (INIS)

    Carbol, P.; Spahiu, K.

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of 233 U doped UO 2 (s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H 2 pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H 2 pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO 2 , high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10 -6 /yr - 10 -8 /yr with a recommended value of 4x10 -7 /yr for dissolved hydrogen concentrations above 10 -3 M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO 2 and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB

  16. An Analysis of the Thermal and Structure Behaviour of the UO2-PuO2-Fuel in the Irradiation Experiment of the UO2-PuO2-Fuel in the Irradiation Experiment FR2 Capsule Test Series 5a

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Helmut, E.

    1981-01-01

    In the Karlsruhe research reactor FR2 nine fuel pins were irradiated within three irradiation capsules in the course of the test series 5a. The pins contained UO 2 -PuO 2 fuel pellets. They reached bump values of about 6, 17 and 47 Mwd/Kg Me with linear rod powers of 400 to 600 W/cm and clad surface temperature between 500 and 700 degree centigree. A detailed analysis of the fuel structuration data (columnar-grain and equiaxed- -grain growth regions) have allowed to determine, with the help of physic-mathematical models, the radii of these regions and the heat transfer through the contact zone between fuel and clad depending on the bump. The results of the analysis showed that the fuel surface temperature rose with increasing burnup. (Author) 16 refs

  17. Possible effects of UO2 oxidation on light water reactor spent fuel performance in long-term geologic disposal

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Woodley, R.E.

    1982-08-01

    Disposal of spent nuclear fuel in a conventionally mined geologic formation is the nearest-term option for permanently isolating radionuclides from the biosphere. Because irradiated uranium dioxide (UO 2 ) fuel pellets retain 95 to 99% of the radionuclides generated during normal light water reactor operation, they may represent a significant barrier to radionuclide release. This document presents a technical assessment of published literature representing the current level of understanding of spent fuel characteristics and conditions that may degrade pellet integrity during a geologic disposal sequence. A significant deterioration mechanism is spent UO 2 oxidation with possible consequences identified as fission gas release, rod diameter increases, cladding breach extension, and release of solid fuel particles containing radionuclides. Areas requiring further study to support development of a comprehensive spent fuel performance prediction model are highlighted. A program and preliminary schedule to obtain the information needed to develop model correlations are also presented

  18. A study of the effectiveness of hand protection when handling UO2 fuel pellets

    International Nuclear Information System (INIS)

    Washington, R.R.; Sullivan, D.F.

    1981-01-01

    Simple tests were performed to estimate the effectiveness of various forms of hand protection in reducing skin doses when handling UO 2 fuel pellets. Household rubber gloves (rubberized cotton) appeared to be the most effective of the varieties tested. Nylon gloves and latex finger cots were least effective. (author)

  19. Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Szuta, M.

    2006-01-01

    It is generally accepted that most of the insoluble inert gas atoms Xe and Kr produced during fissioning are retained in the fuel irradiated at a temperature lower than the threshold. Experimental data imply that we can assume that after irradiation exposure in excess of 10 18 fissions/cm 3 the single gas atom diffusion can be disregarded in description of fission gas behaviour. It is assumed that the vicinity of the fission fragment trajectory is the place of intensive irradiation induced chemical interaction of the fission gas products with UO 2 . Significant part of fission gas product is thus expected to be chemically bound in the matrix of UO 2 . Experiments with mixture of noble gases, coupled with theoretical calculations, provide strong evidence for direct bonds between Ar, Kr, or Xe atoms and the U atom of the CUO molecule. Because of its positive charge, the UO 2 2+ ion, which is isoelectronic with CUO, should form even stronger bonds with noble gas atoms, which could lead to a growing number of complexes that contain direct noble gas - to - actinide bonds. Considering the huge amount of gas immobilised in the UO 2 fuel the solution process and in consequence the re-solution process of rare gases is to be replaced by the chemical bonding process. This explains the fission gas accumulation in the irradiated UO 2 fuel. (author)

  20. Fission product release from UO2 during irradiation. Diffusion data and their application to reactor fuel pins

    International Nuclear Information System (INIS)

    Findlay, J.R.; Johnson, F.A.; Turnbull, J.A.; Friskney, C.A.

    1980-01-01

    Release of fission product species from UO 2 , and to a limited extent from (U, Pu)0 2 was studied using small scale in-reactor experiments in which these interacting variables may be separated, as far as is possible, and their influences assessed. Experiments were at fuel ratings appropriate to water reactor fuel elements and both single crystal and poly-crystalline specimens were used. They employed highly enriched uranium such that the relative number of fissions occurring in plutonium formed by neutron capture was small. The surface to volume ratio (S/V) of the specimens was well defined thus reducing the uncertainties in the derivation of diffusion coefficients. These experiments demonstrate many of the important characteristics of fission product behaviour in UO 2 during irradiation. The samples used for these experiments were small being always less than 1g with a fissile content usually between 2 and 5mg. Polycrystalline materials were taken from batches of production fuel prepared by conventional pressing and sintering techniques. The enriched single crystals were grown from a melt of sodium and potassium chloride doped with UO 2 powder 20% 235 U content. The irradiations were performed in the DIDO reactor at Harwell. The neutron flux at the specimen was 4x10 16 neutrons m -2 s -1 providing a heat rating within the samples of 34.5 MW/teU

  1. Development of a kinetic model for the dissolution of the UO{sub 2} spent nuclear fuel. Application of the model to the minor radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J. [QuantiSci SL, Barcelona (Spain); Pablo, J. de [UPC, Barcelona (Spain). Dept. Enginyeria Quimica; Eriksen, Trygve [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO{sub 2} dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO{sub 2} solid phases, including uraninites, unirradiated UO{sub 2} and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO{sub 2} sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO{sub 2} for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO{sub 2} matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO{sub 2} matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates 49 refs, 22 figs, 2 tables

  2. Post-irradiation examination of fifteen UO2/PuO2-fuel pins from the experiment DFR-350

    International Nuclear Information System (INIS)

    Geithoff, D.

    1975-06-01

    Within the framework of the fuel pin development for a sodium-cooled fast reactor a subassembly containing 77 fuel pins has been irradiated up to 5.65% fima in the Dounreay fast reactor. The pins were prototypes in terms of fuel and cladding material. The fuel consisted of mechanically mixed UO 2 (80%) and PuO 2 (20%) pressed into pellets whereas austenitic steels (W.-No. 1,4961 and 1,4988) were used as cladding material. Furthermore a blanket column of UO 2 pellets and a gas plenum were incorporated in the pin. For irradiation the conditions in a fast breeder were simulated by a linear rod power of 450 W/cm and a maximum cladding temperature of 630 0 C. After the successful completion of the irradiation, the subassembly was dismantled and fifteen pins were selected for a nondestructive and destructive examination. The tests included visual control, measurement of external dimensions, γ-spectroscopy, X-ray radiography, fission gas measurement, ceramography, radiochemical burn-up measurement. The results are presented. The most important results of the examinations seem to be the migration of fission product cesium and the fact that no signs of impending pin failure have been found. Thus the pin specification tested in this experiment is capable of achieving higher burnups under the irradiation conditions described above. (orig./AK) [de

  3. Oxidation of UO2 at 150 to 3500C

    International Nuclear Information System (INIS)

    White, G.D.; Knox, C.A.; Gilbert, E.R.; Johnson, A.B. Jr.

    1983-07-01

    Oxidation of UO 2 through breached LWR spent fuel rods during interim storage in air atmospheres is a potential mechanism for degradation of cladding integrity. The temperature-time range of published data are inadequate to establish long term behavior under dry storage conditions. Consequently, tests are being conducted in the temperature range of 150 to 350 0 C on unirradiated pellets to evaluate fuel oxidation behavior. The tests have revealed significant-to-minor oxidation at temperatures down to 200 0 C and no measurable oxidation at 150 0 C for times up to 3000 hours. Oxidation at 200 0 C for 2000 hours led to formation of low density particulate U 3 O 8 which destroys pellet integrity. Oxidation of UO 2 pellets at 215 and 250 0 C was signifcantly accelerated by the presence of 1 volume percent NO 2 in the air. NO 2 is a potential constituent of the air, forming by radiolysis in the gamma radiation field associated with spent fuel assemblies. NO 2 reaction with UO 2 pellets leads to accelerated formation of UO 3 and pellet disintegration. 11 references, 15 figures

  4. Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition

    Science.gov (United States)

    Hung, Nguyen Trong; Thuan, Le Ba; Thanh, Tran Chi; Nhuan, Hoang; Khoai, Do Van; Tung, Nguyen Van; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2018-06-01

    Modeling uranium dioxide pellet process from ammonium uranyl carbonate - derived uranium dioxide powder (UO2 ex-AUC powder) and predicting fuel rod temperature distribution were reported in the paper. Response surface methodology (RSM) and FRAPCON-4.0 code were used to model the process and to predict the fuel rod temperature under steady-state operating condition. Fuel rod design of AP-1000 designed by Westinghouse Electric Corporation, in these the pellet fabrication parameters are from the study, were input data for the code. The predictive data were suggested the relationship between the fabrication parameters of UO2 pellets and their temperature image in nuclear reactor.

  5. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2012-01-01

    Highlights: ► The pressure signals during the real TRISO UO2-coated fuel particle fabrication process. ► A new relationship about the pressure drop change and the coated fuel particles properties. ► The proposed relationship is validated by experimental results during successive coating. ► A convenient method for monitoring the fluidized state during coating process. - Abstract: The pressure signals in the coating furnace are obtained experimentally from the TRISO UO 2 -coated fuel particle fabrication process. The pressure signals during the coating process are analyzed and a simplified relationship about the pressure drop change due to the coated layer is proposed based on the spouted bed hydrodynamics. The change of pressure drop is found to be consistent with the change of the combination factor about particle density, bed density, particle diameter and static bed height, during the successive coating process of the buffer PyC, IPyC, SiC and OPyC layer. The newly proposed relationship is validated by the experimental values. Based on this relationship, a convenient method is proposed for real-time monitoring the fluidized state of the particles in a high-temperature coating process in the spouted bed. It can be found that the pressure signals analysis is an effective method to monitor the fluidized state on-line in the coating process at high temperature up to 1600 °C.

  6. Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.M., E-mail: Philippe-m.martin@cea.fr [CEA, DEN, Cadarache DEC/SESC, F-13108 St-Paul-Lez-Durance Cedex (France); Vathonne, E.; Carlot, G.; Delorme, R.; Sabathier, C.; Freyss, M.; Garcia, P.; Bertolus, M. [CEA, DEN, Cadarache DEC/SESC, F-13108 St-Paul-Lez-Durance Cedex (France); Glatzel, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Proux, O. [OSUG, Observatoire des Sciences de l’Univers de Grenoble, CNRS and Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France)

    2015-11-15

    X-ray Absorption Spectroscopy (XAS) was used to study the behavior of krypton as a function of its concentration in UO{sub 2} samples implanted with Kr ions. For a 0.5 at.% krypton local concentration, by combining XAS results and DFT + U calculations, we show that without any thermal treatment Kr atoms are mainly incorporated in the UO{sub 2} lattice as single atoms inside a neutral bound Schottky defect with O vacancies aligned along the (100) direction (BSD1). A thermal treatment at 1273 K induces the precipitation of dense Kr nano-aggregates, most probably solid at room temperature. In addition, 26 ± 2% of the Kr atoms remain inside BSD1 showing that Kr-BSD1 complex is stable up to this temperature. Consequently, the (in-)solubility of krypton in UO{sub 2} has to be re-evaluated. For high Kr concentration (8 at.%), XAS signals show that Kr atoms have precipitated in nanometer-sized aggregates with internal densities ranging between 4.15(7) g cm{sup −3} and 3.98(5) g cm{sup −3} even after annealing at 873 K. By neglecting the effect due to the UO{sub 2} matrix, the corresponding krypton pressures at 300 K were equal to 2.6(3) GPa and 2.0(2) GPa, respectively. After annealing at 1673 K, regardless of the initial Kr concentration, a bi-modal distribution is observed with solid nano-aggregates even at room temperature and larger cavities only partially filled with Kr. These results are very close to those observed in UO{sub 2} fuel irradiated in reactor. In this study we show that a rare gas can be used as a probe to investigate the defect creation and their stability in UO{sub 2}.

  7. Development of a thermo-kinetic diffusion model for UO2 and (U,Pu)O2 oxide fuels using the DICTRA code

    International Nuclear Information System (INIS)

    Moore, Emily Elaine

    2013-01-01

    Uranium dioxide is the most widely used nuclear fuel for light water reactors, while some countries including France make use of the uranium-plutonium (U,Pu)O 2±x mixed oxide (MOX). The MOX is also considered for future use in the Gen IV reactors, of which the sodium cooled fast reactor (SFR) is of current research interest. Both oxides exhibit a large range of non-stoichiometry due to various oxidative states of uranium and plutonium metal. Thermo-physical properties of the fuel strongly depend on deviations in composition and temperature. Extreme temperature gradients (800 K) between the center (2300 K)and periphery of the MOX fuel pellet expose a central void due to the migration and subsequent redistribution of the fuel-elements. To gain insight into the restructuring, which occurs during the fuel lifetime as well as possible accident scenarios the thermodynamic and kinetic behavior, is crucial. A comprehensive evaluation of these properties can be incorporated in computational models to describe fuel behavior over large temperature and compositions ranges, providing a predictive tool that is applicable to other parts of the fuel cycle, such as optimizing the sintering conditions for manufacturing. Atomic transport especially in UO 2 is widely treated in the experimental and computational materials communities. The current understanding of diffusion properties is limited by the stoichiometric deviations inherent to the fuel. The difficulty is apparent in experimental settings as controlling the oxygen content is problematic. Defects (interstitial and vacancy) associated with the stoichiometric deviations of the oxides facilitate the diffusion process and is of interest in regards to the restructuring of the fuel. Experimental data is widely available; however, coherence between the evaluated diffusion coefficients is not always evident. Existing computational models based on the migration of defects are often based on atomistic level simulations. A complete

  8. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  9. Irradiation experiments of recycled PuO2-UO2 fuels by SAXTON reactor, (1)

    International Nuclear Information System (INIS)

    Yumoto, Ryozo; Akutsu, Hideo

    1975-01-01

    Seventy two mixed oxide fuel rods made by PNC were irradiated in Saxton Core 3. This paper generally describes the fuel specifications, the power history of the fuel and the post-irradiation examination of the PNC fuel. The specifications of the 4.0 w/o and 5.0 w/o enriched PuO 2 fuel rods with zircaloy-4 cladding are presented in a table and a figure. The positions of PNC fuel rods in the Saxton reactor are shown in a figure. Sixty eight 5.0 w/o PuO 2 -UO 2 fuel rods were assembled in a 9 x 9 rod array together with zircaloy-4 bars, a flux thimble, and a Sb-Be source. The power history of the Saxton Core 3 and the irradiation history of the PNC fuel rods are summarized in tables. The peak power and burnup of each fuel rod and the axial power profile are also presented. The maximum linear power rate and burnup attained were 512W/cm and 8700 MWD/T, respectively. As for the post irradiation examination, the items of nondestructive test, destructive test, and cladding test are presented together with the working flow diagram of the examination. It is concluded that the performance of all fuel rods was safe and satisfactory throughout the power history. (Aoki, K.)

  10. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  11. The creep of UO2 fuel doped with Nb2O5

    International Nuclear Information System (INIS)

    Sawbridge, P.T.; Reynolds, G.L.; Burton, B.

    1981-01-01

    The creep of UO 2 containing small additions of Nb 2 O 5 has been investigated in the stress range 0.5-90 MN/m 2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb 2 O 5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation epsilonkT = Asigmasup(n) exp(-Q/RT), where epsilon is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb 2 O 5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintainde in the Nb 5+ valence state. Material containing 0.4 mol% Nb 2 O 5 creeps three orders of magnitude faster than the pure material. Analysis of the results in terms of grain size compensated viscosity suggest that, like pure UO 2 , the creep rate of Nb 2 O 5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U 5+ ion concentration by the addition of Nb 5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient. (orig.)

  12. Analysis of flux standards in a fluized bed for AUC - UO2 convertion

    International Nuclear Information System (INIS)

    Juanico, L.E.; Clausse, A.; Guido Lavalle, G.

    1990-01-01

    One of the fuel cycle stages is the convertion (reduction) of ammonium uranyl carbonate (AUC) in UO 2 which, after being directly compacted, allows pellet obtainment acquire the correct density to be used as nuclear fuel during sintering. AUC's reduction in UO 2 is made on a fluidized bed in which AUC powder going into the upper part at a countercurrent to the gas flux (superheated steam), is converted into UO 2 ; after the reaction, UO 2 is collected at the lower part of the reactor. (Author) [es

  13. Neutron Flux Depression in the UO2-PuO2 (15 to 30%) Fuel Rods from IVO-FR2-Vg7-Irradiation Experiment

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Fernandez Marron, J.L.

    1983-01-01

    The thermal-neutron flux depression within a fuel rod has a great influence in the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO 2 -PUO 2 (15 to 30% PUO 2 ) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (Author) 22 refs

  14. Neutron flux depression in the UO2-PuO2 (15 to 30%) fuel rods from IVO-FR2-Vg7-Irradiation experiment

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Fernandez Marron, J.L.

    1983-01-01

    The thermal-neutron flux depression within a fuel rod has a great influence on the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO 2 -PuO 2 (15 to 30% PuO 2 ) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (author)

  15. Evaluation of the effective thermal conductivity of UO{sub 2} fuel by combining Potts model and finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Koo, Yang-Hyun; Lee, Byung-Ho; Tahk, Young-Wook [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-15

    This paper evaluated the effects of porosity on the effective thermal conductivity of UO{sub 2} fuel by combining the Potts model and the finite difference method (FDM). Two types of microstructures representing irradiated UO{sub 2} microstructures were simulated by the Potts model in the three dimensional cubic system. One represented very small intragranular bubbles and a few intergranular bubbles under a low temperature condition. The other represented large intergranular bubbles under a high temperature or annealing condition. For the simulated microstructures, the effective thermal conductivities were determined by FDM calculation of the temperature distributions under steady state condition. They were compared with an experimental equation and the effect of bubble morphology was investigated by fitting a porosity shape factor in the Maxwell-Eucken equation. The simulation results showed a good agreement with an experimental equation and demonstrated the capability of the Potts model to provide information on microstructure for calculating the effective thermal conductivity of UO{sub 2} fuel.

  16. A small long-cycle PWR core design concept using fully ceramic micro-encapsulated (FCM) and UO2–ThO2 fuels for burning of TRU

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Ser Gi

    2015-01-01

    In this paper, a new small pressurized water reactor (PWR) core design concept using fully ceramic micro-encapsulated (FCM) particle fuels and UO 2 –ThO 2 fuels was studied for effective burning of transuranics from a view point of core neutronics. The core of this concept rate is 100 MWe. The core designs use the current PWR-proven technologies except for a mixed use of the FCM and UO 2 –ThO 2 fuel pins of low-enriched uranium. The significant burning of TRU is achieved with tri-isotropic particle fuels of FCM fuel pins, and the ThO 2UO 2 fuel pins are employed to achieve long-cycle length of ∼4 EFPYs (effective full-power year). Also, the effects of several candidate materials for reflector are analyzed in terms of core neutronics because the small core size leads to high sensitivity of reflector material on the cycle length. The final cores having 10 w/o SS303 and 90 w/o graphite reflector are shown to have high TRU burning rates of 33%–35% in FCM pins and significant net burning rates of 24%–25% in the total core with negative reactivity coefficients, low power peaking factors, and sufficient shutdown margins of control rods. (author)

  17. Oxidation of UO2 at 150 to 3500C

    International Nuclear Information System (INIS)

    Gilbert, E.R.; White, G.D.; Knox, C.A.

    1985-02-01

    Tests were performed on nonirradiated UO 2 pellets from 150 to 350 0 C in atmospheric air and controlled environments and on spent light-water reactor (LWR) fuel fragments at 200 and 230 0 C in atmospheric air to determine the variables that affect oxidation behavior under dry storage conditions. The weight of spent fragments increased 50 to 100 times faster than the weight of nonirradiated UO 2 pellets at 230 0 C. Non-irradiated pellet fragments gained weight 5 to 7 times faster than nonirradiated pellets. The fragments simulated fuel fragmented by thermal gradients during reactor power changes. Low-density powder (U 3 O 8 ) formed at 0.05 and 0.3% weight gain for nonirradiated pellets and fragments, respectively, but had not formed at 3% weight gain for spent fuel fragments with a burnup of 29,000 MWd/MTU. Canadian investigators had found that powder formed at intermediate levels of weight gain in CANDU spent fuel fragments with an approximate burnup of 8000 MWd/MTU. The combined effects of the high rate of weight gain in spent fuel and the burnup dependence of weight gain at powder formation resulted in a minimum in a plot of the time for the onset of powder formation versus burnup. The minimum in powder induction time occurs at or below burnup levels typical of CANDU spent fuel and spent fuel at the ends of some LWR rods. The results are described in terms of thermal and neutron irradiation-induced changes in UO 2 pellet structure and chemical composition. Other tests were performed at up to 275 0 C with spent fuel fragments and nonirradiated UO 2 pellets in moist nitrogen to determine the suitability of nitrogen as a cover gas. No measurable weight gain or visible physical changes occurred during the first 2 months of testing. 22 figures, 7 tables

  18. Model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: xiaohongxing2003@163.com; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO{sub 2} fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO{sub 2} fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results. - Highlights: • A model for evolution of dislocation density and grain size in HBS is proposed. • The dislocation can also be annealed when the temperature is high enough. • Original driving force for subdivision is mostly accumulation of dislocation loops. • The temperature threshold of the subdivision is predicted at 1300–1400 K.

  19. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  20. Physical and chemical characterization of the (Th, U)O2 mixed oxide fuel

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Avelar, M.M.; Palmieri, H.E.L.; Lameiras, F.S.; Ferreira, R.A.N.

    1986-01-01

    The NUCLEBRAS R and D Center (Centro de Desenvolvimento da Tecnologia Nuclear - CDTN) has been performing, together with german institutions (Kernforschungsanlage Julich GmbH - KFA, Krafwerk Union A.G. - KWU and NUKEM GmbH), a program for utilization of thorium in pressurized water reactors. In this paper are presented the physical and chemical characterizations necessary to quality the (Th, U)O 2 fuel and the respective methods. (Author) [pt

  1. Metallographic examination of (uth) O2 and UO2 fuel tested in power ramp conditions in triga reactor

    International Nuclear Information System (INIS)

    Ioncescu, M.; Uta, O.

    2015-01-01

    The purpose of this paper is to determine the behavior of two fuel experimental elements (EC1 and EC2), by destructive post-irradiation examination. The fuel elements were mounted inside a pattern port, one in extension of the other and irradiated in power ramp conditions in order to check their behavior. Fuel element 1 (EC1) contains (UTh)O''2 pellet, and other one (EC2) UO''2 pellet. The results of destructive post-irradiation examination are evidenced by metallographic and ceramographic analyses. The data obtained from the post-irradiation examinations are used, first to confirm the security, reliability and nuclear fuel performance, and second, for the development of CANDU fuel. The results obtained by destructive examinations regarding the integrity, sheath hydrating and oxidation as well as the structural modifications are typical for fuel elements tested in power ramp conditions. (authors)

  2. Experimental evidence of oxygen thermo-migration in PWR UO{sub 2} fuels during power ramps using in-situ oxido-reduction indicators

    Energy Technology Data Exchange (ETDEWEB)

    Riglet-Martial, Ch., E-mail: chantal.martial@cea.fr; Sercombe, J.; Lamontagne, J.; Noirot, J.; Roure, I.; Blay, T.; Desgranges, L.

    2016-11-15

    The present study describes the in-situ electrochemical modifications which affect irradiated PWR UO{sub 2} fuels in the course of a power ramp, by means of in-situ oxido-reduction indicators such as chromium or neo-formed chemical phases. It is shown that irradiated fuels (of nominal stoichiometry close to 2.000) under temperature gradient such as that occurring during high power transients are submitted to strong oxido-reduction perturbations, owing to radial migration of oxygen from the hot center to the cold periphery of the pellet. The oxygen redistribution, similar to that encountered in Sodium Fast Reactors fuels, induces a massive reduction/precipitation of the fission products Mo, Ru, Tc and Cr (if present) in the high temperature pellet section and the formation of highly oxidized neo-formed grey phases of U{sub 4}O{sub 9} type in its cold section, of lower temperature. The parameters governing the oxidation states of UO{sub 2} fuels under power ramps are finally debated from a cross-analysis of our results and other published information. The potential chemical benefits brought by oxido-reductive additives in UO{sub 2} fuel such as chromium oxide, in connection with their oxygen buffering properties, are discussed.

  3. A study of UO2 wafer fuel for very high-power research reactors

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Jankus, V.Z.; Rest, J.; Billone, M.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is aimed at reducing fuel enrichment to 2 caramel fuel is one of the most promising new types of reduced-enrichment fuel for use in research reactors with very high power density. Parametric studies have been carried out to determine the maximum specific power attainable without significant fission-gas release for UO 2 wafers ranging from 0.75 to 1.50 mm in thickness. The results indicate that (1) all the fuel designs considered in this study are predicted not to fail under full power operation up to a burnup, of 1.9x10 21 fis/cm 3 ; (2) for all fuel designs, failure is predicted at approximately the same fuel centerline temperature for a given burnup; (3) the thinner the wafer, the wider the margin for fuel specific power between normal operation and increased-power operation leading to fuel failure; (4) increasing the coolant pressure in the reactor core could improve fuel performance by maintaining the fuel at a higher power level without failure for a given burnup; and (5) for a given power level, fuel failure will occur earlier at a higher cladding surface temperature and/or under power-cycling conditions. (author)

  4. Unirradiated UO2 in irradiated zirconium alloy sheathing

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Hardy, D.G.; Hunt, C.E.L.; Scoberg, J.A.

    1979-07-01

    Zircaloy-clad UO 2 fuel elements have defected in power reactors when element power outputs were raised significantly after a long irradiation at low power. We have irradiated fuel elements fabricated from fresh UO 2 pellets and zirconium alloy sheaths previously irradiated without fuel. This gave a fuel element with radiation-damaged low-ductility sheathing but with no fission products in the fuel. The elements were power boosted in-reactor to linear power outputs up to 84 kW/m for two five-day periods. No elements defected despite sheath strains of 0.82 percent at circumferential ridge postions. Half of these elements were subsequently soaked at low power to build up the fission product inventory in the fuel and then power boosted to 63 kW/m for a third time. Two elements defected on this final boost. We conclude that these defects were caused by fission product induced stress-corrosion cracking and that this mechanism plays an importent role in power reactor fuel defects. (auth)

  5. Quality assurance and control in the manufacture of metalclad UO2 reactor fuels

    International Nuclear Information System (INIS)

    1976-01-01

    The International Atomic Energy Agency has carried out a programme since its earliest days that includes the collection and dissemination of information on nuclear fuels. Since the 1960 symposium on Fuel Element Fabrication with Special Emphasis on Cladding Materials there has been an average of one meeting a year reviewing some aspect of fuel fabrication technology. A recent meeting dealing with the fabrication of UO 2 fuels was the Study Group on the Facilities and Technology needed for Nuclear Fuel Manufacture, held in Grenoble in 1972 (Rep. IAEA-158). After that meeting it became apparent that the quality of fuel production was an important aspect that had received inadequate coverage so far, and the Panel on Quality Assurance and Control in Nuclear Fuel Manufacture was convened by the Agency in Vienna in November 1974. In the working papers and discussions at the Panel meeting the viewpoints of different countries and of various interested parties, such as manufacturers, reactor operators and government authorities, were presented

  6. Thermal and Mechanical Properties of UO2 and PuO2

    International Nuclear Information System (INIS)

    Kato, M.; Matsumoto, T.

    2015-01-01

    It is important to evaluate basic properties of UO 2 and PuO 2 as fundamental aspects of MA-bearing MOX fuel development. In this work, mechanical properties of UO 2 and PuO 2 were investigated by an ultrasound pulse-echo method. Longitudinal and transversal wave velocities were measured in UO 2 and PuO 2 pellets, and Young's modulus and shear modulus were evaluated, which were 219 MPa and 89 MPa for PuO 2 , and 249 MPa and 95 MPa for UO 2 , respectively. Poisson's ratio was 0.32 in both materials. The relationship between mechanical and thermal properties was described by using thermal expansion data which had been reported previously, and the heat capacity and thermal conductivity were analysed. (authors)

  7. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    Science.gov (United States)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  8. The uranium recovery from UO{sub 2} kernel production effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaotong, E-mail: chenxiaotong@tsinghua.edu.cn; He, Linfeng; Liu, Bing; Tang, Yaping; Tang, Chunhe

    2016-12-15

    Graphical abstract: In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent of HTR spherical fuel elements. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. Based on the above experimental results, the treating flow process in this study would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent of HTR spherical fuel elements. - Highlights: • A flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent. • The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. • The treating flow process would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent. - Abstract: For the fabrication of coated particle fuel elements of high temperature gas cooled reactors, the ceramic UO{sub 2} kernels are prepared through chemical gelation of uranyl nitrate solution droplets, which produces radioactive effluent with components of ammonia, uranium, organic compounds and ammonium nitrate. In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the effluent treating. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced.

  9. Fabrication of ThO2 and ThO2-UO2 pellets for proliferation resistant fuels

    International Nuclear Information System (INIS)

    Matthews, R.B.; Davis, N.C.

    1979-10-01

    To meet this objective, batches of ThO 2 powders were compared and milling parameters, pressing and sintering conditions were established. A method for blending ThO 2 and UO 2 into homogeneous powders that press and sinter into 95% TD pellets was determined. The effect of UO 2 additions on ThO 2 -UO 2 pellet properties was determined and a process for fabricating irradiation test quality ThO 2 -20 wt% UO 2 pellets containing CaO as a dissolution aid was established

  10. Analysis of neutron parameters in light water moderated lattices of ThO2 and UO2 fuel rods

    International Nuclear Information System (INIS)

    Onusic Junior, J.; Oosterkamp, W.J.

    1977-01-01

    A large number of light water moderated lattices of UO 2 and ThO 2 fuel rods were analyzed with the code HAMMER. The purpose of the study was to compare experimental results with computer calculated values. The model employed is described and some modification were introduced in the resonance parameters of Th-232 to increase the agreement with the experimental value [pt

  11. The corrosion of spent UO2 fuel in synthetic groundwater

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Werme, L.D.; Bruno, J.

    1985-10-01

    Leaching of high burnup BWR fuel for up to 3 years showed that both U and Pu attain saturation rapidly at pH 8.1, giving values of 1-2 mg/l and 1 μg/l respectively. The leaching rate for Sr-90 decreased from about 10 -5 /d to 10 -7 /d but was always higher than the rates for U, Pu, Cm, Ce, Eu and Ru. Congruent dissolution was only attained at pH values of about 4. When reducing conditions were imposed on the pH 8.1 groundwater by means of H 2 /Ar in the presence of a Pd catalyst, significanly lower leach rates were attained. The hypothesis that alpha radiolytic decomposition of water is a driving force for UO 2 corrosion even under reducing conditions has been examined in leaching tests on low burnup (low alpha dose-rate) fuel. No significant effect of alpha radiolysis under the experimental conditions was detected. Thermodynamically the calculated uranium solubilities in the pH range 4-8.2 generally agreed, well with the measured ones, although assumptions made for certain parameters in the calculations limit the validity of the results. (Author)

  12. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    Science.gov (United States)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  13. Use of UO 2 films for electrochemical studies

    Science.gov (United States)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  14. Enhancement of actinide incineration and transmutation rates in Ads EAP-80 reactor core with MOX PuO2 and UO2 fuel

    International Nuclear Information System (INIS)

    Kaltcheva-Kouzminava, S.; Kuzminov, V.; Vecchi, M.

    2001-01-01

    Neutronics calculations of the accelerator driven reactor core EAP-80 with UO 2 and PuO 2 MOX fuel elements and Pb-Bi coolant are presented in this paper. Monte Carlo optimisation computations of several schemes of the EAP-80 core with different types of fuel assemblies containing burnable absorber B4 C or H 2 Zr zirconium hydride moderator were performed with the purpose to enhance the plutonium and actinide incineration rate. In the first scheme the reactor core contains burnable absorber B4 C arranged in the cladding of fuel elements with high enrichment of plutonium (up to 45%). In the second scheme H2 Zr zirconium hydride moderated zones were located in fuel elements with low enrichment (∼20%). In both schemes the incineration rate of plutonium is about two times higher than in the reference EAP-80 core and at the same time the power density distribution remains significantly unchanged compared to the reference core. A hybrid core containing two fuel zones one of which is the inner fuel region with UO 2 and PuO 2 high enrichment plutonium fuel and the second one is the outer region with fuel elements containing zirconium hydride layer was also considered. Evolution of neutronics parameters and actinide transmutation rates during the fuel burn-up is presented. Calculations were performed using the MCNP-4B code and the SCALE 4.3 computational system. (author)

  15. Interactions in Zircaloy/UO2 fuel rod bundles with Inconel spacers at temperatures above 1200deg C (posttest results of severe fuel damage experiments CORA-2 and CORA-3)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Schanz, G.; Sepold, L.

    1990-09-01

    In the CORA experiments test bundles of usually 16 electrically heated fuel rod simulators and nine unheated rods are subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of an LWR. An aim of CORA-2, as a first test of its kind, was also to gain experience in the test conduct and posttest handling of UO 2 specimens. CORA-3 was performed as a high-temperature test. The transient phases of CORA-2 and CORA-3 were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1000deg C, leading the bundles to maximum temperatures of 2000deg C and 2400deg C for tests CORA-2 and CORA-3, respectively. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO 2 interaction, complete Inconel spacer destruction, and relocation of melts and fragments to lower elevations in the bundle, where extended blockages have formed. In both tests the fuel rod destruction set in together with the formation of initial melts from the Inconel/Zry interaction. The lower Zry spacer acted as a catcher for relocated material. In test CORA-2 the UO 2 pellets partially disintegrated into fine particles. This powdering occurred during cooldown. There was no physical disintegration of fuel in test CORA-3. (orig./MM) [de

  16. Simulations and Experimental Measurements of UO2 Thermal Conductivity

    International Nuclear Information System (INIS)

    Stanek, Christopher Richard; Gofryk, Krzysztof; Tonks, Michael; Andersson, Anders David Ragnar; Liu, Xiang-Yang; Lashley, Jason Charles; Uberuaga, Blas P.; Mcclellan, Kenneth James

    2015-01-01

    Spin-phonon interactions lead to low @@ of UO 2 (and behave like a defect), and this has implications for nuclear fuel performace. The inability to capture spin-phonon scattering leads to inherent errors. The interplay between magnetism and structural asymmetry in UO 2 displays rich physics. Grain boundary structure plays a role which must be taken into account.

  17. A new UO2 sintering technology for the recycling of defective fuel pellets

    International Nuclear Information System (INIS)

    Song, K. W.; Kim, K. S.; Jeong, Y. H.

    1998-01-01

    A new UO 2 sintering technology to recycle defective UO 2 pellets has been developed. The defective UO 2 pellets were oxidized in an air to produce U 3 O 8 powder, and the U 3 O 8 powder was mixed with fresh AUC-UO 2 powder in the range of 10 to 100 wt%. Nb 2 O 5 and TiO 2 are added to the mixed powder. The mixed powder was pressed and sintered at 1680 deg C for 4 hours in hydrogen. The density of UO 2 pellets without sintering agents decreased linearly with the U 3 O 8 content at the rate of 0.2 %TD per 1 wt% U 3 O 8 , and the density was below 93.5 %TD at the U 3 O 8 contents above 10 wt%. However, the mixed UO 2 and U 3 O 8 powder containing Nb 2 O 5 (≥0.3 wt%) and TiO 2 (≥0.1 wt%) yielded a sintered density above 94 %TD in all ranges of U 3 O 8 contents. It was found that higher mixing ratios of U 3 O 8 to UO 2 powder did not affect the grain size of UO 2 pellets under the addition of Nb 2 O 5 , but decreased the grain size of UO 2 pellets under the addition of TiO 2 . The doped UO 2 pellets have grain sizes larger than 20 μm, and have small density gain after re-sintering test, owing to large pores. Therefore, the sintering agents such as Nb 2 O 5 and TiO 2 can make highly densified UO 2 pellets from the powder comprising a large amount of U 3 O 8 powder

  18. Improvement of fuel-element reliability by insertion of UO2 microspheres in the gap between pellet and clad

    International Nuclear Information System (INIS)

    Mehedinteanu, S.; Glodeanu, F.; Dobos, I.

    1979-01-01

    With the accumulation of power reactor fuel operating experience, the study of the PCI phenomenon and the development of remedies have become important items in fuel research and development everywhere. The 'power-ramp' failure has drawn attention to the problem of obtaining high reliability from high burn-up fuel rods. Considerable attention has been paid to minimizing the cladding stresses imparted by fuel pellets during the power ramp. The paper describes a new concept of pellet-clad bonding by insertion of UO 2 microspheres in the gap. It is pointed out that the main advantages of this concept are: the low friction coefficient between pellet and clad; the accomodation of cracked pellet expansion by local microyielding of irradiation-embrittled clad; the reduced ridge height by use of undished pellets or other pellet shape; that the fine-sized UO 2 microspheres infiltrate around the pellets thus permitting the use of cracked or chipped pellets and also sintered pellets without the previously required grinding step needed for accurate sizing, etc. (author)

  19. Interaction between UO2 kernel and pyrocarbon coating in irradiated and unirradiated HTR fuel particles

    International Nuclear Information System (INIS)

    Drago, A.; Klersy, R.; Simoni, O.; Schrader, K.H.

    1975-08-01

    Experimental observations on unidirectional UO 2 kernel migration in TRISO type coated particle fuels are reported. An analysis of the experimental results on the basis of data and models from the literature is reported. The stoichiometric composition of the kernel is considered the main parameter that, associated with a temperature gradient, controls the unidirectional kernel migration

  20. Determination of the UO2-ZrO2-BaO equilibrium diagram

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.; Kleykanp, H.; Thuemmler, F.

    1984-01-01

    It is determined the equilibrium diagram of UO 2 - ZrO 2 - BaO to interpret and predict changes in the chemical properties of ceramic (oxide) nuclear fuels during irradiation. The isothermal section of the system at 1700 0 C was determined experimentally, utilizing the techniques of ceramography, X-ray diffraction analysis, microprobe analysis and differential thermal analysis. The solid solubility limits at 1700 0 C between UO 2 and ZrO 2 , UO 2 and BaO, ZrO 2 and BaO, ZrO 2 and BaO and BaUO 3 and BaZrO 3 is presented. The influence of oxygen potential in relation to the different phases is discussed and the phase diagram of the system presented. (M.C.K.) [pt

  1. Irradiation of defected SAP clad UO2 fuel in the X-7 organic loop

    International Nuclear Information System (INIS)

    Robertson, R.F.S.; Cracknell, A.G.; MacDonald, R.D.

    1961-10-01

    This report describes an experiment designed to test the behaviour under irradiation of a UO 2 fuel specimen clad in a defected SAP sheath and cooled by recirculating organic liquid. The specimen containing the defect was irradiated in the X-7 loop in the NRX reactor from the 25th of November until the 13th of December 1960. Up to the 13th of December the behaviour was analogous to that seen with defected UO 2 specimens clad in zircaloy which were irradiated in water loops. Reactor power transients resulted in peaking of gamma ray activities in the loop, but on steady operation these activities tended to fall to a steady state level, Over this period the pressure drop across the fuel increased by a factor of two, the increases occurring after reactor shut downs and start ups. On 13th December the pressure drop increased rapidly, after a reactor shut down and start up, to over five times its original value and the activities in the loop rose to a high level. The specimen was removed and examination showed that the sheath was very badly split and that the volume between the fuel and the sheath was filled with a hard black organic substance. This report gives full details of the irradiation and of the post -irradiation examination. Correlation of the observed phenomenon is attempted and a preliminary assessment of the problems which would be associated with defect fuel in an organic reactor is given. (author)

  2. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH)3), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an 7 industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  3. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH) 3 ), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  4. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  5. Development of UO2-30 WT per cent PuO2 fuel for FBTR

    International Nuclear Information System (INIS)

    Majumdar, S.; Kumar, Arun; Kamath, H.S.; Ramachandran, R.; Purushotham, D.S.C.; Roy, P.R.

    1983-01-01

    The specifications on Fast Breeder Reactor (FBTR) fuel pellets have two apparently contradictory requirements viz. (1) formation of homogeneous solid between UO 2 and PuO 2 which can only be achieved by high temperature sintering and (2) density of sintered pellets in the range of 92 ± 1 per cent T.D. which is normally achieved by low temperature sintering. Deactivation of starting powders under CO 2 or addition of volatile pore formers to the powders are the two methods which have been developed for lowering the denity of the pellets without reducing the sintering temperature. Two alternative fabrication routes utilizing these processes for manufacturing of FBTR pellets are described in this report. (author)

  6. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P. [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K. (ed.) [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  7. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  8. Dissolution kinetics of UO2: Flow-through tests on UO2.00 pellets and polycrystalline schoepite samples in oxygenated, carbonate/bicarbonate buffer solutions at 25 degree C

    International Nuclear Information System (INIS)

    Nguyen, S.N.; Weed, H.C.; Leider, H.R.; Stout, R.B.

    1991-10-01

    The modelling of radionuclide release from waste forms is an important part of the performance assessment of a potential, high-level radioactive waste repository. Since spent fuel consists of UO 2 containing actinide elements and other fission products, it is necessary to determine the principal parameters affecting UO 2 dissolution and quantify their effects on the dissolution rate before any prediction of long term release rates of radionuclides from the spent fuel can be made. As part of a complex matrix to determine the dissolution kinetics of UO 2 as a function of time, pH, carbonate/bicarbonate concentration and oxygen activity, we have measured the dissolution rates at 25 degrees C of: (1) UO 2 pellets; (2) UO 2.00 powder and (3) synthetic dehydrated schoepite, UO 3 .H 2 O using a single-pass flow through system in an argon-atmosphere glove box. Carbonate, carbonate/bicarbonate, and bicarbonate buffers with concentrations ranging from 0.0002 M to 0.02 M and pH values form 8 to 11 have been used. Argon gas mixtures containing oxygen (from 0.002 to 0.2 atm) and carbon dioxide (from 0 to 0.011 atm) were bubbled through the buffers to stabilize their pH values. 12 refs., 2 tabs

  9. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  10. Heat transfer coefficient between UO2 and Zircaloy-2

    International Nuclear Information System (INIS)

    Ross, A.M.; Stoute, R.L.

    1962-06-01

    This paper provides some experimental values of the heat-transfer coefficient between UO 2 and Zircaloy-2 surfaces in contact under conditions of interfacial pressure, temperature, surface roughness and interface atmosphere, that are relevant to UO 2 /Zircaloy-2 fuel elements operating in pressurized-water power reactors. Coefficients were obtained from eight UO 2 / Zircaloy-2 pairs in atmospheres of helium, argon, krypton or xenon, at atmosphere pressure and in vacuum. Interfacial pressures were varied from 50 to 550 kgf/cm 2 while surface roughness heights were in the range 0.2 x 10 -4 to 3.5 x 10 -4 cm. The effect on the coefficients of cycling the interfacial pressure, of interface gas pressure and of temperature were examined. The experimental values of the coefficients were used to test the predictions of expressions for the heat-transfer between two solids in contact. For the particular UO 2 / Zircaloy-2 pairs examined, numerical values were assigned to several parameters that related the surface roughnesses to either the radius of solid/solid contact spots or to the mean thickness of the interface voids and that accounted for the imperfect accommodation of the void gas on the test surfaces. (author)

  11. Effect of alpha irradiation on UO2 surface reactivity in aqueous media

    International Nuclear Information System (INIS)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D.; Jorion, F.; Corbel, C.

    2005-01-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO 2 matrix in aqueous media subjected to α-β-γ radiation. The β-γ emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO 2 pellets doped with alpha emitters ( 238 Pu and 239 Pu) to quantify the impact of alpha irradiation on UO 2 matrix alteration. Three batches of doped UO 2 pellets with different alpha flux levels (3.30 x 10 4 , 3.30 x 10 5 , and 3.2 x 10 6 α cm -2 s -1 ) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO 2 matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO 2 pellets doped with alpha emitters results in variations of the UO 2 surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO 2 pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO 2 to UO 2+x . However, leaching experiments performed in deaerated media after annealing the samples and preleaching the surface suggest that alpha radiolysis does indeed affect the dissolution, which varies with the

  12. The influence of moisture on air oxidation of UO2: Calculations and observations

    International Nuclear Information System (INIS)

    Taylor, P.; Lemire, R.J.; Wood, D.D.

    1993-01-01

    Phase relationships among solids in the UO 2 -O 2 -H 2 O system at 25, 100, and 200C and pressures to 2 MPa have been calculated from critically evaluated thermodynamic data. Stability limits of the solids are expressed in terms of oxygen and water partial pressures at each temperature. The results are then discussed in terms of known UO 2 oxidation reactions and uranium mineralogy. Particular attention is paid to UO 3 hydrates, some of which are shown to be stable phases in air at very low relative humidities (down to ∼0.1% at 25C). This is relevant to fuel storage because of the very high molar volumes of these phases, relative to UO 2 , and consequent potential for damage to defected fuel assemblies. Comparison of the calculated phase relationships with observed UO 2 oxidation behavior helps to identify those phase interconversions that are kinetically constrained

  13. Fabrication and testing of ceramic UO2 fuel - I-III. Part I

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The task described consists of the following: fabrication of UO 2 with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO 2 ; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO 2 powder. This volume includes reports on the first two tasks

  14. Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

    Directory of Open Access Journals (Sweden)

    Isabelle Guénot-Delahaie

    2018-03-01

    Full Text Available The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs, power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs. As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on PWR-UO2 fuel rods with advanced claddings such as M5® under “low pressure–low temperature” or “high pressure–high temperature” water coolant conditions.This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on UO2-M5® fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE—starting from base irradiation conditions it itself computes—is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur.Areas of improvement are finally discussed with a view to simulating and

  15. Structure changes of irradiated UO2

    International Nuclear Information System (INIS)

    Komatsu, Junji; Yokouchi, Yoji; Kajiyama, Takashi; Terunuma, Toshihiro; Koizumi, Masumichi

    1973-01-01

    The structural change of UO 2 irradiated in GETR reactor was analyzed on void distribution, fuel cracking, and gap conductance between fuel and cladding. Metallographic analysis was carried out on 21 sections of irradiated fuel pins. Radial void distribution was measured by the linear analysis technique based on the equivalence between the volume fraction of voids and the intercepted length of lines between void boundaries. Fuel cracks were classified into two types, namely radial cracks and circumferential cracks. The radial position, length, angle and number of each fuel clad were measured on metallographic section and autoradiography. The gap conductance between fuel and cladding was calculated from the equation h = q/(T sub(s) - T sub(i)) where h is gap conductance, T sub(i) is inside clad temperature and T sub(s) is outside clad temperature. In void distribution, as the result of studying the effect of linear heat rating on the radial void fraction of UO 2 fuel irradiated with the similar level of burnup, one specimen showed that the void fraction of columnar grain growth region was comparable to that of fabricated region, and two specimens showed higher void fraction at fabricated region than the calculated one. In fuel cladding, no significant effect of burnup on fuel cracking was observed, and the number of fuel cracking increased with shutdown or scram numbers, but the radial position of circumferential cracks was not much changed. In gap conductance, it was influenced by the estimation of temperature of columnar grain growth. (Iwakiri, K.)

  16. Review of the effects of burnup on the thermal conductivity of UO2

    International Nuclear Information System (INIS)

    Lokken, R.O.; Courtright, E.L.

    1976-01-01

    The general trends which relate changes in thermal conductivity of UO 2 fuel as a function of temperature and burnup can be summarized as follows: (1) At temperatures below 500 0 C, reductions in UO 2 thermal conductivity relative to the unirradiated values can be expected up to a saturation level of approximately 10 19 fissions/cc. (2) At temperatures above 500 0 C, the thermal conductivity will undergo little change at low burnups, (less than 10 19 fissions/cc) but at higher exposures some decrease can be expected which should, in turn, diminish with increasing temperature. (3) A review of the data reported by Berman on the ThO 2 --UO 2 fuel indicates that the basic behavior is the same as for UO 2 in the temperature range of major interest. The applicability of this data to LWR UO 2 fuel is somewhat questionable because of basic physical property differences, and limited data on irradiation effects, and would not seem to support concerns that the effects of burnup on thermal conductivity for LWR fuel may be of more significance than currently believed. (4) A mathematical expression of the type proposed by Daniel and Cohen seems to provide a reasonable approximation for the behavioral trends reported in the literature which relate changes in thermal conductivity to increasing burnup in certain temperature regimes. Calculations indicate that only small incremental increases in the fuel centerline temperature might be expected if burnup effects are taken into account

  17. Correlation between UO2 powder and pellet quality in PHWR fuel manufacturing

    International Nuclear Information System (INIS)

    Glodeanu, F.; Spinzi, M.; Balan, V.

    1988-01-01

    Natural uranium dioxide fuel for heavy water reactors has a series of very tightly controlled quality factors: Chemical purity, density and microstructures. Although the fabrication history may consistently affect the fuel quality, the quality factor mentioned above are function mainly of the quality of the powder used as raw material. As regards the fulfilment of the requirements for very high density of the pellets, it was found that in a definite technology the raw material plays the decisive part. Except for the powder sinterability, one found other important subtile parameters, such as the degree of agglomeration and structural homogeneity. The fuel microstructure, very important for in-serive performances of the fuel, is related to a great extent to some powder characteristics (homogeneity, sinterability). This is why much stress was laid on UO 2 power quality evaluation both by standard methods and non-conventional ones (agglomeration, microscopy, X-rays). Some of the characteristics defined by product specification, such as powder sinterability, should be better defined to guarantee the final product quality. (orig.)

  18. On possible mechanisms of rim-layer formation in the high-burnup UO2 fuel

    International Nuclear Information System (INIS)

    Zborovskii, V.; Likhanskii, V.

    2006-01-01

    Two models determining threshold conditions for onset of UO 2 fuel restructuring are developed. In the first model the conditions for fuel restructuring are related with development of the Kinoshita instability. The second model is based upon attainment of critical values by radius of over pressurised bubbles. Possibility of large bubbles formation on dislocation lines is considered with account of Xe atoms drift in the field of mechanical strain of dislocation and irradiation-induced Xe drift in vacancy concentration gradient. Computer simulations of behaviour of point defects and Xe atoms near dislocation core are carried out, results are compared with experimental data. The computer program is developed which consistently calculates point defects and Xe atoms distributions inside fuel grain with account of their behaviour near dislocation core

  19. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    Science.gov (United States)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  20. PECITIS-II, a computer program to predict the performance of collapsible clad UO2 fuel elements

    International Nuclear Information System (INIS)

    Anand, A.K.; Anantharaman, K.; Sarda, V.

    1978-01-01

    The Indian power programme envisages the use of PHWRs, which use collapsible clad UO 2 fuel elements. A computer code, PECITIS-II, developed for the analysis of this type of fuel is described in detail. The sheath strain and fission gas pressure are evaluated by this method. The pellet clad gap conductance is calculated by Ross and Solute model. The pellet thermal expansion is calculated by assuming a two zone model, i.e. a plastic core surrounded by an elastic cracked annulus. (author)

  1. Spectral shift controlled reactor, UO2 once-through cycle optimized

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents technical and economic data on the SSCR which may be of use in the International Fuel Cycle Evaluation Program to intercompare alternative nuclear systems. Included in this data is information on the optimized UO 2 once-through fuel cycle. The ''optimized'' cycle refers to a UO 2 once-through cycle which has better fuel resource utilization than the conventional UO 2 cycle employed in current design PWRs. This fuel cycle uses more in-core batches and a higher discharge exposure than current PWR fuel management schemes. The proposed cycle is not optimal in a mathematical sense, however, since additional resource savings can be obtained if the discharge exposure is extended to even higher values and the number of in-core fuel batches is increased further. The present cycle was selected as ''optimal'' based on the assumption that it can be achieved with only an extension of fuel design technology and can therefore be deployed in a relatively short time frame. In the longer term, modification to reactor geometry as well as further extensions of discharge burnup might be considered to realize additional reduction in uranium resource requirements. The data contained in this paper has been developed by an ongoing program which at the present time is only 50% complete. The data presented here should therefore be considered preliminary and will be updated in the future as required

  2. Experimental simulation of irradiation effects on thermomechanical behaviour of UO2 fuel: Impact of solid and gaseous fission products

    International Nuclear Information System (INIS)

    Balland, J.

    2007-12-01

    Predictive simulation of thermomechanical behaviour of nuclear fuel has to take into account irradiation effects. Fission Products (FP) can modify the thermomechanical behaviour of UO 2 . During this thesis, differentiation was made between fission products which create a solid solution with UO 2 and gaseous products, generating pressurized bubbles. SIMFUELS containing gadolinium oxide and pressurized argon bubbles were manufactured, respectively by conventional process and by Gas Pressure Sintering. Brittle and ductile behaviour of UO 2 was investigated, under experimental conditions representative of Pellet-Cladding Interaction (PCI), respectively with 3 points bending tests and compressive creep tests. Investigation of brittle behaviour of UO 2 showed that fracture is mainly controlled by natural defects, like porosities, acting like starting points for cracks propagation. Addition of simulates fission products increase the brittle-to-ductile transition temperature of UO 2 , up to 400-500 C regarding FP in solid solution, and up to 200 C for gaseous products. Fission products although reduce fracture stresses, by a factor between 1.5 and 4, respectively for gas bubbles and solid solutions. Decrease of fracture stress is linked to an increase of microstructural defects due the solid solution and to pressurized bubbles located at grain boundaries. Pellets were tested under compressive solicitation at high temperatures. Experimental results of creep tests are well represented by Norton laws. Creep controlling mechanisms are evidenced by microstructural analysis performed on pellets at different strains. On the basis of calculations made for fuels having the same microstructures than the SIMFUELs, a creep factor is determined. It revealed a strong hardening effect of the solid solution, due to the fact that the added elements anchor the dislocations, whereas pressurized bubbles showed a coupling between hardening and softening effects. (author)

  3. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  4. Burn-up credit criticality safety benchmark phase VII - UO2 fuel: study of spent fuel compositions for long-term disposal

    International Nuclear Information System (INIS)

    2012-01-01

    After spent nuclear fuel (SNF) is discharged from a nuclear reactor, fuel composition and reactivity continue to vary as a function of time due to the decay of unstable nuclides. Accurate predictions of the concentrations of long-lived radionuclides in SNF, which represent a significant potential hazard to human beings and to the environment over a very long period, are particularly necessary for radiological dose assessments. This report assesses the ability of existing computer codes and associated nuclear data to predict isotopic compositions and their corresponding neutron multiplication factor (k eff ) values for pressurised-water-reactor (PWR) UO 2 fuel at 50 GWd/MTU burn-up in a generic spent fuel cask configuration. Fuel decay compositions and k eff values have been calculated for 30 post-irradiation time steps out to one million years

  5. Experimental Determination of the Neutron Characteristics of UO{sub 2}-PuO{sub 2}-H{sub 2}O Lattices; Determination Experimentale Des Caracteristiques Neutroniques De Reseaux UO{sub 2}-PuO{sub 2}-H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Debrue, J.; Fabry, A.; Leenders, L.; Motte, F.; Van Den Broeck, H. [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1967-09-15

    As part of the investigation, in the VENUS test facility, of the variably moderated core of the BR3/VULCAIN reactor, a fuel assembly consisting of 37 UO{sub 2}-PuO{sub 2} pins (94% natural UO{sub 2}, 6% PuO{sub 2} ) was substituted for one of the enriched (to 7% {sup 235}U) UO{sub 2} fuel assemblies constituting the reactor core. Experiments were carried out with the object of refining the mathematical models for calculating the performance of this special assembly; inter alia, the fission density distribution and the changing ratio of the effective cross-sections for fission in the {sup 233}Pu and {sup 235}U were measured. Using the same critical facility, the authors are carrying out a critical experiment related directly to the problems of plutonium recycling in pressurized light-water thermal reactors. Three types of fuel are being used: UO{sub 2}-PuO{sub 2} with 3% {sup 235}U and 1% fissile plutonium, UO{sub 2}-PuO{sub 2} with 2% {sup 235}U and 2% fissile plutonium, and UO{sub 2} with 4% {sup 235}U. The two UO{sub 2}-PuO{sub 2} mixtures have completely different isotopic contents of {sup 240}Pu: 7% and 17%. In the first part of the experimental programme, a study is being made of regular lattices in cores having two co-axial cylindrical zones: a UO{sub 2}-PuO{sub 2} zone and a UO{sub 2} zone. Particular attention is being paid to investigating the region on either side of the interface separating the two zones, where the neutron spectrum reflects the characteristic energy distributions in each of the two lattices. The experimental results are to be used in calibrating the computational methods. In the second part of the experimental programme, parts of the core of the SENA power reactor will be simulated with a view to studying the problems of reloading one third of the core with mixed UO{sub 2}-PuO{sub 2} fuel. Among the experimental techniques employed in these various experiments emphasis is given to those most specifically related to the presence of

  6. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    Science.gov (United States)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  7. Effect of alpha irradiation on UO{sub 2} surface reactivity in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DIEC/SESC/LMPA, Bagnols-sur-Ceze (France); Jorion, F. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DRCP/SE2A/LEMA, Bagnols-sur-Ceze (France); Corbel, C. [Commissariat a l' Energie Atomique (CEA), Saclay Research Center, DSM/DRECAM/SCM, Gif sur Yvette (France)

    2005-07-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiation. The {beta}-{gamma} emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO{sub 2} pellets doped with alpha emitters ({sup 238}Pu and {sup 239}Pu) to quantify the impact of alpha irradiation on UO{sub 2} matrix alteration. Three batches of doped UO{sub 2} pellets with different alpha flux levels (3.30 x 10{sup 4}, 3.30 x 10{sup 5}, and 3.2 x 10{sup 6} {alpha} cm{sup -2} s{sup -1}) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO{sub 2} matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO{sub 2} pellets doped with alpha emitters results in variations of the UO{sub 2} surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO{sub 2} pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO{sub 2} to UO{sub 2+x}. However, leaching experiments performed in deaerated media after annealing the samples and

  8. Formation of (Cr, Al)UO{sub 4} from doped UO{sub 2} and its influence on partition of soluble fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.W.D. [Department of Materials, Imperial College London, London (United Kingdom); Gregg, D.J.; Zhang, Y.; Thorogood, G.J.; Lumpkin, G.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Grimes, R.W. [Department of Materials, Imperial College London, London (United Kingdom); Middleburgh, S.C., E-mail: simm@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia)

    2013-11-15

    CrUO{sub 4} and (Cr, Al)UO{sub 4} have been fabricated by a sol–gel method, studied using diffraction techniques and modelled using empirical pair potentials. Cr{sub 2}O{sub 3} was predicted to preferentially form CrUO{sub 4} over entering solution into hyper-stoichiometric UO{sub 2+x} by atomic scale simulation. Further, it was predicted that the formation of CrUO{sub 4} can proceed by removing excess oxygen from the UO{sub 2} lattice. Attempts to synthesise AlUO{sub 4} failed, instead forming U{sub 3}O{sub 8} and Al{sub 2}O{sub 3}. X-ray diffraction confirmed the structure of CrUO{sub 4} and identifies the existence of a (Cr, Al)UO{sub 4} phase for the first time (with a maximum Al to Cr mole ratio of 1:3). Simulation was subsequently used to predict the partition energies for the removal of fission products or fuel additives from hyper-stoichiometric UO{sub 2+x} and their incorporation into the secondary phase. The partition energies are consistent only with smaller cations (e.g. Zr{sup 4+}, Mo{sup 4+} and Fe{sup 3+}) residing in CrUO{sub 4}, while all divalent cations are predicted to remain in UO{sub 2+x}. Additions of Al had little effect on partition behaviour. The reduction of UO{sub 2+x} due to the formation of CrUO{sub 4} has important implications for the solution limits of other fission products as many species are less soluble in UO{sub 2} than UO{sub 2+x}.

  9. Recent findings on the oxidation of UO2 fuel under nominally dry storage conditions

    International Nuclear Information System (INIS)

    Taylor, P.; McEachern, R.J.; Sunder, S.; Wasywich, K.M.; Miller, N.H.; Wood, D.D.

    1995-01-01

    This paper is an overview of fuel-storage demonstration experiments, supporting research on UO 2 oxidation, and associated model development, in progress at AECL's Whiteshell Laboratories. The work is being performed to determine the time/temperature limits for safe storage of irradiated CANDU fuel in dry air. The most significant recent experimental finding has been the detection of small quantities of U 3 O 8 , formed over periods of one to several years in a variety of experiments at 150-170 deg C. Another important trading is the slight suppression of U 3 O 8 formation in SIMFUEL and other doped U0 2 formulations. The development of a nucleation-and-growth model for U 3 O 8 formation is discussed, along with available activation energy data. These provide a basis for predicting U 3 O 8 formation rates under dry-storage conditions, and hence optimizing fuel storage strategies. (author)

  10. Study on the development of coating technology for UO{sub 2} nuclear fuel pellet and the microstructural observation of the coated layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Song, Moon Sup; Cho, In Sik; Kim Yu Sin; Lim Young Kyun [Sunmoon University, Asan (Korea)

    1998-04-01

    In order to enhance inherent safety of UO{sub 2} nuclear fuel pellet and develop future nuclear fuel technology, a coating method for the preparation multi-layers of pyrolytic carbon and silicon carbide on the fuel was developed. Inner pyrolytic carbon layer and outer silicon layer were prepared by thermal decomposition of propane in a fluidized bed type CVD unit and silane in ECR PECVD, respectively. Combustion reaction between two layers resulted in forming silicon carbide layer. The morphology depended on the initial carbon shape. Phase identification and microstructural analysis of the combustion product with XRD, AES, SEM and TEM showed that final products of inner layer and outer layer were pyrolytic carbon with isotropic structure and fine crystalline {beta}-SiC, respectively. This coating process is very useful for the fabrication of coated UO{sub 2} nuclear fuel pellet an future nuclear fuel fabrication technology. (author). 45 refs., 47 figs., 5 tabs.

  11. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  12. Sinterability of mixtures of UO2 of different morphological features

    International Nuclear Information System (INIS)

    Villegas de Maroto, Marina; Celora de Lavagnino, Julia; Marajofsky, Adolfo; Leyva, A.G.

    1981-01-01

    The reprocessing of scrap in the production of UO2 pellets, is important from an economical view-point of the fuel cycle. The recovery method by means of a humid process, tested for UO2 scrap, includes the dissolution of the pellets in a nitric media at boiling point, the precipitation of ammonium diuranates (ADU) and its conversion into UO2 at 600 deg C. The microestructural results and the sintering density of the pellets produced in these tests are compared. It is shown that, although the addition of said UO2 powders impaires the performance of the original mixture produced by the factory, the results thus obtained are, nevertheless, within specifications. This facts show that the mixture would then be able for production. (M.E.L.) [es

  13. Modeling of UO2 aqueous dissolution over a wide range of conditions

    International Nuclear Information System (INIS)

    Steward, S.A.; Weed, H.C.

    1993-11-01

    Previously it was not possible to predict reliably the rate at which spent fuel would react with groundwater because of conflicting data in the literature. The dissolution of the UO 2 spent fuel matrix is a necessary step for aqueous release of radioactive fission products. Statistical experimental design was used to plan a set of UO 2 dissolution experiments to examine systematically the effects of temperature (25--75C), dissolved oxygen (0.002--0.2 atm overpressure), pH (8--10) and carbonate (2-200x10 -4 molar) concentrations on UO 2 dissolution. The average uranium dissolution rate was 4.3 mg/m 2 /day. The regression fit of the data indicate an Arrhenius type activation energy of 8750 cal/mol and a half-power dependence on dissolved oxygen in the simulated groundwater

  14. Behaviour of high purity UO2/H2O interfaces under helium beam irradiation in deaerated conditions

    International Nuclear Information System (INIS)

    Mendes, E.

    2005-11-01

    A question put within the framework of the nuclear fuel storage worn in geological site is what become to them in the presence of water. The aim of a fundamental program, of PRECCI project (ECA), is to highlight the behaviour of interfaces which can be used as models for the interfaces nuclear spent fuel/water if the fuel is uranium UO 2 dioxide. This doctorate is interested in the effect of the alpha activity which is the only one that exist in the spent fuel after long periods. The aim is to identify the mechanisms of alteration and of leaching of surfaces under alpha irradiation. A method is developed to irradiate UO 2 /H 2 O interfaces in deaerated conditions with the beam of He 2+ produced by a cyclotron. The He 2+ ions cross an UO 2 disc and emerge in water with an energy of 5 MeV. Leachings under irradiation are carried with a large range of particles flux. The post-irradiation characterization of the surface of the discs realised by micro-Raman spectroscopy allowed to identify the alteration layer. It is made up of studtite UO 2 (O 2 ),4H 2 O, and of schoepite UO 3 ,xH 2 O. The analysis of the solutions shows that the uranium release strongly increases. The electrochemical properties of the interfaces under irradiation strongly differ from those before irradiation. This work allows to propose that the radiolytic species seen by the interface are it during the heterogeneous phase of evolution of the traces and are species of short lives. Modeling show that the radiolytic radicals species can migrate toward the interface and react with the UO 2 surface. (author)

  15. Mechanistic modelling of gaseous fission product behaviour in UO2 fuel by Rtop code

    International Nuclear Information System (INIS)

    Kanukova, V.D.; Khoruzhii, O.V.; Kourtchatov, S.Y.; Likhanskii, V.V.; Matveew, L.V.

    2002-01-01

    The current status of a mechanistic modelling by the RTOP code of the fission product behaviour in polycrystalline UO 2 fuel is described. An outline of the code and implemented physical models is presented. The general approach to code validation is discussed. It is exemplified by the results of validation of the models of fuel oxidation and grain growth. The different models of intragranular and intergranular gas bubble behaviour have been tested and the sensitivity of the code in the framework of these models has been analysed. An analysis of available models of the resolution of grain face bubbles is also presented. The possibilities of the RTOP code are presented through the example of modelling behaviour of WWER fuel over the course of a comparative WWER-PWR experiment performed at Halden and by comparison with Yanagisawa experiments. (author)

  16. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  17. An Analysis of the Thermal and Structure Behaviour of the UO{sub 2}-PuO{sub 2}-Fuel in the Irradiation Experiment of the UO{sub 2}-PuO{sub 2}-Fuel in the Irradiation Experiment FR2 Capsule Test Series 5a; Analisis termico y estructural del combustible UO{sub 2}-PuO{sub 2} irradiado en el reactor FR2 dentro del experimento KVE-Vg.5a

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.; Helmut, E.

    1981-07-01

    In the Karlsruhe research reactor FR2 nine fuel pins were irradiated within three irradiation capsules in the course of the test series 5a. The pins contained UO{sub 2}-PuO{sub 2} fuel pellets. They reached bump values of about 6, 17 and 47 Mwd/Kg Me with linear rod powers of 400 to 600 W/cm and clad surface temperature between 500 and 700 degree centigree. A detailed analysis of the fuel structuration data (columnar-grain and equiaxed- -grain growth regions) have allowed to determine, with the help of physic-mathematical models, the radii of these regions and the heat transfer through the contact zone between fuel and clad depending on the bump. The results of the analysis showed that the fuel surface temperature rose with increasing burnup. (Author) 16 refs.

  18. Mechanical properties and structure of Zircaloy attached by UO2+x and fission products

    International Nuclear Information System (INIS)

    Holub, F.

    1987-08-01

    The aim of this project was to determine the combined long-term effect of simulated fission products and hyperstoichiometric uranium dioxide on the mechanical properties and structure of Zircaloy. Three groups of fission product elements or compounds were defined: The rare earth oxides CeO 2 , La 2 O 3 , Nd 2 O 3 , Y 2 O 3 ; The metals No, Ru, Ag; The low melting elements Te, Sb and Cd. Each of these groups of fission products was mixed with UO 2+x in proportion related for burnups of 5, 10 and 30%. The simulated fuel mixtures were filled into tubular Zircaloy casings, plugged and welded. These specimens were annealed at 350, 500 and 700 deg. C up to 17,500 hours. The test results indicate different kinds of action of the simulated fuel constituents. Mixtures of rare earth oxides and UO 2+x embrittle Zircaloy drastically at higher temperatures. There exists a mutual intensifying effect of rare earth oxides and UO 2+x . UO 2+x and (Mo + Ru + Ag) and their mixtures act very similar on Zircaloy. The low melting fission products (Te + Sb + Cd) influence the ductility of Zircaloy in an advantageous manner, compared to pure UO 2+x fuel. The layer of zirconium tellurides seems to protect the Zircaloy metal against the embrittling attack of oxygen from UO 2+x . The most important events of tensile tests at 400 deg. C are the high values of the elongation of specimens which are brittled at room temperature. It should guarantee the integrity of fuel elements, which have been attacked chemically by fission products at temperatures of 400 deg. C and higher

  19. Behaviour of high purity UO{sub 2}/H{sub 2}O interfaces under helium beam irradiation in deaerated conditions; Comportement des interfaces UO{sub 2}/H{sub 2}O de haute purete sous faisceau d'ions He{sup 2+} en milieu desaere

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E

    2005-11-15

    A question put within the framework of the nuclear fuel storage worn in geological site is what become to them in the presence of water. The aim of a fundamental program, of PRECCI project (ECA), is to highlight the behaviour of interfaces which can be used as models for the interfaces nuclear spent fuel/water if the fuel is uranium UO{sub 2} dioxide. This doctorate is interested in the effect of the alpha activity which is the only one that exist in the spent fuel after long periods. The aim is to identify the mechanisms of alteration and of leaching of surfaces under alpha irradiation. A method is developed to irradiate UO{sub 2}/H{sub 2}O interfaces in deaerated conditions with the beam of He{sup 2+} produced by a cyclotron. The He{sup 2+} ions cross an UO{sub 2} disc and emerge in water with an energy of 5 MeV. Leachings under irradiation are carried with a large range of particles flux. The post-irradiation characterization of the surface of the discs realised by micro-Raman spectroscopy allowed to identify the alteration layer. It is made up of studtite UO{sub 2}(O{sub 2}),4H{sub 2}O, and of schoepite UO{sub 3},xH{sub 2}O. The analysis of the solutions shows that the uranium release strongly increases. The electrochemical properties of the interfaces under irradiation strongly differ from those before irradiation. This work allows to propose that the radiolytic species seen by the interface are it during the heterogeneous phase of evolution of the traces and are species of short lives. Modeling show that the radiolytic radicals species can migrate toward the interface and react with the UO{sub 2} surface. (author)

  20. Effect of the UO{sub 2} powder type and mixing method on microstructure of Mn-Al doped pellet

    Energy Technology Data Exchange (ETDEWEB)

    Na, Yeon Soo; Lim, Kwang Young; Choi, Min young; Jung, Tae Sik; Lee, Seung Jae; Yoo, Jong Sung [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    Recently, the commercial LWRs are focused on the extending the burn-up and fuel cycle length in order to increase nuclear power plant economy as a maintenance and fuel cycle cost. Increasing the burn-up may lead to a faster and higher power variation such as a peak local linear power and normal operating transient (Load following operation). In such operating conditions, the risk of a fuel failure is considerably related to a pellet clad-interaction (PCI). So, recent development of advanced UO{sub 2} pellet for the LWRs is mainly focused on the large grain and soft pellet as they can reduce corrosive fission gas release and pellet-clad-interaction. In terms of the UO{sub 2} pellet, the prevention of PCI induced fuel failure can be achieved by enlarging the UO{sub 2} pellet grain size and enhancing the pellets deformation at an elevated temperature. In Korea, in order to increase the grain size and deformation of UO{sub 2} pellet on the high temperature, Mn-Al doped pellet with ADU (Ammonium Diuranate)-UO{sub 2} powder are developed in lab scale. But, the UO{sub 2} pellets for the commercial nuclear power plants in Korea are fabricated using the DC (Dry Conversion)-UO{sub 2} powder. So, it is necessary to understand the effect of microstructure on UO{sub 2} powder type for Mn-Al doped pellets. In this work, to investigate the effect of UO{sub 2} powder type and mixing method on the microstructure of the Mn-Al doped UO{sub 2} pellets, we fabricated the Mn-Al doped pellets using the DC-UO{sub 2} powder. The measurement of sintered density and mean grain size for fabricated pellets was performed, and then the results of test was evaluated in comparison with a Reference 2.

  1. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  2. Atomic transport properties in UO2 and mixed oxides (U,Pu)O2

    International Nuclear Information System (INIS)

    Matzke, H.

    1987-01-01

    Atomic diffusion processes in UO 2 and in the fast-breeder reactor fuel, (U,Pu)O 2 are reviewed. Emphasis is given to the slower-moving species, i.e. U and Pu. Self-diffusion, chemical diffusion, diffusion in a thermal gradient, enhancement of diffusion by radiation and fission and the operative diffusion mechanisms are discussed. The main parameter, besides the temperature, is the oxygen-to-metal ratio (O/M ratio) of the oxide. The experimental results are compared with recent calculations reported elsewhere in this volume. Also treated are effects of the possible lambda-transition at ca.2600 K in UO 2 on high-temperature kinetic processes. The present knowledge on the diffusion and mobility of fission products with emphasis on volatile and gaseous elements, and of other actinides with emphasis on their valence states are treated. Gaps in our knowledge are pointed out and the relevance of the available results for oxide fuel during reactor operation is discussed. Whereas much is known for the as-produced 'virgin' fuel, more results are urgently needed for oxides with higher burn-ups containing a few per cent fission products. Finally, technological applications of the diffusion results are treated. As an example, important savings in cost, energy and time in fuel sintering were recently achieved based on basic studies of diffusion properties of UO 2 . (author)

  3. A Study of the Temperature Distribution in UO2 Reactor Fuel Elements

    International Nuclear Information System (INIS)

    Devold, I.

    1968-05-01

    Thermal conductivity is one of the most important properties of nuclear reactor fuels. Accurate knowledge of this property is vital because, among other things, it determines the maximum power that can be taken out of the fuel element per unit length of the material without exceeding the safety limits of the fuel elements. This report consists of a study of the thermal behaviour of uranium dioxide in the form of reactor fuel. The experimental part of the report describes measurements performed at the OECD Halden Reactor Project, Halden, Norway. The experiment was originally set up in order to measure the temperature at the center of a UO 2 fuel element as a function of element power, in order to determine the safe operation limit of the fuel assembly. However, in analysing the data obtained, very interesting thermal conductivity values were obtained and comparison with existing correlations could be performed. This comparison shows that a certain agreement is obtained between the measured data at Halden and a theory published by J.L. Bates in 1961, which predicts an increase in the thermal conductivity above 1500 deg C. The data obtained below 1300 deg C are also in good agreement with measurements performed by Vogt, Grandell and Runfors in 1964. The report contains a mathematical description of the heat transfer mechanisms in cylindrical fuel elements. The model is coded in FORTRAN IV-code and referred to as FUELTEMP

  4. Finite element simulation of fission gas release and swelling in UO2 fuel pellets

    International Nuclear Information System (INIS)

    Denis, Alicia C.

    1999-01-01

    A fission gas release model is presented, which solves the atomic diffusion problem with xenon and krypton elements tramps produced by uranium fission during UO 2 nuclear fuel irradiation. The model considers intra and intergranular precipitation bubbles, its re dissolution owing to highly energetic fission products impact, interconnection of intergranular bubbles and gas sweeping by grain border in movement because of grain growth. In the model, the existence of a thermal gradient in the fuel pellet is considered, as well as temporal variations of fission rate owing to changes in the operation lineal power. The diffusion equation is solved by the finite element method and results of gas release and swelling calculation owing to gas fission are compared with experimental data. (author)

  5. Metallurgical structure modification of UO{sub 2} pellet during sintering - experience at NFC, Hyderabad, India

    Energy Technology Data Exchange (ETDEWEB)

    Santra, N.; Sinha, T.K.; Singh, A.K.; Sairam, S.; Sheela, S.; Saibaba, N., E-mail: santra@nfc.gov.in [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2013-07-01

    Nuclear Fuel Complex (NFC), Department of Atomic Energy (DAE) produces UO{sub 2} fuel pellets by powder compaction, high temperature sintering followed by centreless wet grinding method from the stabilized UO{sub 2} powder generated through ADU-route. Enhancement of fuel burn up of the Indian PHWRs becomes very important in order to effectively utilize the fuel to the maximum extent inside the reactor. Burn up is mainly limited by increased fission gas release from the fuel during reactor operation. Without introducing much change in the design, rate of release of fission gas can be reduced through enlargement of UO{sub 2} grain size. In Powder Metallurgical (PM) route of fuel fabrication, trials were taken by doping various oxide powder additives like TiO{sub 2}, Al{sub 2}O{sub 3}, SiO{sub 2}, Nb{sub 2}O{sub 5} and Cr{sub 2}O{sub 3}. The dopant normally goes into the solid solution of parent matrix during sintering at 1700 {sup o}C and thus enhance the rate of diffusion. Aliovalant dopant can alter the defect chemistry of the parent material either by creating vacancy or interstitial. It is apparently understood that the combination of above mechanisms are responsible for structural modification of UO{sub 2}. Hence selection of dopant remains largely empirical. It has been observed at NFC Hyderabad that the Cr{sub 2}O{sub 3} is the most suitable for achieving average UO{sub 2} grain size of about 70 micron and 98%TD of the sintered pellet. The paper discusses about the various experimental trials, sintered densities, metallographic examination, effect of different quantities, analysis and result obtained thereof. (author)

  6. Modelling of UO2 oxidation in steam

    International Nuclear Information System (INIS)

    Brito, A.C.; Iglesias, F.C.; Liu, Y.

    1996-01-01

    A computer model has been developed for calculating oxidation of UO 2 at high temperatures in steam oxidising conditions. Several methods to calculate the partial pressure of oxygen in the fuel and in the environment surrounding the fuel are available. The various methodologies have been compared and the best models have been compiled into a computer model which will be implemented into fuel thermal/mechanical behaviour codes such as FACTAR 2.0 (LOECI) and ELESIM/ELOCA. Calculations from the computer model have been compared to experimental results. The calculated oxidation reaction kinetics are in good agreement with the experimental data. (author)

  7. Measurement of the friction coefficient between UO2 and cladding tube

    International Nuclear Information System (INIS)

    Tachibana, Toshimichi; Narita, Daisuke; Kaneko, Hiromitsu; Honda, Yutaka

    1978-01-01

    Most of fuel rods used for light water reactors or fast reactors consist of the cladding tubes filled with UO 2 -PuO 2 pellets. The measurement was made on the coefficient of static friction and the coefficient of dynamic friction in helium under high contact load on UO 2 /Zry-2 and UO 2 /SUS 316 combined samples at the temperature ranging from room temperature to 400 deg. C and from room temperature to 600 deg. C, respectively. The coefficient of static friction for Zry-2 tube and UO 2 pellets was 0.32 +- 0.08 at room temperature and 0.47 +- 0.07 at 400 deg. C, and increased with temperature rise in this temperature range. The coefficient of static friction between 316 stainless steel tube and UO 2 pellets was 0.29 +- 0.04 at room temperature and 1.2 +- 0.2 at 600 deg. C, and increased with temperature rise in this temperature range. The coefficient of dynamic friction for both UO 2 /Zry-2 and UO 2 /SUS 316 combinations seems to be equal to or about 10% excess of the coefficient of static friction. The coefficient of static friction for UO 2 /SUS 316 combination decreased with the increasing number of repetition, when repeating slip several times on the same contact surfaces. (Kobatake, H.)

  8. Development of UO{sub 2}-Stainless Steel Fuel Plates Containing 30-50 Vol. % Oxide; Fabrication de plaques de combustible en acier inoxydable-UO{sub 2} contenant 30 a 40% d'oxyde (en volume); Razrabotka toplivnykh ehlementov iz nerzhaveyushchej stali i UO{sub 2}, soderzhashchikh 30 - 50 OB.% okisi; Elaboracion de placas de combustible de acero inoxidable UO{sub 2} conteniendo 30 a 40% de oxido (en volumen)

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, H. [Atomic Energy Research Establishment, Harwell (United Kingdom)

    1963-11-15

    This paper describes developments associated with the fabrication of UO{sub 2}-stainless steel plate type fuel elements containing up to 50 vol.% UO{sub 2}. The preparation of high-density spherical UO{sub 2} sintered particles in the 100- to 500-{mu}m size range and the compacting and sintering of cermet plate cores with the particles uniformly distributed in the stainless steel matrix are described together with procedures for hot roll-bonding the fuel plates. Rolling at temperatures up to 1300{sup o}C using total deformations in the 40% to 90% range were studied to establish optimum conditions for the production of high-density cores and to achieve good bonding between the plate components with minimum fragmentation and stringering of the UO{sub 2} particles. The manufacture of large fuel plates utilizing multi-core plates which are bonded together during hot rolling is also described. Data are presented on the mechanical properties of 30, 40 and 50 vol.% UO{sub 2}-stainless steel cermets, prepared as described above, and tested in the as ''rolled'' and annealed condition at various temperatures up to 700{sup o}C, using specimens taken laterally and longitudinally to the direction of rolling. The influence of size and uniformity of distribution of the UO{sub 2} spheres on consistency of mechanical properties are discussed. The strength of bonding between core and cladding for similar cermets in the same temperature range was also assessed. Results are also included of thermal cycling tests between 50 and 800{sup o}C, which was done to study the effects on bond stability and cermet structure after 100, 500 and 1000 cycles. (author) [French] L'auteur expose le processus de fabrication d'elements de combustible UO{sub 2}-Inox en plaques contenant jusqu'a 50% en volume d'UO{sub 2}; il decrit la preparation de particules spheriques de UO{sub 2} frittees de densite elevee (taille dans la gamme de 100 a 500), le pressage et le frittage des plaques de cermet dans

  9. Fission and explosive energy releases of PuO2, PuO2--UO2, UO2, and UO3 assemblies

    International Nuclear Information System (INIS)

    Koelling, J.J.; Hansen, G.E.; Byers, C.C.

    1977-01-01

    The critical masses and fission and explosive energy releases of PuO 2 , PuO 2 --UO 2 , UO 2 , and UO 3 assemblies have been calculated. The parameters selected for the model are conservative. They were chosen after review of appropriate plants that have been and are proposed for construction in the future. The resulting data envelopes are intended to include any conceivable set of circumstances that could ultimately lead to a nuclear incident. All energy release analysis was performed for initial fission spikes only: recriticality mechanisms were not considered

  10. Neutronic analysis for conversion of the Ghana Research Reactor-1 facility using Monte Carlo methods and UO{sub 2} LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Akaho, E.H.K.; Maakuu, B.T.; Gbadago, J.K. [Ghana Research Reactor-1 Centre, Dept. of Nuclear Engineering and Materials Science, National Nuclear Research Institute, Ghana Atomic Energy Commission, Legon, Accra (Ghana); Andam, A. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Physics (Ghana); Liaw, J.J.R.; Matos, J.E. [Argonne National Lab., RERTR Programme, Div. of Nuclear Engineering (United States)

    2007-07-01

    Monte Carlo particle transport methods and software (MCNP) have been applied to the modelling, simulation and neutronic analysis for the conversion of the HEU-fuelled (high enrichment uranium) core of the Ghana Research Reactor-1 (GHARR-1) facility. The results show that the MCNP model of the GHARR-1 facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR) is good as the simulated neutronic and other reactor physics parameters agree with very well with experimental and zero power results. Three UO{sub 2} LEU (low enrichment uranium) fuels with different enrichments (12.6% and 19.75%), core configurations, core loadings were utilized in the conversion studies. The nuclear criticality and kinetic parameters obtained from the Monte Carlo simulation and neutronic analysis using three UO{sub 2} LEU fuels are in close agreement with results obtained for the reference 90.2% U-Al HEU core. The neutron flux variation in the core, fission chamber and irradiation channels for the LEU UO{sub 2} fuels show the same trend as the HEU core as presented in the paper. The Monte Carlo model confirms a reduction (8% max) in the peak neutron fluxes simulated in the irradiation channels which are utilized for experimental and commercial activities. However, the reductions or 'losses' in the flux levels neither affects the criticality safety, reactor operations and safety nor utilization of the reactor. Employing careful core loading optimization techniques and fuel loadings and enrichment, it is possible to eliminate the apparent reductions or 'losses' in the neutron fluxes as suggested in this paper. Concerning neutronics, it can be concluded that all the 3 LEU fuels qualify as LEU candidates for core conversion of the GHARR-1 facility.

  11. Neutron Flux Depression in the UO{sub 2}-PuO{sub 2}(15 to 30%) Fuel Rods from IVO-FR2-Vg7-Irradiation Experiment; Depresion de flujo neutronico en las barras combustibles de UO2-PuO2(15 al 30%) del experimento de irradiacion IVO-FR2-Vg7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J; Fernandez, J L

    1983-07-01

    The thermal-neutron flux depression within a fuel rod has a great influence in the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO{sub 2}-PUO{sub 2} (15 to 30% PUO{sub 2}) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (Author) 22 refs.

  12. UO2 Fuel pellet impurities, pellet surface roughness and n(18O)/n(16O) ratios, applied to nuclear forensic science

    International Nuclear Information System (INIS)

    Pajo, L.

    2001-01-01

    In the last decade, law enforcement has faced the problem of illicit trafficking of nuclear materials. Nuclear forensic science is a new branch of science that enables the identification of seized nuclear material. The identification is not based on a fixed scheme, but further identification parameters are decided based on previous identification results. The analysis is carried out by using traditional analysis methods and applying modern measurement technology. The parameters are generally not unambiguous and not self-explanatory. In order to have a full picture about the origin of seized samples, several identification parameters should be used together and the measured data should be compared to corresponding data from known sources. A nuclear material database containing data from several fabrication plants is installed for the purpose. In this thesis the use of UO 2 fabrication plant specific parameters, fuel impurities, fuel pellet surface roughness and oxygen isotopic ratio in UO 2 were investigated for identification purposes in nuclear forensic science. The potential use of these parameters as 'fingerprints' is discussed for identification purposes of seized nuclear materials. Impurities of the fuel material vary slightly according to the fabrication method employed and a plant environment. Here the impurities of the seized UO 2 were used in order to have some clues about the origin of the fuel material by comparing a measured data to nuclear database information. More certainty in the identification was gained by surface roughness of the UO 2 fuel pellets, measured by mechanical surface profilometry. Categories in surface roughness between a different fuel element type and a producer were observed. For the time oxygen isotopic ratios were determined by Thermal Ionisation Mass Speckometry (TIMS). Thus a TIMS measurement method, using U 16 O + and U 18 0 + ions, was developed and optimised to achieve precise oxygen isotope ratio measurements for the

  13. Study by electronic structure calculations of the radiation damage in the UO2 nuclear fuel: behaviour of the point defects and fission gases

    International Nuclear Information System (INIS)

    Vathonne, Emerson

    2014-01-01

    Uranium dioxide (UO 2 ) is worldwide the most widely used fuel in nuclear plants in the world and in particular in pressurized water reactors (PWR). In-pile the fission of uranium nuclei creates fission products and point defects in the fuel. The understanding of the evolution of these radiation damages requires a multi-scale modelling approach of the nuclear fuel, from the scale of the pellet to the atomic scale. We used an electronic structure calculation method based on the density functional theory (DFT) to model radiation damage in UO 2 at the atomic scale. A Hubbard-type Coulomb interaction term is added to the standard DFT formalism to take into account the strong correlations of the 5f electrons in UO 2 . This method is used to study point defects with various charge states and the incorporation and diffusion of krypton in uranium dioxide. This study allowed us to obtain essential data for higher scale models but also to interpret experimental results. In parallel of this study, three ways to improve the state of the art of electronic structure calculations of UO 2 have been explored: the consideration of the spin-orbit coupling neglected in current point defect calculations, the application of functionals allowing one to take into account the non-local interactions such as van der Waals interactions important for rare gases and the use of the Dynamical Mean Field Theory combined to the DFT method in order to take into account the dynamical effects in the 5f electron correlations. (author) [fr

  14. Effect of titania addition on hot hardness of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A.K. E-mail: arghya@apsara.barc.ernet.in; Basak, C.B.; Jarvis, T.; Bhagat, R.K.; Pandey, V.D.; Majumdar, S

    2004-02-15

    Large grain UO{sub 2} is a potential fuel for LWR's for achieving extended burn up. Large grains are obtained by addition of dopants like Nb{sub 2}O{sub 5}, TiO{sub 2}, Cr{sub 2}O{sub 3}, V{sub 2}O{sub 5} etc. However, presence of such dopants might affect the thermophysical and thermomechanical properties of the fuel. In the present investigation the effect of TiO{sub 2} addition on the hot hardness (H) of sintered UO{sub 2} fuel has been studied from ambient to 1573 K in vacuum. TiO{sub 2} content was varied from 0.01 to 0.15 w/o resulting in a grain size (G) variation of 9 to 94 {mu}m. With increase in grain size (or TiO{sub 2} content) H first decreases, attains a minima and then increases further. The increase is more prominent at lower temperature (<773 K) than that at higher temperatures. H vs. G{sup -1/2} plots indicates the same type of variation like other oxide ceramics with H minima at an intermediate grain size at low temperature. The intrinsic hardness and softening coefficient of UO{sub 2} indicate cubic dependence on TiO{sub 2} content.

  15. Control rod effects on reaction rate distributions in tight pitched PuO2-UO2 fuel assembly

    International Nuclear Information System (INIS)

    Gil, Choong-Sup; Okumura, Keisuke; Ishiguro, Yukio

    1991-11-01

    Investigations were made for the heterogeneity effects caused by insertion or withdrawal of a B 4 C control rod on fine structure of reaction rates distributions in a tight pitched PuO 2 -UO 2 fuel assembly. Analysis was carried out by using the VIM and SRAC codes with the libraries based on JENDL-2 for the hexagonal fuel assembly basically corresponding to the PROTEUS-LWHCR experimental core. The reaction rates are affected more remarkably by the withdrawal of the control rod rather than its insertion. The changes of the reaction rates were decomposed into three terms of spectrum shifts, the changes of effective cross sections with fine groups, and their higher order components. From the analysis, it is concluded that most changes of reaction rates are caused by spectral shifts. The SRAC code with fine group constants can predict the distribution of reaction rates and their ratios with the accuracy of about 5 % except for the values related to Pu-242 capture rate, as compared with the VIM results. To increase the accuracy, it is necessary to generate the effective cross sections of the fuel near control rods with consideration of the heterogeneities in the fuel assembly. (author)

  16. Results of the irradiation of mixed UO2 - PuO2 oxide fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L.

    1966-01-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO 2 containing about 10 per cent of PuO 2 . The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm 3 and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and γ-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [fr

  17. Interesting Developments in UO{sub 2} Technology; Progres interessants dans la technologie du bioxyde d'uranium; Interesnye usovershenstvovaniya tekhnologii UO{sub 2}; Recientes progresos en la tecnologia del UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J. A.L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1963-11-15

    Now that several UO{sub 2}-fuelled reactors are operating routinely, good irradiation performance of UO{sub 2} is taken for granted. It is therefore stimulating to find that significant developments are still occurring. Most exciting was the recent discovery by Battelle Memorial Institute workers that a particular single crystal of UO{sub 2} had a very high thermal conductivity at elevated temperatures. Following controversy over the matter, an irradiation at Chalk River demonstrated that the large grains formed in operating fuel elements do not necessarily exhibit this enhanced conductivity. Our laboratory experiments have shown that the enhancement is only present in hypostoichiometric compositions and depends little, if any, on the absence of grain boundaries. Indeed, the high conductivity can be obtained in polycrystalline sinters by controlling the stoichiometry. It has long been known that sheath elongation could be reduced by fabricating the UO{sub 2} pellets with depressions in their end faces. Later it was shown that movement of the fuel into a void at the end of the pellet stack was impeded by diametral expansion of the fuel and its mechanical interaction with the sheath. The biggest advance in minimizing sheath distensions has been the realization that longitudinal and diametral expansions are interrelated through the volume expansion of the fuel whose hot core is appreciably plastic. Our empirical knowledge of the factors determining the release of fission-product gases from UO{sub 2} has improved. In particular, increasing the irradiation exposure from 10{sup 15} to 10{sup 18} fissions/cm{sup 3} can reduce the apparent diffusion rates for xenon in UO{sub 2} during subsequent anneals by a factor of 10{sup 3}. The gas is probably immobilized in minute traps, some existing in the original material and some generated by irradiation damage. Detailed analysis indicated slow escape from the traps, presumably from the finite solubility of the xenon in UO{sub 2

  18. TEM characterization of UO2-Gd2O3 nuclear fuels synthesized by coprecipitation method

    International Nuclear Information System (INIS)

    Soldati, A.; Gana Watkins, I.; Menghini, J.; Prado, M.

    2013-01-01

    We present a micro and nano structural characterization of 4% weight doped Gd 2 O 3 -UO 2 pellet using Transmission Electron Microscopy (TEM). Agglomerate morphology and crystallite sizes were determined using light/dark field and high resolution (HR-TEM) images. Convergent beam Energy Dispersive Spectroscopy (EDS) and Electron Diffraction (ED) were used to evaluate sample composition and homogeneity, even at the nanometer scale. We obtained an average crystallite size of 90±20 nm. Moreover, from TEM-EDS analyses we determined the presence of Gadolinium in all the analyzed crystallites but with 25% variation among their concentrations. These results show the capability of TEM analysis to characterize a nuclear fuel pellet with burnable poisons nano structure and homogeneity.(author)

  19. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    International Nuclear Information System (INIS)

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  20. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO{sub 2} nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.H.A., E-mail: markuspiro@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Banfield, J. [Nuclear Engineering Department, University of Tennessee, Knoxville, TN (United States); Clarno, K.T., E-mail: clarnokt@ornl.gov [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Simunovic, S. [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Besmann, T.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON (Canada)

    2013-10-15

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO{sub 2}, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO{sub 2} fuel with an average burnup of 102 GW d t(U){sup −1}. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  1. Summary report on UO2 thermal conductivity model refinement and assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bell, B. D.C. [Imperial College, London (United Kingdom); Grimes, R. W. [Imperial College, London (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-03

    Uranium dioxide (UO2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high

  2. Characterization of UO{sub 2}, a) Characterization of UO{sub 2} powder; b) Investigation of U-O system by DDK and TGA methods; Karakterizacija UO{sub 2}, a) Karakterizacija praha UO{sub 2}; b) Ispitivanje sistema U-O metodama DDK i TGA

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    The objectives of the study of U-O powder system were: detailed characterization of the UO{sub 2} powder which will be used for studying the sintering process, and more detailed properties of the U-O system (thermodynamic aspects of oxidation kinetics). Study of the physical and chemical properties of UO{sub 2} powder were performed and then oxidation kinetics of UO{sub 2} {yields}U{sub 3}O{sub 7} was investigated. Detailed qualitative DDK analysis was done. Owing to the TGA equipment there was a possibility to obtain U{sub 3}O{sub 7} study of U{sub 3}O{sub 7} {yields} U{sub 3}O{sub 8} oxidation was possible.

  3. An Optimization Study of LWR Fuel Assembly Design for TRU Burning using FCM and UO{sub 2}-ThO{sub 2} Fuel Pins

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Daehee; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    The objective of this work is to design optimized LWR fuel assemblies for the transmutation of TRU (transuranic) nuclides by using FCM (Fully Ceramic Micro-encapsulated) and UO{sub 2}-ThO{sub 2} fuel pins without degradation of safety-related parameters. In our study, the pin pitch (equivalently to P/D (Pitch-to-Diameter) ratio with a fixed fuel rod diameter) is used as a design parameter. The motivation is to make MTC (Moderator Temperature Coefficient) less negative at EOC because it was found that the small LWR core design in our previous work has a very strong MTC at EOC (∼-80pcm/K) which can lead to a large positive reactivity insertion under MSLB (Main Steam Line Break) accident and to a reduction of shutdown margin of the control rods. The basic idea is to increase moderator-to-fuel ratio such that the fuel assemblies have less negative MTC due to increase the moderation. The results show that a small increase of P/D ratio by 3.8% can give a considerably less negative MTC and an increase of TRU destruction rate without an increase of pin power peaking. In our study, a special emphasis is given on the effects of the increased P/D ratio for MTC. From the results, it was found that an increase of P/D ratio (we considered up to P/D=1.38) leads to a less negative MTC and a less negative FTC, an increase of TRU destruction rate, and a decrease of {sup 233}U production in UO{sub 2}-ThO{sub 2} pins. In particular, a small change of P/D ratio from 1.33 to 1.38 led to a change of MTC from - 75 pcm/.deg. C to -67 pcm/.deg. C at EOC, and a small increase of net TRU destruction rate from 26.4% to 28.3%. As conclusion, a small increase of P/D ratio is effective in obtaining the less negative MTC at EOC with a small increase of TRU destruction rate and without a significant degradation of FTC.

  4. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  5. Thermal Expansion and Density Data of UO2 and Simulated Fuel for Standard Reference

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Na, S. H.; Lee, J. W.; Kang, K. H.

    2010-01-01

    Standard Reference Data (SRD) is the scientific, technical data whose reliability and accuracy are evaluated by scientist group. Since SRD has a great impact on the improvement of national competitiveness by stirring up technological innovation in every sector of industries, many countries are making great efforts on establishing SRD in various areas. Data center for nuclear fuel material in Korea Atomic Energy Research Institute plays a role to providing property data of nuclear fuel material at high temperature, pressure, and radiation which are essential for the safety evaluation of nuclear power. In this study, standardization of data on thermal expansion and density of UO 2 were carried out in the temperature range from 300 K to 3100 K via uncertainty evaluation of indirectly produced data. Besides, standardization of data on thermal expansion and density of simulated fuel were also done in the temperature range from 350 K to 1750 K via uncertainty evaluation of directly produced data

  6. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  7. Innovative microstructures in ThO2-UO2 system

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Sengupta, A.K.; Majumdar, S.; Sah, D.N.; Kamath, H.S.

    2005-01-01

    The basic properties that really matter to the nuclear scientists are those that have greatest influence on microstructure: crystal structure, defects concentration and phase stability. The role of microstructure and crystal defects in determining the engineering properties are always acknowledged. Microstructure of nuclear fuels controls the in-pile fuel behavior like fission gas release, plasticity, in-pile creep and swelling. Conventional nuclear ceramic fabrication process consists of a number of stages, including calcination, milling, incorporating additives, pressing, drying and densification. Since each of these steps affects the microstructure of fuel pellets they must all be understood and a more holistic approach is required when processing nuclear ceramics compared to metals and polymers. It is possible to obtain a wide range of microstructures for ThO 2 -UO 2 system if a proper fabrication route is chosen. It is possible to tailor microstructure as per our requirement so that an improved behaviour during irradiation is expected. The improvement in plasticity and fission gas release can be attained by modifying the microstructure during fabrication. This paper deals with fabrication of ThO 2 -UO 2 pellets of varying U content and its characterization with the help of optical microscopy, XRD, SEM and EPMA. The microstructures are characterized in terms grain size, pore size and its distribution and homogeneity of uranium. (author)

  8. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  9. On the behaviour of intragranular fission gas in UO2 fuel

    International Nuclear Information System (INIS)

    Loesoenen, Pekka

    2000-01-01

    Data obtained from the literature concerning the behaviour of intragranular gas in sintered LWR UO 2 fuel are reviewed comprehensively. The characteristics of single gas atoms and bubbles, as a function of irradiation time, temperature, fission rate and burn-up are described, based on the reported experimental data. The relevance of various phenomena affecting gas behaviour is evaluated. The current status of modelling of the behaviour of intragranular gas is considered in light of the present findings. Simple calculations showed that the conventional approximation for the effective diffusion coefficient does not adequately describe the gas behaviour under transient conditions, when bubble coarsening plays a key role in the release. The difference in the release fraction, compared with a more mechanistic approach, could be as large as 30%. A number of recommendations regarding possible defects in the mechanistic approach to modelling of intragranular gas are highlighted. The lack of an effective numerical method for solving the set of relevant non-linear differential equations is shown to be a serious obstacle in implementing the mechanistic models for fission gas release (FGR), in integral fuel performance codes

  10. The Width of High Burnup Structure in LWR UO2 Fuel

    International Nuclear Information System (INIS)

    Koo, Yang-Hyun; Lee, Byung-Ho; Oh, Jae-Yong; Sohn, Dong-Seong

    2007-01-01

    The measured data available in the open literature on the width of high burnup structure (HBS) in LWR UO 2 fuel were analyzed in terms of pellet average burnup, enrichment, and grain size. Dependence of the HBS width on pellet average burnup was shown to be divided into three regions; while the HBS width is governed by accumulation of fission damage (i.e., burnup) for burnup below 60 GWd/tU, it seems to be restricted to some limiting value of around 1.5 mm for burnup above 75 GWd/tU due to high temperature which might have caused extensive annealing of irradiation damage. As for intermediate burnup between 60 and 75 GWd/tU, although temperature would not have been so high as to induce extensive annealing, the microstructural damage could have been partly annealed, resulting in the reduction of the HBS width. It was found that both enrichment and grain size also affects the HBS width. However, as long as the pellet average burnup is lower than about 75 GWd/tU, the effect does not appear to be significant for the enrichment and grain size that are typically used in current LWR fuel. (authors)

  11. Long-term safety of radioactive waste disposal: Chemical reaction of fabricated and high burnup spent UO2 fuel with saline brines. Final report

    International Nuclear Information System (INIS)

    Grambow, B.; Casas, I.; Pablo, J. de; Gimenez, J.; Torrero, M.E.

    1996-03-01

    This is the final report of a large EU-research project on spent fuel stability in saline repository environments. Static dissolution experiments with high burnup spent fuel samples and unirradiated UO 2 were performed for about two years in anaerobic NaCl solutions and deionized water with and without container material (iron) being present. Experiments performed at 25 and 150 C gave similar results. Dissolution rates were similar to those measured in the Swedish, or Canadian program for granite media. Rates are strongly influenced by the specific sample surface area, probably related to the mass balance of consumption and production of radiolytic oxidants. In the competition between the oxidizing effect of radiolysis and the reducing effect of iron, the metal corrosion process dominates. Processes controlling radionuclide release are matrix dissolution, solubility, coprecipitation sorption phenomena and colloid formation. In the absence of iron release rates of Sr90, Tc99, Np237, Sb125 and at low reaction progress Ru106 were controlled by matrix dissolution whereas concentrations of tetra-, hexa-, and trivalent actinides (U, Pu, Am, Cm) were controlled by solubility or coprecipitation. The presence of iron did effectively reduce the rates of fuel dissolution and the concentration of many, though not all radionuclides. Solubilities of U were similar for uniradiated UO 2 and for spent fuel both in the case of oxidizing and reducing conditions. In contrast, due to the effect of radiolysis, reaction rates of spent fuel were higher than UO 2 dissolution rates. (orig.) [de

  12. Release of tellurium and cesium from UO2 in LWR fuel rods during irradiation

    International Nuclear Information System (INIS)

    Malen, K.A.

    1983-01-01

    In this paper the release of tellurium (Te-132) and cesium (Cs-134 and Cs-137) from UO 2 -fuel is analyzed. The basis for the analysis is the experimental results from the S176 series of experiments performed at Studsvik. It seems that the model developed earlier for release of iodine applies also to tellurium and cesium. This model assumes sweeping up of the species in question by moving grain boundaries and subsequent release through grain boundary porosity. An interesting extra feature is deposition of tellurium at temperatures in the range 1500-2000 K believed to be due to condensation. (author)

  13. The effect of UO2 density on fission product gas release and sheath expansion

    International Nuclear Information System (INIS)

    Notley, M.J.F.; MacEwan, J.R.

    1965-03-01

    The effect of UO 2 density on fission product gas release and sheath expansion has been determined in an irradiation experiment in which the performance of fuel elements with densities between 10.42 and 10.74 g/cm 3 was compared at ∫λdθ values of 39 and 42 W/cm. The elements were irradiated as clusters of four in a pressurized water loop, hence their irradiation histories were identical. Fission product gas release and the extend of grain growth were greater for the lower density elements. Both effects can be attributed solely to the variation of the thermal conductivity of the fuel with the fractional porosity p, if λ p λ [1 - (2.6 ± 0.8) p] where λ is the thermal conductivity of fully dense UO 2 and λ p is that of the porous UO 2 . This expression is in agreement with laboratory findings. A correlation between the extent of grain growth in the UO 2 and the fractional gas release was found to exist in this test and was shown to apply in a large number of other fuel irradiations. Diametral sheath strain was lower for the low density fuel elements than for those of high density, although the former were deduced to have operated with higher central temperatures. It is supposed that the thermal expansion of the fuel can be partially accommodated by elimination of some of the original porosity. The data are consistent with the assumption that approximately half the porosity in the region of the fuel undergoing grain growth is eliminated. (author)

  14. The Influences of Uranium Concentration and Polyvinyl Alcohol on the Quality UO2 Microsphere for Fuel of High Temperature Reactor

    International Nuclear Information System (INIS)

    Damunir; Sukarsono; Bangun-Wasito; Endang Nawangsih

    2000-01-01

    The influences of uranium concentration and PVA on the quality of UO 2 microspheres for fuel of high temperature reactor have been investigated. The UO 2 particles were prepared by gel precipitation using internal gelation process. Uranyl nitrate solution containing uranium of 100 g/l was neutralized using NH 4 OH 1 M. The solution was changed into sol by adding 60 g PVA/l solution while stirred and heated up to 80 o C for 20 minutes. In order to find gels in spherical shape, the sol solution was dropped into 5 M NH 4 OH medium. The formed gels were small spheres, was washed, screened and heated up to 120 o C. After that, the gels were calcined at 800 o C for 4 hours, resulting in U 3 O 8 spheres. The U 3 O 8 particles were reduced using H 2 gas in a N 2 media at 800 o C for 4 hours, yielded in UO 2 spheres. Using a similar procedure, the influence of uranium concentration of 150-250 g/l and PVA 40-80 g/l were studied. The qualities of UO 2 particles were obtained by their physical properties, i.e. density, specific surface area, total volume of pores and pore radius using surface area meter and N 2 gas used as absorbent, and the particle size was observed using optical microscope. The result showed that the changing of uranium and PVA concentrations on the internal gelation affected the density, specific surface area, total volume of pores and pore radius of UO 2 particles. (author)

  15. Manufacturing at industrial level of UO2 pellets for the fuel elements of the Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dyment, I.G.; Noguera Rojas, Francisco

    1982-01-01

    The interest to produce fuel elements within a policy of self sufficiency arose with the installation of Atucha I. The first steps towards this goal consisted in processing the uranium oxide, transforming it into fuel pellets of high density. The developments towards the fabrication of said pellets, performed by CNEA since 1968, first at a laboratory level and afterwards on an industrial scale, allowed CNEA to obtain its own technological capability to produce 400 kg of UO 2 per day. The fuel pellets manufacturing method developed by CNEA is a powder-metallurgical process, which, besides conventional equipment, involves the use of special equipment that required the performance of systematic testing programmes, as well as special training at operational level. The developed processes respond to a modern and advanced technology. A general scheme of the process, starting with a directly sinterable UO 2 powder, is described, including compacting of the powder into pellets, sintering, control of the temperature in the sintering and reduction zones and of the time of permanence in both zones, and cylindric rectifying of the pellets. During the whole process, specialized personnel controls the operations, after which the material is released by the Quality Control Department. The national contribution to the manufacturing technology of the pellets for fuel elements of power and research reactors was of 100%. (M.E.L.) [es

  16. Completion of UO2 pellets production and fuel rods load for the RA-8 critical facility

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Perez, Lidia E.; Thern, Gerardo G.; Altamirano, Jorge S.; Benitez, Ana M.; Cardenas, Hugo R.; Becerra, Fabian A.; Perez, Aldo E.; Fuente, Mariano de la

    1999-01-01

    The Advanced Fuels Division produced fuel pellets of 235 U with 1.8% and 3.6% enrichment and Zry-4 cladding loads for the RA-8 reactor at Pilcaniyeu Technological Unit. For economical and availability reasons, the powder acquired was initially UO 2 with 3.4% enrichment in 235 U, therefore the 235 U powder with 1.8% enrichment was produced by mechanical mixture. The production of fuel pellets for both enrichments was carried out by cold pressing and sintering processes in reducing atmosphere. The load of Zry-4 claddings was performed manually. The production stages can be divided into setup, qualification and production. This production allows not only to fulfill satisfactorily the new fuel rods supply for the RA-8 reactor but also to count with a new equipment and skilled personnel as well as to meet quality and assurance control methods for future pilot-scale production and even new fuel elements production. (author)

  17. A Study of the Temperature Distribution in UO{sub 2} Reactor Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Devold, I

    1968-05-15

    Thermal conductivity is one of the most important properties of nuclear reactor fuels. Accurate knowledge of this property is vital because, among other things, it determines the maximum power that can be taken out of the fuel element per unit length of the material without exceeding the safety limits of the fuel elements. This report consists of a study of the thermal behaviour of uranium dioxide in the form of reactor fuel. The experimental part of the report describes measurements performed at the OECD Halden Reactor Project, Halden, Norway. The experiment was originally set up in order to measure the temperature at the center of a UO{sub 2} fuel element as a function of element power, in order to determine the safe operation limit of the fuel assembly. However, in analysing the data obtained, very interesting thermal conductivity values were obtained and comparison with existing correlations could be performed. This comparison shows that a certain agreement is obtained between the measured data at Halden and a theory published by J.L. Bates in 1961, which predicts an increase in the thermal conductivity above 1500 deg C. The data obtained below 1300 deg C are also in good agreement with measurements performed by Vogt, Grandell and Runfors in 1964. The report contains a mathematical description of the heat transfer mechanisms in cylindrical fuel elements. The model is coded in FORTRAN IV-code and referred to as FUELTEMP.

  18. A Knowledge- Based Computer System for UO2 Characterization According to ASTM Requirements

    International Nuclear Information System (INIS)

    Afifi, Y.K.; El-Hakim, E.

    2000-01-01

    The uranium dioxde (UO 2 ) powder properties and the pellets fabrication processes determine the characteristics of the sintered UO 2 pellets. The powder properties include chemical and physical characteristics. The physical and chemical properties of UO 2 powder are normally checked to ensure consistency and reproducibility of the sintered UO 2 pellets. Powder characteristics are known to influence the subsequent manufacturing performance or the fuel properties. The aim of this paper is to provide the nuclear industry with a program dealing with the processes and the related requirements to determine the specifications of UO 2 powder according to the American Standards for Testing and Materials (ASTM). This program covers the physical and chemical characteristics of UO 2 powder. A group of logic flow charts dealing with the data and information available in the ASTM for each step in the characterization of UO 2 powder process and the technical assistance are constructed. These logic flow charts are collected to form a module of the software to qualify the UO 2 powder. The program contains 8 modules, each one deals with one object. This program saves time, is also considered as a collective schema for all the required UO 2 powder characterization and the related processes, and could be used as a training tool for less skilled personnel involved in UO 2 powder characterization laboratories

  19. Thermal-mechanical properties of cracked UO2 pellets

    International Nuclear Information System (INIS)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.

    1980-11-01

    A series of experiments (IFA-431, 432, 513, and 527) sponsored by the Fuel Behavior Research Branch of the USNRC are being irradiated in the Halden Boiling Water Reactor to better define LWR fuel behavior over the normal operating range of power reactor fuel rods. One fuel behavior variable of interest is the thermally induced cracking of UO 2 fuel pellets. The effects of pellet cracking on the effective thermal conductivity and elastic moduli for the fragmented fuel were found to be primarily dependent on the free area in the r, theta plane of the fuel rod. The free area is defined as the area within the cladding inner surface that is not occupied by the fuel fragments themselves

  20. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  1. Fabrication and post-irradiation examination of a zircaloy-2 clad UO2-1.5 wt% PuO2 fuel pin irradiated in PWL, CIRUS

    International Nuclear Information System (INIS)

    Sah, D.N.; Sahoo, K.C.; Chatterjee, S.; Majumdar, S.; Kamath, H.S.; Ramachandran, R.; Bahl, J.K.; Purushottam, D.S.C.; Ramakumar, M.S.; Sivaramakrishnan, K.S.; Roy, P.R.

    1977-01-01

    A zircaloy-2 clad UO 2 -1.5 wt% PuO 2 fuel pin was fabricated at the Radiometallurgy Section of the Bhabha Atomic Research Centre, Bombay, for irradiation in the pressurised water loop in CIRUS. Requisite development work related to powder conditioning, blending, pressing and sintering parameters was carried out to meet the exacting fuel pellet specifications of CANDU fuel. The fuel pin ruptured while being irradiated in the pressurised water loop in CIRUS, after experiencing a low burn-up of 507 MWD/MTM and was subsequently examined at the Radiometallurgy Hot Cells Facility. The results showed that internal clad hydriding led to primary failure of the fuel pin. Subsequent ingress of the coolant water caused excessive swelling of the thermal insulating magnesia pellets located at the ends of the fuel column. The swelling of magnesia pellets caused severe rupturing of the fuel pin at the two ends. The delayed rupturing of the fuel pin at the upper end, caused the fuel column to be displaced downwards by 5.85mm. (author)

  2. First steps towards modelling high burnup effect in UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Lassmann, K; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    High burnup initiates a process that can lead to major microstructural changes near the edge of the fuel: formation of subgrains, the loss of matrix fission gas and an increase in porosity. A consequence of this, is a decrease of thermal conductivity near the edge of the fuel which may be major implications for the performance of LWR fuels at higher burnup. The mechanism for the changes in grain structure, the apparent depletion of Xe and increase in porosity is associated with the high fission density at the fuel periphery. This is in turn due to the preferential capture of epithermal neutrons in the resonances of {sup 238}U. The new model TUBRNP predicts the radial burnup profile as a function of time together with the radial profile of plutonium. The model has been validated with data from LWR UO{sub 2} fuels with enrichments in the range 2 to 8.25% and burnups between 21 to 75 Gwd/t. It has been reported that at high burnup EPMA measures a sharp decrease in the concentration of Xe near the fuel surface. This loss of Xe is interpreted as a signal that the gas has been swept out of the original grains into pores: this ``missing`` Xe has been measured by XRF. It has been noted experimentally that the restructuring (Xe depletion and changes in grain structure) have an onset threshold local burnup in the region of 70 to 80 GWd/t: a specific value was taken for use in the model. For a given fuel TUBRNP predicts the local burnup profile, and the depth corresponding to the threshold value is taken to be the thickness of the Xe depleted region. The theoretical predictions have been compared with experimental data. The results are presented and should be seen as a first step in the development of a more detailed model of this phenomenon. (author). 22 refs, 9 figs, 2 tabs.

  3. Estimate of the instant release fraction for UO2 and MOX fuel at t=0

    International Nuclear Information System (INIS)

    Johnson, L.; Poinssot, C; Ferry, C.; Lovera, P.

    2004-07-01

    values, which results in significant overprediction of average IRF values. Best estimate IRF values are determined for moderate burnup UO 2 fuel for nuclides for which data exist, because the understanding and data is sufficient. Only pessimistic IRF values are estimated for radionuclides for which little data is available and in the case of MOX fuel and higher burnup UO 2 fuel. Special attention is given to several phenomena occurring in the outer region of fuel pellets (rim region) resulting in restructuring of fuel grains. These include: a) high fission density as a result of high yields of 239 Pu arising from capture of epithermal neutrons; b) increased porosity; c) reduction in grain size; d) increased thermal release of fission gas from the grains. From the perspective of assessing the release of fission products from spent fuel under disposal conditions, the restructuring process is important

  4. Fabrication of ThO2, UO2, and PuO2-UO2 pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Jentzen, W.R.; McCord, R.B.

    1978-01-01

    Fabrication of ThO pellets for EBR-II irradiation testing and fabrication of UO 2 and PuO 2 -UO 2 pellets for United Kingdom Prototype Fast Reactor (PFR) irradiation testing is discussed. Effect of process parameters on density and microstructure of pellets fabricated by the cold press and sinter technique is reviewed

  5. Quality control and testing UO2 powder and sintering pellets for nuclear fuel for LWR in out of pile condition

    International Nuclear Information System (INIS)

    Djuricic, Lj.; Katanic, J.; Stefanovic, M.

    1976-01-01

    The analysis of chemical and physical characteristics of fuels based on UO2 from the point of view of requested properties in the nuclear application, of the foreign technical methods of characterisation and domestic experience is given as one of the first steps toward standardization in the field in the state

  6. The uranium(VI) oxoazides [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN], [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}], [(bipy)UO{sub 2}(N{sub 3}){sub 3}]{sup -}, [UO{sub 2}(N{sub 3}){sub 4}]{sup 2-}, and [(UO{sub 2}){sub 2}(N{sub 3}){sub 8}]{sup 4-}

    Energy Technology Data Exchange (ETDEWEB)

    Haiges, Ralf; Christe, Karl O. [Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA (United States); Vasiliu, Monica; Dixon, David A. [Department of Chemistry, The University of Alabama, Tuscaloosa, AL (United States)

    2017-01-12

    The reaction between [UO{sub 2}F{sub 2}] and an excess of Me{sub 3}SiN{sub 3} in acetonitrile solution results in fluoride-azide exchange and the uranium(VI) dioxodiazide adduct [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] was isolated in quantitative yield. The subsequent reaction of [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] with 2,2{sup '}-bipyridine (bipy) resulted in the formation of the azido-bridged binuclear complex [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}]. The triazido anion [(bipy)UO{sub 2}(N{sub 3}){sub 3}]{sup -} was obtained by the reaction of [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] with stoichiometric amounts of bipy and the ionic azide [PPh{sub 4}][N{sub 3}]. The reaction of [UO{sub 2}(N{sub 3}){sub 2}] with two equivalents of the [PPh{sub 4}][N{sub 3}] resulted in the formation of the mononuclear tetraazido anion [UO{sub 2}(N{sub 3}){sub 4}]{sup 2-} as well as the azido-bridged binuclear anion [(UO{sub 2}){sub 2}(N{sub 3}){sub 8}]{sup 4-}. The novel uranium oxoazides were characterized by their vibrational spectra and in the case of [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}].CH{sub 3}CN, [PPh{sub 4}][(bipy)UO{sub 2}(N{sub 3}){sub 3}], [PPh{sub 4}]{sub 2}[UO{sub 2}(N{sub 3}){sub 4}], [PPh{sub 4}]{sub 2}[UO{sub 2}(N{sub 3}){sub 4}].2CH{sub 3}CN, and [PPh{sub 4}]{sub 4}[(UO{sub 2}){sub 2}(N{sub 3}){sub 8}].4CH{sub 3}CN by their X-ray crystal structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part I; Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The task described consists of the following: fabrication of UO{sub 2} with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO{sub 2}; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO{sub 2} powder. This volume includes reports on the first two tasks.

  8. A Characterization Research of UO2 Powder for UO2 Pellet Fabrication of Candu Type

    International Nuclear Information System (INIS)

    Rachmawati, M.

    1998-01-01

    A characterization research of of UO 2 powder for UO 2 pellet fabrication of Candu type is reported in this paper. The research has been conducted by characterizing sinterability, compactibility, and compressibility of UO 2 (Cameco) without a pre-compacting and UO 2 powder the result of a pre-compacting. The pre-compacting UO 2 powder has been done to have particle size to less than 150 mu (150-800) mu, and more than 800 mu with distribution varied. Sinterability of each group of particle sizes is analyzed using Thermogravimetric-Differential Thermal Analysis (TG-DTA). Then the final compacting to the powder is done using compaction pressure varied from 1 MP to 4 MP to the all groups of the particle sizes to find the optimum pressure by measuring the density and mechanical strength of the UO 2 green pellet. Both measurements are performed using Micrometer and Universal Testing Machine respectively. The result of this investigation shows that the group of UO 2 powder with no pre-compacting with particle size of less than 150 mu with 60% distribution and (150-800) mu size with 40% distribution are the UO 2 pellets which are eligible in terms of their density and mechanical strength

  9. UO2 leaching and radionuclide release modelling under high and low ionic strength solution and oxidation conditions

    International Nuclear Information System (INIS)

    1995-01-01

    In this work, the UO 2 dissolution under oxidizing conditions has been studied in order to compare these results to those obtained with spent fuel. Two different leaching solutions have been used, one with a high ionic strength trying to simulate the conditions expected in a saline repository and the other at low ionic strength much appropriate to granitic environments. In both cases, the dissolution has been studied studied as a function of pH, redox potential, oxidants, complexing agents, particle size as well as the experimental methodology. Results can be summarized as follows: a) The UO 2 dissolution is rather independent on ionic strength. b) Dissolution rates can be explained in general independent on the oxidant as: Log R=3DK [oxidant] Surface solid evolution is very important to understand the dissolution/oxidation mechanism of UO 2 . d) Under oxidizing conditions, the dissolution is H+ and HCO 3 promoted. e) In carbonate medium, both UO 2 and spent fuel dissolution rates are very similar, while in a non-complexing medium, spent fuel dissolution rate is much higher than the UO 2 one. This fact seems to indicate that radiolysis is much important non-complexing media. (Author)

  10. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    Science.gov (United States)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  11. Study on factors affecting sintering density of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Zhu Shuming; Zou Congpei; Yang Jing; Yang Youqing; Mei Xiaohui

    1996-02-01

    The sintered density of Gd 2 O 3 -UO 2 burnable poison fuel pellets is an important quality index and is one of main QC items. Therefore, the efforts were made to investigate the factors affecting the sintered density of Gd 2 O 3 -UO 2 , that is, the influences of pre-treatment of Gd 2 O 3 powder, additives, mixing methods and time, sintering atmosphere, sintering temperature and time on the final density of Gd 2 O 3 UO 2 pellets contained 0, 3%, 7% and 10% (mass percentage) Gd 2 O 3 . The results show: the pre-treatment is useful for improving the distribution of Gd 2 O 3 ; the additive of ammonium oxalate will effectively adjust the density of pellets; 1750 degree C is the suitable sintering temperature. The proper process parameters have been obtained, and the Gd 2 O 3 -UO 2 pellets prepared for in-pile irradiation test meet the design requirements for the density (93.5%∼96.5% of T.D.), homogeneity, microstructure, etc. (8 refs., 3 figs., 8 tabs.)

  12. Fission gas and iodine release measured up to 15 GWd/t UO2 burnup

    International Nuclear Information System (INIS)

    Appelhans, A.D.

    1983-01-01

    A summary is presented of the measured release of xenon, krypton and iodine up to 15 GWd/t UO 2 burnup for fuel centerline temperatures ranging from 950 to 1800 K, at average linear heat ratings of 15 to 35 kW/m. The IFA-430 is composed of four 1.28-m-long fuel rods containing 10% enriched UO 2 pellet fuel. Two of the fuel rods are connected, top and bottom, to a gas flow system that permits the fission gases released from the fuel pellets to be swept out of the rods during irradiation and measured via gamma spectrometry. The release/burnup increased significantly between 10 and 15 GWd/t burnup. Fuel temperature did not change. Increased releases were due to physical changes in the fuel-surface area. Changes appeared to be due to higher power operation and burnup

  13. Development of automation and remotisation systems for fabrication of (Th-233U)O2 MOX fuel for AHWR

    International Nuclear Information System (INIS)

    Saraswat, Anupam; Danny, K.M.; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun; Mittal, R.; Prasad, R.S.; Mahule, K.N.; Panda, S.; Jayarajan, K.

    2011-01-01

    To meet the ever increasing power requirement of India, country is planning to utilize its large thorium reserves for the third stage of nuclear power program based on Thorium-Uranium 233 fuel in A.H.W.R. Although there are many advantages of (Th- 233 U)O 2 fuel cycle, presence of radiological hazards due to the presence of 1000-2000 ppm level of 232 U in the 233 U fuel and inertness of ThO 2 makes handling and fabrication of fuel difficult. The associated high alpha and gamma activity demands high level of automation and remote handling in alpha tight hot cells. To demonstrate automation and remotisation in (Th- 233 U)O 2 fuel fabrication, a mock up facility is being set up at BARC. This facility shall develop automation systems required for remote fuel fabrication in a simulated hot cell environment. There are many innovative schemes and systems being developed like integrated powder pellet system, remote viewing system for hot cell application etc. Low visibility inside the hot cell has always been a problem for the operator. To overcome this problem a remote viewing system has been developed by which entire hot cell area can be scanned with the use of a joystick and the display can be seen on a LCD monitor. The viewing system is made up of radiation resistant optics which can work even in high gamma fields. It consists of objective end assembly which is used to scan the hot cell area with the help of prism doublets and drive mechanism for capturing full 360 deg solid angle view. There is a Galilean telescope and focusing system used for focusing images of distant objects. Drive mechanism can be controlled by the joystick available to the operator. System has a high resolution CCD display and camera which gives a clear display of objects lying inside the hot cell area. Integrated powder pellet system is being developed for fabrication of MOX pellets from feed powder. This will be automated system which will take input in the form of MOX powder and convert it

  14. UO{sub 2} Kernel Preparation by M-EG Process and Its Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K. C.; Eom, S. H.; Kim, Y. K.; Yeo, S. H.; Kim, Y. M.; Kim, B. G.; Cho, M. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Kernels of KAERI TRISO fuels are prepared in the following steps: (1) preparation of a raw material solution(UN solution) by UO{sub 3} (or U{sub 3}O{sub 8}) powder dissolution in the concentrated HNO{sub 3}; (2) broth preparation and physical property control by mixing UN, THFA, PVA, and H{sub 2}O; (3) preparation of spherical liquid gel droplets and dried-ADU gels in sequence through a reaction between uranyl ions and ammonia ions in a gelation column; (4) ageing, washing, and drying processes of ADU gel using AWD equipment; (5) UO{sub 3} calcination by thermal decomposition of driedADU gel in the air; (6) fabrication of UO{sub 2} kernel by reducing the UO{sub 3} and sintering in the H{sub 2}. In this study, improved KAERI processes for UO{sub 2} kernel preparation were presented. ADU gel washing procedure in AWD processes and the heating mode in sintering process were modified and the internal structures of UO{sub 2} kernels are presented as a result.

  15. Oxidative corrosion of spent UO2 fuel in vapor and dripping groundwater at 900C

    International Nuclear Information System (INIS)

    Finch, R. J.

    1999-01-01

    Corrosion of spent UO 2 fuel has been studied in experiments conducted for nearly six years. Oxidative dissolution in vapor and dripping groundwater at 90 C occurs via general corrosion at fuel-fragment surfaces. Dissolution along fuel-grain boundaries is also evident in samples contacted by the largest volumes of groundwater, and corroded grain boundaries extend at least 20 or 30 grains deep (> 200 microm), possibly throughout millimeter-sized fragments. Apparent dissolution of fuel along defects that intersect grain boundaries has created dissolution pits that are 50 to 200 nm in diameter. Dissolution pits penetrate 1-2 microm into each grain, producing a ''worm-like'' texture along fuel-grain-boundaries. Sub-micrometer-sized fuel shards are common between fuel grains and may contribute to the reactive surface area of fuel exposed to groundwater. Outer surfaces of reacted fuel fragments develop a fine-grained layer of corrosion products adjacent to the fuel (5-15 microm thick). A more coarsely crystalline layer of corrosion products commonly covers the fine-grained layer, the thickness of which varies considerably among samples (from less than 5 microm to greater than 40 microm). The thickest and most porous corrosion layers develop on fuel fragments exposed to the largest volumes of groundwater. Corrosion-layer compositions depend strongly on water flux, with uranyl oxy-hydroxides predominating in vapor experiments, and alkali and alkaline earth uranyl silicates predominating in high drip-rate experiments. Low drip-rate experiments exhibit a complex assemblage of corrosion products, including phases identified in vapor and high drip-rate experiments

  16. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  17. Data report on leach tests of Pu-doped UO2 in PBB1 brine: Salt Repository Project

    International Nuclear Information System (INIS)

    Gray, W.J.

    1987-10-01

    This report provides results from a series of leach tests conducted using nonirradiated uranium dioxide (UO 2 ) doped with plutonium (Pu) to simulate the alpha activity of spent fuel specimens used in recent spent fuel leach tests. The purpose was to determine whether alpha radiation from the spent fuel could be responsible for uranium release values in spent fuel leach tests in salt brine that were at least 100 times greater than from similar tests with nonirradiated UO 2 pellets. The data in this data report are preliminary; they have been neither analyzed nor evaluated. 2 refs., 2 figs., 8 tabs

  18. Concept and nuclear performance of direct-enrichment fusion breeder blanket using UO2 powder

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Kasahara, Takayasu; An, Shigehiro

    1985-01-01

    A new concept is presented for direct enrichment of fissile fuel in the blanket of a fusion-fission hybrid reactor. The enriched fuel produced by this means can be used in fission reactors without reprocessing. The outstanding feature of the concept is the powdered form in which UO 2 fuel is placed in the reactor blanket, where it is irradiated to the requisite enrichment for use as fuel in burner reactor, e.g. 3%. After removal from blanket, the powder is mixed to homogenize the enrichment. Fuel pellets and assemblies are then fabricated from the powder without reprocessing. The concept of irradiating UO 2 in powder eliminates the problems of spatial nonuniformity in fissile enrichment, and of radiation damage to fuel clad, encountered in attempting to enrich prefabricated fuel. Powder mixing for homogenization brings the additional benefit of removing volatile fission products. Also burnable poison can be added, as necessary, after irradiation. An extensive neutronic parameter survey showed that the optimum blanket arrangement for this enrichment concept is one presenting a fission suppressing configuration and with beryllium adopted as moderator. By this arrangement, the average 239 Pu enrichment obtained on the natural UO 2 fuel in the blanket reaches 3% after only 0.56 MW.yr/m"2 exposure. A conceptual design is presented of the blanket, together with associated fusion breeder, from which, practical application of the concept is shown to be promising. (author)

  19. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  20. Molecular dynamics simulation of Xe bubble nucleation in nanocrystalline UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Moore, Emily; René Corrales, L.; Desai, Tapan; Devanathan, Ram

    2011-01-01

    Highlights: ► We simulated the interactions of defects and fission gas with grain boundaries in nuclear fuel. ► We observed the formation of Xe bubble nuclei that are difficult to observe experimentally. ► The bubble nuclei form by vacancy-assisted diffusion of Xe atoms. ► We also observed the initial stages of grain boundary motion. ► The study offers insights to the design of nuclear fuel to control fission gas release. - Abstract: We have performed molecular dynamics (MD) simulations to investigate the dynamical interactions between vacancy defects, fission gas atoms (Xe), and grain boundaries in a model of polycrystalline UO 2 nuclear fuel with average grain diameter of about 20 nm. We followed the mobility and aggregation of Xe atoms in the vacancy-saturated model compound for up to 2 ns. During this time we observed the aggregation of Xe atoms into nuclei, which are possible precursors to Xe bubbles. The nucleation was driven by the migration of Xe atoms via vacancy-assisted diffusion. The Xe clusters aggregate faster than grain boundary diffusion rates and are smaller than experimentally observed bubbles. As the system evolves towards equilibrium, the Xe atom cluster growth slows down significantly, and the lattice relaxes around the cluster. These simulations provide insights into fundamental physical processes that are inaccessible to experiment.

  1. Steady state behaviour of gaseous fission products in UO2 nuclear fuel at low temperature

    International Nuclear Information System (INIS)

    Rao, C.B.; Raj, Baldev

    1980-01-01

    Theoretical modelling studies have been performed on steady state fission gas behaviour in UO 2 fuels at temperatures in the range 1073deg K to 1473deg K. The concentrations of gas atoms in the matrix and in the bubbles are determined. Fraction of total generated gas atoms migrating to and forming bubbles at grain boundaries is calculated. Contributions of intragranular and intergranular bubbles to the swelling are also computed. The various assumptions made to simplify computer calculations and their validity are discussed at length. Effects of changes in the fission rate, the resolution parameter, bubble concentration, gas atom diffusivity and grain radius on swelling and gas release are studied. The results of this model are compared to other theoretical models and experimental results available in literature. Possibility of extending the present model to advanced carbide and nitride fuels is discussed. (auth.)

  2. Preliminary Results on a Contact between 4 kg of Molten UO2 and Liquid Sodium

    International Nuclear Information System (INIS)

    Amblard, M.

    1976-01-01

    The CORECT II Experiment consists in simulating the penetration of sodium into an assembly when the fuel is molten. In other words, it is a shock-tube type of experiment with dimensions representative of a full-scale assembly. the experiment consists in dropping a 100 litre column of sodium onto partially molten UO 2 . The following measurements are carried out in transient regime: - sodium velocity in the column; - pressure in the interaction chamber; - pressures at the bottom and at the top of a 5 m tube; - pressure in the argon blanket. The experimental parameters are: - the mass of UO 2 involved (about 4 or 7 kg of 80% molten UO 2 ); - the initial temperature of the sodium (up to 700 deg. C); - the pressure of the residual gas in the interaction chamber during the fall of the sodium; - the dimensions of the interaction chamber and the sodium supply tube; - the form of contact between the UO 2 and the sodium (the sodium may fall on partially liquid and settled UO 2 or on UO 2 pre-dispersed by forced trapping of sodium). To date, 6 tests have been performed. These tests have always resulted in fine fragmentation without any violent interaction. Since no knowledge is available on the change of grain size distribution with time, on the temperature of grain formation, and on the grain movement in the sodium, it is very difficult to interpret these UO 2 -Na tests. We intend to carry out more severe interaction tests on this experimental set-up, by eliminating as much as possible the non-condensable gas which cushions the mechanical impact of the sodium on the UO 2 (tests have shown that by strongly de-pressurizing the liquid UO 2 the fuel could be dispersed by boiling, and this effect should also improve the possibilities of a liquid/liquid contact). - by injecting a little sodium into the UO 2 to facilitate its dispersion in the coolant

  3. Fracture properties of ThO2-UO2 pellets by Hertzian indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Rath, B.N.; Balakrishnan, K.S.

    2005-01-01

    Fracture toughness (K Ic ) and fracture surface energy (γ s ) of ThO 2 -UO 2 pellets with varying UO 2 contents were measured using Hertzian indentation technique. The knowledge of fracture toughness (K Ic ) and fracture surface energy values are important for fuel designers since these values are used in fuel modeling. Cracks in nuclear fuel act as a path for fission gas release and enhances fuel cladding mechanical interaction. Microstructural features like grain size and presence of second phase play a significant role in controlling the fracture behavior. Since the fracture properties of nuclear materials are of primary design consideration, it is important that these properties should be evaluated with good precision. There have been several attempts to use Hertzian indentation for evaluating the fracture toughness of brittle materials. The main principle of this method depends on the interaction of the elastic stress field with a pre-existing surface flaw of the sample. One significant advantage of Hertzian indentation over that of Vickers is that the substrate's deformation is entirely elastic until fracture occurs. This avoids the complications arising from the ill-defined residual stress that is normally associated with indentations brought about by pointed indenters like that of Vickers. The material properties that may be determined by this test include (a) fracture toughness and fracture surface energy of the near surface material, (b) the densities and sizes of surface cracks, and (c) residual stresses in the near surface material. This paper deals with experimental procedure for the evaluation of fracture properties of ThO 2 -UO 2 of varying U content and results thus obtained are also presented. The K Ic values thus obtained are explained in terms of their microstructures and the U content. (author)

  4. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part II, Fabrication of sintered pressed samples UO{sub 2} (Final report); Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, II Deo - Dobijanje sinterovanih ispresaka UO{sub 2} (zavrsni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Procedure for fabrication of sintered ceramic UO{sub 2} pellets was developed in the Department of reactor materials. The tasks described in this report deal with design and construction of laboratory equipment for treatment of ceramic materials, and fabrication of UO{sub 2} pellets. The procedure was based on cold pressing of appropriately prepared powder and sintering of the of thus obtained pressed samples.

  5. Microspheres of UO2, ThO2 and PuO2 for the high temperature reactor

    International Nuclear Information System (INIS)

    Brandau, E.

    2002-01-01

    The production of high temperature reactor fuel, so called pebble fuel, was done in the eighties by a special vibrational dropping process to obtain as sintered UO 2 - or ThO 2 -microspheres, so called 'Kernels', with a diameter size of about 300 μm. These microspheres have been coated and embedded in carbon balls to get the pebble fuel. Since the early nineties BRACE is developing the processings of microspheres starting with sols and suspensions to produce Al 2 O 3 , ZrO 2 , HfO 2 and Actinide oxide microspheres. Two main developments have been made: 1) the preparation of the feed solution (sol, suspension) and the solidification processing, and 2) the equipment, design, and electronic control have been completely changed. A newly developed suspension process for actinide oxides and for metal oxides e.g. Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , HfO 2 , CeO 2 , ThO 2 , UO 2 , PuO 2 leads to cheaper production of as sintered microspheres. The processing and the installations will be described and the experience of production will be shown. (author)

  6. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  7. Effects of additives on the sintering of UO2.Gd2O3 nuclear fuel

    International Nuclear Information System (INIS)

    Pagano Junior, Luciano

    2009-01-01

    The addition of 0.5wt% TiO 2 , Nb 2 O 5 , SiO 2 , Fe 2 O 3 and Al(OH) 3 in the UO 2 ·7%Gd 2 O 3 nuclear fuel and the effect on its sintering kinetics under a 99.999% H 2 atmosphere were investigated by stepwise isothermal dilatometry. This fuel, used as burnable poison in nuclear power plants, presents a diffusion barrier around 1573 K that impairs densification. The aid of the sintering additives TiO 2 , Al(OH) 3 , Nb 2 O 5 and Fe 2 O 3 turned out to be effective to obtain the required final density, unlike the effect observed for the SiO 2 -doped composition. The activation energy for the intermediate sintering stage was calculated by stepwise isothermal dilatometry method and a positive correlation with the sintered body density was found. The method was valid for part of the intermediate sintering stage, in the range from 1200 K to 1700 K for the doped compositions and with no additive, except for the SiO 2 -doped one, whose validity range was between 1500 K and 1900 K. The energy-density correlation was not valid for the SiO 2 -doped composition, whose effect was to reduce the final density. This anomalous behavior may be attributed to the intense loss of Si mass, probably due to lower oxides volatilization, during the initial sintering stage at temperatures lower than 1173 K. Similar loss, but no so intense, was observed for the Al(OH) 3 -doped composition in the temperature interval from 1173 K to 1573 K. The Si concentration decrease to residual values of dozens of parts per million may explain its anomalous behavior. The positive correlation between activation energy and sintered body density may be explained by the inhibitor role played by the TiO 2 , Nb 2 O 5 , Fe 2 O 3 and Al(OH) 3 additives on the diffusion mechanisms that enhance the coarsening regime. As a consequence, the densification mechanisms are favored in the competition for the surface free energy. The coarsening-densification transition temperature model, originally suggested for the UO 2

  8. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  9. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  10. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  11. Compliance characteristics of cracked UO2 pellets

    International Nuclear Information System (INIS)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.

    1981-01-01

    The thermally induced cracking of UO 2 fuel pellets causes simultaneous reductions of the bulk (extrinsic) fuel thermal conductivity and elastic moduli to values significantly less than those for solid pellets. The magnitude of these bulk properly reductions was found to be primarily dependent on the amount of crack area in the transverse plane of the fuel. The model described herein uses a simple description of the crack geometry to couple the fuel rod thermal and mechanical behaviors by relating in-reactor data to Hooke's Law and a crack compliance model. Data from the NRC/PNL Halden experiment IFA-432 show that for a typical helium-filled BWR-design rod at 30 kW/m, the effective thermal conductivity and elastic moduli of the cracked fuel are 4/5 and 1/40 of that for solid pellets, respectively

  12. New interpretation on formation of UO2 Post-Accident Heat Removal particulate in sodium

    International Nuclear Information System (INIS)

    Schins, H.

    1986-01-01

    A comparative experimental study on quenching in sodium of four molten fuel materials, UO 2 Al 2 P 3 , Cu and stainless steel, is presented. Experimental results like temperatures, pressures, particle shapes, particle size distributions, crack patterns and crystal grain sizes are given and interpreted. These fuel-coolant interactions (FCI) can be understood as all being characterized by transition boiling of sodium. The fuel is first fragmented by the sodium vapor bubble growth and collapse process. These particulates have smooth surfaces. The two materials, UO 2 and Al 2 O 3 , are fragmented further by a delayed mechanism which is thermal stress shrinkage cracking. Delayed particles are fragments of larger ones. Furthermore, attention is drawn to the theoretical results which show that pure FCI-particulate is significantly finer

  13. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    As of December 1, 1998, 32 Europeans LWRs are loaded with MOX fuel. It clearly means that plutonium recycling in MOX fuels is a mature industry, with successful operational experience in fabrication plants in some European countries, especially in France. Indeed, the recycling of plutonium generated in LWRs is one of the objectives of the full Reprocessing-Conditioning-Recycling (RCR) strategy chosen by France in the 70's. The most impressive results of this strategy, is the fact that 31 of the 32 reactors are loaded with MOX fuels supplied by the COGEMA Group from the same efficient fabrication process, the MIMAS process, improved for the MELOX plant to become the A-MIMAS process. In France, 17 reactors are already loaded and 11 additional reactors are technically suited to do so. Indeed, the EDF MOX program plans to use MOX in 28 of its 57 reactors. An EDF 900 MWe reactor core contains 157 assemblies of 264 rods each. 52 fuel assemblies per year are necessary for a 'UO 2 3-batches-MOX 3-batches' core management. In this case, a third of the UO 2 and a third of the MOX assemblies are replaced yearly, that means 36 UO 2 fuel assemblies and 16 MOX fuel assemblies. Some MOX fuelled reactors have now switched from the previously described core management to a so-called 'hybrid core management'. In this case, a quarter of UO 2 assemblies is replaced yearly. The first EDF reactor loaded with MOX fuel was Saint-Laurent B1, in 1987. The in-core experience, based on several hundred assemblies loaded, with reloading on a 1/3 cycle basis, shows that there is no operational difference between UO 2 and MOX fuels, both in terms of performance and safety. MOX fueling of 900 MWe EDF's PWRs, with a limited in-core MOX ratio of 30%, has needed only minor adaptations, such as addition of control rods, modification of the boron concentration in the cooling system and precaution against radiation exposure, easy to set up (optimisation of the fresh MOX fuel handling process, remote

  14. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    Energy Technology Data Exchange (ETDEWEB)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra; Su’ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Aji, Indarta K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2016-03-11

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.

  15. Behavior of UO2 and FISSIUM in sodium vapor atmosphere at temperatures up to 28000C

    International Nuclear Information System (INIS)

    Feuerstein, H.; Oschinski, J.

    1986-11-01

    In case of a HCDA a rubble bed of fuel debris may form under a sodium pool and reach high temperatures. An experimental technique was developed to study the behavior of fuel and fission products in out-of-pile tests in a sodium vapor atmosphere. Evaporation rates of UO 2 were measured up to 2800 0 C. The evaporation was found to be a complex process, depending on temperature and the 'active' surface. Evaporation restructures the surface of the samples, however no new 'active' surface is formed. UO 2 forms sometimes well shaped crystals and curious erosion products. The efficiency of the used condenser/filter lines was higher than 99.99%. In case of a HCDA all the evaporated substances will condense in the soidum pool. Thermal reduction of the UO 2 reduces the oxygen potential of the system. The final composition at 2500 0 C was found to be UO 1.95 . The only influence of the sodium vapor was found for the diffusion of UO 2 into the thoria of the crucible. Compared with experiments in an atmosphere of pure argon, the diffusion rate was reduced. (orig.) [de

  16. Thermal property change of MOX and UO{sub 2} irradiated up to high burnup of 74 GWd/t

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Kurematsu, Shigeru; Kosaka, Yuji [Nuclear Development Corporation (NDC), 622-12, Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Yoshino, Aya; Kitagawa, Takaaki [Mitsubishi Nuclear Fuel Co., LTD. (MNF), 12-1, Yurakucho 1-Chome, Chiyoda-ku, Tokyo 100-0006 (Japan)

    2013-09-15

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO{sub 2} fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO{sub 2}. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO{sub 2} is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO{sub 2} at high burnup under the condition that the pellet–cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO{sub 2} before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO{sub 2}. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  17. Methods for assessing homogeneity in ThO2--UO2 fuels (LWBR Development Program)

    International Nuclear Information System (INIS)

    Berman, R.M.

    1978-06-01

    ThO 2 -UO 2 solid solutions fabricated as LWBR fuel pellets are examined for uniform uranium distribution by means of autoradiography. Kodak NTA plates are used. Images of inhomogeneities are 29 +- 10 microns larger in diameter than the high-urania segregations that caused them, due to the range of alpha particles in the emulsion, and an appropriate correction must be made. Photographic density is approximately linear with urania content in the region between underexposure and overexposure, but the slope of the calibration curve varies with aging and growth of alpha activity from the parasitic 232 U and its decomposition products. A calibration must therefore be performed using two known points--the average photographic density (corresponding to the average composition) and an extrapolated background (corresponding to zero urania). As part of production pellet inspection, plates are evaluated by inspectors, who count segregations by size classes. This is supplemented by microdensitometer scans of the autoradiograph and by electron probe studies of the original sample if apparent homogeneity is marginal

  18. Synthesis and investigation of uranyl molybdate UO2MoO4

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Sato, Nobuaki; Kitawaki, Shin-ichi; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Myochin, Munetaka

    2013-01-01

    In order to examine easily synthetic conditions of uranyl molybdate, UO 2 MoO 4 , used for the reprocessing process study of spent nuclear oxide fuels in alkaline molybdate melts, the uranium molybdate compounds were produced from U 3 O 8 powder and anhydrous MoO 3 reagent. The results of having investigated them in solid state by using X-ray diffractometry and Raman spectrometry, it was confirmed that UO 2 MoO 4 could be synthesized by heating mixed powder of U 3 O 8 and MoO 3 with stoichiometric mole ratio at 770 °C for 4 h under air atmosphere. Moreover, adding this UO 2 MoO 4 into Li 2 MoO 4 -Na 2 MoO 4 eutectic melt, most of the dissolved uranium species in the melt were observed as hexa–valent uranyl ions by absorption spectrophotometry

  19. Irradiation of UO2 specimens with molten cores in a pressurized water loop. Test X-2-x

    International Nuclear Information System (INIS)

    Bain, A.S.

    1961-08-01

    Two Zircaloy-2 clad specimens containing stoichiometric UO 2 pellets were irradiated in a pressurized water loop for 379 hours at heat ratings sufficient to cause central melting of the UO 2 . There was no appearance of localized overheating or accelerated corrosion of the sheath, but the diametral increases were considerably larger than those observed in loop specimens irradiated at lower heat ratings. The length increases, however, were approximately the same as those measured for specimens at lower ratings. There was a clearly visible demarcation between UO 2 that had been molten and that which had not. The value of ∫ 500 o C Tm kdθ = 74 ± W/cm was essentially the same as that obtained from the short-duration tests in the Hydraulic Rabbit, indicating there is no marked decrease in thermal conductivity of the UO 2 fuel in irradiations up to 379 hours. (author)

  20. Performance of highly rated UO2 fuel in the WR-1 organic-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schankula, M. H.; Hastings, I. J.

    1977-07-15

    Information on oxide fuel behaviour in organic coolant was required as part of the organic-cooled power reactor (OCR) study. Of major interest were data on the release of fission gases from fuel operating at high fuel surface temperatures and low external restraint; features which are peculiar to the OCR. To provide these and other data, UO2 fuel with cold-worked Zr-2.5wt%Nb sheathing was irradiated in the WR-1 organic-cooled reactor to burnups of 135-154 MWh/kgU at a time-averaged linear power of 60-63 kW/m. Elements with 0.38 and 0.69 mm thick sheathing showed maximum diametral increases averaging 3.7 and 1.7% respectively at pellet mid-planes. Reduced fuel/sheath heat transfer resulting from a difference between internal gas pressure and coolant pressure produced high operating temperatures, and there was evidence of central melting in some elements. Fission gas releases were 30-60%. In the heat affected zone adjacent to brazed appendages, the diametral increases were lower, averaging 0.9 and 0.5% for 0.38 and 0.69 mm thick sheathing respectively. Heat treatment during the brazing process produced a local improvement in sheath creep strength. Highly rated oxide fuel irradiated in organic coolant will require sheathing with improved high temperature creep properties; heat-treated Zr-2.5 wt% Nb may provide this improvement.

  1. Post-irradiation examination of the first SAP clad UO{sub 2} fuel elements irradiated in the X-7 organic loop

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. D.; Aspila, K.

    1962-02-15

    Seven fuel elements composing the first in-reactor test at Chalk River of SAP sheathing were irradiated in the X-7 organic loop. Activity, denoting a fuel failure, was detected in the loop coolant immediately after reactor start up; the fuel string was consequently removed from the loop nine hours later. Leak tests disclosed that five of the seven elements were defective. Inspection of the specimens showed essentially no change in element dimensions. Practically no organic fouling film was observed on the surface of the SAP cladding; organic coolant was found inside four of the defective elements. The appearance of the UO{sub 2} fuel was consistent with the irradiation time and the heat ratings achieved during the test. (author)

  2. Dissolution rates of unirradiated UO2, UO2 doped with 233U, and spent fuel under normal atmospheric conditions and under reducing conditions using an isotope dilution method

    International Nuclear Information System (INIS)

    Ollila, Kaija; Albinsson, Yngve; Oversby, Virginia; Cowper, Mark

    2003-10-01

    The experimental results given in this report allow us to draw the following conclusions. 1) Tests using unirradiated fuel pellet materials from two different manufacturers gave very different dissolution rates under air atmosphere testing. Tests for fragments of pellets from different pellets made by the same manufacturer gave good agreement. This indicates that details of the manufacturing process have a large effect on the behavior of unirradiated UO 2 in dissolution experiments. Care must be taken in interpreting differences in results obtained in different laboratories because the results may be affected by manufacturing effects. 2) Long-term tests under air atmosphere have begun to show the effects of precipitation. Further testing will be needed before the samples reach steady state. 3) Testing of unirradiated UO 2 in systems containing an iron strip to produce reducing conditions gave [U] less than detection limits ( 235 U added as spike was recovered, indicating that 90% of the spike had precipitated onto the solid sample or the iron strip. 9) Tests of UO 2 pellet materials containing 233 U to provide an alpha decay activity similar to that expected for spent fuel 3000 and 10,000 years after disposal showed that the pellet materials behaved as expected under air atmosphere conditions, showing that the manufacturing method was successful. 10) Early testing of the 233 U-doped materials under reducing conditions showed relatively rapid (30 minute) dissolution of small amounts of U at the start of the puff test procedure. Results of analyses of an acidified fraction of the same solutions after 1 or 2 weeks holding indicate that the solutions were inhomogeneous, indicating the presence of colloidal material or small grains of solid. 11) Samples from the 233 U-doped tests initially indicated dissolution of solid during the first week of testing, with some indication of more rapid dissolution of the material with the higher doping. 12) The second cycle of testing

  3. Prediction of minimum UO2 particle size based on thermal stress initiated fracture model

    International Nuclear Information System (INIS)

    Corradini, M.

    1976-08-01

    An analytic study was employed to determine the minimum UO 2 particle size that could survive fragmentation induced by thermal stresses in a UO 2 -Na Fuel Coolant Interaction (FCI). A brittle fracture mechanics approach was the basis of the study whereby stress intensity factors K/sub I/ were compared to the fracture toughness K/sub IC/ to determine if the particle could fracture. Solid and liquid UO 2 droplets were considered each with two possible interface contact conditions; perfect wetting by the sodium or a finite heat transfer coefficient. The analysis indicated that particles below the range of 50 microns in radius could survive a UO 2 -Na fuel coolant interaction under the most severe temperature conditions without thermal stress fragmentation. Environmental conditions of the fuel-coolant interaction were varied to determine the effects upon K/sub I/ and possible fragmentation. The underlying assumptions of the analysis were investigated in light of the analytic results. It was concluded that the analytic study seemed to verify the experimental observations as to the range of the minimum particle size due to thermal stress fragmentation by FCI. However the method used when the results are viewed in light of the basic assumptions indicates that the analysis is crude at best, and can be viewed as only a rough order of magnitude analysis. The basic complexities in fracture mechanics make further investigation in this area interesting but not necessarily fruitful for the immediate future

  4. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  5. Study of an alternative method for inspection of rods with UO{sub 2} pellets early manufactured

    Energy Technology Data Exchange (ETDEWEB)

    Carnaval, João Paulo R.; Oliveira, Carlos A.; Beltran, Dalton J.M.C., E-mail: joaocarnaval@inb.gov.br, E-mail: carlossilva@inb.gov.br, E-mail: daltonbeltran@inb.gov.br [Indústrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil). Gerência de Engenharia do Produto e Gerência de Análise do Combustível

    2017-07-01

    The inspection of the fuel rods manufactured at INB, for production of fuel assemblies, is based on a group of scintillators detectors in series scanning the products. These detectors capture the gamma rays emitted on the decay of uranium isotopes (passive measurement) and determine the enrichment level ({sup 235}U weight percent) of the UO{sub 2} pellets inside the fuel rods. During the inspection of fuel rods for Angra-1 21{sup st} Reload, it was found that the 2.6% {sup 235}U and 4.15% {sup 235}U pellets stacks behave as 2.6% {sup 235}U only. The investigation of this event allowed to conclude that the measurement of enrichment may be affected by the loss of the secular equilibrium among uranium isotopes and their decay products caused by the AUC precipitation during the UO{sub 2} powder and pellet fabrication. Therefore, the spectrum background created by Compton scattering, inside Rod Scanner detectors, from high energies of {sup 238}U products decay affect the {sup 235}U% measurement. After continuous measurements, the 2.6% {sup 235}U and 4.15% {sup 235}U pellets stacks became distinguished and the results were used to calculate an 'equilibrium factor'. It was concluded that after 35 days the UO{sub 2} powder should reach approximately 60% of secular equilibrium reinstatement and the rods assembled with the pellets produced from this powder would be adequate for inspection on Rod Scanner. It was concluded that would be possible to achieve the equilibrium factor by blending a lot of UO{sub 2} powder manufactured a long time ago (old powder) with another lot early manufactured (young powder) resulting in a lot which would provide pellets and, consequently, rods adequate for inspection by Rod Scanner. This work presents a study of an alternative method to perform the inspection of fuel rods with UO{sub 2} pellets early manufactured aiming to provide quality assurance for the product. (author)

  6. Separation of UO{sub 2} powder; Separacija praha UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    This report deals with theoretical approach to separation process and describes the constructed separator with liquid medium. The separator was calibrated and tested with Al{sub 3}O{sub 3} and UO{sub 2}. it has been concluded that it can be used for separation of powders with sufficient accuracy if the separation is performed for a longer period of time. The separated fractions were characterised by microscopic method and the UO{sub 2} fraction additionally by sedimentation method.

  7. Effect of PCMI restraint on bubble size distribution in the rim structure of UO2 fuel

    International Nuclear Information System (INIS)

    Oh, Je-Yong; Koo, Yang-Hyun; Cheon, Jin-Sik; Lee, Byung-Ho; Sohn, Dong-Seong

    2005-01-01

    Generally, the bubble size in the rim structure of UO 2 is not dependent on the fuel burnup and the bubble pressure is higher than that in the equilibrium condition. However it was also observed that if the fuel pellet is not restrained, the size of the bubbles in the rim structure could be larger than that in the restraint condition. Although the wide variety of rim bubble sizes and porosities possibly result from an external restrain effect, the quantitative method to analyze the effect of PCMI restraint on bubble distribution in the rim is not available at the moment. In this paper, a method is developed which can be used to analyze the effect of PCMI restraint on the bubble distribution in the rim structure of UO 2 fuel based on the data in the literatures. The total number of Xe atoms in the rim bubbles per unit rim volume could be derived by a summation of the number of Xe atoms of each rim bubble in a unit rim volume. The number of Xe atoms of each rim bubble could be calculated by the Van der Waals equation of state and the pressure expressed by p=σ+C/r, where C is an unknown constant to be determined as a function of the temperature and the burnup. On the other hand, the total number of Xe atoms in the rim bubbles per unit rim volume can also be calculated by Xe depression data. If the fuel pellet is not restrained, the uniform hydrostatic stress, σ is zero. Hence if the data of the fuel disk without a restraint is used, a constant C can be obtained at 823K and a local burnup of 90 GWd/t. Although the local burnup of PCMI restraint case is slightly different from that without PCMI restraint, the value derived above is used for the analysis of PCMI restraint case. The calculated bubble distribution with PCMI restraint was similar to the measured one. Because the effect of PCMI restraint on bubble size increased with the bubble size, the development of a large bubble was suppressed. Hence, the PCMI restraint caused a typical bubble size in the rim and

  8. Determination of uranium content and its impurities in the AUC and UO2 powders

    International Nuclear Information System (INIS)

    Boybul; Arif Nugroho

    2012-01-01

    The analysis of uranium (U) content and its impurities in the ammonium uranyl carbonate (AUC) and uranium dioxide (UO 2 ) produced from research reactor fuel element production installation, PT. BATAN Teknologi have been carried out. Uranium content in the powders was analyzed by potentiometric titration methods and impurity contents was analyzed by atomic absorption spectrophotometer (AAS) and by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The purpose of this study was to determine of impurity elements in the AUC and UO 2 powder resulting from the production process if it meets the required specifications. It is reported that U content in the AUC is 48.62 wt% and that in the UO 2 is 88.08 wt%. The precision and accuracy analysis of the U content is 0,235% and 0,151%. In case of impurities in the AUC powders, it is reported that the analytical results of Zn, Ni, Cd, Co, Mn, Mg, Fe, Cu and Cr at 10.15 ppm, 1.12 ppm, not detection, not detection, not detection, 0.30 ppm, 216.07 ppm, not detection, and 31.36 ppm, respectively, while that UO 2 are 11.31 ppm, 72.14 ppm, not detection, not detection, 6.25 ppm, 8.65 ppm, 298.24 ppm, 12.75 ppm and 32, 23 ppm. The U and impurity contents in both the AUC and UO 2 fulfill the specification of nuclear fuel for RSG-GAS research reactor. (author)

  9. In-Situ Observation of Sintering Shrinkage of UO2 Compacts Derived from Different Powder Routes

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun

    2015-01-01

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO 2 might be attributed to the larger primary particle size of IDRUO 2 than those of ADU- and AUC- UO 2 powders. It would be important to understand the different sintering characteristics of UO 2 powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO 2 from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO 2 powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio

  10. Thermodynamic state, specific heat, and enthalpy function of saturated UO2 vapor between 3,000 K and 5,000 K

    International Nuclear Information System (INIS)

    Karow, H.U.

    1977-02-01

    The properties have been determined by means of statistical mechanics. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contribution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma. At temperatures around 5,000 K, UO 2 vapor reaches the collective plasma state and becomes increasingly 'metallic'. - Moreover, the nonuniform molecular equilibrium composition of UO 2 vapor has been taken into account in calculating its caloric functions-of-state. The contribution to specific heat and enthalpy of thermally excited electronic states of the vapor molecules has been derived by means of a Rydberg orbital model of the UO 2 molecule. The resulting enthalpy functions and specific heats for saturated UO 2 vapor of equilibrium composition and that for pure UO 2 gas are compared with the enthalpy and specific heat data of gaseous UO 2 at lower temperatures known from literature. (orig./HP) [de

  11. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  12. Determination of U{sub 3}O{sub 8} in UO{sub 2} by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane Aparecida; Lameiras, Fernando Soares; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Barbosa, Joao Batista Santos, E-mail: lasfisica@gmail.com, E-mail: sl@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: jbsb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil)

    2017-01-15

    The oxygen-uranium (O-U) system has various oxides, such as UO{sub 2}, U{sub 4}O{sub 9}, U{sub 3}O{sub 8}, and UO{sub 3}. Uranium dioxide is the most important one because it is used as nuclear fuel in nuclear power plants. UO{sub 2} can have a wide stoichiometric variation due to excess or deficiency of oxygen in its crystal lattice, which can cause significant modifications of its proprieties. O/U relation determination by gravimetry cannot differentiate a stoichiometric deviation from contents of other uranium oxides in UO{sub 2}. The presence of other oxides in the manufacturing of UO{sub 2} powder or sintered pellets is a critical factor. Fourier Transform Infrared Spectroscopy (FTIR) was used to identify U{sub 3}O{sub 8} in samples of UO{sub 2} powder. UO{sub 2} can be identified by bands at 340 cm{sup -1} and 470 cm{sup -1}, and U{sub 3}O{sub 8} and UO{sub 3} by bands at 735 cm{sup -1}, 910 cm{sup -1}, respectively. The methodology for sample preparation for FTIR spectra acquisition is presented, as well as the calibration for quantitative measurement of U{sub 3}O{sub 8} in UO{sub 2}. The content of U{sub 3}O{sub 8} in partially calcined samples of UO{sub 2} powder was measured by FTIR with good agreement with X-rays diffractometry (XRD). (author)

  13. The Effect of the UO2/ZrO2 Composition on Fuel/Coolant Interaction

    International Nuclear Information System (INIS)

    Song, Jin Ho; Kim, Jong Hwan

    2005-01-01

    A series of experiments on fuel/coolant interaction (FCI) was performed in the TROI facility, where the composition of the mixture was varied. The compositions of the UO 2 and ZrO 2 mixture in weight percent were 50:50, 70:30, 80:20, and pure ZrO 2 . The responses of the system including the temperature of the pool of water in the test vessel, pressure and temperature of the containment vessel, and dynamic pressures and force were measured. In addition, high-speed movies were taken through the windows. The tests using corium with a 70:30 composition and pure zirconia resulted in a spontaneous energetic steam explosion, while the tests with other compositions did not lead to an energetic FCI. The debris size distribution and pressure and temperature responses clearly indicated the cases with an energetic explosion and the cases without an explosion. The high-speed movie taken during the FCI through the visible window clearly disclosed the outstanding phases of the FCI, which were the melt entry phase, the triggering phase, and the continued melt jet and expansion of the mixing zone phase

  14. Fabrication and Testing of Prototype APM-Clad UO{sub 2} Fuel Elements; Fabrication et essai de prototypes de cartouches de combustible en bioxyde d'uranium gaine d'aluminium (APM); Izgotovlenie i ispytanie prototipa toplivnykh ehlementov na osnove UO{sub 2} s obolochkoj iz alyuminiya metodom poroshkovoj metallurgii; Elaboracion y ensayo de elementos combustibles prototipo de UO{sub 2} con revestimiento de aluminio sinterizado

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, III, J. L.; Friske, W. H.; Gordon, R. B. [Atomics International, Canoga Park, California (United States)

    1963-11-15

    In support of the 50-MW(e) Prototype Organic Power Reactor Programme (POPR), extensive development work has been performed on aluminium powder metallurgy (ARM) products, toward their use as cladding for UO{sub 2} fuel. As part of this development work, eutectic bonding, flash butt welding, and cold-pressure welding were investigated as methods for making end closures in die fuel element cladding. Vibratory packing was studied as a means of filling APM tubes with UO{sub 2}. Out-of-pile tests were conducted to obtain information on APM-UO{sub 2} compatibility. This work revealed that, under present conditions, eutectic bonding was the most suitable method for making end closures; vibratory packing produced fuel densities in the range of 80 to 88% of theoretical density; and no APM-UO{sub 2} reaction took place in the range of POPR operating temperatures (850{sup o}F maximum fuel-cladding interface temperature). As a result o f this development work, five APM-clad UO{sub 2} prototype fuel elements have been fabricated for testing in the Organic Moderated Reactor Experiment (OMRE). Each element consisted of 24 or 25 APM-clad fuel rods, arranged in a 5 x 5 array in a nickel-plated steel or an APM fuel box. To increase surface area, the extruded APM cladding had eight fins which were spiralled to a pitch of 45 or 90e/ ft to further improve heat transfer. The fuel rod end closures were made by eutectic bonding of silver-plated aluminium end plugs to the APM tubing. The elements were instrumented to: (1) Measure cladding surface and coolant temperatures, (2) Detect fuel rod failure, (3) Change coolant velocity (means of achieving peak cladding surface temperature of 850{sup o}F), (4) Measure coolant velocity, and (5) Measure fission gas build-up. These elements have been installed in the OMRE with target fuel burn-ups of 25000 to 30000 MWd/t of uranium. As of 1 April 1963, they had achieved accumulated burn-ups ranging from 7700 to 12 000 MWd/t of uranium. Two of the

  15. Kinetics of UO{sub 2} sintering; Kinetika sinterovanja UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    Detailed conclusions related to the UO{sub 2} sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO{sub 2} sintering process.

  16. Analysis of a MOX-UO2 interface by the method of characteristics

    International Nuclear Information System (INIS)

    Chetaine, A.; Erradi, L.; Sanchez, R.; Zmijarevic, I.; Aniel-Buchheit, S.

    2005-01-01

    In the last few years many studies have been done to improve the ability of core reactors (PWR and BWR) to burn Plutonium fuel, either in mixed UO 2 /MOX pattern or full MOX pattern. The analysis of a MOX-UO 2 interface with the method of characteristics has been carried out. Comparisons with Monte Carlo and collision-probability calculations show that our results are in good agreement with those obtained by reference methods and qualify the method of characteristic as a reliable technique for such calculations. (authors)

  17. High temperature drop calorimetric studies on La6UO12 and Nd6UO12

    International Nuclear Information System (INIS)

    Babu, R.; Senapati, A.; Rao, G.J.; Venkata Krishnan, R.; Ananthasivan, K.; Nagarajan, K.

    2014-01-01

    Rare earth elements produced in the reactor during irradiation can interact with the fuel. Under transient conditions, compounds of formula, RE 6 UO 12 with rhombohedral crystal structure are expected to be formed. Hence, thermodynamic properties of these compounds are useful in interpreting the behaviour of fuels during irradiation. Thermal expansion and heat capacities by DSC have been reported for La 6 UO 12 and Nd 6 UO 12 . There are no experimentally measured values of enthalpy. Hence, measurements on enthalpy increments of La 6 UO 12 and Nd 6 UO 12 were carried out for the first time by inverse drop calorimetry in the temperature range 534-1738 K and computed the thermodynamic functions

  18. A method of calculating fission gas diffusion from UO{sub 2} fuel and its application to the X-2-f loop test

    Energy Technology Data Exchange (ETDEWEB)

    Booth, A H

    1957-09-15

    A method for calculating the fraction of the rare gas fission products that diffuses out of a UO{sub 2} fuel element under conditions In a reactor is outlined, The method is based on the values of the diffusion constant found in laboratory experiments, as described In CRDC-718, and assumes that these remain unaltered during the period that the fuel is in the reactor, The method has been applied to two types of oxide in the X-2-f loop test of 1956 and the results compared with the amounts of fission gas found by analysis of the gases collected in sheath puncture experiments, as described in CRDC-719. The calculated values depend heavily on the estimated temperatures In the fuel. They are in close agreement with the experimental values provided that, in calculating the temperature, certain assumptions are made regarding the thermal expansion of the oxide cylinder. (author)

  19. Cation interdiffusion in the UO2 - (U, Pu)O2 and UO2 - PuO2 systems

    International Nuclear Information System (INIS)

    Leme, D.G.

    1985-01-01

    The interdiffusion of U and Pu ions in UO sub(2 +- x) - (U sub(0,83) Pu sub(0,17))O sub(2 + - x) and UO sub(2 + - x) -PuO sub(2 - x) sintered pellets and UO sub(2 +- x) -(U sub(0,82) Pu sub(0,18))O sub(2 + - x) single crystals has been studied as a function of the oxygen potential ΔG sup(-) (O 2 ) or the stoichiometric ratio O/M. The diffusion profiles of UO 2 /(U,Pu)O 2 and UO 2 /PuO 2 couples of different O/M ratios have been measured using high resolution α-spectrometer and microprobe. Thermal annealing of the specimens was performed in controlled atmospheres using either CO-CO 2 gas mixtures for constant O/M ratios or purified argon. The interdiffusion profiles have been analysed by means of the Boltzmann-Matano and Hall methods. The interdiffusion coefficient D sus(approx.) increases with increasing Pu content in sintered pellets (up to 17 wt. %PuO 2 ) showing a strong dependence of D sup(approx.) on the O/M ratio. The micropobe results show that the interdiffusion along grain boundaries is the main diffusion mechanism in the pellets. Experiments have also been carried out in single cristals to measure just the bulk-interdiffusion and avoiding effects due to grain boundaries. A marked dependence of D sup(approx.) on O/M ratio or on oxygen potential ΔG sup(-) (O 2 ), similar to the dependence already reported for self diffusion by means of radioactive tracers, has also been observed. (Author) [pt

  20. Modelling the high burnup UO2 structure in LWR fuel

    International Nuclear Information System (INIS)

    Lassmann, K.; Walker, C.T.; Laar, J. van de; Lindstroem, F.

    1995-01-01

    The concept of a burnup threshold for the formation of the high burnup UO 2 structure (HBS) is supported by experimental data, which also reveal that a transition zone exists between the normal UO 2 structure and the fully developed HBS. From the analysis of radial xenon profiles measured by EPMA a threshold burnup is obtained in the range 60-75 GW d/t U. The lower value is considered to be the threshold for the onset of the HBS and the higher value the threshold for the fully developed HBS. Xenon depletion in the transition zone and the fully developed HBS can be described by a simple model. At local burnups above 120 GW d/t U the xenon generated is in equilibrium with the xenon lost to the fission gas pores and the concentration does not fall below 0.25 wt%. The TRANSURANUS burnup model TUBRNP predicts reasonably well the penetration of the HBS and the associated xenon depletion up to a cross section average burnup of approximately 70 GW d/t U. (orig.)

  1. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO2 and MOX spent fuels

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-01-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO 2 spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, a) isotopic analysis, b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  2. Electrochemical studies of the effect of H2 on UO2 dissolution

    International Nuclear Information System (INIS)

    King, F.; Shoesmith, D.W.

    2004-09-01

    This report summarises evidence for the effect of H 2 on the oxidation and dissolution of UO 2 derived from electrochemical studies. In the presence of γ-radiation or with SIMFUEL electrodes containing ε-particles, the corrosion potential (E CORR ) of UO 2 is observed to be suppressed in the presence of H 2 by up to several hundred milli volts. This effect has been observed at room temperature with 5 MPa H 2 (in the case of γ-irradiated solutions) and at 60 deg C with a H 2 partial pressure of only 0.002-0.014 MPa H 2 with the SIMFUEL electrode. The suppression of E CORR in the presence of H 2 indicates that the degree of surface oxidation and the rate of dissolution of UO 2 is lower in the presence of H 2 .The precise mechanism of the effect of H 2 is unclear at this time. The mechanism appears to involve a surface heterogeneous process, rather than a homogeneous solution process. Under some circumstances the value of E CORR approaches the equilibrium potential for the H 2 /H + couple, suggesting galvanic coupling between sites on which this electrochemical process is catalysed and the rest of the UO 2 surface. It is also possible that H* radical species, either produced radiolytically from H 2 O or by dissociation of H 2 on ε-particles or surface-active UO 2+x sites, reduce oxidised U(V)/U(VI) surface states to U(IV). The effect of H 2 on reducing the degree of surface oxidation is only partially reversible, since surfaces reduced in H 2 atmospheres (re-)oxidise more slowly and to a lesser degree than surfaces not previously exposed to H 2 . Homogeneous reactions between dissolved H 2 and either oxidants or dissolved U(VI) cannot explain the observed effects.Regardless of the precise mechanism, the suppression of the degree of surface oxidation results in lower UO 2 dissolution rates in the presence of H 2 . Application of an electro-chemical dissolution model to the observed E CORR values suggests that the fractional dissolution rate of used fuel in the

  3. UO2 corrosion in high surface-area-to-volume batch experiments

    International Nuclear Information System (INIS)

    Bates, J. K.; Finch, R. J.; Hanchar, J. M.; Wolf, S. F.

    1997-01-01

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO 2 and spent UO 2 fuel in an unsaturated environment such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases

  4. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART II. ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G. T.

    1963-11-15

    Critical and subcritical reactivity measurements on an EVESR-type core, using EVESR UO/sub 2/ superheat fuel elements, are analyzed in order to obtain a physics design model for use in the EVESR. (T.F.H.)

  5. Transport and leaching of technetium and uranium from spent UO2 fuel in compacted bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Albinsson, Y.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    2000-01-01

    The transport properties of Tc and U in compacted bentonite clay and the leaching behaviour of these elements from spent nuclear fuel in the same system were investigated. Pieces of spent UO 2 fuel were embedded in bentonite clay (ρ d =2100 kg/m 3 ). A low saline synthetic groundwater was used as the aqueous phase. After certain experimental times, the bentonite clay was cut into 0.1 mm thick slices, which were analysed for their content of Tc and U. Measurements were made using inductively coupled plasma mass spectrometry. Tc analysis comprised chemical separation. The analysis of U was done by means of detecting 236 U, since the natural content of U in bentonite clay made it impossible to distinguish between U originating from the fuel and the clay. The influence of different additives mixed into the clay was studied. The results showed an influence on both transport and leaching behaviour when metallic Fe was mixed into the clay. This indicates that Tc and U are reduced to their lower oxidation states as a result of this additive

  6. High-temperature irradiation of niobium-1 w/o zirconium-clad UO/sub 2/. [Compatibility with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kangilaski, M.; Fromm, E.O.; Lozier, D.H.; Storhok, V.W.; Gates, J.E.

    1965-06-28

    Twenty-four 0.225-in.-diameter and six 0.290-in.-diameter UO/sub 2/ specimens clad with 80 mils of niobium-1 w/o zirconium were irradiated to burnups of 1.4 to 6.0 at. % of uranium at surface temperatures of 900 to 1400/sup 0/C. UO/sub 2/ and lithium were found to be incompatible at these temperatures, and the thick cladding was used primarily to minimize the chances of contact of UO/sub 2/ and the lithium coolant. The thickly clad specimens did not undergo any dimensional changes as a result of irradiation, although it was found that movement of UO/sub 2/ took place in the axial direction by a vaporization-redeposition mechanism. It was found that 32 to 87% of the fission gases was released from the fuel, depending on the temperature of the specimen. Metallographic examination of longitudinal and transverse sections of the specimens indicated the usual UO/sub 2/ microstructure with columnar grains. Grain-boundary thickening was observed in the UO/sub 2/ at higher burnups. The oxygen/uranium ratio of UO/sub 2/ increased with increasing burnup.

  7. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  8. Simulation of accident-tolerant U3Si2 fuel using FRAPCON code

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia

    2017-01-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO 2 - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO 2 - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U 3 Si 2 , UN, and UC, is higher than that of UO 2 ; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U 3 Si 2 , UN, and UC are their swelling rates, which are higher than that of UO 2 . The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U 3 Si 2 and the FeCrAl fuel cladding concept should replace UO 2 - Zr as the fuel system of choice. (author)

  9. Experimental studies of Micro- and Nano-grained UO2: Grain Growth Behavior, Sufrace Morphology, and Fracture Toughness

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Jamison, Laura M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Yao, Tiankai [Rensselaer Polytechnic Inst., Troy, NY (United States); Bhattacharya, Sumit [Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)

    2016-01-01

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO2; (2) investigation of surface morphology in micrograined UO2; (3) Nano-indentation experiments on nano- and micro-grained UO2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO2.

  10. Study of UO2 radioinduced densification

    International Nuclear Information System (INIS)

    Stora, J.P.; Bruet, M.

    1975-01-01

    Measurements of radioinduced densification were performed on UO 2 DCN (intergranular fine porosity) and UO 2 DCI (interaggregate coarse porosity) in the Anemone device. The densification kinetics was followed by measuring the shrinkage of the oxide column on neutron radiographic plates. UO 2 DCI was found stable in regard to densification. At power near 450Wcm -1 , densification is hitten by restructuring phenomena [fr

  11. In-Situ Observation of Sintering Shrinkage of UO{sub 2} Compacts Derived from Different Powder Routes

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO{sub 2} might be attributed to the larger primary particle size of IDRUO{sub 2} than those of ADU- and AUC- UO{sub 2} powders. It would be important to understand the different sintering characteristics of UO{sub 2} powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO{sub 2} from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO{sub 2} powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio.

  12. UO2 microspheres obtainment through the internal gelation methods

    International Nuclear Information System (INIS)

    Sterba, M.E.; Gomez Constenla, A.

    1987-01-01

    UO 2 microspheres obtainment process through the internal gelation method which allows the spheres' obtainment of uniform size is detailed herein, varying the same among 0.3 and 1.7 mm of diameter. The sintered density reaches 10.78 g/cm 3 , permitting the fuels fabrication dispersed and vibro-compacted fuels. The trichloroethylene use implementation as gelation agent is described, thus reducing the number of stages in the microspheres fabrication. At the same time, the uranium sun composition has been modified so as to be compatible with the use solvent. (Author)

  13. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  14. A Comparative Physics Study of Commercial PWR Cores using Metallic Micro-cell UO{sub 2}-Cr (or Mo) Pellets with Cr-based Cladding Coating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); In, Wang Kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this work, a comparative neutronic analysis of the cores using ATFs which include metallic micro-cell UO{sub 2}-Cr, UO{sub 2}-Mo pellets and Cr-based alloy coating on cladding was performed to show the effects of the ATF fuels on the core performance. In this study, the cores having different ATFs use the same initial uranium enrichments. The ATF concepts studied in this work are the metallic microcell UO{sub 2} pellets containing Cr or Mo with cladding outer coating composed of Cr-based alloy which have been suggested as the ATF concepts in KAERI (Korea Atomic Energy Research Institute). The metallic micro-cell pellets and Cr-based alloy coating can enhance thermal conductivity of fuel and reduce the production of hydrogen from the reaction of cladding with coolant, respectively. The objective of this work is to compare neutronic characteristics of commercial PWR equilibrium cores utilizing the different variations of metallic micro-cell UO{sub 2} pellets with cladding coating composed of Cr-based alloy. The results showed that the cores using UO{sub 2}-Cr and UO{sub 2}-Mo pellets with Cr-based alloy coating on cladding have reduced cycle lengths by 60 and 106 EFPDs, respectively, in comparison with the reference UO{sub 2} fueled core due to the reduced heavy metal inventories and large thermal absorption cross section but they do not have any significant differences in the core performances parameters. However, it is notable that the core fueled the micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating has considerably more negative MTC and slightly more negative FTC than the other cases. These characteristics of the core using micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating is due to the hard neutron spectrum and large capture resonance cross section of Mo isotopes.

  15. Measurement of the in-pile core temperature of an EL-4 pencil element, first charge (can of type-347 stainless steel, 0.4 mm thick, UO{sub 2} fuel, 11 mm diameter). Determination of the apparent thermal conductivity integral of in-pile UO{sub 2}; Mesure de la temperature a coeur en pile d'un crayon EL-4 1er jeu (gaine acier inoxydable, nuance 347 - epaisseur 0,4 mm - combustible UO{sub 2} - diametre 11 mm). Determination de l'integrale de conductibilite thermique apparente de l'UO{sub 2} en pile

    Energy Technology Data Exchange (ETDEWEB)

    Lavaud, B; Ringot, C; Vignesoult, N [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-11-01

    The core temperature of a pencil fuel element depends on the thermal conductivity of the UO{sub 2}, and on the UO{sub 2}-can contact. This temperature may be known accurately only if in-pile tests using the actual geometry are carried out. The test described concerns the measurement of the core- temperature of an EL-4 fuel element, first charge, having a stainless steel can. This temperature is measured at the center of the in-pile pencil element using a high-temperature thermocouple (W-Re with Ta sheath). The element is subjected to operating conditions similar to those of EL-4, both for the specific power and the can temperature and for the pressure acting on the can. The specific power is obtained in the EL-3 reactor using a slightly higher enrichment for the UO{sub 2} than that planned for EL-4. The required can temperature and pressure are obtained using a Zircaloy-2 irradiation container filled with NaK, adapted for use in the EL-3 reactor. The core temperatures of the UO{sub 2}, and that of the can surface are measured. The power is calculated from the heat exchanges in the container calibrated in the laboratory. The temperature drop at the UO{sub 2}-can interface is deduced from laboratory measurements carried out under comparable heat flux conditions, and in a gas atmosphere corresponding to the beginning of the life-time of the fuel element. It is possible to draw an integral conductivity curve. It is also possible to check the temperature distribution in the oxide, as deduced from the thermal conductivity integral, by micro-graphic examination of the oxide structure. (authors) [French] La temperature a coeur d'un crayon combustible est fonction de la conductibilite thermique de l'UO{sub 2}, mais aussi du contact UO{sub 2}-gaine. Les essais de mesure en geometrie reelle en pile sont les seuls qui permettent d'avoir une connaissance exacte de cette valeur. L'essai dont il est question dans ce rapport a trait a la mesure de la temperature a coeur d

  16. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  17. Leaching patterns and secondary phase formation during unsaturated leaching of UO2 at 90 degrees C

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S.

    1991-11-01

    Experiments are being conducted that examine the reaction of UO 2 with dripping oxygenated ground water at 90 degrees C. The experiments are designed to identify secondary phases formed during UO 2 alteration, evaluate parameters controlling U release, and act as scoping tests for studies with spent fuel. This study is the first of its kind that examines the alteration of UO 2 under unsaturated conditions expected to exist at the proposed Yucca Mountain repository site. Results suggest the UO 2 matrix will readily react within a few months after being exposed to simulated Yucca Mountain conditions. A pulse of rapid U release, combined with the formation of dehydrated schoepite on the UO 2 surface, characterizes the reaction between one to two years. Rapid dissolution of intergrain boundaries and spallation of UO 2 granules appears to be responsible for much of the U released. Differential release of the UO 2 granules may be responsible for much of the variation observed between duplicate experiments. Less than 5 wt % of the released U remains in solution or in a suspended form, while the remaining settles out of solution as fine particles or is reprecipitated as secondary phases. Subsequent to the pulse period, U release rates decline and a more stable assemblage of uranyl silicate phases are formed by incorporating cations from the ground water leachant. Uranophane, boltwoodite, and sklodowskite appear as the final solubility limiting phases that form in these tests. This observed paragenetic sequence (from uraninite to schoepite-type phases to uranyl silicates) is identical to those observed in weathered zones of natural uraninite occurrences. The combined results indicate that the release of radionuclides from spent fuel may not be limited by U solubility constraints, but that spallation of particulate matter may be an important, if not the dominant release mechanism affecting release

  18. Spent UO{sub 2} TRISO coated particles. Instant release fraction and microstructure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hildegard; Kaiser, Gabriele; Lieck, Norman; Guengoer, Murat; Klinkenberg, Martina; Bosbach, Dirk [Research Center Juelich (Germany). Inst. of Energy and Climate Research IEK-6: Nuclear Waste Management and Reactor Safety

    2015-09-01

    The impact of burn-up on the instant release fraction (IRF) from spent fuel was studied using very high burn-up UO{sub 2} fuel (∝ 100 GWd/t) from a prototype high temperature reactor (HTR). TRISO (TRi-structural-ISO-tropic) particles from the spherical fuel elements contain UO{sub 2} fuel kernels (500 μm diameter) which are coated by three tight layers ensuring the encapsulation of fission products during reactor operation. After cracking of the tight coatings {sup 85}Kr and {sup 14}C as {sup 14}CO{sub 2} were detected in the gas fraction. Xe was not detected in the gas fraction, although ESEM (Environmental Scanning Electron Microscope) investigations revealed an accumulation in the buffer. UO{sub 2} fuel kernels were exposed to synthetic groundwater under oxic and anoxic/reducing conditions. U concentration in the leachate was below the detection limit, indicating an extremely low matrix dissolution. Within the leach period of 276 d {sup 90}Sr and {sup 134/137}Cs fractions located at grain boundaries were released and contribution to IRF up to max. 0.2% respectively 8%. Depending on the environmental conditions, different release functions were observed. Second relevant release steps occurred in air after ∝ 120 d, indicating the formation of new accessible leaching sites. ESEM investigations were performed to study the impact of leaching on the microstructure. In oxic environment, numerous intragranular open pores acting as new accessible leaching sites were formed and white spherical spots containing Mo and Zr were identified. Under anoxic/reducing conditions numerous metallic precipitates (Mo, Tc and Ru) filling the intragranular pores and white spherical spots containing Mo and Zr, were detected. In conclusion, leaching in different geochemical environments influenced the speciation of radionuclides and in consequence the stability of neoformed phases, which has an impact on IRF.

  19. Microspheres of UO2, ThO2 and PuO2 for the high temperature reactor

    International Nuclear Information System (INIS)

    Brandau, T.; Brandau, E.

    2010-01-01

    Up to the end of the eighties of last century, the so called ''Kernels'', microspheres with a diameter of about 300 μm as sintered out of ThO 2 and UO 2 have been produced by a special vibrational dropping process. After coating and embedding in carbon the pebble fuel balls with a diameter of 60 mm included 40.000 UO 2 - or ThO 2 -microspheres in the core. Since the early nineties BRACE is developing the processing of microspheres with a broad range of materials for applications in chemical, pharmaceutical, electronic, cosmetic and food industries. One of the developing areas is the production of microspheres out of metal oxides, where different processes as sol-gel-, suspension- or mixed processes are used. (orig.)

  20. Role of nitrous acid during the dissolution of UO2 in nitric acid

    International Nuclear Information System (INIS)

    Deigan, N.; Pandey, N.K.; Kamachi Mudali, U.; Joshi, J.B.

    2016-01-01

    Understanding the dissolution behaviour of sintered UO 2 pellet in nitric acid is very important in designing an industrial scale dissolution system for the plutonium rich fast reactor MOX fuel. In the current article we have established the role of nitrous acid on the dissolution kinetics of UO 2 pellets in nitric acid. Under the chemical conditions that prevail in a typical Purex process, NO and NO 2 gases gets generated in the process streams. These gases produce nitrous acid in nitric acid medium. In addition, during the dissolution of UO 2 in nitric acid medium, nitrous acid is further produced in-situ at the pellet solution interface. As uranium dissolves oxidatively in nitric acid medium wherein it goes from U(IV) in solid to U(VI) in liquid, presence of nitrous acid (a good oxidizing agent) accelerates the reaction rate. Hence for determining the reaction mechanism of UO 2 dissolution in nitric acid medium, knowing the nitrous acid concentration profile during the course of dissolution is important. The current work involves the measurement of nitrous acid concentration during the course of dissolution of sintered UO 2 pellets in 8M starting nitric acid concentration as a function of mixing intensity from unstirred condition to 1500 RPM

  1. Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition; Condutividade termica de pastilhas de combustivel nuclear de UO{sub 2}-BeO nas temperaturas de 25 deg C e 100 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Camarano, D.M.; Mansur, F.A.; Santos, A.M.M. dos; Ferraz, W.B., E-mail: dmc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTM/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    The UO{sub 2} fuel is one of the most used nuclear fuel in thermal reactors and has many advantages such as high melting point, chemical compatibility with cladding, etc. However, its thermal conductivity is relatively low, which leads to a premature degradation of the fuel pellets due to a high radial temperature gradient during reactor operation. An alternative to avoid this problem is to increase the thermal conductivity of the fuel pellets, by adding beryllium oxide (BeO). Pellets of UO{sub 2} and UO{sub 2}-BeO were obtained from a homogenized mixture of powders of UO{sub 2} and BeO, containing 2% and 3% by weight of BeO and sintering at 1750 °C for 3 h under H{sub 2} atmosphere after uniaxial pressing at 400 MPa. The pellet densities were obtained by xylol penetration-immersion method and the thermal diffusivity, specific heat and thermal conductivity were determined according to ASTM E-1461 at room temperature (25 deg C) and 100 deg C. The thermal diffusivity measurements were carried out employing the laser flash method. The thermal conductivity obtained at 25 deg C showed an increase with the addition of 2% and 3% of BeO corresponding to 19% and 28%, respectively. As for the measurements carried out at 100 deg C, there was an increase in the thermal conductivity for the same BeO contents of 20% and 31%. These values as a percentage of increased conductivity were obtained in relation to the UO{sub 2} pellets. (author)

  2. Obtainment of UO{sub 2} ex AUC (ammonium uranyl carbonate) from uranyl fluoride; Obtencion de UO{sub 2} ex AUC (carbonato de uranil amonio) partiendo de fluoruro de uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, M de la; Gonzalez, A G; Gonzalez Scardaone, S; Perez de Perel, L; Marajofsky, A [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Combustibles Nucleares

    1997-12-31

    It is proposed the production of enriched UO{sub 2} powder starting from UF6 with the desired isotopic concentration in order to avoid the possible segregation inconveniences that take place in the mixture of enriched and natural UO{sub 2} powders. In this work is shown the feasibility of obtaining powders with direct sinterability, through the precipitation of uranyl fluoride solutions (UF{sub 6} hydrolysis). The AUC is a crystalline forerunner used in the powder production line. A simulated hydrolyzed UF{sub 6} solution was obtained by means of the dissolution of UO{sub 3} with FH acid. The precipitation operation was carried out in a discontinuous operation device, with simultaneous pumping. The precipitating media is achieved by adding simultaneously NH{sub 3} (g) and CO{sub 2} (g), using ejector nozzles during precipitation. Mother waters pH during precipitation stay between 8.5 and 9.2 and the temperature of operation is around 323 K. The AUC calcination, reduction and passivation took place during the same operation. The reduction was carried out at three different temperatures, 823 K, 933 K and 1003 K in H{sub 2} reducing atmosphere. The passivation was carried out at 343 K. The main problem of this process is free fluorine that could remain in the powder. It would inhibit its use as nuclear fuel, since the international specifications do not tolerate more than 20 mg/kg. However, the determinations carried out in all the cases, showed that it was completely eliminated during calcination. The ex AUC UO{sub 2} powders obtained from solution of F{sub 2} (UO{sub 2}) were fluoride free, showed specific areas within specification and good sinterability. Therefore it is possible to fabricate enriched powders using a humid process from F{sub 6}U, to be used without problems of segregation due to the origin of the powder mix in PWR fuels type (CAREM). (author). 3 figs.

  3. Behaviour of the UO2/clayey water. A spectroscopic approach

    International Nuclear Information System (INIS)

    Guilbert, S.

    2000-05-01

    This work deals with the disposal of spent nuclear fuels in deep geological layers. After three years of irradiation, these fuels are constituted of 95 % UO 2 . It is then indispensable to know the leaching behaviour of this solid because ground waters are the main agents of dispersion to biosphere of the radioelements contained in these fuels. This work includes alteration tests carried out with a device allowing to synthesize a clayey water equilibrated with a partial pressure in CO 2 in oxidizing or reducing conditions. After the tests, the solid and the solution have been characterized in order to establish a balance of the alteration. The UO 2 matrix has been characterized by XPS. The uranium in solution has been titrated by ICP-MS. In oxidizing conditions, after some weeks, the dissolution velocity of UO 2 has stabilized around 3*10 11 mol/m 2 .s. This velocity is of 4*10 12 mol/m 2 .s in a reducing medium. The uranium concentrations in the oxidized water are of about 2*10 4 mol/l after two years of leaching. After 33 days of alteration in a reducing medium, the uranium amount is of 3*10 6 mol/l. The XPS technique has revealed a superficial and progressive oxidation of the uranium(IV) and the formation of U-OH bonds in the oxidizing medium. A U(VI)/U(IV) ratio has been determined by this technique. It has stabilized around 2 in some weeks. In reducing conditions, this ratio is stable and is of about 0.5. Modeling tools have allowed to propose a class of solids potentially able to control the uranium solubility. In oxidizing conditions, the uranyl hydrates (schoepite) evolve towards uranyl silicates which are thermodynamically more stable. In reducing conditions, a control of the uranium concentration in solution by U 4 O 9 is probable. (O.M.)

  4. Comparative study of the different industrial manufacturing routes for UO2 pellet specifications through the wet process

    International Nuclear Information System (INIS)

    Palheiros, Franklin; Gonzaga, Reinaldo; Soares, Alexandre

    2009-01-01

    In the fuel cycle, converting UF 6 to UO 2 powder is an intermediate step for fabrication of pellets for fuel assemblies to be used in nuclear power plants. The basic proposal common to the different powder fabrication processes is to provide raw material capable of being processed into the form of pellets. The wet processes is the most often used industrially and are divided in two categories: the ADU (Ammonium Diuranate) and AUC (Ammonium Uranyl Carbonate) processes, whose names originate in the precipitate obtained in aqueous solution during the intermediate steps of UO 2 powder fabrication. It has known that the powder characteristics have a considerable influence in the UO 2 pellet manufacturing and quality characteristics. INB has used the AUC process to produce UO 2 pellets and supply fuel to Angra 1 and 2 Nuclear Power Plants. Despite of this process is characterized by the precipitation of a different intermediate precipitate compared to the ADU route (i.e., (NH 4 ) 4 UO 2 (CO 3 ) 3 , in the AUC process, and (NH 4 ) 2 U 2 O 7 in ADU process) leading to some slight differences in the final pellet microstructure, it has been considered that the models that predict the pellet behavior during irradiation in a nuclear reactor are basically the same compared to those used to predict the pellets form the ADU process. In order to evaluate how different the pellets originated from these two industrial routes are, this paper aims to compare the INB production historical data (Angra 1, Cycles 14 and 15) with the key parameters of a common product specification from the ADU process. (author)

  5. Fission gas behaviour in UO2 under steady state and transient conditions

    International Nuclear Information System (INIS)

    Zimmermann, H.

    1980-01-01

    Fission gas behaviour in UO 2 is determined by the limited capacity of the fuel to retain fission gas. This capacity depends primarily on temperature, but also on fission rate, pressure loading, and fuel microstructure. Under steady state irradiation conditions fission gas behaviour can be described qualitatively as follows: At the beginning of the irradiation most of the fission gas remains in the grains in irradiation-induced solution. With increasing gas content in the grains the gas transport to the grain boundaries increases, too. The fission gas release from the grain boundaries occurs primarily by interlinkage of inter-granular bubbles. The fission gas release without noticeable fuel swelling during the short-term heating in the LOCA tests and the powdering of the high burnup UO 2 in the annealing tests can only be accounted for by formation of inter-granular separations, which are caused by the fission gas accumulated in the grain boundaries. Besides this short-term effect there are diffusion-controlled long-term effects, such as growth and coalescence of bubbles and formation of inter-connected porosity, which result in time-dependent fission gas release and fuel swelling

  6. Evaluation of sintering effects on SiC-incorporated UO2 kernels under Ar and Ar–4%H2 environments

    International Nuclear Information System (INIS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L.

    2013-01-01

    Silicon carbide (SiC) is suggested as an oxygen getter in UO 2 kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO 2 fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H 2 sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO 2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO 2 to form UC. The second process was direct UO 2 reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H 2 , but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content

  7. Impact of UO{sub 2} Enrichment of Fuel Zoning Rods in Long Cycle Operation of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Lee, Deokjung [KHNP CRI, Daejeon (Korea, Republic of); Jeong, Eun; Choe, Jiwon [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Extending the cycle length can not only increase the energy production, but also bring down outage costs by reducing the number of refueling outages during the lifetime of a nuclear power plant. It is reasonable that more fresh fuels are loaded for long cycle operation. However, minimizing the number of fresh fuels is essential in aspect of fuel economics. This can cause high power peaking near the water holes, due to increased thermalization of neutrons in those regions. To prevent this, special fuel zoning rods are used and surround the water holes. These rods use lower-enriched uranium (they have an enrichment rate lower than the other fuel rods). If we adjust the enrichment rate of fuel zoning rods, we can reduce power peaking and moreover increase cycle length. In this paper, we designed a core suitable for long cycle operation and we conducted sensitivity tests of fuel cycle length on UO2 enrichment rate in fuel zoning region in order to extend the cycle length while using the same number of fresh fuels. The correlations between the fuel zoning enrichment and cycle length, peaking factor, CBC and shutdown margin were analyzed. The more the enrichment rate in fuel zoning region increases, the more the fuel cycle length increases. At the same time, CBC, Fq and shutdown margin do not change significantly. Increasing the fuel zoning enrichment rate presents the right property of increasing the fuel cycle length without causing a large change to CBC, Fq and shutdown margin. In conclusion, by increasing the uranium enrichment rate in fuel zoning region, fuel cycle length can be increased and the safety margins can be maintained for long cycle operation of cores.

  8. Possible effects of oxidation on the transient release of fission gas from UO2

    International Nuclear Information System (INIS)

    Stoner, H.C.; Matthews, J.R.; Wood, M.H.

    1981-01-01

    The effect of varying the fuel composition from UO 2 to UOsub(2.3), on the transient behaviour of fission gas is simulated on the assumption that surface diffusion behaves in a similar manner to volume diffusion. The results may help in the understanding of fuel behaviour after pin failure in accident conditions in thermal reactor systems. (author)

  9. Sensitivity and uncertainty analysis of reactivities for UO2 and MOX fueled PWR cells

    Energy Technology Data Exchange (ETDEWEB)

    Foad, Basma [Research Institute of Nuclear Engineering, University of Fukui, Kanawa-cho 1-2-4, Tsuruga-shi, Fukui-ken, 914-0055 (Japan); Egypt Nuclear and Radiological Regulatory Authority, 3 Ahmad El Zomar St., Nasr City, Cairo, 11787 (Egypt); Takeda, Toshikazu [Research Institute of Nuclear Engineering, University of Fukui, Kanawa-cho 1-2-4, Tsuruga-shi, Fukui-ken, 914-0055 (Japan)

    2015-12-31

    The purpose of this paper is to apply our improved method for calculating sensitivities and uncertainties of reactivity responses for UO{sub 2} and MOX fueled pressurized water reactor cells. The improved method has been used to calculate sensitivity coefficients relative to infinite dilution cross-sections, where the self-shielding effect is taken into account. Two types of reactivities are considered: Doppler reactivity and coolant void reactivity, for each type of reactivity, the sensitivities are calculated for small and large perturbations. The results have demonstrated that the reactivity responses have larger relative uncertainty than eigenvalue responses. In addition, the uncertainty of coolant void reactivity is much greater than Doppler reactivity especially for large perturbations. The sensitivity coefficients and uncertainties of both reactivities were verified by comparing with SCALE code results using ENDF/B-VII library and good agreements have been found.

  10. Technological aspects of UO2 sintering at low temperature

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Dominguez, Carlos A.; Benitez, Ana M.; Marajofsky, Adolfo

    1999-01-01

    Within the Fuel Cycle Program of CNEA, the knowledge that plant personnel has on sintering at low temperature was evaluated, because this process could decrease costs for UO 2 and (U,Gd)O 2 pellets production, simplify the furnace maintenance and facilitate the automation of the production process, specially convenient for uranium recovery. By applying this technology, some companies have achieved production at pilot-scale and irradiated a significant number of pellets. (author)

  11. Modelling intragranular fission gas release in irradiation of sintered LWR UO2 fuel

    International Nuclear Information System (INIS)

    Loesoenen, Pekka

    2002-01-01

    A model for the release of stable fission gases by diffuion from sintered LWR UO 2 fuel grains is presented. The model takes into account intragranular gas bubble behaviour as a function of grain radius. The bubbles are assumed to be immobile and the gas migrates to grain boundaries by diffusion of single gas atoms. The intragranular bubble population in the model at low burn-ups or temperatures consists of numerous small bubbles. The presence of the bubbles attenuates the effective gas atom diffusion coefficient. Rapid coarsening of the bubble population in increased burn-up at elevated temperatures weakens significantly the attenuation of the effective diffusion coefficient. The solution method introduced in earlier papers, locally accurate method, is enhanced to allow accurate calculation of the intragranular gas behaviour in time varying conditions without excessive computing time. Qualitatively the detailed model can predict the gas retention in the grain better than a more simple model

  12. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  13. The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH

    International Nuclear Information System (INIS)

    Clarens, F.; Pablo, J. de; Casas, I.; Gimenez, J.; Rovira, M.; Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Martinez-Esparza, A.

    2005-01-01

    The dissolution of non-irradiated UO 2 was studied as a function of both pH and hydrogen peroxide concentration (simulating radiolytic generated product). At acidic pH and a relatively low hydrogen peroxide concentration (10 -5 mol dm -3 ), the UO 2 dissolution rate decreases linearly with pH while at alkaline pH the dissolution rate increases linearly with pH. At higher H 2 O 2 concentrations (10 -3 mol dm -3 ) the dissolution rates are lower than the ones at 10 -5 mol dm -3 H 2 O 2 , which has been attributed to the precipitation at these conditions of studtite (UO 4 . 4H 2 O, which was identified by X-ray diffraction), together with the possibility of hydrogen peroxide decomposition. In the literature, spent fuel dissolution rates determined in the absence of carbonate fall in the H 2 O 2 concentration range 5 x 10 -7 - 5 x 10 -5 mol dm -3 according to our results, which is in agreement with H 2 O 2 concentrations determined in spent fuel leaching experiments

  14. The defect chemistry of UO2 ± x from atomistic simulations

    Science.gov (United States)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  15. Optimization of a Wcl6 CVD System to Coat UO2 Powder with Tungsten

    Science.gov (United States)

    Belancik, Grace A.; Barnes, Marvin W.; Mireles, Omar; Hickman, Robert

    2015-01-01

    In order to achieve deep space exploration via Nuclear Thermal Propulsion (NTP), Marshall Space Flight Center (MSFC) is developing W-UO2 CERMET fuel elements, with focus on fabrication, testing, and process optimization. A risk of fuel loss is present due to the CTE mismatch between tungsten and UO2 in the W-60vol%UO2 fuel element, leading to high thermal stresses. This fuel loss can be reduced by coating the spherical UO2 particles with tungsten via H2/WCl6 reduction in a fluidized bed CVD system. Since the latest incarnation of the inverted reactor was completed, various minor modifications to the system design were completed, including an inverted frit sublimer. In order to optimize the parameters to achieve the desired tungsten coating thickness, a number of trials using surrogate HfO2 powder were performed. The furnace temperature was varied between 930 C and 1000degC, and the sublimer temperature was varied between 140 C and 200 C. Each trial lasted 73-82 minutes, with one lasting 205 minutes. A total of 13 trials were performed over the course of three months, two of which were re-coatings of previous trials. The powder samples were weighed before and after coating to roughly determine mass gain, and Scanning Electron Microscope (SEM) data was also obtained. Initial mass results indicated that the rate of layer deposition was lower than desired in all of the trials. SEM confirmed that while a uniform coating was obtained, the average coating thickness was 9.1% of the goal. The two re-coating trials did increase the thickness of the tungsten layer, but only to an average 14.3% of the goal. Therefore, the number of CVD runs required to fully coat one batch of material with the current configuration is not feasible for high production rates. Therefore, the system will be modified to operate with a negative pressure environment. This will allow for better gas mixing and more efficient heating of the substrate material, yielding greater tungsten coating per trial.

  16. Mox fuel experience: present status and future improvements

    International Nuclear Information System (INIS)

    Blanpain, P.; Chiarelli, G.

    2001-01-01

    Up to December 2000, more than 1700 MOX fuel assemblies have been delivered by Framatome ANP/Fragema to 20 French, 2 Belgian and 3 German PWRs. More than 1000 MOX fuel assemblies have been delivered by Framatome ANP GmbH (formerly Siemens) to 11 German PWRs and BWRs and to 3 Swiss PWRs. Operating MOX fuel up to discharge burnups of about 45,000 MWd/tM is done without any penalty on core operating conditions and fuel reliability. Performance data for fuel and materials have been obtained from an outstanding surveillance program. The examinations have concluded that there have been no significant differences in MOX fuel assembly characteristics relative to UO 2 fuel. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models necessary for the continuing improvement of the MOX product. As MOX fuel has reached a sufficient maturity level, the short term step is the achievement of the parity between UO 2 and MOX fuels in the EdF French reactors. This involves a single operating scheme for both fuels with an annual quarter core reload type and an assembly discharge burnup goal of 52,000 MWd/tM. That ''MOX parity'' product will use the AFA-3G assembly structure which will increase the fuel rod design margins with regards to the end-of-life internal pressure criteria. But the fuel development objective is not limited to the parity between the current MOX and UO 2 products: that parity must remain guaranteed and the MOX fuel managements must evolve in the same way as the UO 2 ones. The goal of the MOX product development program underway in France is the demonstration over the next ten years of a fuel capable of reaching assembly burnups of 70,000 MWd/tM. (author)

  17. Effect of continuous change of sintering atmosphere on the grain growth of Cr-doped UO2 pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Nam, Ik Hui; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    Cr-doped UO 2 pellet is one of the promising candidates for the high burn-up fuel in commercial LWRs. Major nuclear fuel vendors of such as AREVA or Westinghouse initiated the development of Cr-doped or Cr-containing additives doped UO 2 pellets since at the mid of 90's. Now, qualification programs are on-going to provide these pellets commercially. The main characteristics of the Cr-doped pellets are large-grain and visco-plasticity. Large grain pellet can reduce the corrosive fission gas release at high burn up. Viscoplastic soft pellets can lower the pressure to a cladding caused by a thermal expansion of a pellet at an elevated temperature during transient operations. Those advantages can provide room for additional power uprates and high burnup limits. Especially, PCI resistance improvement can be achieved by enlarging the pellet grain size and enhancing the fuel deformation at an elevated temperature. In this paper, to study the effect of oxygen partial pressure on grain growth in Cr-doped UO 2 pellets, Cr- doped UO 2 samples have been sintered with and without a step-wise change of sintering atmospheres. An introduction of a step-wise variation of oxygen partial pressure during the sintering enhances the grain growth of UO 2 pellets greatly. This step-wise sintering effect has been explained in terms of a continuous increase of Cr concentration along the grain boundary. The observed grain growth behavior under step-wisely changed sintering atmospheres demonstrates the possibility of reducing the amount of Cr 2 O 3 to minimum via control of oxygen partial pressure while keeping the large grain size

  18. Thermodynamic Behaviour of Hypostoichiometric UO{sub 2}; Comportement Thermodynamique de UO{sub 2} HypostoeChiometrique; Termodinamicheskoe povedenie gipostekhiometricheskoj UO{sub 2}; Comportamiento Termodinamico del UO{sub 2} Subestequiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, E. A.; Brassfield, H. C.; Fryxell, R. E. [General Electric Company, Nuclear Materials and Propulsion Operation, Cincinnati, OH (United States)

    1966-02-15

    The ability of the UO{sub 2}-type structure to accomodate excess oxygen is well known. Recent evidence has indicated that this structure is stable also in the hypostoichiometric state at high temperatures and low oxygen partial pressures, but its manifestation occurs as a uranium metal precipitate in the oxide after cooling from high temperatures. This paper presents further evidence of the existence, at high temperatures, of a stable hypostoichiometric urania and describes in part the variation in thermodynamic properties across its homogeneity range. Hypostoichiometric UO{sub 2} evaporates congruently during free vaporization in slowly flowing hydrogen (-40 Degree-Sign C dew point) at 2400 Degree-Sign C at a composition having oxygen-to-uranium ratio of 1.88. If the temperature is decreased or the moisture content (oxygen partial pressure) increased, the congruent composition increases. The water content of the hydrogen at 2400 Degree-Sign C must be at least one per cent to maintain stoichiometric uranium dioxide. When UO{sub 2} pellets are sealed in tantalum cans and heated above 1700 Degree-Sign C, the O/U ratio of the pellet changes and reaches an equilibrium value which is governed by the oxygen activity of the atmosphere surrounding the can. UO{sub 2} does not react with tantalum but, because of the high solubility of oxygen in tantalum, the latter functions as a membrane. Using the data from congruent evaporation, and tantalum capsule tests, conducted in various argon-hydrogen mixtures, the oxygen activity in urania as a function of stoichiometry has been determined. The partial molar free energy of oxygen, G(O{sub 2} ), increases almost linearly on the oxygen deficient side with increasing oxygen-to-uranium ratio. Near the stoichiometric composition G(O{sub 2}) rises steeply. Using these results together with estimated G(O{sub 2}) values on the oxygen excess side obtained from the literature, it is shown that the data at a given temperature are consistent

  19. Chemical compatibility between UO{sub 2} fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Braun, James, E-mail: james.braun@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Guéneau, Christine; Alpettaz, Thierry [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Sauder, Cédric [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Brackx, Emmanuelle; Domenger, Renaud [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Gossé, Stéphane [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Balbaud-Célérier, Fanny [DEN-Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-04-15

    Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO{sub 2±x}/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO{sub 2±x}) is investigated in the 1500–1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO{sub 2+x} and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K. - Highlights: •A limited chemical reaction occurs between SiC and UO{sub 2+x} up to 1514 K. •CO gas along with the generation of USi{sub x} are detected over 1514 K in open system. •A liquid phase forms between 1850 and 1950 K in the UO{sub 2+x}/SiC system. •Results are encouraging for the use of SiC/SiC cladding in nuclear reactors.

  20. Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core – Part I: Parametric studies

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Stefani, Giovanni Laranjo; Moreira, João M.L.; Rossi, Pedro C.R.; Santos, Thiago A.

    2017-01-01

    Highlights: • Neutronics calculation using SERPENT code. • Conversion of an advanced PWR from a UO 2 to (U-Th)O 2 core. • AP 1000-advanced PWR. • Parametric studies to define a converted core. • Demonstration of the feasibility to convert the AP 1000 by using mixed uranium thorium oxide fuel with advantages. - Abstract: This work presents the neutronics and thermal hydraulics feasibility to convert the UO 2 core of the Westinghouse AP1000 in a (U-Th)O 2 core by performing a parametric study varying the type of geometry of the pins in fuel elements, using the heterogeneous seed blanket concept and the homogeneous concept. In the parametric study, all geometry and materials for the burnable poison were kept the same as the AP 1000, and the only variable was the fuel pin material, in which we use several mass proportion of uranium and thorium but keeping the enrichment in 235 U, as LEU (20 w/o). The neutronics calculations were made by SERPENT code, and to validate the thermal limits we used a homemade code. The optimization criteria were to maximize the 233 U, and conversion factor, and minimize the plutonium production. The results obtained showed that the homogeneous concept with three different mass proportion zones, the first containing (32% UO 2 -68%ThO 2 ); the second with (24% UO 2 -76% ThO 2 ), and the third with (20% UO 2 -80% ThO 2 ), using 235 U LEU (20 w/o), and corresponding with the 3 enrichment zones of the AP 1000 (4.45 w/o; 3.40 w/o; 2.35 w/o), satisfies the optimization criteria as well as attending all thermal constrain. The concept showed advantages compared with the original UO 2 core, such a lower power density, and keeping the same 18 months of cycle a reduction of B-10 concentration at the soluble poison as well as eliminating in the integral boron poison coated (IFBA).

  1. Neutronic calculations with transport and diffusion computer codes for light water moderated critical with UO2 enriched at 4,75% as fuel

    International Nuclear Information System (INIS)

    Sabundjian, G.; Nakata, H.

    1983-02-01

    The neutronic calculational procedure in a 4,75% w/O enriched UO 2 fueled light water moderated critical assembly was tested, using the transport codes and diffusin code available at the Instituto de Pesquisas Energeticas e Nucleares. The results of the tested codes, LEOPARD, CITHAMMER, LASER, GELS and CITATION, were found to be satisfatory and only a slight advantage is presented by CITHAMMER code. (Author) [pt

  2. Evaluation of Large Grained UO{sub 2} Pellet's Manufacturability in a Commercial Plant and Development of its Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jae; Lee, J. N.; Lee, S. J. [Korea Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)] (and others)

    2007-02-15

    To apply the various methods for grain growth of the fuel pellet to the commercial manufacturing process, which have been developed through the 'Advanced Fuel Pellet Development Program' in KAERI, it is necessary to conduct the performance test on the mass product line of UO{sub 2} pellets. For this purpose there are two main areas to be evaluated: The first area is the manufacturability of the lab-developed methods on large volume equipment (kg-batch) and commercial manufacturing scale. As a second part the material characteristics should satisfy the specification requirements for the UO{sub 2} pellet design. Above all, the applicability tests for the 'Seed' and 'Micro-doping' technology respectively were performed in the KNFC UO{sub 2} pellet commercial product line. These tests focused on the manufacturability on mass production and acceptable properties of the developed samples on demands of UO{sub 2} pellet design criteria. The tests showed very positive results. Judging from all the test results, the Al micro-doping method is likely to be the best way to enhance the grain size of UO{sub 2} pellet in the KNFC commercial product line without installation of any additional equipment. Through a series of additional reproducibility tests and process optimization, the micro-doping technology will be good applied for X-gen fuel pellet in the near future.

  3. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  4. Equi-axed and columnar grain growth in UO2

    International Nuclear Information System (INIS)

    White, R.J.

    1997-01-01

    The grain size of UO 2 is an important parameter in the actual performance and the modelling of the performance of reactor fuel elements. Many processes depend critically on the grain size, for example, the degree of initial densification, the evolution rate of stable fission gases, the release rates of radiologically hazardous fission products, the fission gas bubble swelling rates and the fuel creep. Many of these processes are thermally activated and further impact on the fuel thermal behavior thus creating complex feedback processes. In order to model the fuel performance accurately it is necessary to model the evolution of the fuel grain radius. When UO 2 is irradiated, the fission gases xenon and krypton are created from the fissioning uranium nucleus. At high temperatures these gases diffuse rapidly to the grain boundaries where they nucleate immobile lenticular shaped fission gas bubbles. In this paper the Hillert grain growth model is adapted to account for the inhibiting ''Zener'' effects of grain boundary fission gas porosity on grain boundary mobility and hence grain growth. It is shown that normal grain growth ceases at relatively low levels of irradiation. At high burnups, high temperatures and in regions of high temperature gradients, columnar grain growth is often observed, in some cases extending over more than fifty percent of the fuel radius. The model is further extended to account for the de-pinning of grains in the radial direction by the thermal gradient induced force on a fission gas grain boundary bubble. The observed columnar/equi-axed boundary is in fair agreement with the predictions of an evaporation/condensation model. The grain growth model described in this paper requires information concerning the scale of grain boundary porosity, the local fuel temperature and the local temperature gradient. The model is currently used in the Nuclear Electric version of the ENIGMA fuel modelling code. (author). 14 refs, 3 figs, 1 tab

  5. A Review of Fragmentation Models Relative to Molten UO2 Breakup when Quenched in Sodium Coolant

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Grolmes, M.A.

    1976-01-01

    An important aspect of the fuel-coolant interaction problem relative to liquid metal fast breeder reactor (LMFBR) safety analysis is the fragmentation of molten oxide fuel during contact with liquid sodium coolant. A proper description of the kinetics of such an event requires an understanding of the breakup process and an estimate of the size and dispersion of such finely divided fuel in coolant. In recent years, considerable interest has centered on the problem of determining the nature of such fragmentation. In this paper, both analytic and experimental studies pertaining to such breakup are reviewed in light of recent developments in the understanding of heat transfer and solidification phenomena during quenching of UO 2 in sodium. A more extensive review of this subject can be found in Ref. 1. In conclusion: As discussed, a number of models have been proposed in an attempt to understand the nature of the UO 2 fragmentation process. The four principle mechanisms considered likely to cause such fragmentation (impact forces, boiling, violent gas release, and shell solidification) have been developed to the point where comparative analysis is possible. In addition, recent developments in the understanding of the physics of oxide fuel behavior in sodium coolant (boiling regime criteria, vapor nucleation theories, and prediction of solidification kinetics enable us to asses whether or not the various model assumptions are realistic. In view of this knowledge the following conclusions are made. For the case of hydrodynamic influence on fragmentation, it can be said that although the disruptive forces of impact and viscous drag may contribute to breakup, their effects are not controlling with respect to high temperature materials, including UO 2 -sodium. With respect to the vapor bubble growth and collapse mechanism it was shown that for sodium quenching, where coolant contact may, be expected (as opposed to water), the thermodynamic work potential of the bubble is

  6. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  7. Identification of secondary phases formed during unsaturated reaction of UO2 with EJ-13 water

    International Nuclear Information System (INIS)

    Bates, J.K.; Tani, B.S.; Veleckis, E.

    1989-01-01

    A set of experiments, wherein UO 2 has been contacted by dripping water, has been conducted over a period of 182.5 weeks. The experiments are being conducted to develop procedures to study spent fuel reaction under unsaturated conditions that are expected to exist over the lifetime of the proposed Yucca Mountain repository site. One half of the experiments have been terminated, while one half are ongoing. Analyses of solutions that have dripped from the reacted UO 2 have been performed for all experiments, while the reacted UO 2 surfaces have been examined for the terminated experiments. A pulse of uranium release from the UO 2 solid, combined with the formation of schoepite on the surface of the UO 2 , was observed between 39 and 96 weeks of reaction. Thereafter, the uranium release decreased and a second set of secondary phases was observed. The latter phases incorporated cations from the EJ-13 water and included boltwoodite, uranophane, sklodowskite, compreignacite, and schoepite. The experiments are continuing to monitor whether additional changes in solution chemistry or secondary phase formation occurs. 6 refs., 2 figs., 2 tabs

  8. Measurements of the viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 liquid solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Adding UO 2 produces an increase of viscosity of borax and sodium metaborate. For temperatures below 920 0 C the measurements with the borax-UO 2 solution show a phase separation. Contrary to borax the sodium metaborate solutions indicate a well defined melting point. At temperatures slightly below the melting point a solid phase is formed. The tested sodium-borates-UO 2 mixtures are in liquid form. (DG)

  9. In-pile vapor pressure measurements on UO2 and (U,Pu)O2

    International Nuclear Information System (INIS)

    Breitung, W.; Reil, K.O.

    1985-08-01

    The Effective-Equation-of-State (EEOS) experiments investigated the saturation vapor pressures of ultra pure UO 2 , reactor grade UO 2 , and reactor grade (Usub(.77)Pusub(.23))O2 using newly developed in-pile heating techniques. For enthalpies between 2150 and 3700 kJ/kg (about 4700 to 8500 K) vapor pressures from 1.3 to 54 MPa were measured. The p-h curves of all three fuel types were identical within the experimental uncertainties. An assessment of all published p-h measurements showed that the p-h saturation curve of UO 2 appears now well established by the EEOS and the CEA in-pile data. Using an estimate for the heat capacity of liquid UO 2 , the in-pile results were also compared to earlier p-T measurements. The assessments lead to proposal of two equations. Equation I, which includes a factor-of-2 uncertainty band, covers all p-T equilibrium evaporation measurements. Equation I yields 3817 K for the normal boiling point, 415.4 kJ/mol for the corresponding heat of vaporization, and 1.90 MPa for the vapor pressure at 5000 K. Equations I and II, which represent a parametric form of the p-h curve (T=parameter), also give a good description of the EEOS and CEA in-pile data. Thus the proposed equations allow a consistent representation of both p-T and p-h measurements, they are sufficiently precise for CDA analyses and cover the whole range of interest (3120-8500 K, 1400-3700 kJ/kg). (orig./HP) [de

  10. Tracer surface diffusion on UO2

    International Nuclear Information System (INIS)

    Zhou, S.Y.; Olander, D.R.

    1983-06-01

    Surface diffusion on UO 2 was measured by the spreading of U-234 tracer on the surface of a duplex diffusion couple consisting of wafers of depleted and enriched UO 2 joined by a bond of uranium metal

  11. UO2 pellet and manufacturing method

    International Nuclear Information System (INIS)

    Komada, Kiichi; Nishinaka, Keiji; Adachi, Kazunori; Fujiwara, Shuji.

    1995-01-01

    The present invention concerns an uranium dioxide pellet having a large crystal grain size. The grain size of the pellet is enlarged to increase the distance of an FP gas generated in the crystal grain to reach the grain boundary and, as a result, decrease the releasing speed of the FP gas. A UO 2 powder having a specific surface area of from 5 to 50m 2 /g is used as a starting powder in a step of forming a molding product, and chlorine or a chlorine compound is added in such an amount that the chlorine content in the UO 2 pellet is from 3 to 25ppm, in one of a production step, a molding step or a sintering step for UO 2 powder. With such procedures, a UO 2 pellet having a large crystal grain size can be prepared with good reproducibility. (T.M.)

  12. Simulation of accident-tolerant U{sub 3}Si{sub 2} fuel using FRAPCON code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R., E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    The research on accident-tolerant fuels (ATFs) increased after the Fukushima event. This benefited risk management in nuclear operations. In this investigation, the physical properties of the materials being developed for the ATF program were compared with those of the standard UO{sub 2} - Zr fuel system. The research efforts in innovative fuel design include rigorous characterization of thermal, mechanical, and chemical assessment, with the objectives of making the burnup cycle longer, increasing power density, and improving safety performance. Fuels must reach a high uranium density - above that supported by UO{sub 2} - and possess coating that exhibits better oxidation resistance than Zircaloy. The uranium density and thermal conductivity of ATFs, such as U{sub 3}Si{sub 2}, UN, and UC, is higher than that of UO{sub 2}; their combination with advanced cladding provides possible fuel - cladding options. An ideal combination of fuel and cladding must increase fuel performance in loss-of-coolant scenarios. The disadvantages of U{sub 3}Si{sub 2}, UN, and UC are their swelling rates, which are higher than that of UO{sub 2}. The thermal conductivities of ATFs are approximately four times higher than that of UO2. To prevent the generation of hydrogen due to oxidation of zirconium-based alloys in contact with steam, cladding options, such as ferritic alloys, were studied. It was verified that FeCrAl alloys and SiC provide better response under severe conditions because of their thermophysical properties. The findings of this study indicate that U{sub 3}Si{sub 2} and the FeCrAl fuel cladding concept should replace UO{sub 2} - Zr as the fuel system of choice. (author)

  13. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  14. Automation system for production of UO2 granules

    International Nuclear Information System (INIS)

    Swaminathan, N.; Setty, C.R.P.; Banerjee, P.K.; Husnain, G.; Rao, K.C.M.; Satyanarayana, A.

    1990-01-01

    Precompaction of UO 2 powder into slugs and granulation of the slugs were used to be carried out in two different work centres involving manual loading/handling of powder and compacts which resulted in a very high level of air-borne activity. This has been simplified by integrating both the operations into one work centre on both the precompaction presses. In the present system, UO 2 powder is transferred to feed hopper through the use of high vac. feeder. The powder in metered quantities is fed into the shoe by deploying screw feeder driven by a compact hydraulic motor. The die cavity is filled with just the right quantity of powder to prevent spillage. The compacts are pushed on to the granulator through a set of guides mounted on the die platform. The granulated powder is made to pass through Vibro screen for separating the fines before collecting in a replaceable S.S. Container. This container is mounted on the final compacting press by using job crane installed on the press. The replaceable container handling facility drastically cuts down the manual handling of UO 2 granules and also eliminates spillage, air borne activity. The development and fabrication of hydraulically operated screw feeder, feed shoe, replaceable container and the job crane structure etc., were completely carried out at Nuclear Fuel Complex, Hyderabad. Paper deals in detail the design of the system developed, present operational experiences and further improvements planned. (author). 6 figs

  15. Fabrication, characteristics, and in-pile performance of UO2 pellets prepared from dry route powder

    International Nuclear Information System (INIS)

    Chotard, A.; Ledac, A.; Bernardin, M.

    1991-01-01

    The dry route conversion process of UF 6 to sinterable UO 2 powder has been used in France on a large scale for more than 10 years for the fabrication of PWR fuels. Thus, our fabrication and irradiation experience relates to more than 10,000 tons of fuel. As everyone knows, the dry route conversion process only involves gas-gas and gas-solid reactions which present the advantage of producing very little contaminated wastes and no liquid effluents. Powders obtained by this process are characterized by: - a very high purity, - a low specific surface area (around 2 m 2 /g), therefore a high resistance to spontaneous oxidation, - a good compressibility, - a very high sinterability (.98% T.D.), - a very high reproducibility. This powder also shows a high fineness which leads to very homogeneous blends with additives like pore former, U 3 O 8 or Gd 2 O 3 . On the other hand this fineness requires a granulation step which is actually not a disadvantage since it allows to adjust the granulate size to optimize the filling of press dies and so as to guarantee a good stability of the pellet dimensions and density. This pelletizing process leads to pellets characterized by: - a good thermal stability (0.5% T.D. after 34 hours at 1700degC), - no open porosity, - low H 2 content (0,3 ppm), - an homogeneous microstructure (grain size and porosity). Such characteristics mean that the UO 2 pellets from dry route conversion present an excellent in pile behaviour for high burnup up to 58,000 MWd/MtU in commercial plant, with: - low fission gas release, - good dimensional stability (densification, swelling), of which examples and results of PIE are described in the paper. The qualities of the dry route conversion powder and its flexibility of use make it possible to consider adjustment of the pellet characteristics, mainly: density, grain size and pore size distribution for specific uses or performance upgrade. (orig.)

  16. Measurement of neutron energy spectra of PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through surrounding lead-acryl shield

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Noriaki; Tsujimura, Norio; Nakamura, Takashi (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Momose, Takumaro; Ninomiya, Kazushige; Ishiguro; Hideharu

    1993-12-01

    The energy spectra of neutrons emitted from an aluminum can containing PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through a 35mm thick lead-acryl shield surrounding the can, were measured with the NE-213 organic liquid scintillator, the proton recoil proportional counter and the multi-moderator [sup 3]He spectrometer (Bonner Ball). The measured results were compared with the results calculated by the MORSE-CG Monte Carlo code on the basis of source neutron yields obtained by the ORIGEN-2 code and the source energy spectrum cited from the reference data. The agreement between these two was pretty good. The dose equivalents were then calculated from thus-obtained energy spectra and the flux-to-dose conversion factor and showed good agreement with the data measured with the neutron dose-equivalent counters (rem counters). Since the published data on energy spectrum of mixed oxide fuel are very scarce, these results can be useful as basic data for shielding design study and radiation control of nuclear fuel facilities. (author).

  17. Study of UO{sub 2}F{sub 2} - H{sub 2}O - HF compounds; Etude des composes UO{sub 2}F{sub 2} - H{sub 2}O - HF

    Energy Technology Data Exchange (ETDEWEB)

    Neveu, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study various compounds resulting from the interaction of UO{sub 2}F{sub 2} with H{sub 2}O and HF (gas), and various triple compounds UO{sub 2}F{sub 2} - H{sub 2}O - HF; the conditions of decomposition and the thermodynamic limits of stability are specified. (author) [French] Nous etudions divers composes formes par reaction de UO{sub 2}F{sub 2} avec H{sub 2}O et HF (gaz) et divers composes triples UO{sub 2}F{sub 2} - H{sub 2}O - HF, en essayant de preciser les decompositions et domaines d'exisfence thermodynamiques de ces corps. (auteur)

  18. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  19. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  20. Study and optimization of the composite nuclear fuel with burnable poison UO2/Gd2O3

    International Nuclear Information System (INIS)

    Balestrieri, D.

    1995-09-01

    The studied composite ceramics is a nuclear fuel constituted of a uranium dioxide matrix UO 2 in which big grains (or 'macro-masses') of gadolinium oxide (Gd 2 O 3 ) of 300 ± 100 μm of diameter (mass fraction of 12%) are dispersed. Used as burnable poison (neutron absorbent whose action disappears progressively during the irradiation), gadolinium oxide is the object of a particular attention because some of its properties as the crystal structure, the aptitude to sintering and the thermomechanical behavior have been studied. The aim of this work is to perfect and optimize the process of manufacture of the composite in order to answer to accurate specifications for the density, the shape and the mass fraction of macro-masses. In this framework, it has been necessary to strengthen the Gd 2 O 3 macro-masses by a thermal treatment in order to avoid their deformation during the uniaxial pressing. The influence of this pre-consolidation on the ended microstructure, the aptitude to sintering and the thermal conductivity of the composite have been studied. (O.M.)

  1. Measurement of gamma attenuation coefficients in UO2 and zirconium for self-absorption corrections of burn-up determination

    International Nuclear Information System (INIS)

    Podest, M.; Klima, J.; Stecher, P.; Stecherova, E.

    1978-01-01

    UO 2 pellets from ALUOX fuel elements were used in measuring the absorption coefficient of gamma radiation in UO 2 . The results of measurements of the energy dependence of the linear absorption coefficient (within 622 to 796 keV) and of the dependence on pellet density showed that in the given density interval the absorption coefficient was almost constant. The density interval was chosen to be typical for pellet fuel used in water cooled and water moderated power reactors. The results are also shown of the dependence of the mass absorption coefficient of gamma radiation in Zr on radiation energy and compared with the mass absorption coefficient of Mo; these also showed the independence of the absorption coefficient on density. The linear and mass absorption coefficients of UO 2 are considerably high and correspond approximately to the absorption coefficient of lead. For the measured energy range the variation of absorption coefficient is about 40%, which causes errors in burnup determination. The efficiency was also determined of Ge(Li) detectors for the energy range 0.5 to 1.2 MeV. The determination of the above coefficients was used for improving the gamma fuel scanning technique in determining the activity and burnup of spent fuel elements. (J.P.)

  2. The design of cermet fuel phase fraction and fuel particle diameter

    International Nuclear Information System (INIS)

    Tian Sheng.

    1986-01-01

    UO 2 -Zr-2 is an ideal cermet fuel. As an exemplification with this fuel, this paper emphatically elucidates the irradiation theory of cermet fuel and its application in the design of cermet fuel phase fraction and of fuel particle diameter. From the point of view of the irradiation theory and the consideration for sandwich rolling, the suitable volume fraction of UO 2 phase of 25% and diameter of UO 2 particle of 100 +- 15 μm are selected

  3. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO2 Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-24

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between the pellets and clad of 350°C.

  4. Photochemical synthesis of UO2 nanoparticles

    International Nuclear Information System (INIS)

    Rath, M.C.; Keny, Sangeeta; Naik, D.B.

    2014-01-01

    UO 2 nanoparticles have been recently synthesized by us from aqueous solutions of uranyl nitrate through radiolytic method on high-energy electron beam irradiation. In this study, the synthesis of UO 2 nanoparticles through photochemical method is reported which is a complementary route to radiation chemical method

  5. Effect of technological parameters and microstructure on mechanical strength of UO2 fuel pellets

    International Nuclear Information System (INIS)

    Radford, K.

    1980-01-01

    The effect of various peculiarities of tablet microstructure namely, sammury porosity (tablet density), grain size and pore distribution over sizes on technological parameters, is studied. It is shown that density decrease leads to a fast reduction of UO 2 tablet strength. The maximum effect on strength is produced by pore distribution over sizes, characterized by a median size, and not by the grain size, though a combined effect of those two factors is also observed. The important role of the technology of tablet production manifests itself in the fact that all operations bringing about the increase of pore or grain sizes leads to a reduction of strength. Such factors as powder origin, granule sizes, U 3 O 8 content and the amount of additions do not cause any considerable changes in the strength of tablets. Bend tests under conditions of biaxial loading should be considered as an ideal method of determining fuel tablets strength [ru

  6. Completion of UO{sub 2} pellets production and fuel rods load for the RA-8 critical facility; Finalizacion de la produccion de pastillas y carga de barras combustibles de UO{sub 2} para el conjunto critico RA-8

    Energy Technology Data Exchange (ETDEWEB)

    Marajofsky, Adolfo; Perez, Lidia E; Thern, Gerardo G; Altamirano, Jorge S; Benitez, Ana M; Cardenas, Hugo R; Becerra, Fabian A; Perez, Aldo E; Fuente, Mariano de la [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    The Advanced Fuels Division produced fuel pellets of {sup 235}U with 1.8% and 3.6% enrichment and Zry-4 cladding loads for the RA-8 reactor at Pilcaniyeu Technological Unit. For economical and availability reasons, the powder acquired was initially UO{sub 2} with 3.4% enrichment in {sup 235}U, therefore the {sup 235}U powder with 1.8% enrichment was produced by mechanical mixture. The production of fuel pellets for both enrichments was carried out by cold pressing and sintering processes in reducing atmosphere. The load of Zry-4 claddings was performed manually. The production stages can be divided into setup, qualification and production. This production allows not only to fulfill satisfactorily the new fuel rods supply for the RA-8 reactor but also to count with a new equipment and skilled personnel as well as to meet quality and assurance control methods for future pilot-scale production and even new fuel elements production. (author)

  7. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  8. A comparison of processes for the conversion of uranyl nitrate into ceramic-grade UO/sub 2/

    International Nuclear Information System (INIS)

    Haas, P.A.

    1988-01-01

    The preferred processes for converting uranyl nitrate solutions into UO/sub 2/ for the fabrication of nuclear fuel pellets all involve the thermal decomposition of solid compounds into UO/sub 3/ without melting. Criteria for comparisons are given and used to compare eight conversion processes. Costs for the conversion processes are estimated to be 60 to 108% of the costs for the most commonly used ammonium diuranate precipitation/calcination process

  9. Progress in researches on MOX fuel pellet producing technology in China

    International Nuclear Information System (INIS)

    Hu Xiaodan

    2010-01-01

    Being the key section of nuclear-fuel cycle, the producing technology of MOX(UO 2 -PuO 2 ) fuel had driven to maturity in France, England, Russia, Belgium, etc. MOX fuel had been applied in FBR and LWR successfully in those countries. With the rapidly developing of nuclear-generated power, the MOX fuel for FBR and LWR was active demanded in China. However, the producing technology of MOX fuel developed slowly. During the period of 'the seventh five year's project', MOX fuel pellet was produced by mechanically mixed method and oxalate deposited method, respectively. Parts of cool performance of MOX fuel pellet produced by oxalate deposited method reached the qualification of fuel for FBR. During the period of 'the ninth five year's project' and 'the tenth five year's project', the technical route of producing MOX fuel was determined, and the test line of producing MOX fuel was built preliminarily. In the same time, the producing technology and analyzing technology of MOX fuel pellet by mechanically mixed was studied roundly, and the representative analogue pellet(UO 2 -CeO 2 ) was produced. That settled the supporting technology for the commercial process and research of MOX fuel rod and MOX fuel module. (authors)

  10. The heating of UO_2 kernels in argon gas medium on the physical properties of sintered UO_2 kernels

    International Nuclear Information System (INIS)

    Damunir; Sri Rinanti Susilowati; Ariyani Kusuma Dewi

    2015-01-01

    The heating of UO_2 kernels in argon gas medium on the physical properties of sinter UO_2 kernels was conducted. The heated of the UO_2 kernels was conducted in a sinter reactor of a bed type. The sample used was the UO_2 kernels resulted from the reduction results at 800 °C temperature for 3 hours that had the density of 8.13 g/cm"3; porosity of 0.26; O/U ratio of 2.05; diameter of 1146 μm and sphericity of 1.05. The sample was put into a sinter reactor, then it was vacuumed by flowing the argon gas at 180 mmHg pressure to drain the air from the reactor. After that, the cooling water and argon gas were continuously flowed with the pressure of 5 mPa with 1.5 liter/minutes velocity. The reactor temperature was increased and variated at 1200-1500 °C temperature and for 1-4 hours. The sinters UO_2 kernels resulted from the study were analyzed in term of their physical properties including the density, porosity, diameter, sphericity, and specific surface area. The density was analyzed using pycnometer with CCl_4 solution. The porosity was determined using Haynes equation. The diameters and sphericity were showed using the Dino-lite microscope. The specific surface area was determined using surface area meter Nova-1000. The obtained products showed the the heating of UO_2 kernel in argon gas medium were influenced on the physical properties of sinters UO_2 kernel. The condition of best relatively at 1400 °C temperature and 2 hours time. The product resulted from the study was relatively at its best when heating was conducted at 1400 °C temperature and 2 hours time, produced sinters UO_2 kernel with density of 10.14 gr/ml; porosity of 7 %; diameters of 893 μm; sphericity of 1.07 and specific surface area of 4.68 m"2/g with solidify shrinkage of 22 %. (author)

  11. Separation of UO2 powder

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    This report deals with theoretical approach to separation process and describes the constructed separator with liquid medium. The separator was calibrated and tested with Al 3 O 3 and UO 2 . it has been concluded that it can be used for separation of powders with sufficient accuracy if the separation is performed for a longer period of time. The separated fractions were characterised by microscopic method and the UO 2 fraction additionally by sedimentation method

  12. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  13. Thermal diffusivity measurements between 0 0C and 2000 0C: application to UO2

    International Nuclear Information System (INIS)

    Van Craeynest, J.C.; Weilbacher, J.C.; Lallement, R.

    1969-01-01

    We have built two types of apparatus to measure the thermal diffusivity of ceramic fuels. The first apparatus, based on Angstrom's method, operates between 0 deg. C and 1000 deg. C. Satisfactory results have been obtained for iron, nickel and molybdenum. The other apparatus, based on Cowan's method, operates between 1000 deg. C and 2000 deg. C on thin slabs. The thermal conductivity of UO 2 has been measured from 0 deg. C to 2000 deg. C. There is a good agreement between our results and the well known values for UO 2 . (authors) [fr

  14. Equi-axed and columnar grain growth in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    White, R J [Berkely Technology Centre, Nuclear Electric plc, Berkeley (United Kingdom)

    1997-08-01

    The grain size of UO{sub 2} is an important parameter in the actual performance and the modelling of the performance of reactor fuel elements. Many processes depend critically on the grain size, for example, the degree of initial densification, the evolution rate of stable fission gases, the release rates of radiologically hazardous fission products, the fission gas bubble swelling rates and the fuel creep. Many of these processes are thermally activated and further impact on the fuel thermal behavior thus creating complex feedback processes. In order to model the fuel performance accurately it is necessary to model the evolution of the fuel grain radius. When UO{sub 2} is irradiated, the fission gases xenon and krypton are created from the fissioning uranium nucleus. At high temperatures these gases diffuse rapidly to the grain boundaries where they nucleate immobile lenticular shaped fission gas bubbles. In this paper the Hillert grain growth model is adapted to account for the inhibiting ``Zener`` effects of grain boundary fission gas porosity on grain boundary mobility and hence grain growth. It is shown that normal grain growth ceases at relatively low levels of irradiation. At high burnups, high temperatures and in regions of high temperature gradients, columnar grain growth is often observed, in some cases extending over more than fifty percent of the fuel radius. The model is further extended to account for the de-pinning of grains in the radial direction by the thermal gradient induced force on a fission gas grain boundary bubble. The observed columnar/equi-axed boundary is in fair agreement with the predictions of an evaporation/condensation model. The grain growth model described in this paper requires information concerning the scale of grain boundary porosity, the local fuel temperature and the local temperature gradient. The model is currently used in the Nuclear Electric version of the ENIGMA fuel modelling code. (author). 14 refs, 3 figs, 1 tab.

  15. Sintering of Kernel UO2 for High Temperature Reactor Fuel

    International Nuclear Information System (INIS)

    Sukarsono; Dwi-Heru-Sucahyo; Hidayati; Evi-Hertiviana; Bambang-Sugeng

    2000-01-01

    Sintering investigation of UO 2 gel has been done. The gel was preparedthrough two ways. The first, gel was produced using PVA as additive agent.The second gel was produced using HMTA and Urea as additive agent. From thepreparation of gel, the PVA method better than the urea - HMTA method,because was not necessary the cold temperature for sol preparation and alsowas not necessary the hot temperature for gelation process. After nextprocessing, the sintered gel of gel through PVA, also better than HMTAprocess. (author)

  16. Growth of Gd{sub 2}O{sub 3} coherent layers on UO{sub 2} microsphere surface via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luciana S.; Silva, Edilaine F.; Oliveira, Felipe W.F.; Pereira, Yara S.; Brandão, Alisson F.C.; Santos, Ana Maria M.; Lameiras, Fernando S.; Reis, Sergio C.; Pedrosa, Tércio A.; Santos, Armindo, E-mail: santosa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In this work, we synthesized and characterized UO{sub 2}-Gd{sub 2}O{sub 3} nuclear fuel via three routes, aiming to solve the problems arising from the addition of Gd{sub 2}O{sub 3} in UO{sub 2} matrix. By the industrial route, the mixture of powders (UO{sub 2}, <90 μ and 6 wt% Gd{sub 2}O{sub 3} <10 μm) results in pellets with 91% TD at 1677 °C/H{sub 2}/4 h. By the mixed route, the formation of Gd{sub 2}O{sub 3} coherent layers on UO{sub 2} powder (particles <90 μ) and microsphere (225 μm) surface produced UO{sub 2} - 6 wt% Gd{sub 2}O{sub 3} pellets with 95% (powder; 1625 °C/H{sub 2}/4 hr) and 83% (microsphere; 1677°C/H{sub 2}/4 hr) TD. By the sol-gel route, we obtained UO{sub 2} - 6 wt% Gd{sub 2}O{sub 3} in a deagglomerated (powder; <70 μm) or agglomerated microsphere 232 μm) form whose pellets reached > 97% (powder) and >98% (microsphere) TI) at 1677 °C/H{sub 2}/4h. According to XRD, OM, and SEM/EDS analysis, the referred three routes do not form a complete solid solution of UO{sub 2}-Gd{sub 2}O{sub 3} at the temperatures and time of sintering used; Gd{sub 2}O{sub 3} granule islands are present in the pellets originating from these routes. The obtained results suggest that the topological arrangement and the deficient nanostructuring of UO{sub 2} and Gd{sub 2}O{sub 3} phases, either in the raw material (powder and microsphere) as in their compacts, are the cause of low densification and irregular distribution of Gd{sub 2}O{sub 3} in UO{sub 2} matrix; mixing of U and Gd at the molecular level does not form a solid solution; and the mixed route is a good alternative to the industrial route. (author)

  17. Modelling of pore coarsening in the high burn-up structure of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Tarasov, V.I., E-mail: tarasov@ibrae.ac.ru

    2017-05-15

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO{sub 2} fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  18. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  19. A thermal hydraulic analysis in PWR reactors with UO2 or (U-Th)O2 fuel rods employing a simplified code

    International Nuclear Information System (INIS)

    Santos, Thiago A. dos; Maiorino, José R.; Stefanni, Giovanni L. de

    2017-01-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O 2 . For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O 2 .The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO 2 was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  20. Evaluation of sintering effects on SiC-incorporated UO{sub 2} kernels under Ar and Ar–4%H{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Chinthaka M., E-mail: silvagw@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee TN 37831-6223 (United States); Materials Science and Engineering, The University of Tennessee Knoxville, TN 37996-2100, United States. (United States); Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee TN 37831-6223 (United States)

    2013-11-15

    Silicon carbide (SiC) is suggested as an oxygen getter in UO{sub 2} kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO{sub 2} fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H{sub 2} sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO{sub 2} oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO{sub 2} to form UC. The second process was direct UO{sub 2} reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H{sub 2}, but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content.

  1. The effect of hydrogen and gamma radiation on the oxidation of UO2 in 0.1 mol*(dm)-3 NaCl solution

    International Nuclear Information System (INIS)

    King, F.; Quinn, M.J.; Miller, N.H.

    1999-11-01

    High partial pressures of H 2 may develop in an underground nuclear fuel waste disposal vault as a result of radiolysis of groundwater or corrosion of steel container components. The presence of H 2 could suppress the oxidation and subsequent dissolution of used fuel by creating reducing conditions near the fuel surface. A series of experiments has been performed to determine the extent of oxidation of UO 2 due to γ-radiolysis in the presence of H 2 . A H 2 partial pressure of 5 MPa was used to simulate the maximum possible pressure of H 2 in a disposal vault located at a depth of 500 m. Experiments were also performed with an Ar overpressure for comparison. Deaerated 0.1 mol·(dm) -3 NaCl was used to simulate the groundwater. The extent of oxidation was determined by monitoring the corrosion potential of UO 2 electrodes, by cathodically stripping the oxidized layer from the electrode at the end of the test, and by determining the ratio of U(VI) to U(IV) species on the surface of a UO 2 disc exposed to the same solution by X-ray photoelectron spectroscopy. The presence of H 2 is found to have two effects on the oxidation of UO 2 in the presence of y-radiation. Not only does H 2 prevent oxidation of the UO 2 by radiolytic oxidants but it also produces more reducing conditions than those observed with either H 2 or Ar atmospheres in the absence of irradiation. It is suggested that radiolytically produced reductants participate in homogeneous reactions in solution with radiolytic oxidants and in heterogeneous reactions on the UO 2 surface, most likely at reactive grain-boundary sites

  2. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. VII. The systems Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I; Schittenhelm, H J [Tuebingen Univ. (F.R. Germany). Institut fuer Anorganische Chemie

    1976-05-01

    The ordered perovskite Ba/sub 2/CaUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/, respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  3. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. IX. The systems Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I [Tuebingen Univ. (F.R. Germany). Inst. fuer Anorganische Chemie I

    1976-07-01

    The ordered perovskite Ba/sub 2/SrUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/ respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  4. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  5. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  6. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  7. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  8. Microstructure study of AUC and UO2

    International Nuclear Information System (INIS)

    Pan Ying; Gao Dihua; Lu Huaichang

    1992-01-01

    The microstructures of AUC, UO 2 powder and pellets were investigated with metallo-scope, SEM, TEM, XRD, and image analyzer. The influence of the reduction conditions of AUC on the microstructures of UO 2 powder and pellet were studied

  9. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART I. EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Warzek, F. G.; Johnston, H. F.

    1963-11-15

    The following critical and subcritical measurements were made in the EVESR core: reactivity with no control rods; full core reactivity with control rods; and power distribution in the full core with control rods. The fuel was UO/ sub 2/, and the elements were of the superheating type. The reactor was light- water-cooled and -moderated. (T.F.H.)

  10. Results of the irradiation of mixed UO{sub 2} - PuO{sub 2} oxide fuel elements; Resultats d'irradiation d'elements combustibles en oxyde mixte UO{sub 2} - PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H; Mustelier, J P; Bloch, J; Ezran, L; Hayet, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO{sub 2} containing about 10 per cent of PuO{sub 2}. The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm{sup 3} and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and {gamma}-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [French] Afin d'etudier le comportement des elements combustibles destines a la premiere charge du reacteur Rapsodie, une premiere serie de onze aiguilles a ete irradiee dans le reacteur EL3 et examinee apres irradiation. Ces aiguilles (aux caracteristiques geometriques tres proches de celles des aiguilles definitives) etaient constituees d'un empilement de pastilles frittees en oxyde mixte UO{sub 2} a 10 pour cent environ de PuO{sub 2}, dont la densite etait comprise entre 85 et 97 pour cent de la densite theorique. Le jeu diametral entre l'oxyde et la gaine en acier

  11. Prediction of the UO/sub 2/ fission gas release data of Bellamy and Rich using a model recently developed by Combustion Engineering

    International Nuclear Information System (INIS)

    Freeburn, H.R.; Pati, S.R.

    1983-01-01

    The trend in the light water reactor industry to higher discharge burnups of UO/sub 2/ fuel rods has initiated the modification of existing fuel rod models to better account for high burnup effects. The degree to which fission gas release from UO/sub 2/ fuel is enhanced at higher burnup is being addressed in the process. Fission gas release modeling should include the separation of the individual effects of thermal diffusion and any burnup enhancement on the release. Although some modelers have interpreted the Bellamy and Rich data on fission gas release from UO/sub 2/ fuel in this fashion, they have assumed that below about 1250 0 C the gas release is not temperature-dependent, and this has led them to predict a very strong burnup enhancement of gas release above 20 MWd/kgU. More recent data, however, suggest that an appreciable amount of fission gas is released by a thermal diffusion mechanism at even lower temperatures and will add to the fission gas released due to the temperature-independent mechanisms of knockout and recoil

  12. Method of manufacturing UO2 pellet

    International Nuclear Information System (INIS)

    Harada, Yuhei; Asami, Yasuji.

    1989-01-01

    The present invention concerns a method of manufacturing UO 2 pellets with less FP gas release and having fine structure for moderating PCMI. At first, oxide nuclear fuel pellets are placed in a sintering furnance and preliminarily sintered in a H 2 gas atmosphere at 1400 - 1600 degC. In this step, sintering is progressed to about 90 % TD, by which closed cells are formed substantially completely. Then, when sintering is further advanced at an identical temperature in a CO 2 gas atmosphere, growth of the crystal grains is advanced at the central portion of the pellets. Then, reductive heat treatment is applied at the identical temperature in a H 2 gas atmosphere. As a result, pellets having a fine double structure with the larger grain size region being in the central portion and smaller grain size region in the outer periphery can be obtained. (I.J.)

  13. Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater

    Science.gov (United States)

    Odorowski, Mélina; Jegou, Christophe; De Windt, Laurent; Broudic, Véronique; Jouan, Gauthier; Peuget, Sylvain; Martin, Christelle

    2017-12-01

    In the hypothesis of direct disposal of spent fuel in a geological nuclear waste repository, interactions between the fuel mainly composed of UO2 and its environment must be understood. The dissolution rate of the UO2 matrix, which depends on the redox conditions on the fuel surface, will have a major impact on the release of radionuclides into the environment. The reducing conditions expected for a geological disposal situation would appear to be favorable as regards the solubility and stability of the UO2 matrix, but may be disturbed on the surface of irradiated fuel. In particular, the local redox conditions will result from a competition between the radiolysis effects of water under alpha irradiation (simultaneously producing oxidizing species like H2O2, hydrogen peroxide, and reducing species like H2, hydrogen) and those of redox active species from the environment. In particular, Fe2+, a strongly reducing aqueous species coming from the corrosion of the iron canister or from the host rock, could influence the dissolution of the fuel matrix. The effect of iron on the oxidative dissolution of UO2 was thus investigated under the conditions of the French disposal site, a Callovian-Oxfordian clay formation chosen by the French National Radioactive Waste Management Agency (Andra), here tested under alpha irradiation. For this study, UO2 fuel pellets doped with a radioactive alpha emitter (238/239Pu) were leached in synthetic Callovian-Oxfordian groundwater (representative of the French waste disposal site groundwater) in the presence of a metallic iron foil to simulate the steel canister. The pellets had varying levels of alpha activity, in order to modulate the concentrations of species produced by water radiolysis on the surface and to simulate the activity of aged spent fuel after 50 and 10,000 years of alpha radioactivity decay. The experimental data showed that whatever the sample alpha radioactivity, the presence of iron inhibits the oxidizing dissolution of

  14. Oxidation of UO2 at 400 to 1000 degrees C in air and its relevance to fission product release

    International Nuclear Information System (INIS)

    McCracken, D.R.

    1985-07-01

    Currently there is great interest in the behaviour of UO 2 under oxidizing conditions because irradiated uranium dioxide fuel can conceivably be exposed to a hot oxidizing atmosphere as a result of accidents. The temperature range covered in this paper is 400 to 1000 degrees C. At these high temperatures, UO 2 in air can oxidize rapidly to U 3 O 8 via U 3 O 7 and/or U 4 O 9 . The accompanying volume increase and corresponding stresses lead to fragmentation of the fuel pellets. The purpose of this work was to investigate the dependence of UO 2 oxidation on temperature, rate of air supply and residence time at temperature; to determine the rate controlling steps and rate of oxygen penetration; and to characterize the oxidation products and size of fragments. In addition, detailed metallography was related to X-ray diffraction studies of the oxidized UO 2 to facilitate future study of irradiated fuel, which is easier to do by metallography in hot-cells than by X-ray diffraction. Samples were heated in argon, then once at temperature they were exposed to air at a controlled flow-rate. Studies of the oxidation of unirradiated UO 2 pellets in air show two distinct types of oxidation with a change in mechanism at 600-700 degrees C. At temperatures ≤ 600 degrees C fragmentation accompanies the formation of U 3 O 8 while at T ≥ 800 degrees C, rapid grain growth occurs. In the first temperature region, volatile fission product releases are small, while in the second region, 100% release can be correlated with U 3 O 8 formation. In the first region, only the grain boundary inventory is released while in the other, 100% of the Xe, Kr, Ru, Sb, Cs and I are released. It appears that, within the error of present measurements, burnup does not affect rates of fission product release and oxidation in air at 400 to 1000 degrees C, so that oxidation rate data gathered using unirradiated pellets can be applied to irradiated fuel. 33 refs

  15. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    Science.gov (United States)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  16. Fuel Coolant Interaction Results in the Fuel Pins Melting Facility (PMF)

    International Nuclear Information System (INIS)

    Urunashi, H.; Hirabayashi, T.; Mizuta, H.

    1976-01-01

    The experimental work related to FCI at PNC has been concentrated into the molten UO 2 dropping test. After the completion of molten UO 2 drop experiments, emphasis is directed toward the FCI phenomena of the initiating conditions of the accident under the more realistic geometry. The experiments are conducted within the Pin Melt Facility (PMF) in which UO 2 pellets clad in stainless steel are melted by direct electric heating under the stagnant or flowing sodium. The primary objectives of the PMF test are to: - obtain detail experimental results (heat-input, clad temperature, sodium temperature, etc.) on the FCI under TOP and LOF conditions; - observe the movement of the fuel before and after the pin failure by the X-ray cinematography; - observe the degree of coherence of the pin failures; - accumulate the experience of the FCI experiment which is applicable to the subassembly or more larger scale; - simulate the fuel behavior of the in-pile test (GETR, CABRI). The preliminary conclusions can be drawn from the foregoing observations are as follows: - Although the fuel motion and FCI of the closed test section appeared to be different from those of the open test section, the conclusion of the effect of the inside pressure on FCI needs more experimental data. - The best heating condition of the UO 2 pellet for the FCI study with PMF is established as 40 w/cm at the steady state and 1680 J/g of UO 2 during the additional transient state. The total energy deposition of the UO 2 pellet is thus estimated in the range of 2400 J/g of UO 2 -2600 J/g of UO 2 . The analytical model of the fuel pin failure and the subsequent FCI are suggested to count the following parameters: - The fuel pin failure due to the fuel vaporization due to the rapid energy deposition; - Molten fuel, clad and sodium interaction in the fuel pin after the pin failure; - The upward flow of molten fuel with molten clad or vapor sodium, as well as the slumping of molten fuel

  17. The effect of U3O-8 addition on the UO2 pellet

    International Nuclear Information System (INIS)

    Indrati, Y.T.; Syarif, D. G.; Handayani, A.

    1998-01-01

    The purpose of varied U 3 O 8 addition on the UO 2 pellet fabrication is to from 1-3 mu pores. The green pellets, compacted with 3 ton/cm 2 , are a mixture powder of UO 2 , TiO 2 (0.1% weight) and varied U 3 O 8 (0-12.5% weight). The green pellets were presintered by H2 atmosphere. The presintered pellets were put on the ceramic crucibles and than those were put on the SS 316 tube with argon atmosphere. The 1400 o C sintering was hold with the soaking time 3 hr and the same rate of heating and cooling 150 o C/hr. The UO 2 pellet with 5% (weight) U 3 O 8 addition has 95.17% of theoretic density and 548.4 ±6.57 VH. Based on the identification of microstructure of pellet, it is not acceptable for nuclear fuel although pellet has 10.02 mu on grain size and 1.3 mu on closed pore size. By the diffractometer X-ray, crystal structure of pellet is face centered cubic (FCC) with the O/U ratio is 2.08

  18. UO2/magnetite concrete interaction and penetration study

    International Nuclear Information System (INIS)

    Farhadieh, R.; Purviance, R.; Carlson, N.

    1983-01-01

    The concrete structure represents a line of defense in safety assessment of containment integrity and possible minimization of radiological releases following a reactor accident. The penetration study of hot UO 2 particles into limestone concrete and basalt concrete highlighted some major differences between the two concretes. These included penetration rate, melting and dissolution phenomena, released gases, pressurization of the UO 2 chamber, and characteristics of post-test concrete. The present study focuses on the phenomena associated with core debris interaction with and penetration into magnetite type concrete. The real material experiment was carried out with UO 2 particles and magnetite concrete in a test apparatus similar to the one utilized in the UO 2 /limestone experiment

  19. The dissolution of unirradiated UO2 fuel pellets under simulated disposal conditions

    International Nuclear Information System (INIS)

    Ollila, K.; Leino-Forsman, H.

    1993-03-01

    The dissolution behaviour of unirradiated UO 2 pellets was studied as a function of water composition under oxidizing and reducing conditions at 25 deg C. The waters included deionized water as the reference water, sodium bicarbonate solutions with varying bicarbonate content, and two different synthetic groundwaters. The release of uranium was measured during static batch dissolution experiments of long duration (3-4 years)

  20. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  1. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  2. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  3. Irradiation effects on fuels for space reactors

    International Nuclear Information System (INIS)

    Ranken, W.A.; Cronenberg, A.W.

    1984-01-01

    A review of irradiation-induced swelling and gas release experience is presented here for the three principal fuels UO 2 , UC, and UN. The primary advantage of UC and UN over UO 2 is higher thermal conductivity and attendant lower fuel temperature at equivalent pellet diameter and power density, while UO 2 offers the distinct benefit of well-known irradiation performance. Irradiation test results indicate that at equivalent burnup, temperature, and porosity conditions, UC experiences higher swelling than UO 2 or UN. Fission gas swelling becomes important at fuel temperatures above 1320 K for UC, and at somewhat higher temperatures for UO 2 and UN. Evidence exists that at equivalent fuel temperatures and burnups, high density UO 2 and UN experience comparable swelling behavior; however, differences in thermal conductivity influence overall irradiation performance. The low conductivity of UO 2 results in higher thermal gradients which contribute to fuel microcracking and gas release. As a result UO 2 exhibits higher fractional gas release than UN, at least or burnups up to about 3%

  4. Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Van Khoai, Do [Micro-Emission Ltd., 1-1 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of)

    2016-06-15

    Uranium dioxide (UO{sub 2}) powder has been widely used to prepare fuel pellets for commercial light water nuclear reactors. Among typical characteristics of the powder, specific surface area (SSA) is one of the most important parameter that determines the sintering ability of UO{sub 2} powder. This paper built up a mathematical model describing the effect of the fabrication parameters on SSA of UO{sub 2} powders. To the best of our knowledge, the Brandon model is used for the first time to describe the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and SSA of the obtained UO{sub 2} powder product. The proposed model was tested with Wilcoxon's rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of UO{sub 2} powder.

  5. Effect of sintering condition on the grain growth of Cr{sub 2}O{sub 3} doped UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Kim, Keon Sik; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, Cr{sub 2}O{sub 3} doped UO{sub 2} pellets were fabricated by two-step sintering process. The grain growth of pellet is related to dwell time in a hydrogen atmosphere during sintering process. A large grain pellet can minimize fission gas release and deform easily at an elevated temperature. So, the recent development of nuclear fuel pellet materials is mainly focused on the large grain pellets. The various methods of fabrication processes for large grain UO{sub 2} pellets have been investigated extensively. Those parameters include the additives, sintering temperature, sintering time, sintering atmosphere, and so on. Cr-doped UO{sub 2} pellet is one of the promising candidates for PCI remedy. It was shown that the grain size and softness of UO{sub 2} pellets could be enhanced by doping Cr or Cr compound in UO{sub 2}. Various in-pile test results revealed that the PCI properties were enhanced considerably [4]. In the sintering process of Cr-doped UO{sub 2} pellet, it was known that tight adjusting of sintering atmosphere is most important to achieve large grain pellet. The relevant research revealed that the doped Cr{sub 2}O{sub 3} became liquid phase in optimized oxygen potential and that liquid phase promoted the grain growth. Recently, KAERI has shown that grain size of Cr-doped UO{sub 2} pellet could be more enlarged by adjusting process parameters. In this paper, we introduced a sintering process which can form a liquid phase for a large grain growth in Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. The study on the effect of dwell time in H{sub 2} atmosphere during sintering process on the grain structure of sintered pellet is also a part of this work. In order to obtain large grain in pellet, it is important to increase amount of Cr that can form a liquid phase for grain growth by increasing dwell time in a hydrogen atmosphere during sintering process.

  6. Modelling of 28-element UO2 flux-map critical experiments in ZED-2 using WIMS9A/PANTHER

    International Nuclear Information System (INIS)

    Sissaoui, M.T.; Kozier, K.S.; Labrie, J.P.

    2011-01-01

    The accuracy of WIMS9A/PANTHER in modelling D 2 O-moderated, and H 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters has been demonstrated using 28-element UO 2 flux-map critical experiments in the ZED-2 facility. Presented here are the predicted k eff values, coolant void reactivity biases, and the radial and axial flux shapes.

  7. Fuel-pellet-fabrication experience using direct-denitration-recycle-PuO2-coprecipitated mixed oxide

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1980-01-01

    The fuel pellet fabrication experience described in this paper involved three different feed powders: coprecipitated PuO 2 -UO 2 which was flash calcined in a fluidized bed; co-direct denitrated PuO 2 -UO 2 ; and direct denitrated LWR recycle PuO 2 which was mechanically blended with natural UO 2 . The objectives of this paper are twofold; first, to demonstrate that acceptable quality fuel pellets were fabricated using feed powders manufactured by processes other than the conventional oxalate process; and second, to highlight some pellet fabrication difficulties experienced with the direct denitration LWR recycle PuO 2 feed material, which did not produce acceptable pellets. The direct denitration LWR recycle PuO 2 was available as a by-product and was not specifically produced for use in fuel pellet fabrication. Nevertheless, its characteristics and pellet fabrication behavior serve to re-emphasize the importance of continued process development involving both powder suppliers and fuel fabricators to close the fuel cycle in the future

  8. Chemical and spectrochemical production analysis of ThO2 and 233UO2-ThO2 pellets for the light water breeder reactor core for Shippingport (LWBR development program)

    International Nuclear Information System (INIS)

    Bukowski, J.F.; Hollis, E.D.

    1975-06-01

    The Bettis Atomic Power Laboratory has utilized wet chemical, emission spectrochemical, and mass spectrometric analytical techniques for the production analysis of the ThO 2 and 233 UO 2 -ThO 2 (1 to 6 wt percent 233 UO 2 ) pellets for the Light Water Breeder Reactor (LWBR) core for Shippingport. Proof of the fuel breeding concept necessitates measurement of precise and accurate chemical characterization of all fuel pellets before core life. Chemistry's efforts toward this goal are presented in three main sections: (1) general discussions relating the chemical requirements for ThO 2 and 233 UO 2 -ThO 2 core materials to the analytical capabilities, (2) technical discussions of the chemical and instrumental technology applied for the analysis of aluminum, boron, calcium, carbon, chloride plus bromide, chromium, cobalt, copper, dysprosium, europium, fluoride, gadolinium, iron, magnesium, manganese, mercury, molybdenum, nickel, nitrogen, samarium, silicon, titanium, vanadium, thorium, and uranium (total, trace, and uranium VI), and (3) a formal presentation of the analytical procedures as applied to the LWBR Development Program. (U.S.)

  9. Application of a powder sintering-extrusion process to the fabrication of U-Al and UO{sub 2}-stainless steel dispersed fuel elements; Application de frittage-filage de poudres a la fabrication d'elements combustibles disperses U-Al et UO{sub 2} inox

    Energy Technology Data Exchange (ETDEWEB)

    Meny, L.; Buffet, J.; Sauve, Ch.

    1962-07-01

    Within the scope of an investigation of dispersion-type fuel elements, the fabrication by extrusion and sintering of cladded bars and tubes with core of either uranium-aluminum or uranium oxide-stainless steel fuel was investigated. The powder mixtures are first pre-densified in a 'pot', whereupon the sheathed compact is degassed and sealed in a vacuum by electron-beam welding. The subsequent co-extrusion is performed at low temperature and with slow pressure application in the case of U-Al dispersions; and at high temperature with rapid pressure application, using the Ugine-Sejournet process, in the case of UO{sub 2}-stainless steel dispersions. The procedure permits the production of practically fully dense bars and tubes more than 1 m. in length and 10-30 mm in diameter, the wall thickness of the tubes ranging from 2-5 mm. The physical and mechanical characteristics of the dispersion, as well as the mechanical characteristics of the cladded elements, were investigated as a function of the uranium content and the temperature. (authors) [French] Dans le cadre de l'etude des elements combustibles disperses, nous avons etudie la fabrication par frittage-filage de barreaux et de tubes gaines renfermant un noyau combustible soit en uranium-aluminium, soit en UO{sub 2}-inox. Les melanges de poudres sont comprimes dans un 'pot'. La billette composite ainsi obtenue est degazee, fermee et soudee sous vide par bombardement electronique. Le cofilage est ensuite effectue, a basse temperature et sur presse lente pour les disperses U-Al, a haute temperature et sur presse rapide par le procede Ugine-Sejournet pour les disperses UO{sub 2}-inox. Nous avons ainsi obtenu des barres et des tubes de porosite pratiquement nulle de plus de 1 metre de longueur et de 10 a 30 mm de diametre; les epaisseurs des tubes sont comprises entre 2 et 5 mm. Les proprietes physiques et mecaniques des disperses ainsi que les proprietes mecaniques des ensembles gaines, ont ete etudiees en fonction de

  10. The long-term effect of hydrogen on the UO2 spent fuel stability under anoxic conditions: Findings from the Cigar Lake Natural Analogue study

    International Nuclear Information System (INIS)

    Bruno, Jordi; Spahiu, Kastriot

    2014-01-01

    Highlights: • We have reviewed current information on the effect of hydrogen in UO 2 spent fuel. • We explored the radiolytic models generated in the Cigar Lake project. • The Cigar Lake data supports that H 2 reduces alpha radiolysis oxidants. • The results indicate the hydrogen effect is present after 100.000 years deposition. - Abstract: The present paradigm on UO 2 spent fuel stability under anoxic conditions assumes that the potential oxidative alteration of the matrix is suppressed in the presence of the hydrogen generated by the anoxic corrosion of iron by water. The observations from the Cigar Lake Natural Analogue project indicated the long-term stability of the uraninite ore under anoxic conditions and with substantial hydrogen generation. The radiolytic models developed in the analogue project have been used to test some of the hypothesis concerning the activation of hydrogen on the uranium(IV) oxide surface. Suggestions to pathways of radiolytic oxidant consumption by other processes than uranium dioxide or sulphide oxidation are presented. The stability of the ore body for billions of year indicates the presence of processes which neutralise radiolytic oxidants and one major factor may be the presence of dissolved hydrogen in the groundwaters contacting the ore body. The results from this test would indicate that hydrogen is activated on the surface of the Cigar Lake uraninites by alpha radiation consuming the generated radiolytic oxidants

  11. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  12. Simulation of High Burnup Structure in UO2 Using Potts Model

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Koo, Yang Hyun; Lee, Byung Ho

    2009-01-01

    The evolution of a high burnup structure (HBS) in a light water reactor (LWR) UO 2 fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the UO 2 matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels

  13. The bare uranyl(2+) ion, UO22+

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Heinemann, C.; Marcalo, J.; Pires de Matos, A.; Schwarz, H.

    1996-01-01

    Ion-molecule reactions between U 2+ and oxygen donors or charge-stripping collisions between singly charged UO 2 2 ions and O 2 collision partners generate uranyl(2+) ions in the gas phase. These do not readily dissociate into singly charged fragments. The standard enthalpy of formation for UO 2 2+ is estimated to be 371±60 kcal mol -1 , in accord with the results of ab initio calculations. (orig.)

  14. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  15. Hydrogen and fuel cell activity report - France 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2010. After having noticed some initiatives (the Grenelle II law, an investment package, the new role of the CEA, the new role of the IFP), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure (the HyPaC platform), regional initiatives and local actions, colloquiums and meetings in France and in the world, research projects (photo-synthesis as a new electric energy source), a technical-economic investigation (HyFrance3), demonstrator projects (the Althytude project by GDF and Suez, the Plathee hybrid locomotive by the SNCF, the H2E project, the Zero CO 2 sailing boat, and the Myrte project), educational applications, activity in small and medium-sized enterprises (CETH, SAGIM, HYCAN, McPhy, N-GHY).

  16. LPG fuels in France in 1997

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This short note gives a statement of the sales of butane, propane and LPG fuels in France during the year 1997. Details are given for conditioned butane and propane products, cylinders and fixed reservoirs. (J.S.)

  17. Dissolution of intact UO2 pellet in batch and rotary dissolver conditions

    International Nuclear Information System (INIS)

    Jayendra Kumar Gelatar; Bijendra Kumar; Sampath, M.; Shekhar Kumar; Kamachi Mudali, U.; Natarajan, R.

    2015-01-01

    Comparative dissolution of intact un-irradiated UO 2 pellet of PHWR fuel dimensions was performed in batch and dynamic rotary dissolver conditions in aqueous nitric acid solutions at elevated temperatures. The extent of dissolution was estimated by determining the uranium concentration of the resulting aqueous solution. It was observed that rate of dissolution was much faster in dynamic conditions as compared to static batch conditions. (author)

  18. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  19. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  20. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  1. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Portal, R.; L'Epine, P. de

    1996-01-01

    The spent fuel arisings and storage capacities, the interface between fuel storage and transportation activities, the spent fuel storage technology, the reprocessing and recycling industrial activities in France are described in the paper. (author). 6 figs, 8 tabs

  2. Results of the irradiation of mixed UO{sub 2} - PuO{sub 2} oxide fuel elements; Resultats d'irradiation d'elements combustibles en oxyde mixte UO{sub 2} - PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO{sub 2} containing about 10 per cent of PuO{sub 2}. The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm{sup 3} and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and {gamma}-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [French] Afin d'etudier le comportement des elements combustibles destines a la premiere charge du reacteur Rapsodie, une premiere serie de onze aiguilles a ete irradiee dans le reacteur EL3 et examinee apres irradiation. Ces aiguilles (aux caracteristiques geometriques tres proches de celles des aiguilles definitives) etaient constituees d'un empilement de pastilles frittees en oxyde mixte UO{sub 2} a 10 pour cent environ de PuO{sub 2}, dont la densite etait comprise entre 85 et 97 pour cent de la densite theorique. Le jeu diametral entre l'oxyde et la

  3. Simulation of LOF accidents with directly electrical heated UO2 pins

    International Nuclear Information System (INIS)

    Alexas, A.

    1976-01-01

    The behavior of directly electrical heated UO 2 pins has been investigated under loss of coolant conditions. Two types of hypothetical accidents have been simulated, first, a LOF accident without power excursion (LOF accident) and second, a LOF accident with subsequent power excursion (LOF-TOP accident). A high-speed film shows the sequence of events for two characteristic experiments. In consequence of the high-speed film analysis as well as the metallographical evaluation statements are given in respect to the cladding meltdown process, the fuel melt fraction and the energy input from the beginning of a power transient to the beginning of the molten fuel ejections

  4. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  5. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Deramaix, P.

    2005-01-01

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O 2 fuel pellets (MOX), fabricated to a large extent according to UO 2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO 2 . The industrial processes presently in use or planned are all based on a mechanical blending of UO 2 and PuO 2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO 2 , PuO 2 ) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO 2 containing about 30% PuO 2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO 2 to obtain the specified Pu content. After mixing, the (U, Pu)O 2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H 2 . Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  6. The preparation of UO2 ceramic microspheres with an advanced process (TGU)

    International Nuclear Information System (INIS)

    Xu Zhichang; Tang Yaping; Zhang Fuhong

    1994-04-01

    The UO 2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). An advanced process for preparation of UO 2 ceramic microspheres has been developed at Institute of Nuclear Energy Technology, Tsinghua University. This process known as total gelation process of uranium (TGU), is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), and has been selected as the production process. The result of batch test is described. Accordance with the requirements of quality control (QC) and quality assurance (QA), the stabilization of operating parameters and product quality is tested., The results on batch test have shown that as well as all of the operated parameters are fixed, then the product quality can be stable as well as the product specification can be met. When the colloidal flow rate and the vibration frequency of nozzle are fixed, the kernel's size is also fixed. When the sintering temperature and time are fixed, the product density is also fixed. When the hydrogen atmosphere is used, the O/U ratio is very near to stoichiometry. The performance and structure of UO 2 ceramic microspheres are also given

  7. A charge-optimized many-body potential for the U-UO2-O2 system

    Science.gov (United States)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  8. Computational simulation of the microstructure of irradiation damaged regions for the plate type fuel of UO2 microspheres dispersed in stainless steel matrix

    International Nuclear Information System (INIS)

    Reis, S.C. dos; Lage, A.F.; Braga, D.; Ferraz, W.B.

    2006-01-01

    Plate type fuel elements have high efficiency of thermal transference what benefits the heat flux with high rates of power output. In reactor cores, fuel elements, in general, are subject to a high neutrons flux, high working temperatures, severe corrosion conditions, direct interference of fission products that result from nuclear reactions and radiation interaction-matter. For plate type fuels composed of ceramic particles dispersed in metallic matrix, one can observe the damage regions that arise due to the interaction fission products in the metallic matrix. Aiming at evaluating the extension of the damage regions in function of the particles and its diameters, in this paper, computational geometric simulations structure of plate type fuel cores, composed of UO 2 microspheres dispersed in stainless steel in several fractions of volume and diameters were carried out. The results of the simulations were exported to AutoCAD R where it was possible its visualization and analysis. (author)

  9. Mechanism for transient migration of xenon in UO2

    International Nuclear Information System (INIS)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-01-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO 2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  10. Studi On Oxidation State Of U In Ba2NdUO6

    International Nuclear Information System (INIS)

    Firman Windarto, Hendri

    1996-01-01

    Ba 2 NdUO 6 is not of the important compounds that is formed from a solidification process for high level liquid waste using super high temperature method Ba 2 NdUO 6 has ordered perovskite structure. The objective of this study is to investigate oxidation state of U in Ba 2 NdUO 6 . The properties of Ba 2 NdUO 6 were observed by using Faraday-type torsion magnetometer and X-ray Photoelectron Spectrometer (XPS). The magnetic susceptibility measured in the temperature range of 4K to room temperature showed that the Ba 2 NdUO 6 is paramagnetism that obeys the Curie-Weiss law. The effective moment of Ba 2 NdUO 6 is 3.04 μB. The results of xPs spectrum showed that the peaks of U4f for Ba 2 NdUO 6 appeared exactly between binding energy of UO 2 and UO 3 . It can be concluded that Ba 2 NdUO 6 has binding energy peaks corresponding to pentavalent uranium

  11. A thermal hydraulic analysis in PWR reactors with UO{sub 2} or (U-Th)O{sub 2} fuel rods employing a simplified code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thiago A. dos; Maiorino, José R., E-mail: thiago.santos@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil); Stefanni, Giovanni L. de, E-mail: giovanni.stefanni@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O{sub 2}. For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O{sub 2}.The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO{sub 2} was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  12. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Kaplan, P.

    1998-01-01

    The 70's oil crisis has shown that the energy resource dependence of France was too high. The decision was made by the French government to accelerate the implementation of an ambitious nuclear power programme, based on Light Water Reactors, and to do the utmost to reuse the energy bearing material included in the spent fuel. The French nuclear policy has not changed since then. This paper is aimed at describing the present status of implementation of this policy, and the associated prospects. It will first sum up the presentation made in 1995 to the Regular Advisory Group of IAEA on Spent Fuel Management. Then, it will update the situation of the main actors of the spent fuel management policy in France: EDF, the national utility; COGEMA, world leader on almost all the steps of the fuel cycle; CEA, the national research body in the field of nuclear science and its applications; ANDRA, national body in charge of the management of the waste arising from the nuclear activities in France, final disposal included. (author)

  13. Eh and fission product solubilities: two factors in the leaching of UO2

    International Nuclear Information System (INIS)

    Ogard, A.E.; Duffy, C.J.

    1981-01-01

    Eh was found to have a large effect on the dissolution of UO 2 in water at pH 4. As was estimated from thermodynamic data, the solubility was found to decrease as the oxygen fugacity, and therefore the Eh of the water, was decreased. Some of the rare earths and other actinides such as europium, cerium, americium, and plutonium released during the leaching of a spent fuel element behaved differently. These elements were not affected to any large extent by the variation in Eh of these experiments. It has been postulated that these elements reached their solubility limits and precipitated as the spent fuel was leached. 2 figures, 2 tables

  14. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  15. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.; Mudiyanselage, Kumudu; Burrell, Anthony K; Sadowski, Jerzy T.; Idriss, Hicham

    2015-01-01

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  16. French LEU fuel for research reactor with emphasis on the Osiris experience of core conversion and reactor operation with the new fuel

    International Nuclear Information System (INIS)

    Cerles, J.-M.

    1981-09-01

    One of the various activities carried out in France concerned with the design, fabrication and development of nuclear fuels was the development by the CEA of a plate type fuel (Caramel fuel). A Caramel fuel element is in the form of a plate consisting of two tight covering zircaloy sheets in which the UO 2 platelets are confined themselves within the network of a zircaloy grid. The plane geometry provides an effective means of overcoming the drawback of poor uranium oxide conductivity, and makes it possible to combine high specific power with low fuel temperature. The chief advantages of this fuel are the following: it is a very low enriched fuel. It can be used in research reactors demanding high volumetric powers and neutron fluxes, with a required enrichment significantly lower than 20% 235 U. The difference between the densities of UO 2 matrix and U-Al, 10.3 and 1.6 g/cm respectively, leads to a higher uranium charge, making it possible to reduce the enrichment to between 3 and 10%. Owing to fuel dispersion, any loss of tightness only puts a small amount of fissile material in contact with the coolant, thus limiting any contamination of the primary circuit. Another safety factor is the operating temperature, which is considerably lower than the temperature at which fission gases are liberated

  17. Surface analysis using X-ray photoelectron spectroscopy and X-ray diffraction of UO2 fuel pellets oxidised in air at 2300C and 2700C

    International Nuclear Information System (INIS)

    Tempest, P.A.; Tyler, J.W.

    1987-08-01

    Factors which affect the UO 2 → U 3 O 8 transformation have been investigated by sequentially oxidising UO 2 fuel pellets in air at 230 0 C and 270 0 C and monitoring the growth of U 3 O 7 and U 3 O 8 using X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. Initially oxidation proceeded at a linear rate by the inward diffusion of oxygen to form a complete layer of sub-stoichiometric U 3 O 7 . This phase was tetragonal with a c/a ratio of 1.015, significantly less than the value of 1.03 measured on UO 2 powder when oxidised under identical conditions. This difference and the preferred orientation exhibited by surface grains were caused by growth stresses induced in the pellet surface. Both intergranular and transgranular cracking occurred and became nucleation sites for the growth of U 3 O 8 . The linear oxidation period associated with U 3 O 7 growth was much shorter at 270 0 C than 230 0 C and U 3 O 8 nucleated earlier. Spallation and the production of particulate were only observed during the formation of U 3 O 8 when a 30% increase in volume arose from the U 3 O 7 → U 3 O 8 phase change. (author)

  18. Contribution to the study of UO2 pellet fabrication

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Gentile, E.F.; Mourao, M.B.; Souza Santos, T.D. de; Haydt, H.M.

    1977-01-01

    The establishment of a set of parametric comparisons related to UO 2 powders of two different origins as the ammonium diuranate and the ammonium uranyl carbonate is presented. It is emphasized the importance due to the pressing capability of the powders and the requirement for homogeneous microstructure for both, the pore distribution and the grain size. In order to establish the parameters of comparison, all the required normal tests for the in-process control of fabrication of fuel elements for nuclear power reactors were performed, particularly to the re-sintering test, in view of the evaluation of dimensional stability of the pellets [pt

  19. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  20. Sorption of Np by UO2 under repository conditions

    Science.gov (United States)

    Kazakovskaya, T. V.; Zakharova, E. V.; Haire, M. J.

    2010-03-01

    This work is a part of the joint Russian - American Program on Beneficial Use of Depleted Uranium. The production of nuclear fuels results in the accumulation of large quantities of depleted uranium (DU) in the form of uranium hexafluoride (UF6), which is converted to uranium oxides. Depleted uranium dioxide (DUO2) can be used as a component of radiation shielding and as an absorbent for migrating radionuclides that may emerge from casks containing spent nuclear fuel (SNF) that are stored for hundreds of thousands of years in high-level wastes (HLW) and SNF repositories (e.g. Yucca Mountain Project). In this case DU oxides serve as an additional engineered chemical barrier. It is known that the primary radioisotope contributor to the calculated long-term radiation dose to the public at the Yucca Mountain SNF repository site boundary is neptunium-237 (237Np). This paper describes the sorption of 237Np in various media (deionized water and J-13 solution) by DUO2. Samples of DUO2 used in this work originated from the treatment of UF6 in a reducing media to form UO2(DUO2-1 at 600°C, DUO2-2 at 700°C, and DUO2-3 at 800°C). All species of DUO2 sorb Np(V) and Np(IV) from aqueous media. Equilibrium was achieved in 24 hours for Np(V) and in 2 hours for Np(IV). Np(V) sorption is accompanied with partial reduction of Np(V) to Np(IV) and vice versa. The sorption of Np(V) onto DUO2 surfaces is irreversible. The investigations on DUO2 transformations were performed under dynamic and static conditions. Under static conditions the solubility of the DUO2 samples in J-13 solution is considerably higher than in DW. When the pre-treatment temperature is decreased, the solubility of DUO2 samples raises regardless of the media. The experiments on interaction between DUO2 and aqueous media (DW and J-13 solution) under dynamic conditions demonstrated that during 30-40 days the penetration/filtration rate of DW and J-13 solution through a thin DUO2 layer decreased dramatically, and then

  1. Ceramic UO2 powder production at Cameco Corporation

    International Nuclear Information System (INIS)

    Mulligan, J.J.

    2005-01-01

    This paper describes the various aspects of ceramic grade UO 2 powder production at Cameco Corporation's Port Hope conversion facility. It discusses the significant safety systems, production processes and plant monitoring and control systems. It also provides an insight into how various support groups such as Quality Assurance, Analytical Services, and Technology Development contribute to the consistent production of high quality UO 2 powder. The ability of Cameco to identify, measure and control the physical and chemical properties of ceramic grade UO 2 has resulted in the production of uniform quality powder that has consistently met customer requirements. (author)

  2. The relative axial expansions under irradiation of stacks of UO{sub 2} pellets in zircaloy sheaths

    Energy Technology Data Exchange (ETDEWEB)

    Notley, M. J.F.

    1962-08-15

    An experiment was performed to measure the relative axial movement of UO{sub 2} fuel pellets inside a Zircaloy sheath. Although the results must be treated with some reservation, the inferences are that there is very little relative movement between the fuel and the sheath when the two are in firm pressure contact. Relative movement was in the range 0.075 {+-} 0.03 cm for a 30 cm fuel length, and was not greatly affected by the power output, profile of the pellet end-faces or the diametral clearance left between the fuel and the sheath on assembly. However in two elements that had thick sheaths to withstand the coolant pressure and that were assembled with large diametral clearances (2% of the diameter) the available axial clearance for relative fuel/ sheath movement (1%) was fully taken up. The thin sheathed elements showed residual axial expansions of up to 0.17 cm, indicating that the pellets move relative to the sheath only until frictional forces are sufficient for the sheath to grip the fuel; thereafter the sheath is extended. The measurements also indicate that sheath elongation is governed by the temperature at the contact points between adjacent pellets, eg. at the inner edge of a pellet shoulder, as long as that temperature is below approximately 1000{sup o}C. At higher temperatures, the UO{sub 2} is too plastic to exert sufficient force to strain the sheath. (author)

  3. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  4. High-precision molecular dynamics simulation of UO2–PuO2: Anion self-diffusion in UO2

    International Nuclear Information System (INIS)

    Potashnikov, S.I.; Boyarchenkov, A.S.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2013-01-01

    Highlights: ► We perform MD simulation of oxygen diffusion in UO2 (up to 50 000 ions and 1 μs time). ► We reached 1400 K and 10 −12 cm 2 /sec, which allowed direct comparison to experiments. ► S-shaped T-dependence of activation energy and λ-peak of its derivative were obtained. ► Continual superionic phase transition (rather than first or second order) was proved. ► Activation energy of exchange diffusion equals anti-Frenkel defect formation energy. -- Abstract: Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO 2 ) with the 10 recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10 −3 cm 2 /s at melting point down to 10 −12 cm 2 /s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (∼1000 K) superionic transition region confirming the broad λ-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics

  5. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    International Nuclear Information System (INIS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany Massoud

    2016-01-01

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO 2 and ZrO 2 using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO 2 and ZrO 2 properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO 2 and ZrO 2 are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO 2 , the CRG model gives satisfactory MD predictions. For ZrO 2 , the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model

  6. Some aspects of UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, P; Asnani, C K; Prabhakar Rao, L; Kartha, R M; Pillai, P K.M. [Nuclear Fuel Complex, Hyderabad (India)

    1994-06-01

    UO{sub 2} powder is being produced in a chemical plant from enriched UF{sub 6} and supplied to the pelletizing plant. Small quantities of scrap UO{sub 2} received back from the pelletizing plant are also recycled in the chemical plant to produce UO{sub 2} powder. The powder should be of a consistently high quality so as to finally yield high density sintered pellets with minimum rejection. The final yield of acceptable finished pellets depends on the quality of the powder in the chemical plant as well as the quality of pressing in the pelletizing plant. In this paper, some examples of measures adopted for achieving good quality powder production are presented. (author). 9 refs., 2 figs.

  7. Training of secondary phases on UO{sub 2}. Uranyl phosphates and uranium peroxide; Formacion de fases secundarias sobre UO{sub 2}. Fosfatos de uranilo y peroxido de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J.; Rey, A.; Pablo, J. de; Casas, I.

    2008-07-01

    One of the main processes that can control radionuclides migration is mineral phase precipitation, known as secondary phases. The formation of one of these phases more stable than UO{sub 2} at repository conditions, could act as a barrier between nuclear waste and groundwater. This modifies the radiation that arrives to the dissolution, blocking dissolution of UO{sub 2} matrix and affecting to radionuclide release. So, is important to know the possible secondary phases to precipitate during SNF (spent nuclear fuel) alteration and its stability at repository conditions. Several experiments of SNF dissolution in groundwater have observed the formation of uranium secondary phases. Nevertheless, these experiments have been developed in specific conditions and they haven't arrived to study the effect of several parameters, such as complexions as phosphate. The rol of phosphate on to dissolution of UO{sub 2} and uranium-phosphate phase formation is necessary to know repository assessment. Uranyl peroxides have been found also in several studies about lixiviation in presence of hydrogen peroxide, which is the expected oxidant for med from the water radiolysis. In this work we performed a study about the stability of these phases. The phases obtained have been characterized with X ray diffraction (XRD). The particle size, shape and chemical composition have been studied by scanning electron microscopy (SEM). A topographic analysis of UO{sub 2} surface in contact with ground water and phosphate media have been performed by means of atomic force microscopy (AFM). The uranium concentration evolution in solution have been followed with ICP-MS. Stability in relation to radiation of uranyl peroxide have been developed with electron transmission microscopy (TEM), and thermal stability with a thermo gravimetry device (TG) and Differential scanning calorimetry (DSC). (Author)

  8. Photochemical assessment of UO2+2 complexation in Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1994-01-01

    This is a report on the spectral characteristics of UO 2 +2 in the excited state in the Triton X-100 micellar medium. The downward curving of the Stern-Volmer plot explains the two kinds of populations of UO 2 +2 upon micellization. A blue shift of the quenched emission is ascribed due to the collisional encounter of UO 2 +2 with the head groups of Triton X-100. (author). 5 refs., 2 figs

  9. Structural effects in UO{sub 2} thin films irradiated with fission-energy Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Popel, A.J., E-mail: apopel@cantab.net [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Lebedev, V.A. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Martin, P.G. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Shiryaev, A.A. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow (Russian Federation); Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Lampronti, G.I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Springell, R. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Kalmykov, S.N. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); National Research Centre “Kurchatov Institute”, 123098, Moscow (Russian Federation); Scott, T.B. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Monnet, I.; Grygiel, C. [CIMAP, CEA-CNRS-ENSICAEN-Université de Caen, BP 5133, 14070, Caen, Cedex5 (France); Farnan, I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom)

    2016-12-15

    Uranium dioxide thin films have been successfully grown on LSAT (Al{sub 10}La{sub 3}O{sub 51}Sr{sub 14}Ta{sub 7}) substrates by reactive magnetron sputtering. Irradiation by 92 MeV {sup 129}Xe{sup 23+} ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60–70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO{sub 2} films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed. - Highlights: • Flat (001) single crystal UO{sub 2} thin films on LSAT (001) substrates produced. • Ion irradiation induced topographical and structural rearrangements in UO{sub 2} films.

  10. Influence of process parameters on the fabrication of UO2-PuO2 pellets using the granulation technique

    International Nuclear Information System (INIS)

    Vollath, D.; Wedemeyer, H.

    1982-01-01

    The preparation of UO 2 -PuO 2 fuel pellets from ground and granulated powders results in the formation of mixed oxide solid solutions which is decisive for the solubility of the fuel. Compared with granulated powders made from sintered and ground material, the compaction of green powders leads to much lower compaction densities at the same compaction pressure. Discontinuities of the porosity of sintered pellets made from long-time ground powders probably reflect the rupture of the granulate structure during compaction. Unusual high values of contact numbers obtained by gas effusion measurements indicate a network of cracks in the sintered material. (orig.)

  11. Core Designs and Economic Analyses of Homogeneous Thoria-Urania Fuel in Light Water Reactors

    International Nuclear Information System (INIS)

    Saglam, Mehmet; Sapyta, Joe J.; Spetz, Stewart W.; Hassler, Lawrence A.

    2004-01-01

    The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO 2 -UO 2 ) fuel and compare those designs with more conventional UO 2 designs.The fuel cycle analyses indicate that ThO 2 -UO 2 fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO 2 fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO 2 -UO 2 fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO 2 fuel used in light water reactors

  12. Antiferromagnetic-ferromagnetic crossover in UO2-TiOx multi-phase systems

    International Nuclear Information System (INIS)

    Nakamura, Akio; Tsutsui, Satoshi; Yoshii, Kenji

    2001-01-01

    An antiferromagnetic (AF)-weakly ferromagnetic (WF) crossover has been found for UO 2 -TiO x multi-phase systems, (1-y)UO 2 +yTiO x (y=0.05-0.72, x=0, 1.0, 1.5 and 2.0), when these mixtures are heat treated at high temperature in vacuum. From the powder X-ray diffraction and electron-microprobe analyses, their phase assemblies were as follows: for x=0, 1.0 and 1.5, a heterogeneous two-phase mixture of UO 2 +TiO x ; for x=2.0, that of UO 2 +UTi 2 O 6 for y 0.67 that of UTi 2 O 6 +TiO 2 (plus residual minor UO 2 ). Magnetic susceptibility (χ) of the present UO 2 powder was confirmed to exhibit an antiferromagnetic sharp drop at T N (=30.5 K). In contrast, χ of these multi-phase systems was found to exhibit a sharp upturn at the respective T N , while their T N values remained almost constant with varying y. This χ upturn at T N is most pronounced for UO 2 +Ti-oxide (titania) systems (x=1.0, 1.5 and 2.0) over the wide mixture ratio above y∼0.10. These observations indicate that an AF-WF crossover is induced for these multi-phase systems, plausibly due to the interfacial magnetic modification of UO 2 in contact with the oxide partners

  13. Foundations for the definition of MOX fuel quality requirements

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vanderborck, Y.

    1991-01-01

    The quality of uranium-plutonium mixed oxide (MOX) fuel, as of any nuclear fuel, depends on the design optimization and on the fabrication process stability. The design optimization is essentially based on feed-back from irradiation experience through engineering assessment of the results; the stability of the process is necessary to justify minimal uncertainty margins in the fuel design. Since MOX fuel is quite similar to UO 2 fuel, the lessons learned from UO 2 fuels can complement the MOX experimental data base. MOX is however different from UO 2 fuel in some respects, among others: the industrial fabrication scale is a factor 10 lower than for UO 2 fuel, the fuel enrichment process takes place in the manufacturing plant, the radioactivity of Pu imposes handling constraints, Pu ages quite rapidly, altering its isotopic composition during storage, the incorporation of Pu alters the material physics and neutronic characteristics of the fuel. In this perspective, the paper outlines some quality attributes for which MOX fuel may or even must depart form UO 2 fuel. (orig.)

  14. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  15. Design and development of PWR fuel

    International Nuclear Information System (INIS)

    Dehon, C.; Leclercq, J.; Watteau, M.

    1982-06-01

    After a brief description of the FRAGEMA fuel assembly which equips at the present time the pressurized water reactors of EdF (Electricite de France), and a presentation of the experience obtained on this fuel, one reviews the main aims and trends of the research and development program carried out by FRAGEMA to improve the design of fuels and to propose to the national customer, but also on the foreign markets, new products adapted to the demands of operators. One insists more particularly on new products that are on one hand the AFA fuel and on the other hand the burnable poison UO 2 -Gd 2 O 3 ; their description is presented and their advantages are given. To conclude, one insists on the importance of the collaboration that have to be kept between the designer and the operator, the manufacturer, the R and D groups and the boiler specialist [fr

  16. Present status of reactor physics in the United States and Japan-IV. 2. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design. We used the subgroup method to treat the space dependence of the self-shielding effect of heavy nuclides, and we used the characteristics method to treat the angular dependence of neutron flux in a fuel pellet. Figure 1 compares the power distributions in MOX and UO 2 fuel cells at the beginning of burnup. The power is calculated with and without considering the space dependence of the self-shielding effect of the cross sections. For the MOX cell, the power distribution has a peak at the cell edge because of large Pu absorption especially when considering the spatial self-shielding effect. When a MOX rod is adjacent to UO 2 fuel rods, the flux distribution has an azimuthal dependence in addition to the radial dependence within a rod. For example, consider a 2x2 fuel assembly composed of three UO 2 rods and one MOX rod, with the mirror reflection boundary condition. A burnup calculation was done with the condition; the radius of the MOX pellet is divided into two regions, and the azimuthal angle is divided into eight. The number density of 239 Pu at 44 000 MWd/t for the MOX rod shows azimuthal dependence by 20%. The maximum burnup occurs in the direction of the UO 2 rods. This is

  17. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a

  18. Mechanical resistance of UO{sub 2} pellet by means of free-fall-impact testing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Tae-sik; Lee, Seung-jae; Kim, Jae-ik; Jo, Young-ho; Park, Bo-yong; Ko, Sang-ern [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel rod failed during a power transient can be seen in Fig 1. and conjunction of a chipped pellet with a cladding crack has been observed in commercial reactors through the post-irradiation examinations. It revealed that missing-pellet-surface(MPS) was one of the reasons of the fuel failure. The mechanism of this failure mode that MPS induces the asymmetry of the pellet-cladding mechanical system mainly comprises a stress concentration at the inner surface resulting in non-classical PCI. The fracture toughness is largely close to material property. It is assumed that by optimizing surface design of UO{sub 2} pellet, the strength arises because theoretical strength is considerably affected by geometry as one of a parameter of factor 'f'. Pellet research for design optimization to achieve better resistance to external load should be accompanied with volumetric approach to the improvement of mechanical behavior of pellet being still ongoing. At this work, the resistance to external load is analyzed varying with the geometry of pellets and angles of impact on UO{sub 2} pellet surface by the free-fall-impact test method. The tested specimens were equivalently produced and sintered for having the same volumetric property such as sinter density and grain size expect the surface with different geometry design at the end face and shoulder which includes dish, chamfer and land in dimension and angle. Missing-pellet-surface(MPS) on UO{sub 2} pellet is inevitable behavior during manufacturing, handling and burning in reactor and brings about non-classical PCI behavior that could damage fuel rod integrity. For this reason, the free-fall-drop tester was developed by KEPCO NF Material Development laboratory in Daejeon for quantitatively investigating the mechanical behavior of UO{sub 2}. The free-fall-impact test is performed by dropping hammer on pellet shoulder with certain impact energy and at various angles. The result is quantitatively measured with weighing

  19. Particle size distribution of UO sub 2 aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B. (Radiation Safety Systems Div., BARC, Bombay (India)); Ramachandran, R.; Majumdar, S. (Radiometallurgy Div., BARC, Bombay (India))

    1991-12-01

    The Anderson cascade impactor has been used to determine the activity mean aerodynamic diameter and the particle size distribution of UO{sub 2} powders dispersed in the form of stable aerosols in an air medium. The UO{sub 2} powders obtained by the calcination of ammonium uranyl carbonate (AUC) and ammonium diuranate (ADU) precipitates have been used. (orig./MM).

  20. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  1. Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.

    1985-01-01

    Onset of melting is an important performance limit for irradiated UO 2 and UO 2 -based nuclear reactor fuels. Melting (solidus) temperatures are reasonably well known for starting fuel materials such as UO 2 and (U,PU)O 2 , however the influence of burnup on oxide fuel melting behavior continues to represent an area of considerable uncertainty. In this paper we report the results of a variety of melting temperature measurements on pseudo-binary fuel-fissia mixtures such as UO 2 -PUO 2 , UO 2 -CeO 2 , UO 2 -BaO, UO 2 -SrO, UO 2 -BaZrO 3 and UO 2 -SrZrO 3 . These measurements were performed using the thermal arrest technique on tungsten-encapsulated specimens. Several low melting eutectics, the existence of which had previously been inferred from post-irradiation examinations of high burnup mixed oxide fuels, were characterized in the course of the investigation. Also, an assessment of melting temperature changes in irradiated oxide fuels due to the production and incorporation of soluble oxidic fission products was performed by application of solution theory to the available pseudo-binary phase diagram data. The results of this assessment suggest that depression of oxide fuel solidus temperatures by dissolved fission products is substantially less than that indicated by earlier experimental studies. (orig.)

  2. HTGR Fuel Recycle Development Program (189a OHO45). Fuel refabrication, Task 500. Rate-controlling factors in the carbothermic preparation of UO2--UC2--C microspheres

    International Nuclear Information System (INIS)

    Stinton, D.P.; Tiegs, S.M.; Lackey, W.J.; Lindemer, T.B.

    1979-01-01

    Rate controlling factors in the conversion of UO 2 + C microspheres to UC 2 + C were investigated using a 13-cm-dia fluidized bed furnace. X-ray diffraction, ion microprobe, and microstructural examination revealed that the conversion of UO 2 to UC 2 began at the surface of the microsphere and progressed toward the central unreacted core. Kinetic models for solid state reactions in spheres were evaluated by using quantitative mass spectrometric data on the rae of evolution of carbon monoxide during conversion. This analysis revealed that the rate of conversion was controlled by reaction at the outer surface of the microsphere. Also, decreased partial pressures of carbon monoxide were found to accelerate the rate of reaction

  3. Analysis of the heat and mass transfer processes of a UO2 bubble in sodium for the Fuel Aerosol Simulant Test (FAST)

    International Nuclear Information System (INIS)

    Tobias, M.L.

    1979-01-01

    The anticipated behavior of uranium oxide vapor bubbles produced by the capacitor discharge vaporization (CDV) method in the Fuel Aerosol Simulant Test (FAST) Facility is discussed on the basis of relatively simple physical models. Results of calculations for the rate of bubble rise and for heat and mass transfer rates are presented. Parametric studies indicate that future analysis efforts should emphasize the diffusion condensation process and the loss of heat from the bubble by radiation. Transfer of heat in the surrounding sodium is rapid enough that simplified models should be adequate. No important effects were noted in connection with bubble depth, initial quantity of UO 2 , or initial superheat

  4. Fuel densification study about uranium- 7% nanostructured gadolinium (Gd2O3)

    International Nuclear Information System (INIS)

    Serafim, Antonio da Costa

    2016-01-01

    The sintering process of UO 2 -Gd 2 O 3 pellets has been investigated in this work for its importance in the nuclear industry and for its complex behavior during sintering. Sintering blockage occurs from 1300 deg C upwards, when densification is shifted toward higher temperatures and the final density obtained is decreased. This research includes the development of nuclear fuel for power reactors in order to increase its efficiency inside the reactor core by raising the burnup. The use of nanosized Gd 2 O 3 was studied in the range from 10 to 30nm, which was added to UO 2 , trying to verify the occurrence of characteristic sintering blockage due to Kirkendall sintering effect observed in previous research. The samples were produced by dry mechanical mixture of UO 2 powder and 7% Gd 2 O 3 (macro- and nanostructured). The powders were compacted and the pellets were sintered at 1700 deg C under H 2 atmosphere. These results indicate that the characteristic blockage during sintering in macrostructured system UO 2 -Gd 2 O 3 occurred in the temperature range of 1300-1500 deg C, which slows down the densification. It was observed a less intense effect when using the nanostructured Gd 2 O 3 ; it took place at the temperature of 900 deg C, then facilitating to get an additional densification. The dilatometric tests indicated shrinkage of 22, 18 and 20% respectively in UO 2 pellets, macrostructured UO 2 -7% Gd 2 O 3 and nanostructured UO 2 -7%Gd 2 O 3 . We detected 2% higher shrinkage, when nanostructured Gd 2 O 3 was used instead of macrostructured Gd 2 O 3 , which is used commercially. Then, the nanostructured results showed more adequate density for nuclear fuel usage. (author)

  5. The production of sinterable UO2 from AUC

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    Fluidization, feeding and discharging, and mixing of fine particles (-up to 40μ in diameter) in fluidized bed reactor has been examined. The degree of conversion has been estimated using the kinetic data differential scanning colorimetry(DSC) and thermogravimetic analysis (TGA) of ammonium uranyl carbonate (AUC) and residence time distribution data. Satisfactory operation is obtained with a sintered ceramic distributor and filters. The reactor equilvalent to approximately 1.1-1.3 stages. Thermal analysis of AUC in hydrogen atmosphere shows that the decomposition of AUC to UO 3 at 200degC is followed by reduction of UO 3 to UO 2 in two steps in the range between 400degC and 500degC and the complete conversion to UO 2 takes two minutes at 550degC. The overall conversion of above 99.5% in the fluidized bed reactor is estimated with 40 minutes of a mean particle residence time at 600degC. (Author)

  6. Delayed Fission Product Gamma-Ray Transmission Through Low Enriched UO2 Fuel Pin Lattices in Air

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, TH [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2004-10-18

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called “channeling” effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute’s Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice.Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins

  7. Creep of UO2 at 25000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1977-01-01

    Until an improved high temperature relationship is available, the previously derived low temperature relationship is a reasonable means for predicting the creep rates of UO 2 at 2500 0 C. The activation energy determined for creep at 2500 0 C is at least two times larger than that measured previously at the lower temperature. Stress induced grain growth under uniaxial compression at high temperatures in UO 2 results in preferential growth of grains having a cube axis closely aligned with the stress axis

  8. Geometrical dimensioning of PWR UO2 pellets

    International Nuclear Information System (INIS)

    Silva, A.T.

    1988-08-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pelet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experiemtnal data. (author) [pt

  9. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  10. Management of the fuel-cycle back-end: The Electricite de France's strategy

    International Nuclear Information System (INIS)

    Esteve, B.

    2001-01-01

    Countries are following three options for management of spent fuel from nuclear power plants: reprocess-recycle, direct disposal, and ''wait and see''. France has adopted the reprocess-recycle strategy for managing its spent fuel, which has created a stable environment for Electricite de France to plan its spent fuel management. However, the French government is planning to debate its spent fuel management strategy and may choose a different direction. A number of factors affecting the choice of spent fuel management strategy are discussed and the benefits of maintaining the status quo from the point of view of the nuclear utility are explained. (author)

  11. TCA UO2/MOX core analyses

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Noda, Hideyuki

    2000-01-01

    In order to examine the adequacy of nuclear data, the TCA UO 2 and MOX core experiments were analyzed with MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2. The ENDF/B-VI data underpredict k eff values. The replacement of 238 U data with the JENDL-3.2 data and the adjustment of 235 ν-value raise the k eff values by 0.3% for UO 2 cores, but still underpredict k eff values. On the other hand, the nuclear data of JENDL-3.2 for H, O, Al, 238 U and 235 U of ENDF/B-VI whose 235 ν-value in thermal energy region is adjusted to the average value of JENDL-3.2 give a good prediction of k eff . (author)

  12. Critical experiments with 4.31 wt % 235U-enriched UO2 rods in highly borated water lattices

    International Nuclear Information System (INIS)

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1982-08-01

    A series of critical experiments were performed with 4.31 wt % 235 U enriched UO 2 fuel rods immersed in water containing various concentrations of boron ranging up to 2.55 g/l. The boron was added in the form of boric acid (H 3 BO 3 ). Critical experimental data were obtained for two different lattice pitches wherein the water-to-uranium oxide volume ratios were 1.59 and 1.09. The experiments provide benchmarks on heavily borated systems for use in validating calculational techniques employed in analyzing fuel shipping casks and spent fuel storage systems that may utilize boron for criticality control

  13. Results of REIMEP '89 UO2 pellet

    International Nuclear Information System (INIS)

    Mayer, K.; Alonso, A.; Bievre, P. de; Lycke, W.; Bolle, W. de; Gallet, M.; Hendrickx, F.

    1991-01-01

    The interest in the safeguards of fissile material focuses on a limited number of compounds which play key roles in the nuclear fuel cycle. Amongst these materials Uranium Dioxide pellets are of considerable importance as they enter the reactors in order to generate energy. In LWR's pellets with an initial 235 U content of about 3 mass % are used, whereas natural or depleted material is applied for the breeding zone in FBR's. The 89/90 round o REIMEP covered Uranium materials with 235 U abundances in the range of natural or depleted material. UO 2 pellets were distributed to 21 laboratories for analysis. The participating laboratories were asked to determine the Uranium content and the isotopic composition of the material. The results reported by the participants are presented as graphs thus giving a picture of the state-of-the-practice

  14. A Feasibility Study on UO2/ZrO2 Mixture Melting using Induction Skull Melting Method

    International Nuclear Information System (INIS)

    Hong, S. W.; Kim, J. H.; Kim, H. D.

    1998-01-01

    Using ISM(Induction Skull Melting) method, which is usually used for the crystallization of refractory materials, a feasibility study on melting of the UO 2 /ZrO 2 mixture(w/o 8:2) is carried out. Frequency, one of main design parameters for ISM, is determined from electrical resistance of UO 2 /ZrO 2 mixture. Heat loss from the crucible for UO 2 /ZrO 2 20kg melting is predicted by comparison with the existing experimental data for UO , ZrO 2 , and ThO 2 . The analysis shows that melting and superheating of the UO 2 /ZrO 2 mixture using induction skull melting method is possible. To attain the superheat of 300K for 20 kg of UO 2 /ZrO 2 , 100kHz, 100 kW power input for induction coil, and 570L/min coolant flow rate are found to be required. The results of this feasibility study will be adopted for designing UO 2 /ZrO 2 furnace using actual corium material at KAERI

  15. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten-core-debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into (1) molten UO 2 pool heat transfer, (2) long-term molten UO 2 penetration into concrete and (3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  16. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten core debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into 1) molten UO 2 pool heat transfer, 2) long-term molten UO 2 penetration into concrete and 3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  17. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  18. Characterization of Compaction Process on UO2 Powder Pelletisation

    International Nuclear Information System (INIS)

    Rachmawati, M; Langenati, R; Saputra, T.T; Mahpudin, A; Histori; Sutarya, D; Zahedi

    1998-01-01

    Determination of compaction pressure of pelletization which is based on density characterization in conjunction with satisfactory green strength of the UO 2 pellet, is carried out in this experiment. Cameco UO 2 powder has been mixed up with Zn-stearate lubricant prior to compaction process. The compaction pressure is varied from the range of 2 Mp up to 6 Mp. The mechanical strength is determined using diametral compression strength with the speed of loading of 0.1 mm.min 1 . The density measurement and compression strength test are performed on each of the applied pressure. The result shows that compaction at 5 Mp gives the maximum green strength of UO 2 pellet, while the maximum density is achieved at 5.7 Mp. The maximum green strength and green density of UO 2 (+ TiO 2 ) pellets is achieved at the addition of 0.25% and 0.125% TiO 2 respectively. The compaction pressure which is showing the maximum pellet green strength but still having the required density, is chosen to be the determinant compaction pressure in condition of pelletization

  19. The anodic dissolution of SIMFUEL (UO2) in slightly alkaline sodium carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Keech, P.G.; Goldik, J.S.; Qin, Z.; Shoesmith, D.W.

    2011-01-01

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U VI corrosion product, [UO 2 ] 2+ . As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO 2 ) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U IV → U V → U VI ). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U VI O 2 CO 3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  20. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)