WorldWideScience

Sample records for fragment fluorescence spectroscopy

  1. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  2. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  3. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  4. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  5. A method for measurements of neutral fragments kinetic energies released to a specific dissociation threshold: optical translational spectroscopy

    International Nuclear Information System (INIS)

    Roney, A.; Frigon, C.; Larzilliere, M.

    1999-01-01

    The optical translational spectroscopy technique, based on the principles of fast ion beam laser spectroscopy (FIBLAS) and translational spectroscopy, allows the kinetic energies study of neutral fragments released through free dissociation of a neutral molecule. This method presents interesting features such as near-threshold energy measurements and selection of a specific dissociation limit. The fragments resulting from free dissociation (not induced) of neutral molecules, produced by charge exchange processes with a fast ion beam, are probed by laser radiation. Monitoring of the laser-induced fluorescence allows high-resolution spectra due to the kinematic compression of the velocity spread. Measurements of kinetic energies released to the second limit of dissociation H(1s) + H(2l) of H 2 are put forth and compared with those obtained by means of off-axis translational spectroscopy

  6. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  7. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  8. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  9. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  10. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  11. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  12. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  13. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook

    Czech Academy of Sciences Publication Activity Database

    Kapusta, Peter; Macháň, Radek; Benda, A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 10 (2012), s. 12890-12910 E-ISSN 1422-0067 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : fluorescence correlation spectroscopy (FCS) * time correlated single photon counting (TCSPC) * fluorescence cross-correlation spectroscopy (FCCS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  14. Effects of fluorescence excitation geometry on the accuracy of DNA fragment sizing by flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H. [Division of Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, New Mexico 87545-0001 (United States); Larson, Erica J. [Division of Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, New Mexico 87545-0001 (United States); Goodwin, Peter M. [Division of Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, New Mexico 87545-0001 (United States); Ambrose, W. Patrick [Division of Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, New Mexico 87545-0001 (United States); Keller, Richard A. [Division of Bioscience, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, New Mexico 87545-0001 (United States)

    2000-06-01

    We report on various excitation geometries used in ultrasensitive flow cytometry that yield a linear relation between the fluorescence intensity measured from individual strained DNA fragments and the lengths of the fragments (in base pairs). This linearity holds for DNA samples that exhibit a wide range of conformations. The variety of DNA conformations leads to a distribution of dipole moment orientations for the dye molecules intercalated into the DNA. It is consequently important to use an excitation geometry such that all dye molecules are detected with similar efficiency. To estimate the conformation and the extent of elongation of the strained fragments in the flow, fluorescence polarization anisotropy and autocorrelation measurements were performed. Significant extension was observed for DNA fragments under the flow conditions frequently used for DNA fragment sizing. Classical calculations of the fluorescence emission collected over a finite solid angle are in agreement with the experimental measurements and have confirmed the relative insensitivity to DNA conformation of an orthogonal excitation geometry. Furthermore, the calculations suggested a modified excitation geometry that has increased our sizing resolution. (c) 2000 Optical Society of America.

  15. Effects of fluorescence excitation geometry on the accuracy of DNA fragment sizing by flow cytometry

    International Nuclear Information System (INIS)

    Werner, James H.; Larson, Erica J.; Goodwin, Peter M.; Ambrose, W. Patrick; Keller, Richard A.

    2000-01-01

    We report on various excitation geometries used in ultrasensitive flow cytometry that yield a linear relation between the fluorescence intensity measured from individual strained DNA fragments and the lengths of the fragments (in base pairs). This linearity holds for DNA samples that exhibit a wide range of conformations. The variety of DNA conformations leads to a distribution of dipole moment orientations for the dye molecules intercalated into the DNA. It is consequently important to use an excitation geometry such that all dye molecules are detected with similar efficiency. To estimate the conformation and the extent of elongation of the strained fragments in the flow, fluorescence polarization anisotropy and autocorrelation measurements were performed. Significant extension was observed for DNA fragments under the flow conditions frequently used for DNA fragment sizing. Classical calculations of the fluorescence emission collected over a finite solid angle are in agreement with the experimental measurements and have confirmed the relative insensitivity to DNA conformation of an orthogonal excitation geometry. Furthermore, the calculations suggested a modified excitation geometry that has increased our sizing resolution. (c) 2000 Optical Society of America

  16. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  17. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    Science.gov (United States)

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.

  18. Ultraviolet-visible and fluorescence spectroscopy can be used as a diagnostic tool for gamma irradiation detection in vivo.

    Science.gov (United States)

    K-Abdelhalim, Mohamed Anwar; Moussa, Sherif A-Abdelmottaleb

    2016-09-01

    The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.

  19. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  20. The measurement of X-rays radiation temperature with a new developed filter-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chuanfei; Lin Libin; Lou Fuhong; Peng Taiping

    2001-01-01

    The author introduces how to measure the energy spectra of X-rays by filter-fluorescence spectroscopy. The design principle and structure of new-developed double diaphragms and filter-fluorescence spectroscopy with 5 channels are depicted. The parameters of optimized spectroscopy by numerical method are given. The filter-fluorescence spectroscopy designed according as Rousseau balance principle improves signal-noises ratio

  1. Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence

    Science.gov (United States)

    Bobrovnikov, S. M.; Gorlov, E. V.; Zharkov, V. I.

    2018-05-01

    A technique for increasing the selectivity of the method of detecting high-energy materials (HEMs) based on laser fragmentation of HEM molecules with subsequent laser excitation of fluorescence of the characteristic NO fragments from the first vibrational level of the ground state is suggested.

  2. U(IV) fluorescence spectroscopy. A new speciation tool

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Susanne; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    We combined absorption and fluorescence spectroscopy to study the speciation of U(IV) in solution in concentrations down to 10{sup -6} M uranium. With our time-resolved laser-induced fluorescence setup we could determine the fluorescence decay time of U(IV) in perchloric as well as in chloric acid with 2.6 ± 0.3 ns at room temperature and 148.4 ± 6.5 ns at liquid nitrogen temperature. For the U(IV) sulfate system, we observed a bathochromic shift and a peak shape modification in the fluorescence spectra with increasing sulfate concentration in solution. Thus, the potential of U(IV) fluorescence for speciation analysis could be proven.

  3. Fluorescent hydroxylamine derived from the fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition.

    Science.gov (United States)

    Wu, Te-Haw; Liu, Ching-Ping; Chien, Chih-Te; Lin, Shu-Yi

    2013-08-26

    Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off. The fluorescent hydroxylamine was selectively oxidised by OCl(-) to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl(-) in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl(-) with minimal interference from biological matrixes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    Science.gov (United States)

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  5. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-12-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.

  6. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy

    Science.gov (United States)

    Belasque, J., Jr.; Gasparoto, M. C. G.; Marcassa, L. G.

    2008-04-01

    We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees.

  7. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  8. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  9. [Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].

    Science.gov (United States)

    Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan

    2012-10-01

    To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.

  10. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-10-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  12. Charged-particle spectroscopy in the microsecond range following projectile fragmentation

    CERN Document Server

    Pfützner, M; Grzywacz, R; Janas, Z; Momayezi, M; Bingham, C; Blank, B; Chartier, M; Geissel, H; Giovinazzo, J; Hellström, M; Kurcewicz, J; Lalleman, A S; Mazzocchi, C; Mukha, I; Plettner, C; Roeckl, E; Rykaczewski, K; Schmidt, K; Simon, R S; Stanoiu, M; Thomas, J C

    2002-01-01

    We present a new approach to charged-particle spectroscopy of short-lived nuclei produced by relativistic projectile fragmentation. The system based on digital DGF-4C CAMAC modules and newly developed fast-reset preamplifiers was tested at the Fragment Separator of GSI. We were able to detect low-energy (approx 1 MeV) decay signals occurring a few microseconds after a heavy-ion implantation accompanied by a release of approx 1 GeV energy. Applications for the study of one- and two-proton radioactivity are discussed.

  13. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  14. Fluorescence spectroscopy for medical and environmental diagnostics

    International Nuclear Information System (INIS)

    Johansson, Jonas.

    1993-09-01

    Fluorescence spectroscopy can be used for diagnostics in medical and environmental applications. The many aspects of fluorescence emission are utilized to enhance the accuracy of the diagnosis. A fluorescence detection system, based on nitrogen laser or dye laser excitation and optical multichannel detection, was constructed, and fluorescence spectra from human malignant tumours of various origins, were recorded. Tumour demarcation was observed using exogenous chromophores, as well as the endogenous tissue fluorescence. In particular, δ-amino levulinic acid was found to provide very good tumour demarcation. A multi-colour imaging system capable of simultaneous recording of four fluorescence images at selected wavelengths, was developed. Examples of processed images, based on the four sub-images, are shown for malignant tumours. In addition, data from photodynamic treatment of human malignant tumours are presented. Autofluorescence spectra from excised pieces of human atherosclerotic aorta and atherosclerotic coronary segment were found to be different from those of non-diseased vessels. Furthermore, fluorescence decay curves from atherosclerotic samples were found to differ from those of non-diseased samples. It is concluded that both spectral and temporal information should be utilized to enhance the demarcation. Methods for obtaining fluorescence data free from interference from blood, with applications to in vivo laser angioplasty of atherosclerosis, are discussed. The optical multichannel system and the multi-colour imaging system were integrated with a remote sensing system, originally used for environmental measurements, to obtain fluorescence spectra as well as fluorescence images of plants at a distance of up to 100 m. The fluorescence data from plants subject to environmental stress or senescent plants were found to differ from those obtained from healthy vegetation. 359 refs

  15. Emerging applications of fluorescence spectroscopy in medical microbiology field.

    Science.gov (United States)

    Shahzad, Aamir; Köhler, Gottfried; Knapp, Martin; Gaubitzer, Erwin; Puchinger, Martin; Edetsberger, Michael

    2009-11-26

    There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  16. Emerging applications of fluorescence spectroscopy in medical microbiology field

    Directory of Open Access Journals (Sweden)

    Gaubitzer Erwin

    2009-11-01

    Full Text Available Abstract There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  17. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  19. Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.

    Science.gov (United States)

    Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.

    2014-05-01

    Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were

  20. Fluorescence spectroscopy for the detection of potentially malignant disorders of the oral cavity: analysis of 30 cases

    International Nuclear Information System (INIS)

    Francisco, A L N; Correr, W R; Kurachi, C; Azevedo, L H; Galletta, V K; Pinto, C A L; Kowalski, L P

    2014-01-01

    Oral cancer is a major health problem worldwide and although early diagnosis of potentially malignant and malignant diseases is associated with better treatment results, a large number of cancers are initially misdiagnosed, with unfortunate consequences for long-term survival. Fluorescence spectroscopy is a noninvasive modality of diagnostic approach using induced fluorescence emission in tumors that can improve diagnostic accuracy. The objective of this study was to determine the ability to discriminate between normal oral mucosa and potentially malignant disorders by fluorescence spectroscopy. Fluorescence investigation under 408 and 532 nm excitation wavelengths was performed on 60 subjects, 30 with potentially malignant disorders and 30 volunteers with normal mucosa. Data was analyzed to correlate fluorescence patterns with clinical and histopathological diagnostics. Fluorescence spectroscopy used as a point measurement technique resulted in a great variety of spectral information. In a qualitative analysis of the fluorescence spectral characteristics of each type of injury evaluated, it was possible to discriminate between normal and abnormal oral mucosa. The results show the potential use of fluorescence spectroscopy for an improved discrimination of oral disorders. (paper)

  1. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  2. Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study

    Science.gov (United States)

    Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2016-01-01

    The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.

  3. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that in recent years has found numerous applications for studying biological phenomena. In this article, we scrutinize one of these applications, namely, FCS as a technique for studying leakage of fluorescent molecul...

  4. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    Science.gov (United States)

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhou

    2009-11-01

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  6. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    International Nuclear Information System (INIS)

    Chin, William WL; Thong, Patricia SP; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Heng, Paul WS; Olivo, Malini

    2009-01-01

    Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer

  7. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  8. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    Science.gov (United States)

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  9. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments.

    Science.gov (United States)

    LaGraff, John R; Chu-LaGraff, Quynh

    2006-05-09

    Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.

  10. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  11. APD detectors for biological fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Mazeres, S.; Borrel, V.; Magenc, C.; Courrech, J.L.; Bazer-Bachi, R.

    2006-01-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salome, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cezanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here

  12. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  13. Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy

    Science.gov (United States)

    Valsaraj, K.; Birdwell, J.

    2010-07-01

    Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.

  14. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  15. Production of photofission fragments and study of their nuclear structure by laser spectroscopy

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Karaivanov, D.V.; Marinova, K.P.; Markov, B.N.; Mel'nikova, L.M.; Myshinskij, G.V.; Penionzhkevich, Yu.Eh.; Zhemenik, V.I.

    2005-01-01

    The prospective nuclear structure investigations of the fission fragments by resonance laser spectroscopy methods are discussed. Research in this field is currently being carried out as part of the DRIBs project, which is under development at the Laboratory of Nuclear Reactions, JINR. The fission fragments under study are mainly very neutron-rich nuclei near the proton (Z=50) and neutron (N=50 and 82) closed shells, nuclei in the region of strong deformation (N>60 and N>90) and nuclei with high-spin isomeric states. Resonance laser spectroscopy is used successfully in the study of the structure of such nuclei. It allows one to determine a number of nuclear parameters (mean-square charge radius, magnetic dipole and electric quadrupole moments) and to make conclusions about the collective and single particle properties of the nuclei

  16. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    Science.gov (United States)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  17. Membrane mobility and microdomain association of the dopaminetransporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika; Samuvel, Devadoss; Fog, Jacob

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of ~3.6 × 10-9 cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  18. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy.

    Science.gov (United States)

    Khoshroo, H; Khadem, H; Bahreini, M; Tavassoli, S H; Hadian, J

    2015-11-10

    Laser-induced fluorescence and Raman spectroscopy are used for the investigation of different genotypes of Thymus daenensis native to the Ilam province of Iran. Different genotypes of T. daenensis essential oils, labeled T1 through T7, possess slight differences with regard to the composition of the thymol. The gas chromatography-mass spectrometry (GC-MS) method is performed to determine the concentration of each constituent as a reference method. The Raman spectra of different concentrations of pure thymol dissolved in hexane as standard samples are obtained via a laboratory prototype Raman spectroscopy setup for the calculation of the calibration curve. The regression coefficient and limit of detection are calculated. The possibility of the differentiation of different genotypes of T. daenensis is also examined by laser-induced fluorescence spectroscopy, although we do not know the exact amounts of their components. All the fluorescence spectral information is used jointly by cluster analysis to differentiate between 7 genotypes. Our results demonstrate the acceptable precision of Raman spectroscopy with GC-MS and corroborate the capacity of Raman spectroscopy in applications in the quantitative analysis field. Furthermore, the cluster analysis results show that laser-induced fluorescence spectroscopy is an acceptable technique for the rapid classification of different genotypes of T. daenensis without having any previous information of their exact amount of constituents. So, the ability to rapidly and nondestructively differentiate between genotypes makes it possible to efficiently select high-quality herbs from many samples.

  19. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika M; Samuvel, Devadoss J; Fog, Jacob U

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  20. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    Al-Gubory, Kais H.

    2005-01-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  1. Combined fluorescence-Raman spectroscopy measurements with an optical fiber probe for the diagnosis of melanocytic lesions

    Science.gov (United States)

    Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.

    2012-02-01

    We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.

  2. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  3. O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry.

    Science.gov (United States)

    Borodkin, Vladimir S; Rafie, Karim; Selvan, Nithya; Aristotelous, Tonia; Navratilova, Iva; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-18

    The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.

  4. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    Directory of Open Access Journals (Sweden)

    Saskia M. Faassen

    2015-04-01

    Full Text Available On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables.

  6. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    Science.gov (United States)

    Faassen, Saskia M.; Hitzmann, Bernd

    2015-01-01

    On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644

  7. Distribution of diffusion times determined by fluorescence (lifetime) correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Loukotová, Lenka; Hrubý, Martin; Štěpánek, Petr

    2018-01-01

    Roč. 51, č. 8 (2018), s. 2796-2804 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer solution * fluorescence correlation spectroscopy * diffusion time distribution Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  8. Comparison of fluorescence rejection methods of baseline correction and shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Cai, Zhijian; Zou, Wenlong; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.

  9. Optical fluorescence spectroscopy to detect hepatic necrosis after normothermic ischemia: animal model

    Science.gov (United States)

    Romano, Renan A.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Fernandez, Jorge L.; Kurachi, Cristina; Bagnato, Vanderlei S.; Castro-e-Silva, Orlando; Sankarankutty, Ajith K.

    2015-06-01

    Liver transplantation is a well-established treatment for liver failure. However, the success of the transplantation procedure depends on liver graft conditions. The tissue function evaluation during the several transplantation stages is relevant, in particular during the organ harvesting, when a decision is made concerning the viability of the graft. Optical fluorescence spectroscopy is a good option because it is a noninvasive and fast technique. A partial normothermic hepatic ischemia was performed in rat livers, with a vascular occlusion of both median and left lateral lobes, allowing circulation only for the right lateral lobe and the caudate lobe. Fluorescence spectra under excitation at 532 nm (doubled frequency Nd:YAG laser) were collected using a portable spectrometer (USB2000, Ocean Optics, USA). The fluorescence emission was collected before vascular occlusion, after ischemia, and 24 hours after reperfusion. A morphometric histology analysis was performed as the gold standard evaluation - liver samples were analyzed, and the percentage of necrotic tissue was obtained. The results showed that changes in the fluorescence emission after ischemia can be correlated with the amount of necrosis evaluated by a morphometric analysis, the Pearson correlation coefficient of the generated model was 0.90 and the root mean square error was around 20%. In this context, the laser-induced fluorescence spectroscopy technique after normothermic ischemia showed to be a fast and efficient method to differentiate ischemic injury from viable tissues.

  10. Quantitative structural modeling on the wavelength interval (Δλ) in synchronous fluorescence spectroscopy

    Science.gov (United States)

    Samari, Fayezeh; Yousefinejad, Saeed

    2017-11-01

    Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.

  11. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  12. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    Science.gov (United States)

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  14. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    Science.gov (United States)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  15. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  16. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  17. Use of fluorescence spectroscopy to measure molecular autofluorescence in diabetic subjects

    International Nuclear Information System (INIS)

    Gomes, Cinthia Zanini

    2011-01-01

    Diabetes Mellitus (DM) comprises a complex metabolic syndrome, caused by reduced or absent secretion of insulin by pancreatic beta cells, leading to hyperglycemia. Hyperglycemia promotes glycation of proteins and, consequently, the appearance of advanced glycation end products (AGEs). Currently, diabetic patients are monitored by determining levels of glucose and glycated hemoglobin (HbA1c). The complications caused by hyperglycemia may be divided into micro and macrovascular complications, represented by retinopathy, nephropathy, neuropathy and cardiovascular disease. Albumin (HSA) is the most abundant serum protein in the human body and is subject to glycation. The Protoporphyrin IX (PpIX) is the precursor molecule of heme synthesis, structural component of hemoglobin. The in vitro and animals studies have indicated that hyperglycemia promotes a decrease in its concentration in erythrocytes. The fluorescence spectroscopy is a technique widely used in biomedical field. The autofluorescence corresponds to the intrinsic fluorescence present in some molecules, this being associated with the same structure. The aim of this study was to use fluorescence spectroscopy to measure levels of erythrocyte PpIX autofluorescence and AGE-HSA in diabetic and healthy subjects and compare them with levels of blood glucose and HbA1c. This study was conducted with 151 subjects (58 controls and 93 diabetics). Epidemiological data of patients and controls were obtained from medical records. For control subjects, blood glucose levels were obtained from medical records and levels of Hb1Ac obtained by using commercial kits. The determination of the PpIX autofluorescence was performed with excitation at 405 nm and emission at 632 nm. Determination of AGE-HSA was performed with excitation at 370 nm and emission at 455 nm. Approximately 50% of diabetic had micro and macrovascular lesions resulting from hyperglycemia. There were no significant differences in the PpIX emission intensity values

  18. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  19. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  20. Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy

    Science.gov (United States)

    Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua

    2018-05-01

    Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.

  1. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    Science.gov (United States)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic

  2. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  3. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  4. Using Quenching to Detect Corrosion on Sculptural Metalwork: A Real-World Application of Fluorescence Spectroscopy

    Science.gov (United States)

    Hensen, Cory; Clare, Tami Lasseter; Barbera, Jack

    2018-01-01

    Fluorescence spectroscopy experiments are a frequently taught as part of upper-division teaching laboratories. To expose undergraduate students to an applied fluorescence technique, a corrosion detection method, using quenching, was adapted from authentic research for an instrumental analysis laboratory. In the experiment, students acquire…

  5. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  6. Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems

    Science.gov (United States)

    Korak, J.

    2017-12-01

    Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.

  7. Classification of plum spirit drinks by synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Sádecká, J; Jakubíková, M; Májek, P; Kleinová, A

    2016-04-01

    Synchronous fluorescence spectroscopy was used in combination with principal component analysis (PCA) and linear discriminant analysis (LDA) for the differentiation of plum spirits according to their geographical origin. A total of 14 Czech, 12 Hungarian and 18 Slovak plum spirit samples were used. The samples were divided in two categories: colorless (22 samples) and colored (22 samples). Synchronous fluorescence spectra (SFS) obtained at a wavelength difference of 60 nm provided the best results. Considering the PCA-LDA applied to the SFS of all samples, Czech, Hungarian and Slovak colorless samples were properly classified in both the calibration and prediction sets. 100% of correct classification was also obtained for Czech and Hungarian colored samples. However, one group of Slovak colored samples was classified as belonging to the Hungarian group in the calibration set. Thus, the total correct classifications obtained were 94% and 100% for the calibration and prediction steps, respectively. The results were compared with those obtained using near-infrared (NIR) spectroscopy. Applying PCA-LDA to NIR spectra (5500-6000 cm(-1)), the total correct classifications were 91% and 92% for the calibration and prediction steps, respectively, which were slightly lower than those obtained using SFS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  9. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Douminge, L.

    2010-05-01

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  10. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  11. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  12. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  13. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  14. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  15. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    Science.gov (United States)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  16. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  17. Biological Interaction of Molybdenocene Dichloride with Bovine Serum Albumin Using Fluorescence Spectroscopy

    Science.gov (United States)

    Domínguez, Moralba; Cortes-Figueroa, Jose´ E.; Meléndez, Enrique

    2018-01-01

    Bioinorganic topics are ubiquitous in the inorganic chemistry curriculum; however, experiments to enhance understanding of related topics are scarce. In this proposed laboratory, upper undergraduate students assess the biological interaction of molybdenocene dichloride (Cp2MoCl2) with bovine serum albumin (BSA) by fluorescence spectroscopy.…

  18. Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Zhang Pudun; Li Liang; Dong Chaoqing; Qian Huifeng; Ren Jicun

    2005-01-01

    In this paper, fluorescence correlation spectroscopy (FCS) was applied to measure the size of water-soluble quantum dots (QDs). The measurements were performed on a home-built FCS system based on the Stokes-Einstein equation. The obtained results showed that for bare CdTe QDs the sizes from FCS were larger than the ones from transmission electron microscopy (TEM). The brightness of QDs was also evaluated using FCS technique. It was found that the stability of the surface chemistry of QDs would be significantly improved by capping it with hard-core shell. Our data demonstrated that FCS is a simple, fast, and effective method for characterizing the fluorescent quantum dots, and is especially suitable for determining the fluorescent nanoparticles less than 10 nm in water solution

  19. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  20. Quantum process tomography by 2D fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-01-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  1. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    Science.gov (United States)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  2. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  3. Probing the binding of Cu(2+) ions to a fragment of the Aβ(1-42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Żmudzińska, Wioletta; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-09-01

    Steady-state and time-resolved fluorescence quenching measurements supported by isothermal titration calorimetry (ITC) and molecular dynamics simulations (MD), with the NMR-derived restraints, were used to investigate the interactions of Cu(2+) ions with a fragment of the Aβ(1-42) polypeptide, Aβ(5-16) with the following sequence: Ac-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-NH2, denoted as HZ1. The studies presented in this paper, when compared with our previous results (Makowska et al., Spectrochim. Acta A 153: 451-456), show that the affinity of the peptide to metal ions is conformation-dependent. All the measurements were carried out in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution, pH6.0. The Stern-Volmer equations, along with spectroscopic observations, were used to determine the quenching and binding parameters. The obtained results unequivocally suggest that Cu(2+) ions quench the fluorescence of HZ1 only through a static quenching mechanism, in contrast to the fragment from the N-terminal part of the FPB28 protein, with sequence Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr- NH2 (D9) and its derivative with a single point mutation: Ac-Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr- NH2 (D9_M), where dynamic quenching occurred. The thermodynamic parameters (ΔITCH, ΔITCS) for the interactions between Cu(2+) ions and the HZ1 peptide were determined from the calorimetric data. The conditional thermodynamic parameters suggest that, under the experimental conditions, the formation of the Cu(2+)-HZ1 complex is both an enthalpy and entropy driven process. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  5. FRAGMENTATION STUDIES OF D6,7-ANHIDROERITROMISIN-A BY LIQUID CHROMATOGRAPHY-MASS SPECTROSCOPY (LC-MS

    Directory of Open Access Journals (Sweden)

    Khairan Khairan

    2010-06-01

    Full Text Available Semisynthesis of D6,7-Anhydroerythromycin-A was done by biomodification technique by addition of 0.2% INH into a culture fermentation of Saccharopolyspora erythraea ATCC 11635 in medium Hutchinson. The aim of this research is to studies of fragmentation pattern from new matabolite of D6,7-Anhydroerythromycin-A by Liquid Chromatography-Mass Spectroscopy (LC-MS and the ionization of mass spectroscopy is use by ESI (Electrospray Ionization pattern. The FT-IR spectrometric analyzes showed a stretching vibration of C=C conjugated group at wave number 1602.7 cm-1. This C=C conjugated vibration indicated the existence of double bond between C6 and C7 (D6,7, this confirmed that isolate contained D6,7-Anhydroerythromycin-A (the possibility of D6,7 was positive. For complementation, a LC-MS (Liquid Chromatography-Mass Spectroscopy analyzes using ESI-MS (Electrospray Ionization-Mass Spectroscopy ionization pattern was conducted to the isolate which resulted Quassimolecular ions [M+H]+ of D7,8- and D6,7-Anhydroerythromycin-A. LC-MS spectrogram of the isolate, which gave two peaks of m/z 732.2460 and m/z 716.2522, confirmed that the m/z 732.2460 possibly was D7,8-Anhydroerythromycin-A, while the m/z 716.2502 and m/z 715.2522 possibly were D6,7-Anhydroerythromycin-A.   Keywords: isoniazid, enoyl reduction, D6,7-Anhidroeritromisin-A, fragmentation, LC-MS.

  6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  7. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    Science.gov (United States)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  8. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  9. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra

    Czech Academy of Sciences Publication Activity Database

    Benda, A.; Kapusta, Peter; Hof, Martin; Gaus, K.

    2014-01-01

    Roč. 22, č. 3 (2014), s. 2973-2988 ISSN 1094-4087 R&D Projects: GA AV ČR KJB400400904; GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : spectroscopy * fluorescence and luminiscence * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.488, year: 2014

  10. Laser fluorescence spectroscopy of sputtered uranium atoms

    International Nuclear Information System (INIS)

    Wright, R.B.; Pellin, M.J.; Gruen, D.M.; Young, C.E.

    1979-01-01

    Laser induced fluorescence (LIF) spectroscopy was used to study the sputtering of 99.8% 238 U metal foil when bombarded by normally incident 500 to 3000 eV Ne + , Ar + , Kr + , and O 2 + . A three-level atom model of the LIF processes is developed to interpret the observed fluorescent emission from the sputtered species. The model shows that close attention must be paid to the conditions under which the experiment is carried out as well as to the details of the collision cascade theory of sputtering. Rigorous analysis shows that when properly applied, LIF can be used to investigate the predictions of sputtering theory as regards energy distributions of sputtered particles and for the determination of sputtering yields. The possibility that thermal emission may occur during sputtering can also be tested using the proposed model. It is shown that the velocity distribution (either the number density or flux density distribution, depending upon the experimental conditions) of the sputtered particles can be determined using the LIF technique and that this information can be used to obtain a description of the basic sputtering mechanisms. These matters are discussed using the U-atom fluorescence measurements as a basis. The relative sputtering yields for various incident ions on uranium were also measured for the first time using the LIF technique. A surprisingly high fraction of the sputtered uranium atoms were found to occupy the low lying metastable energy levels of U(I). The population of the sputtered metastable atoms were found approximately to obey a Boltzman distribution with an effective temperature of 920 +- 100 0 K. 41 references

  11. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    Science.gov (United States)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  12. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    Science.gov (United States)

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  13. The characterization of canvas painting by the Serbian artist Milo Milunović using X-ray fluorescence, micro-Raman and FTIR spectroscopy

    International Nuclear Information System (INIS)

    Damjanović, Lj.; Gajić-Kvaščev, M.; Đurđević, J.; Andrić, V.; Marić-Stojanović, M.; Lazić, T.; Nikolić, S.

    2015-01-01

    A canvas painting by Milo Milunović “The Inspiration of the poet” was studied by energy dispersive X-Ray fluorescence (EDXRF), micro-Raman and Fourier transform infrared (FTIR) spectroscopy in order to identify materials used by the artist and his painting technique. Study is perfomed combining in situ non-destructive method with the preparation and study of cross-section samples and raw fragments of the samples. Milo Milunović, an eminent painter from Balkan region, made a copy of the Nicolas Poussin's original painting in Louvre in 1926/27. Obtained results revealed following pigments on the investigated canvas painting: vermilion, minium, cobalt blue, ultramarine, lead white, zinc white, cadmium yellow, chrome-based green pigment and several earth pigments – red and yellow ocher, green earth and umber. Ground layer was made of lead white mixed with calcium carbonate. - Highlights: • In situ EDXRF, micro-Raman and FTIR spectroscopy were employed. • Pallete of painting “The Inspiration of the poet” by Milunović has been determined. • Obtained results allowed evaluation of the painter’s technique. • Milo Milunović worked on the clay ground imitating Nicoals Poussin’s technique

  14. Fluorescence spectroscopy: a tool to characterize humic substances in soil colonized by microorganisms?

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Veronika; Gryndler, Milan

    2006-01-01

    Roč. 51, č. 3 (2006), s. 215-221 ISSN 0015-5632 R&D Projects: GA ČR GA526/03/0188 Institutional research plan: CEZ:AV0Z50200510 Keywords : fluorescence spectroscopy * humic substances * microorganism Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  15. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  16. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    Science.gov (United States)

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Assessment of drinking water quality at the tap using fluorescence spectroscopy.

    Science.gov (United States)

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R

    2017-11-15

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  19. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  20. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  1. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies.

    Science.gov (United States)

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2015-10-01

    We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    International Nuclear Information System (INIS)

    Wells, S.A.; Evans, D.E.; Griffith, J.A.R.; Eastham, D.A.; Groves, J.; Smith, J.R.H.; Tolfree, D.W.L.; Warner, D.D.; Billowes, J.; Grant, I.S.; Walker, P.M.

    1988-01-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124 Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g 7/2 5/2[413] neutron and g 9/2 9/2[404] proton orbitals and the consequent enhancement of the n-p interaction. (orig.)

  3. Assessment of drinking water quality at the tap using fluorescence spectroscopy

    OpenAIRE

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R.

    2017-01-01

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the syst...

  4. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  5. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  6. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy; Fragmentation de la molecule C60 par impact d'ions legers etudiee en multicorrelation. Sections efficaces, spectroscopie d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H{sub n}{sup +} with n=1,2,3, He{sup q+} with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  7. Interaction of Chelerythrine with Keyhole Limpet Hemocyanin: a Fluorescence Spectroscopy and Molecular Docking Study

    Science.gov (United States)

    Zhong, M.; Long, R. Q.; Wang, Y. H.; Chen, C. L.

    2018-05-01

    The quenching mechanism between chelerythrine (CHE) and keyhole limpet hemocyanin (KLH) was investigated using fluorescence spectroscopy and molecular docking. The experiments were conducted at three different temperatures (293, 298, and 303 K). The results revealed that the intrinsic fluorescence of KLH was strongly quenched by CHE through a static quenching mechanism. The thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction were calculated, indicating that the interaction between CHE and KLH was spontaneous and that van der Waals forces and hydrogen bond formation played major roles in the binding process. The intrinsic fluorescence of the tyrosine and tryptophan residues in KLH was studied by synchronous fluorescence, which suggested that CHE changed the conformation of KLH. Finally, molecular docking was used to obtain detailed information on the binding sites and binding affinities between CHE and KLH.

  8. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.

    Science.gov (United States)

    Müller, Paul; Schwille, Petra; Weidemann, Thomas

    2014-09-01

    We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.

  9. Measurement of the spectrum of electric-field fluctuations in a plasma by laser-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Hildebrandt, J.; Kunze, H.

    1980-01-01

    Laser-fluorescence spectroscopy has been applied to measure the spectrum of electric wave fields with high temporal resolution in a pulsed hollow-cathode discharge. A low-frequency and a high-frequency component can be identified

  10. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods

    International Nuclear Information System (INIS)

    Vishwanath, Karthik; Mycek, Mary-Ann; Pogue, Brian

    2002-01-01

    A Monte Carlo model developed to simulate time-resolved fluorescence propagation in a semi-infinite turbid medium was validated against previously reported theoretical and computational results. Model simulations were compared to experimental measurements of fluorescence spectra and lifetimes on tissue-simulating phantoms for single and dual fibre-optic probe geometries. Experiments and simulations using a single probe revealed that scattering-induced artefacts appeared in fluorescence emission spectra, while fluorescence lifetimes were unchanged. Although fluorescence lifetime measurements are generally more robust to scattering artefacts than are measurements of fluorescence spectra, in the dual-probe geometry scattering-induced changes in apparent lifetime were predicted both from diffusion theory and via Monte Carlo simulation, as well as measured experimentally. In all cases, the recovered apparent lifetime increased with increasing scattering and increasing source-detector separation. Diffusion theory consistently underestimated the magnitude of these increases in apparent lifetime (predicting a maximum increase of ∼15%), while Monte Carlo simulations and experiment were closely matched (showing increases as large as 30%). These results indicate that quantitative simulations of time-resolved fluorescence propagation in turbid media will be important for accurate recovery of fluorophore lifetimes in biological spectroscopy and imaging applications. (author)

  11. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  12. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  13. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  14. Fluorescence spectroscopy of dental calculus

    International Nuclear Information System (INIS)

    Bakhmutov, D; Gonchukov, S; Sukhinina, A

    2010-01-01

    The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined

  15. Fluorescence spectroscopy of dental calculus

    Science.gov (United States)

    Bakhmutov, D.; Gonchukov, S.; Sukhinina, A.

    2010-05-01

    The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined.

  16. Egg-Citing! Isolation of Protoporphyrin IX from Brown Eggshells and Its Detection by Optical Spectroscopy and Chemiluminescence

    Science.gov (United States)

    Dean, Michelle L.; Miller, Tyson A.; Bruckner, Christian

    2011-01-01

    A simple and cost-effective laboratory experiment is described that extracts protoporphyrin IX from brown eggshells. The porphyrin is characterized by UV-vis and fluorescence spectroscopy. A chemiluminescence reaction (peroxyoxalate ester fragmentation) is performed that emits light in the UV region. When the porphyrin extract is added as a fluor…

  17. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  18. Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status.

    Science.gov (United States)

    Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko

    2008-04-01

    The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.

  19. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    Science.gov (United States)

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling.

  20. Determination of Concentration of Living Immobilized Yeast Cells by Fluorescence Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Podrazký, Ondřej; Kuncová, Gabriela

    2005-01-01

    Roč. 107, č. 1 (2005), s. 126-134 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] R&D Projects: GA ČR GA104/01/0461; GA MŠk(CZ) OC 840.10 Institutional research plan: CEZ:AV0Z40720504 Keywords : immobilization of cells * 2-D fluorescence spectroscopy * sol–gel Subject RIV: CE - Biochemistry Impact factor: 2.646, year: 2005

  1. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  2. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  3. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Hof, Martin

    2010-01-01

    Roč. 11, č. 2 (2010), s. 427-457 E-ISSN 1422-0067 R&D Projects: GA ČR GA203/08/0114; GA AV ČR GEMEM/09/E006 Institutional research plan: CEZ:AV0Z40400503 Keywords : lateral diffusion * fluorescence fluctuation spectroscopy * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.279, year: 2010

  4. Characterization of the photoreaction between DNA and aminomethyl-trimethylpsoralen using absorption and fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Johnston, B.H.; Hearst, J.E.

    1981-01-01

    The use of absorption and fluorescence spectroscopy for following the progress of the photoreaction between DNA and 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT) has been investigated. Absorption at long wavelengths and fluorescence both decline upon intercalation of AMT into the DNA helix. The loss of fluorescence from AMT and the accompanying appearance of monoadduct fluorescence upon irradiation by UV light can be easily followed by using the excitation beam of a spectrofluorometer as the source of irradiation and monitoring the changing emission spectrum. Where cross-link formation is possible, the subsequent decline of monoadduct fluorescence is seen as well. This suggests that the 4',5'-monoadduct is a precursor of cross-links. Both monoaddition and cross-linking are more rapid with poly d(A-T) than with calf thymus DNA or poly d(A.T). Excitation spectra can be helpful in resolving the levels of AMT and 4',5'-monoadduct when both are contributing to the emission spectrum. Some changes are observed in the emission spectrum of AMT-poly d(A.T) monoadducts after prolonged irradiation which indicate further photoreaction. (author)

  5. Accessibility of nucleic acid-complexed biomolecules to hydroxyl radicals correlates with their conformation: a fluorescence polarization spectroscopy study

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Bump, E.; Huang, C.; Kassis, A.I.; Baranowska-Kortylewicz, J.

    1994-01-01

    A fluorescence methodology has been developed to examine the relationship between the conformational state of specific biomolecules in simple chromatin models and their accessibility to hydroxyl radicals ( . OH). Polylysine and histone H1 were labelled with SECCA, the succinimidyl ester of coumarin-3-carboxylic acid, which generates the fluorescent derivative 7-OH-SECCA following its interaction with radiation-induced . OH in aqueous solution. The fluorescence induced per unit γ-ray dose reflecting the accessibility of . OH to such SECCA-conjugated biomolecules was recorded. The biomolecules were also labelled with the fluorescent derivative 7-OH-SECCA in trace amounts to study their conformation under identical conditions via fluorescence polarization spectroscopy. (author)

  6. Sample preparation of waste water to determine metallic contaminants by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez Olivos, Javier.

    1987-01-01

    Trace X-ray fluorescence spectroscopy analysis in liquid samples is preceded by sample preparation, which usually consists in the precipitation of the metallic ions and concentration over a thin cellulose filter. The samples preparation of waste water by this method is not efficient, due to the great amount of organic and insoluble matter that they contain. The purpose of this work was to determine the optimal value of pH in order to adsorbe all the insoluble matter contained in a waste water sample in the activated charcoal, so that the metallic ions could be precipitated and concentrated on a thin filter and determinated by X-ray fluorescence spectroscopy. A survey about the adsorption of some ions in activated charcoal in function of the pH was made for the following: Cr 3+ , Fe 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Se 2+ , Hg 2+ , and Pb 2+ . It was observed that at pH 0, the ions are not adsorbed, but Cu 2+ and Zn 2+ are adsorbed in small amount; at pH 14, the ions are adsorbed, excluding Se, which is not adsorbed at any value of pH. If a waste water sample is treated at pH 0 with activated charcoal to adsorbe the organic and insoluble matter, most of the metallic ions are not adsorbed by the activated charcoal and could be precipitated with APDC (ammonium 1-pirrolidine dithio carbamate salt) and concentrated on a thin filter. The analysis of the metallic ions contained on the filter and those adsorbed in the activated charcoal by X-ray fluorescence spectroscopy, gave the total amount of the ions in the sample. (author)

  7. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics

    Directory of Open Access Journals (Sweden)

    Andrey Bogomolov

    2017-11-01

    Full Text Available Matching pairs of tumor and non-tumor kidney tissue samples of four patients were investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes. In order to increase the data information content, the measurements on tissue samples in both methods were performed in the same 31 preselected positions. Multivariate data analysis revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to individual techniques.

  8. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  9. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  10. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  11. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy.

    Science.gov (United States)

    Stortz, Martin; Angiolini, Juan; Mocskos, Esteban; Wolosiuk, Alejandro; Pecci, Adali; Levi, Valeria

    2018-05-01

    The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    Science.gov (United States)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  13. Assessment of the Inhibitory Effect of Rifampicin on Amyloid Formation of Hen Egg White Lysozyme: Thioflavin T Fluorescence Assay versus FTIR Difference Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2014-01-01

    Full Text Available The inhibitory effect of rifampicin on the amyloid formation of hen egg white lysozyme was assessed with both Thioflavin T (ThT fluorescence assay and Fourier transform infrared (FTIR difference spectroscopy. We reveal that ThT fluorescence assay gives a false positive result due to rifampicin interference, while FTIR difference spectroscopy provides a reliable assessment. With FTIR, we show that rifampicin only has marginally inhibitory effect. We then propose that FTIR difference spectroscopy can potentially be a convenient method for inhibitor screening in amyloid study.

  14. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  15. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    International Nuclear Information System (INIS)

    Cekan, Pavol; Sigurdsson, Snorri Th.

    2012-01-01

    Highlights: ► Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe Ç/Ç f . ► One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. ► Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. ► Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. ► Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç f ) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç f . EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

  16. Macromolecule biosynthesis assay and fluorescence spectroscopy methods to explore antimicrobial peptide mode(s) of action

    DEFF Research Database (Denmark)

    Jana, Bimal; Baker, Kristin Renee; Guardabassi, Luca

    2017-01-01

    the biosynthesis rate of macromolecules (e.g., DNA, RNA, protein, and cell wall) and the cytoplasmic membrane proton motive force (PMF) energy can help to unravel the diverse modes of action of AMPs. Here, we present an overview of macromolecule biosynthesis rate measurement and fluorescence spectroscopy methods...

  17. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    Science.gov (United States)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  18. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  19. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  20. Determination of the botanical origin of honey by front-face synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Lenhardt, Lea; Zeković, Ivana; Dramićanin, Tatjana; Dramićanin, Miroslav D; Bro, Rasmus

    2014-01-01

    Front-face synchronous fluorescence spectroscopy combined with chemometrics is used to classify honey samples according to their botanical origin. Synchronous fluorescence spectra of three monofloral (linden, sunflower, and acacia), polyfloral (meadow mix), and fake (fake acacia and linden) honey types (109 samples) were collected in an excitation range of 240-500 nm for synchronous wavelength intervals of 30-300 nm. Chemometric analysis of the gathered data included principal component analysis and partial least squares discriminant analysis. Mean cross-validated classification errors of 0.2 and 4.8% were found for a model that accounts only for monofloral samples and for a model that includes both the monofloral and polyfloral groups, respectively. The results demonstrate that single synchronous fluorescence spectra of different honeys differ significantly because of their distinct physical and chemical characteristics and provide sufficient data for the clear differentiation among honey groups. The spectra of fake honey samples showed pronounced differences from those of genuine honey, and these samples are easily recognized on the basis of their synchronous fluorescence spectra. The study demonstrated that this method is a valuable and promising technique for honey authentication.

  1. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  2. Identification of green pigments from fragments of Roman mural paintings of three Roman sites from north of Germania Superior

    Science.gov (United States)

    Debastiani, Rafaela; Simon, Rolf; Goettlicher, Joerg; Heissler, Stefan; Steininger, Ralph; Batchelor, David; Fiederle, Michael; Baumbach, Tilo

    2016-10-01

    Roman mural green pigment painting fragments from three Roman sites in the north of the Roman province Germania Superior: Koblenz Stadtwald Remstecken (KOSR), Weißenthurm " Am guten Mann" (WEIS) and Mendig Lungenkärchen (MELU), dating from second and third centuries AD were analyzed. The experiments were performed nondestructively using synchrotron-based scanning macro-X-ray fluorescence (SR-MA-XRF), synchrotron-based scanning micro-X-ray fluorescence (SR-μ-XRF), synchrotron-based X-ray diffraction (SR-XRD) and Raman spectroscopy. Correlation between SR-MA-XRF, SR-μ-XRF elemental map distributions and optical images of scanned areas was mainly found for the elements Ca, Fe and K. With XRF, Fe and K were identified correlated with green pigment, but in samples from two sites, Mendig Lungenkärchen and Weißenthurm " Am guten Mann", also Cu was detected in minor concentration. The results of SR-XRD and Raman spectroscopy were limited to one sample from Weißenthurm " Am guten Mann". In this sample, green earth and calcium carbonate were identified by SR-XRD and, additionally, malachite by Raman spectroscopy.

  3. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy.

    Science.gov (United States)

    Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek

    2018-06-01

    Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.

  4. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  5. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  6. Mechanisms of ultrafast fluorescence depletion spectroscopy and applications to measure slovation dynamics of coummarin 153 in methanol

    International Nuclear Information System (INIS)

    Yang Songqiu; Liu Jianyong; Zhou Panwang; Chen Junsheng; Han Keli; He Guozhong

    2012-01-01

    Subpicosecond fluorescence depletion spectroscopy (FDS) was used to measure the solvation dynamics of coumarin 153 (C153) in methanol. The FDS mechanisms were discussed. A quasi-continuous model was used to describe the solvational relaxation of excited states. The perturbations of the probe pulse on the excited sample system, including up-conversion and stimulated emission, were sufficiently discussed. For a probe molecule used in the FDS experiment, ensuring that the up-conversion perturbation can be negligible is important. FDS was found to be a good technique for measuring the solvation dynamics of C153 in methanol. - Highlights: ► Mechanisms of subpicosecond fluorescence depletion spectroscopy. ► Quasi-continuous model was used to describe the solvational relaxation. ► The solvation dynamics of coumarin 153 in methanol has been measured.

  7. A novel approach for the detection of early gastric cancer: fluorescence spectroscopy of gastric juice.

    Science.gov (United States)

    Deng, Kai; Zhou, Li Ya; Lin, San Ren; Li, Yuan; Chen, Mo; Geng, Qiu Ming; Li, Yu Wen

    2013-06-01

    This study aimed to investigate the efficacy of fluorescence spectroscopy of gastric juice for early gastric cancer (EGC) screening. Gastric juice was collected from 101 participants who underwent endoscopy in the Outpatient Endoscopy Center of Peking University Third Hospital. The participants were divided into three groups: the normal mucosa or chronic non-atrophic gastritis (NM-CNAG) group (n = 35), advanced gastric cancer (AGC) group (n = 33) and EGC group (n = 33). Fluorescence spectroscopic analysis was performed in all the gastric juice samples and the maximum fluorescence intensity of the first peak (P1 FI) was measured. The mean fluorescence intensity of P1 FI of gastric juice in AGC (92.1 ± 10.7) and EGC (90.8 ± 12.0) groups was significantly higher than that in the NM-CNAG group (55.7 ± 7.5) (AGC vs NM-CNAG, P = 0.006 and EGC vs NM-CNAG, P = 0.015, respectively). The areas under the receiver operating characteristic curves for the detection of AGC and EGC were 0.681 (95% confidence interval [CI] 0.553-0.810, P = 0.010) and 0.655 (95% CI 0.522-0.787, P = 0.028). With the P1 FI of ≥47.7, the sensitivity, specificity and accuracy for detecting EGC were 69.7%, 57.1% and 63.2%, respectively. The enhancement of P1 FI of gastric juice occurs at the early stage of gastric cancer. Fluorescence spectroscopy of gastric juice may be used as a novel screening tool for the early detection of gastric cancer. © 2013 The Authors. Journal of Digestive Diseases © 2013 Wiley Publishing Asia Pty Ltd and Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine.

  8. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  9. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  10. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy

    International Nuclear Information System (INIS)

    Rentenier, A.

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H n + with n=1,2,3, He q+ with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  11. A statistical strategy to assess cleaning level of surfaces using fluorescence spectroscopy and Wilks’ ratio

    DEFF Research Database (Denmark)

    Stoica, Iuliana-Madalina; Babamoradi, Hamid; van den Berg, Frans

    2017-01-01

    •A statistical strategy combining fluorescence spectroscopy, multivariate analysis and Wilks’ ratio is proposed.•The method was tested both off-line and on-line having riboflavin as a (controlled) contaminant.•Wilks’ ratio signals unusual recordings based on shifts in variance and covariance...... structure described in in-control data....

  12. Bilayer Localization of Membrane-Active Peptides Studied in Biomimetic Vesicles by Visible and Fluorescence Spectroscopies

    Czech Academy of Sciences Publication Activity Database

    Sheynis, T.; Sýkora, Jan; Benda, Aleš; Kolusheva, S.; Hof, Martin; Jelinek, R.

    2003-01-01

    Roč. 270, č. 22 (2003), s. 4478-4487 ISSN 0014-2956 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : solvent relaxation * fluorescence correlation spectroscopy * lipid bilayers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.001, year: 2003

  13. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  14. Effect of tissue scaffold topography on protein structure monitored by fluorescence spectroscopy.

    Science.gov (United States)

    Portugal, Carla A M; Truckenmüller, Roman; Stamatialis, Dimitrios; Crespo, João G

    2014-11-10

    The impact of surface topography on the structure of proteins upon adhesion was assessed through non-invasive fluorescence monitoring. This study aimed at obtaining a better understanding about the role of protein structural status on cell-scaffold interactions. The changes induced upon adsorption of two model proteins with different geometries, trypsin (globular conformation) and fibrinogen (rod-shaped conformation) on poly-l-lactic acid (PLLA) scaffolds with different surface topographies, flat, fibrous and surfaces with aligned nanogrooves, were assessed by fluorescence spectroscopy monitoring, using tryptophan as structural probe. Hence, the maximum emission blue shift and the increase of fluorescence anisotropy observed after adsorption of globular and rod-like shaped proteins on surfaces with parallel nanogrooves were ascribed to more intense protein-surface interactions. Furthermore, the decrease of fluorescence anisotropy observed upon adsorption of proteins to scaffolds with fibrous morphology was more significant for rod-shaped proteins. This effect was associated to the ability of these proteins to adjust to curved surfaces. The additional unfolding of proteins induced upon adsorption on scaffolds with a fibrous morphology may be the reason for better cell attachment there, promoting an easier access of cell receptors to initially hidden protein regions (e.g. RGDS sequence), which are known to have a determinant role in cell attaching processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DETECTION OF MERCURIC BROMIDE IN A GAS PHASE FLOW CELL BY LASER PHOTOFRAGMENT FLUORESCENCE SPECTROSCOPY. (R825380)

    Science.gov (United States)

    Photofragment fluorescence (PFF) spectroscopy offers real-time monitoring capability with high-analytical sensitivity and selectivity for volatile mercury compounds found in process gas streams, such as incinerator stacks. In this work, low concentrations (6 ppb to...

  16. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    Science.gov (United States)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFSobtained spectra of human hepatic grafts during liver transplantation with post-operative patients' mortality rate and biochemical parameters, establishing a method to exclude nonviable grafts before implantation. Orthotopic liver transplantation, piggyback technique was performed in 15 patients. LIFS was performed under 408nm excitation. Collection was performed immediately after opening donor's abdominal cavity, after cold perfusion, end of back-table period, and 5 min and 1 h after warm perfusion at recipient. Fluorescence information was compared to lactate, creatinine, bilirubin and INR levels and to survival status. LIFS was sensitive to liver changes during transplantation stages. Study-in-progress; initial results indicate correlation between fluorescence and life/death status of patients.

  17. Study of the heavy impurity influx into the plasma using laser fluorescence spectroscopy in the TO-2 tokamak with toroidal divertor

    International Nuclear Information System (INIS)

    Vukolov, K.Yu.; Shvindt, N.N.

    1992-01-01

    Measurement cycle for determination of iron atom absolute concentrations was carried out in divertor and diaphragm modes of laser fluorescence spectroscopy. The conclusion is made on effective wall shielding by divertor layer as compared to material diaphragm. The basic result of the work consists in creating and testing on the tokamak TO-2 of multichannel diagnostic complex for remote measurement of atom (ion) absolute concentrations of metallic impurities in the near-wall plasma with high spatial and time resolution through laser fluorescence spectroscopy method intended for studies at the Tokamak-15 facility

  18. Assessment of post-implantation integration of engineered tissues using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann

    2018-02-01

    Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.

  19. Uranium concentrate analysis by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.; Roca, R.

    1978-01-01

    The determination of As, Ca, Fe, Mo, P, S, Si. Th, V and U in uranium concentrates by X-ray fluorescence spectroscopy has been studied. As and U are determined in nitric solutions and for the rest of elements analysis is performed by a bead fusion technique using Li 2 B 4 O 7 and Li 2 CO 3 as fluxes. Although the uranium matrix minimizes the absorption and enhancement effects, because of the content variations of this element it is advisable to operate at a constant level of U 3 O 8 . Despite the high matrix absorption and the large dilution of the samples, sensitivity and speed are found to be satisfactory as the result of the use of a high sensitivity automatic spectrometer. The spectral interferences of Mo on S and P, and of Pb on As have been particularly considered. (author) [es

  20. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  2. Fluorescence and amplified spontaneous emission of glass forming compounds containing styryl-4H-pyran-4-ylidene fragment

    Energy Technology Data Exchange (ETDEWEB)

    Vembris, Aivars, E-mail: aivars.vembris@cfi.lu.lv [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Muzikante, Inta [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Karpicz, Renata; Sliauzys, Gytis [Institute of Physics, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania); Miasojedovas, Arunas; Jursenas, Saulius [Institute of Applied Research, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Gulbinas, Vidmantas [Institute of Physics, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2012-09-15

    Potential of glassy films of newly synthesised low molecular weight organic molecules for light amplification and lasing applications has been investigated by analysing fluorescence, transient differential absorption and amplified spontaneous emission properties. These non-symmetric and symmetric molecules contain styryl-4H-pyran-4-ylidene fragment with three different electron acceptor groups: dicyanomethylene, barbituric acid, indene-1,3-dione. Fluorescence quantum yields of the investigated compounds in solutions are between 0.32 and 0.54, while they drop down by an order of magnitude in thin solid films. Incorporation of bulky side groups reduced excitonic interactions enabling manifestation of amplified spontaneous emission in the neat films of the investigated derivatives. - Highlights: Black-Right-Pointing-Pointer Bulky substituents attached to DCM dye enable formation of neat glassy films. Black-Right-Pointing-Pointer Investigated dyes show amplified spontaneous emission in neat films. Black-Right-Pointing-Pointer Two electron donor groups negatively influence light amplification.

  3. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    Science.gov (United States)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2018-02-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.

  4. Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Widom, Julia R; Marcus, Andrew H; Johnson, Neil P; Von Hippel, Peter H

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analogue of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS)—a fluorescence-detected variation of 2D electronic spectroscopy—to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point–dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R 12 = 3.5 ± 0.5 Å , twist angle θ 12 = 5° ± 5° ), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV–2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein–nucleic acid complexes. (paper)

  5. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    José Manuel de la Rosa Vázquez

    2015-01-01

    Full Text Available An ultraviolet (UV light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% agave tequila. Such fluorescence differences can even be observed with naked eyes. The presented results demonstrate that the fluorescence measurement could be a good method to detect counterfeit tequila.

  6. Study of the relaxation dynamics of Styryl 8 and of its solvent cage by sub-pico-second fluorescence laser spectroscopy

    International Nuclear Information System (INIS)

    Hebert, Philippe

    1992-01-01

    This research thesis addressed the study of the solvation dynamics of the fluorescent excited state of the styryl 8 molecule, and also the study of the photo-physical and photo-chemical properties, solvatochromism, fluorescence quantum efficiencies, non-radiative de-activation process, and photo-stability of this molecule. The development of a time-resolved (at a pico-second scale) fluorescence laser spectroscopy in a non linear crystal allowed the observation of styryl 8 short time fluorescence kinetics in different solvents, and the analysis of the evolution in time of its fluorescence spectra. Styryl rotation movements have also been studied with the same apparatus by performing time-resolved fluorescence anisotropy. The comparison between experimental results and those obtained with theoretical models highlights interactions between solute and solvent [fr

  7. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research

    Czech Academy of Sciences Publication Activity Database

    Benda, Aleš; Fagulová, Veronika; Deyneka, Alexander; Enderlain, J.; Hof, Martin

    2006-01-01

    Roč. 22, č. 23 (2006), s. 9580-9585 ISSN 0743-7463 R&D Projects: GA ČR GA203/05/2308; GA MŠk LC06063 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100522 Keywords : spectroscopy * fluorescence * FLCS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.902, year: 2006

  8. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  9. Fission fragment mass distributions via prompt γ-ray spectroscopy

    Indian Academy of Sciences (India)

    The distribution of fragment masses formed in nuclear fission is one of the most strik- ing features .... 80. 100. 120. 140. 160. 10. 3. 10. 4. Fragment Mass. Relative yield. Sn. Cd. Te. Pd ... the secondary fragment at Z = 50 and N = 82 shells, where the yields are depleted. Both ... More systematic experimental data are required.

  10. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics

    Science.gov (United States)

    Lauwers, D.; Candeias, A.; Coccato, A.; Mirao, J.; Moens, L.; Vandenabeele, P.

    2016-03-01

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.

  11. Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics

    International Nuclear Information System (INIS)

    Lenhardt, L; Zeković, I; Dramićanin, T; Dramićanin, M D

    2013-01-01

    Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%. (paper)

  12. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  13. Surface characterization of selected polymer thin films by total-reflection x-ray fluorescence spectroscopy and x-ray reflectivity

    International Nuclear Information System (INIS)

    Innis, Vallerie Ann A.

    2006-01-01

    Development of available x-ray characterizations tools for grazing incidence techniques was done to be able to probe nano-size thin films. Alignment of a Philips x-ray powder diffractometer was improved to let it perform as an x-ray reflectometer. X-ray reflectometry was coupled with total-reflection x-ray fluorescence spectroscopy. Evaluation of the performance of this grazing incidence techniques was done by preparing polymer thin films of carboxymethylcellulose, carrageenan and polyvinylpyrrolidone (PVP). The thickness of the films were varied by varying the process parameters such as concentration, spin speed and spin time. Angle-dispersive total-reflection x-ray fluorescence spectroscopy profiles of three films showed film formation only in carrageenan and PVP. For both carrageenan and PVP, an increase in concentration yielded a corresponding increase in intensity of the fluorescent or scattered peaks. XRR profiles of carrageenan thin films yielded a mean value for the critical angle close to quartz substrate. Thickness measurements of the prepared carrageenan thin films showed that concentration was the main determinant for final film thickness over the other process parameters. Sulfur fluorescent intensity derived from the TXRF measurement showed a linear relationship with the measured thickness by XRR. For PVP, measured critical angle is lower than quartz. Poor adhesion of the polymer onto the substrate yielded a limited number of thickness measurements made from the XRR profiles. (Author)

  14. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  15. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    International Nuclear Information System (INIS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained

  16. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)

    2011-02-28

    Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.

  17. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  18. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  19. X-ray Fluorescence Spectroscopy of Pre-Federal American Currency

    Science.gov (United States)

    Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis

    2017-09-01

    X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).

  20. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    International Nuclear Information System (INIS)

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-01-01

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides

  1. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  2. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Paghaleh, Soodeh Jamali; Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher; Rahimi, Mojtaba; Bahrampour, Ali Reza

    2015-01-01

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications

  3. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  4. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  5. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-01-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A 5971 = (5.9 +- 1.8) x 10 5 sec -1 , is, within experimental error, in good agreement with the previous determination of Corliss, A 5971 = (7.3 +- 3.0) x 10 5 sec -1 [J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)

  6. Study of the interaction of Tb (III) with dextran through fluorescence spectroscopy and optical rotatory dispersion

    International Nuclear Information System (INIS)

    Vasconcelos, Sandra S.; Rodrigues, J.F.

    1984-01-01

    A study of the interaction of Tb(III) with dextran in aqueous solution was perform using fluorescence spectroscopy and optical rotatory dispersion. The results indicate the formation of a complex with the displacent of water from the cation coordinated sphere by hydroxyl groups at the second and third carbon atoms of the monomer unit. (Author) [pt

  7. Investigating temperature effects on extra virgin olive oil using fluorescence spectroscopy

    Science.gov (United States)

    Saleem, M.; Ahmad, Naveed; Ali, H.; Bilal, M.; Khan, Saranjam; Ullah, Rahat; Ahmed, M.; Mahmood, S.

    2017-12-01

    The potential of fluorescence spectroscopy has been utilized to study the heating effects on extra virgin olive oil (EVOO). Through a series of experiments, a temperature range from 140 °C  -  150 °C has been found where cooking with EVOO is possible without destroying its natural ingredients. Fluorescence emission spectra from all heated and non-heated EVOO samples were recorded using an excitation source at 350 nm, where emission bands in non-heated EVOO at 380, 440, 455, and 525 nm are labelled for vitamin E and a band at 673 nm is assigned for chlorophyll a. The emission band at 525 nm is also responsible for beta carotenoids (vitamin A). As a result of heating, prominent intensity variations have been observed in all spectral bands, but it is particularly affected at 525 nm, indicating the deterioration of vitamin E and beta carotenoids. However, if the temperature of oil can be maintained in the above defined range, then frying food with EVOO is possible by preserving its natural ingredients. The spectral variations resulting from the heating effects have been further highlighted by using principal component analysis for classification purposes.

  8. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    Science.gov (United States)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  9. Two-focus fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Dertinger, T.

    2007-05-01

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  10. Two-focus fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dertinger, T.

    2007-05-15

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  11. Study of Photoionization and Fragmentation on CHClF2 : Experiments and Calculations

    International Nuclear Information System (INIS)

    Sheng, L.; Yang, B.; Huang, C.; Qi, F.; Zhang, Y.; Wang, Z.; Zhou, S.

    2004-01-01

    Full text: The photoionization and fragmentation of CHClF 2 are studied with VUV radiation and photoionization mass spectroscopy at NSRL. Ionization potential of Parent molecule CHClF 2 , appearance energies of some fragment ions, and dissociative energy of some fragmentation process are obtained from photoionization efficiency spectroscopy. Dissociative photoionization channels for formation of some fragment ions are proposed on comparison of determined appearance energies and energies predicted with Gaussian-98 calculation

  12. Using Fluorescence Intensity of Enhanced Green Fluorescent Protein to Quantify Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Erin Wilson

    2018-05-01

    Full Text Available A variety of direct and indirect methods have been used to quantify planktonic and biofilm bacterial cells. Direct counting methods to determine the total number of cells include plate counts, microscopic cell counts, Coulter cell counting, flow cytometry, and fluorescence microscopy. However, indirect methods are often used to supplement direct cell counting, as they are often more convenient, less time-consuming, and require less material, while providing a number that can be related to the direct cell count. Herein, an indirect method is presented that uses fluorescence emission intensity as a proxy marker for studying bacterial accumulation. A clinical strain of Pseudomonas aeruginosa was genetically modified to express a green fluorescent protein (PA14/EGFP. The fluorescence intensity of EGFP in live cells was used as an indirect measure of live cell density, and was compared with the traditional cell counting methods of optical density (OD600 and plate counting (colony-forming units (CFUs. While both OD600 and CFUs are well-established methods, the use of fluorescence spectroscopy to quantify bacteria is less common. This study demonstrates that EGFP intensity is a convenient reporter for bacterial quantification. In addition, we demonstrate the potential for fluorescence spectroscopy to be used to measure the quantity of PA14/EGFP biofilms, which have important human health implications due to their antimicrobial resistance. Therefore, fluorescence spectroscopy could serve as an alternative or complementary quick assay to quantify bacteria in planktonic cultures and biofilms.

  13. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    Science.gov (United States)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  14. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy

    Science.gov (United States)

    Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu

    2018-02-01

    A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.

  15. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  16. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  17. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells.

    Science.gov (United States)

    Ohrt, Thomas; Mütze, Jörg; Staroske, Wolfgang; Weinmann, Lasse; Höck, Julia; Crell, Karin; Meister, Gunter; Schwille, Petra

    2008-11-01

    Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large approximately 3 MDa complex in the cytoplasm and a 20-fold smaller complex of approximately 158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments.

  18. Correction of fluorescence for depth-specific optical and vascular properties using reflectance and differential path-length spectroscopy during PDT

    Science.gov (United States)

    van Zaane, F.; Middelburg, T. A.; de Bruijn, H. S.; van der Ploeg-van den Heuvel, A.; de Haas, E. R. M.; Sterenborg, H. J. C. M.; Neumann, H. A. M.; Robinson, D. J.

    2009-06-01

    Introduction: The rate of PpIX fluorescence photobleaching is routinely used as a dose metric for ALA-PDT. Diffuse reflection spectroscopy is often used to account for variations in tissue optical properties at the photosensitizer excitation and emission bands. It can be used to quantify changes in vascular parameters, such as blood volume fraction and saturation, and can aid understanding of tissue response to PDT. The volume and(/or) depth over which these signals are acquired are critical. The aim of this study is to use quantitative reflectance spectroscopy (DPS) to correct fluorescence for changes in tissue optical properties and monitor PDT. Materials & Methods: ALA was topically applied to hairless mice skin and the incubated spot was treated with PDT according to fractionated illumination schemes. DPS measurements of vascular parameters and optical properties were performed directly before and after illumination. Both the differential signal, delivery-and-collection-fiber signal and the collection fiber signal, which all probe different measurement volumes, are analyzed. Results & Conclusions: Analysis of DPS measurements shows that at the depth where most fluorescence originates, there is almost no blood present. During PDT vascular parameters at this depth stay constant. In more oxygenated layers of the tissue, the optical properties do change during PDT, suggesting that only a small part of PpIX fluorescence originates from the interesting depths where vascular response occurs. Correcting fluorescence emission spectra for optical changes at specific depths and not for the total of changes in a larger volume, as is usually done now, can improve PpIX photobleaching based treatment monitoring.

  19. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS)

    International Nuclear Information System (INIS)

    Brockmann, S.; Grossmann, K.; Arnold, T.

    2014-01-01

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10 -6 M for uranium (VI) compounds within the confocal volume. (orig.)

  20. Discrimination of several Indonesian specialty coffees using Fluorescence Spectroscopy combined with SIMCA method

    Science.gov (United States)

    Suhandy, D.; Yulia, M.

    2018-03-01

    Indonesia is one of the important producers of several specialty coffees, which have a particularly high economic value, including Civet coffee (‘kopi luwak’ in Indonesian language) and Peaberry coffee (‘kopi lanang’ in Indonesian language). The production of Civet and Peaberry coffee is very limited. In order to provide authentication of Civet and Peaberry coffee and protect consumers from adulteration, a robust and easy method for evaluating ground Civet and Peaberry coffee and detection of its adulteration is needed. In this study, we investigate the use of fluorescence spectroscopy combined with SIMCA (soft independent modelling of class analogies) method to discriminate three Indonesian specialty coffee: ground Peaberry, Civet and Pagar Alam coffee. Total 90 samples were used (30 samples for Civet, Peaberry and Pagar Alam coffee, respectively). All coffee samples were ground using a home-coffee-grinder. Since particle size in coffee powder has a significant influence on the spectra obtained, we sieved all coffee samples through a nest of U. S. standard sieves (mesh number of 40) on a Meinzer II sieve shaker for 10 minutes to obtain a particle size of 420 µm. The experiments were performed at room temperature (around 27-29°C). All samples were extracted with distilled water and then filtered. For each samples, 3 mL of extracted sample then was pipetted into 10 mm cuvettes for spectral data acquisition. The EEM (excitation-emission matrix) spectral data of coffee samples were acquired using JASCO FP-8300 Fluorescence Spectrometer. The principal component analysis (PCA) result shows that it is possible to discriminate types of coffee based on information from EEM (excitation-emission matrix) spectral data. Using SIMCA method, the discrimination model of Indonesian specialty coffee was successfully developed and resulted in high performance of discrimination with 100% of sensitivity and specificity for Peaberry, Civet and Pagar Alam coffee. This research

  1. Investigation of the inclusion behavior between p-sulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Wang Xueying; Luo Chuannan; Lv Zhen; Lu Fuguang

    2011-01-01

    The host-guest complexation between p-sulfoniccalix[8]arene (SC 8 A) and norfloxacin (NFLX) in aqueous solution was investigated by fluorescence spectroscopy. Strong fluorescence intensity of the NFLX aqueous solution alone and obvious fluorescence quenching of NFLX solution in the presence of SC 8 A were observed. The fluorescence lifetimes of NFLX and SC 8 A-NFLX inclusion complex were determined and the effect of temperature on SC 8 A-NFLX inclusion complex was studied. The static quenching of the inclusion was obtained, that is the SC 8 A can form a nonfluorescent ground-state inclusion complex with NFLX. As the results show, the combined ratio (n) was 1:1 and association constant K was 1.17x10 5 L/mol. Based on the experimental results, the mechanism of the inclusion complex was explored. The space matching, electrostatic force and hydrogen bond play important effects in the inclusion process. Subsequently, the addition of bovine serum albumin (BSA) solution led to the recovery of fluorescence intensity. It is indicated that BSA can liberate the NFLX into the solution by destructing the SC 8 A-NFLX inclusion complex. Hence SC 8 A may be used for controlled-release drug delivery in the pharmaceutical industry. - Highlights: → Fluorescence lifetimes of NFLX and SC8A-NFLX inclusion complex were determined. → Mechanism of the SC8A-NFLX inclusion complex was explored. → It is proved that SC8A can form a nonfluorescent ground-state inclusion complex with NFLX.

  2. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    Science.gov (United States)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  3. Artificial neural networks as a multivariate calibration tool: modelling the Fe-Cr-Ni system in X-ray fluorescence spectroscopy

    NARCIS (Netherlands)

    Bos, A.; Bos, A.; Bos, M.; van der Linden, W.E.

    1993-01-01

    The performance of artificial neural networks (ANNs) for modeling the Cr---Ni---Fe system in quantitative x-ray fluorescence spectroscopy was compared with the classical Rasberry-Heinrich model and a previously published method applying the linear learning machine in combination with singular value

  4. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  5. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    International Nuclear Information System (INIS)

    Schroedter, Lasse

    2013-08-01

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10 15 W/cm 2 . For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  6. Delta-ALA-mediated fluorescence spectroscopy of gastrointestinal tumors: comparison of in vivo and in vitro results

    Science.gov (United States)

    Vladimirov, B.; Borisova, E.; Avramov, L.

    2007-06-01

    The limitations of standard endoscopy for detection of dysplastic changes of mucosa are significant challenge and initiate development of new photodiagnostic techniques, additional to diagnostic possibilities of standard endoscopic equipment. One of the most widely examined optical modalities is the laser- or light-induced fluorescence spectroscopy (LIFS), because of its rapid and highly sensitive response to early biochemical and morphological changes in biological tissues. In the recent study delta-aminolevulinic acid/protoporphyrin IX is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The δ -ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built to use the light guide of standard video-endoscopic system. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. The fluorescence detected from in vivo tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Mucosa autofluorescence lies at 450-600 nm region. The fluorescence of PpIX is clearly pronounced at the 630-710 nm region. Deep minima in the tumor fluorescence signals are observed in the region 540-575 nm, related to hemoglobin re-absorption. Such high hemoglobin content is an indication of the tumors vascularization and it is clearly pronounced in all dysplastic and tumor sites investigated. After formalin conservation for in vitro samples hemoglobin absorption is strongly reduced that increases mucous fluorescence signal in green-yellow spectral region. Simultaneously the maxima at 635 nm and 720 nm are reduced.

  7. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods

    Science.gov (United States)

    Mitsionis, Anastasios I.; Vaimakis, Tiverios C.

    2012-09-01

    Critical micelle concentration (CMC) of two anionic surfactants in methanol was estimated using conductometry, viscometry and pyrene fluorescence spectroscopy methods. The surfactants used, were sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) and sodium dodecyl sulfate (SDS) dispersed in pure methanol. The CMC determination was evaluated in room temperature. The results have shown nearly similar concentrations.

  8. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  9. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  10. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  11. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  12. Experimental station for gas phase fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Stankiewicz, M.; Garcia, E. Melero; Ruiz, J. Alvarez; Erman, P.; Hatherly, P.A.; Kivimaeki, A.; Rachlew, E.; Rius i Riu, J.

    2004-01-01

    The details of an experimental setup for gas phase atomic and molecular fluorescence measurements using synchrotron radiation are described in this article. The most significant part of the apparatus is an optical arrangement, which allows for simultaneous measurements of dispersed as well as total fluorescence intensity using an effusive gas jet and an inbuilt gas cell assembled in a convenient plug and measure configuration. The first measurements concerning fluorescence of the N 2 molecule around the N 1s edge obtained with this setup are presented

  13. Direct measurements of neutral density depletion by two-photon absorption laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Aanesland, A.; Liard, L.; Leray, G.; Jolly, J.; Chabert, P.

    2007-01-01

    The ground state density of xenon atoms has been measured by spatially resolved laser-induced fluorescence spectroscopy with two-photon excitation in the diffusion chamber of a magnetized Helicon plasma. This technique allows the authors to directly measure the relative variations of the xenon atom density without any assumptions. A significant neutral gas density depletion was measured in the core of the magnetized plasma, in agreement with previous theoretical and experimental works. It was also found that the neutral gas density was depleted near the radial walls

  14. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water.

    Science.gov (United States)

    Sorensen, J P R; Vivanco, A; Ascott, M J; Gooddy, D C; Lapworth, D J; Read, D S; Rushworth, C M; Bucknall, J; Herbert, K; Karapanos, I; Gumm, L P; Taylor, R G

    2018-06-15

    We assessed the utility of online fluorescence spectroscopy for the real-time evaluation of the microbial quality of untreated drinking water. Online fluorimeters were installed on the raw water intake at four groundwater-derived UK public water supplies alongside existing turbidity sensors that are used to forewarn of the presence of microbial contamination in the water industry. The fluorimeters targeted fluorescent dissolved organic matter (DOM) peaks at excitation/emission wavelengths of 280/365 nm (tryptophan-like fluorescence, TLF) and 280/450 nm (humic-like fluorescence, HLF). Discrete samples were collected for Escherichia coli, total bacterial cell counts by flow cytometry, and laboratory-based fluorescence and absorbance. Both TLF and HLF were strongly correlated with E. coli (ρ = 0.71-0.77) and total bacterial cell concentrations (ρ = 0.73-0.76), whereas the correlations between turbidity and E. coli (ρ = 0.48) and total bacterial cell counts (ρ = 0.40) were much weaker. No clear TLF peak was observed at the sites and all apparent TLF was considered to be optical bleed-through from the neighbouring HLF peak. Therefore, a HLF fluorimeter alone would be sufficient to evaluate the microbial water quality at these sources. Fluorescent DOM was also influenced by site operations such as pump start-up and the precipitation of cations on the sensor windows. Online fluorescent DOM sensors are a better indicator of the microbial quality of untreated drinking water than turbidity and they have wide-ranging potential applications within the water industry. Copyright © 2018 British Geological Survey, a component institute of NERC - 'BGS © NERC 2018'. Published by Elsevier Ltd.. All rights reserved.

  15. A pH dependence study of CdTe quantum dots fluorescence quantum yields using eclipsing thermal lens spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Estupiñán-López, C. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Dominguez, C. Tolentino [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Centre for Telecommunication Studies, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Filho, P.E. Cabral [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Santos, B.S. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE (Brazil); Fontes, A., E-mail: adriana.fontes.biofisica@gmail.com [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Araujo, R.E. de, E-mail: renato.earaujo@ufpe.br [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil)

    2016-06-15

    In this study we evaluated the absolute fluorescence quantum yield (Φ) of hydrophilic CdTe QDs in function of different pHs, modified from the alkaline to acid, by using two different chemicals compounds, the mercaptosuccinic acid (MSA-the stabilizing agent of the QDs synthesis) or hydrochloric acid (HCl). The pH control of QDs suspensions is essential for the use of fluorescent nanoparticles in biological systems. We used the eclipsing thermal lens spectroscopy technique to determine the absolute fluorescence quantum yield values. The results showed variations on the Φ values as a function of the pH, which allowed a better understanding of QDs emission characteristics, establishing parameters for their use in biomedical applications such as optical images of biological systems, immunoassays, flow cytometry, biosensors and others.

  16. Characteristics of the fluorescent substances in the Yodo River system by three-dimensional excitation emission matrix spectroscopy; Sanjigen reiki/keiko kodoho ni yoru yodogawa suikeichu no keiko busshitsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Nakaguchi, Y.; Hiraki, K.; Kudo, M.; Kimura, M.; Nagao, S. [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-08-01

    Organic substances in the river water in Yodo River system were analyzed by three-dimensional excitation emission matrix spectroscopy. Fluorescent substances were taken as an index of organic substances. The amount of fluorescent substances varied widely depending on the environment of river basin. It is suggested that the fluorescent substances are composed of organic substances which is not directly originated from biological activity. It is suggested that the fluorescent substances were produced by leaching of river bottom sediment. The fluorescent substances in Yodo River system consists of fulvic acid-like substances and protein. The analysis of fluorescent substances in river water by three-dimensional excitation emission matrix spectroscopy can be useful means for estimation of variation and origin of fluorescent substances. For better understanding of features of fluorescent substances in the surface water into which various kinds of substances enter, it is necessary to determine the exact sampling points based on the consideration of different sources and to make a database of peak positions for identification of fluorescent substances from fluorescence intensity peak. 29 refs., 3 figs., 2 tabs.

  17. Fluorescence spectroscopy and multi-way techniques. PARAFAC

    DEFF Research Database (Denmark)

    Murphy, Kathleen R.; Stedmon, Colin A.; Graeber, Daniel

    2013-01-01

    PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence conforms to Beers Law, this process can lead to the mathematical identification and quantification...

  18. Reviews in fluorescence 2008

    CERN Document Server

    Geddes, Chris D

    2010-01-01

    This volume serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence spectroscopy. It summarizes the year's progress in fluorescence and its applications as well as includes authoritative analytical reviews.

  19. Use of COD, TOC, and Fluorescence Spectroscopy to Estimate BOD in Wastewater.

    Science.gov (United States)

    Christian, Evelyn; Batista, Jacimaria R; Gerrity, Daniel

    2017-02-01

      Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility. Relative reductions of the water quality parameters proved to be strong indicators of their suitability as surrogates for BOD5. Suitable correlations were generally limited to the combined datasets for the three sampling locations or the facility effluent alone. COD exhibited relatively strong linear correlations with BOD5 when considering the three sample points (r = 0.985) and the facility effluent alone (r = 0.914), while TOC exhibited a suitable linear correlation with BOD5 in the facility effluent (r = 0.902). Exponential regressions proved to be useful for estimating BOD5 based on TOC or fluorescence (r > 0.95).

  20. Fluorescent quantification of melanin.

    Science.gov (United States)

    Fernandes, Bruno; Matamá, Teresa; Guimarães, Diana; Gomes, Andreia; Cavaco-Paulo, Artur

    2016-11-01

    Melanin quantification is reportedly performed by absorption spectroscopy, commonly at 405 nm. Here, we propose the implementation of fluorescence spectroscopy for melanin assessment. In a typical in vitro assay to assess melanin production in response to an external stimulus, absorption spectroscopy clearly overvalues melanin content. This method is also incapable of distinguishing non-melanotic/amelanotic control cells from those that are actually capable of performing melanogenesis. Therefore, fluorescence spectroscopy is the best method for melanin quantification as it proved to be highly specific and accurate, detecting even small variations in the synthesis of melanin. This method can also be applied to the quantification of melanin in more complex biological matrices like zebrafish embryos and human hair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy.

    Science.gov (United States)

    Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi

    2011-03-01

    Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010

  2. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam

    International Nuclear Information System (INIS)

    Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.

    2000-01-01

    Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development

  3. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays.

    Science.gov (United States)

    Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M

    2011-02-01

    This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.

  4. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  5. Fluorescence spectroscopy for neoplasms control

    Science.gov (United States)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  6. Portable instrument that integrates irradiation with fluorescence and reflectance spectroscopies during clinical photodynamic therapy of cutaneous disease

    Science.gov (United States)

    Cottrell, W. J.; Oseroff, A. R.; Foster, T. H.

    2006-06-01

    We report a portable clinical instrument for delivering photodynamic therapy (PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivers the treatment beam to a user-defined field on the skin and performs reflectance and fluorescence spectroscopies at two regions within this field. The instrument is being used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, blood volume, and hemoglobin oxygen saturation during a pilot clinical trial of 5-aminolevulinic acid-PDT treatment of superficial basal cell carcinoma (BCC). Protoporphyrin IX and photoproduct fluorescence excited by the 633nm PDT treatment laser is collected between 655 and 800nm. During a series of brief treatment interruptions at programable time points, white light reflectance spectra between 475 and 800nm are acquired. Fluorescence spectra are corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular value decomposition fitting routine. Reflectance spectra additionally provide information on blood volume and hemoglobin oxygen saturation. Monitoring blood oxygenation and implicit dose metrics such as photosensitizer photobleaching during PDT allows the improved interpretation of clinical results and is helping to guide the treatment protocol for an anticipated low-irradiance PDT clinical trial of BCC.

  7. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...

  8. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  9. Two dimensional laser induced fluorescence in the gas phase: a spectroscopic tool for studying molecular spectroscopy and dynamics

    Science.gov (United States)

    Gascooke, Jason R.; Lawrance, Warren D.

    2017-11-01

    Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate "parent" state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.

  10. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  11. Fluorescence spectroscopy of gastrointestinal tumors using δ-ALA

    Science.gov (United States)

    Borisova, E. G.; Vladimirov, B. G.; Angelov, I. G.; Avramov, L. A.

    2007-03-01

    In the recent study delta-aminolevulinic acid/Protoporphyrin IX (δ-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The δ-ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built to use the light guide of standard video-endoscopic system (Olimpus Corp.). Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer (USB4000, OceanOptics Inc.). The fluorescence detected from tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Mucosa autofluorescence lies at 450-600 nm region. The fluorescence of PpIX is clearly pronounced at the 630-710 nm region. Deep minima in the tumor fluorescence signals are observed in the region 540-575 nm, related to hemoglobin re-absorption. Such high hemoglobin content is an indication of the tumors neovascularisation and it is clearly pronounced in all dysplastic and tumor sites investigated. The lack of fluorescence peaks in the red spectral area for normal mucosa is an indication for selective accumulation of δ-ALA/PpIX only in abnormal sites and gives high contrast when lesion borders are determined from clinicians during video observation in the process of diagnostic procedure. Very good correlation between fluorescence signals and histology examination results of the lesions investigated is achieved.

  12. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  13. Process of Fragment-Based Lead Discovery—A Perspective from NMR

    Directory of Open Access Journals (Sweden)

    Rongsheng Ma

    2016-07-01

    Full Text Available Fragment-based lead discovery (FBLD has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI systems. Nuclear magnetic resonance (NMR spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets.

  14. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  15. Uranium(VI) speciation by spectroscopy

    International Nuclear Information System (INIS)

    Meinrath, G.

    1997-01-01

    The application of UV-Vis and time-resolved laser-induced fluorescence (TRLF) spectroscopies to direct of uranium(VI) in environmental samples offers various prospects that have, however, serious limitations. While UV-Vis spectroscopy is probably not sensitive enough to detect uranium(VI) species in the majority of environmental samples, TRLFS is principially able to speciate uranium(VI) at very low concentration levels in the nanomol range. Speciation by TRLFS can be based on three parameters: excitation spectrum, emission spectrum and lifetime of the fluorescence emission process. Due to quenching effects, the lifetime may not be expected to be as characteristics as, e.g., the emission spectrum. Quenching of U(VI) fluorescence by reaction with organic substances, inorganic ions and formation of carbonate radicals is one important limiting factor in the application of U(VI) fluorescence spectroscopy. Fundamental photophysical criteria are illustrated using UV-Vis and fluorescence spectra of U(VI) hydrolysis and carbonato species as examples. (author)

  16. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

    Directory of Open Access Journals (Sweden)

    CUICUI LIU

    2013-07-01

    Full Text Available The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.

  17. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  18. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    Science.gov (United States)

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  19. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  20. Fluorescence Spectroscopy, Exciton Dynamics and Photochemistry of Single Allophycocyanin Trimers

    International Nuclear Information System (INIS)

    Ying, Liming; Xie, Xiaoliang

    1998-01-01

    We report a study of the spectroscopy and exciton dynamics of the allophycocyanin trimer (APC), a light harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed, because of generation of exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible ixciton trap formation within the three quasi-independent pairs of strong interacting a84 and B84 chromophores in APC, as well a photobleaching of individual chromophores. Comparison experiments under continuous wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into exciton dynamics and photochemistry of light-harvesting complexes

  1. Inner-shell excitation and ionic fragmentation of molecules

    International Nuclear Information System (INIS)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-01-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF 6 and CO 2 . Their work is illustrated using results from the carborane and PF 3 studies

  2. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  3. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.

    Science.gov (United States)

    Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel

    2010-04-01

    A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.

  4. Papain cleavage of the 38,000-dalton fragment inhibits the binding of 4, 4'-diisothiocyanostilbene-2, 2'-disulfonate to lys-539 on the 60,000-dalton fragment in human band 3.

    Science.gov (United States)

    Yamaguchi, Takeo; Kojima, Hideaki; Kawaguchi, Shiori; Shimada, Maiko; Aso, Haruka

    2017-08-01

    Human band 3 is a 98-kDa transmembrane (TM) protein comprising 14 TM segments. Papain cleavages band 3 into 38- and 60-kDa fragments. Under vigorous conditions, the cleavage of the loop region between the TM 7 of gate domain and the TM 8 of core domain in the 38-kDa fragment produces 7- and 31-kDa fragments. Conformational changes of the TM 5 segment containing Lys-539 by cleavage of the 38-kDa fragment remain unclear. Pressure-induced haemolysis of erythrocytes was suppressed by binding of 4, 4'-diisothiocyanostilbene-2, 2'-disulfonate (DIDS) to Lys-539. Such effect of DIDS was not observed upon cleavage of the 38-kDa fragment, because of inhibition of DIDS binding to Lys-539. Using fluorescence of DIDS labelled to Lys-539, conformational changes of band 3 were examined. Fluorescence spectra demonstrated that the molecular motion of DIDS is more restricted upon digestion of the 38-kDa fragment. Interestingly, the quenching of DIDS fluorescence showed that Hg2+ is less accessible to DIDS upon digestion of the 38-kDa fragment. Taken together, we propose that the conformational changes of the TM 5 segment characterized by the sequestration and restricted motion of Lys-539 are induced by the cleavage of the loop region between the TM 7 and the TM 8. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    International Nuclear Information System (INIS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2011-01-01

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10 5 M -1 was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the α-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: → Fisetin-BSA system was studied by fluorescence spectroscopy. → Binding parameters, association constant and number of sites were estimated. → Binding site of fisetin was identified by competitive experiments. → Conformational changes in HSA and fisetin were evidenced by circular dichroism. → TDDFT calculated CD spectra supported the experimental data.

  6. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  7. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Verification of roaming and triple fragmentation

    Science.gov (United States)

    Hung, Kai-Chan; Tsai, Po-Yu; Li, Hou-Kuan; Lin, King-Chuen

    2014-02-01

    By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of 0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality.

  8. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  9. Studies on Ternary Complex Formation of U(VI)-salicylate by Using Time-resolved Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, H. R.; Park, K. K.; Kim, W. H.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Organic ligands containing carboxylic and phenolic functional groups naturally occur in groundwater environment, particularly in forms of polyelectrolytes such as humic and fulvic acids, from microbial degradation of biomass, e.g., plant and animal tissues. These ligands play important roles in dissolution and migration of actinide radionuclide species since they can form stable ternary actinide complexes with common inorganic ions like hydroxides and carbonates. Therefore, model ternary complexes of lanthanides and actinides have been targets of studies to understand their chemical behaviors under near-neutral pH groundwater conditions. Previous model carboxylic ligands include phthalates, maleic acids, or alpha- substituted carboxylic acids. However, majority of previous studies investigated binary systems or used potentiometric titration method that requires high ligand concentration in mM levels. Recently, highly sensitive time-resolved laserinduced fluorescence spectroscopy (TRLFS) has been used to investigate lower concentration (e.g., a few {mu}M levels) reactions of binary complexes between of ligands and metal ions. This technique provides information regarding electronic structures and complexation constants as well as fluorescence quenching mechanism. In the present study, we studied the U(VI)-OH-salicylate (SA) ternary complex formation at higher pH (> 4) via TRLF spectrum and UV-Vis absorbance measurement. Preliminary studies show that the fluorescence (FL) intensity of hydroxouranyl species at pH 4.5 decreases as SA concentration elevates in aqueous solution. Fluorescence quenching mechanism by SA is suggested based on FL intensity (I) and lifetime (tau) measurement via TRLFS

  10. A laser-spectroscopy complex for fluorescent diagnostics and photodynamic therapy of age-related macula degeneration

    Science.gov (United States)

    Shevchik, S. A.; Meerovich, Gennadii A.; Budzinskaya, M. V.; Ermakova, N. A.; Kharnas, Sergey S.; Loschenov, Victor B.

    2004-06-01

    A laser-spectroscopy complex was developed for fluorescent diagnostics and photodynamic therapy of age related macula degeneration using the Russian photosensitizer Photosense. The complex is based on slit lamp which was additionally equipped with an optical adapter, and the video adapter allows to combine the procedure of photodynamic therapy and the control of its carrying in the frame work of one procedure. The sensitivity and spatial resolution of the complex were investigated using a special test object. The availability of the developed complex and Photosense itself was examined on experimental animals.

  11. A fluorescence spectroscopy study of traditional Chinese medicine Angelica

    Science.gov (United States)

    Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong

    2013-10-01

    By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.

  12. Fluorescence Microspectroscopy for Testing the Dimerization Hypothesis of BACE1 Protein in Cultured HEK293 Cells

    Science.gov (United States)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-06-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder that results from the formation of beta-amyloid plaques in the brain that trigger the known symptoms of memory loss in AD patients. The beta-amyloid plaques are formed by the proteolytic cleavage of the amyloid precursor protein (APP) by the proteases BACE1 and gamma-secretase. These enzyme-facilitated cleavages lead to the production of beta-amyloid fragments that aggregate to form plaques, which ultimately lead to neuronal cell death. Recent detergent protein extraction studies suggest that BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. In this contribution, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using complementary fluorescence spectroscopy and microscopy methods. Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal, and differential interference contrast to monitor the localization and distribution of intracellular BACE1. Complementary fluorescence lifetime and anisotropy measurements enabled us to examine the conformational and environmental changes of BACE1 as a function of substrate binding. Using fluorescence correlation spectroscopy, we also quantified the diffusion coefficient of BACE1-EGFP on the plasma membrane as a means to test the dimerization hypothesis as a fucntion of substrate-analog inhibitition. Our results represent an important first towards examining the substrate-mediated dimerization hypothesis of BACE1 in live cells.

  13. Electron Shuttling by Dissolved Humic Substances: Using Fluorescence Spectroscopy to Move Beyond the Laboratory to Natural Lakes, Streams and Groundwaters

    Science.gov (United States)

    McKnight, D. M.

    2017-12-01

    Humic substances are an important class of reactive chemical species in natural waters, and one important role is their capacity to as an electron acceptor and/or electron shuttle to ferric iron present as solid phase ferric oxides. Several lines of evidence point to quinone-like moieties being the main redox active moieties that can be used by microbes in respiration. Concomitantly, the humic fraction of dissolved organic mater (DOM) contains the dominant fluorophores in many natural waters. Examination of excitation emission matrices (EEMs) across redox gradients in diverse aquatic systems show that the EEMs are generally red-shifted under reducing conditions, such as anoxic bottom waters in lakes and hypoxic waters in riparian wetlands. Furthermore, there is striking similarity between the humic fluorophores that are resolved by statistical analysis and the fluorescence spectra of model quinone compounds, with the more reduced species having red-shifted fluorescence spectra. This apparent red-shift can be quantified based on the distribution of apparently "quinone-like", "semi-quinone-like" and "hydroquinone-like" fluorophores determined by the PARAFAC statistical analysis. Because fluorescence spectroscopy can be applied at ambient DOM concentrations for samples that have been maintained in an anoxic condition, fluorescence spectroscopy can provide insight into the role of humic electron shuttling in natural systems. Examples are presented demosntrating the changing EEMs in anoxic bottomwaters in a lake in the McMurdo Dry Valleys following a major flood event and the role of organic material in the mobilization of arsenic in shallow groundwater in South East Asia.

  14. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  15. FLUORESCENCE DIAGNOSIS FOR RECURRENT BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    R. V. Ulyanov

    2017-01-01

    Full Text Available The clinical case of successful use of local fluorescence spectroscopy combined with fluorescence imaging during cystoscopy for diagnosis of recurrent bladder cancer is represented in the article. Histological study of fluorescent foci confirmed tumor growth (urothelial carcinoma in all areas with high levels of diagnostic parameter. In the fluorescent focus with low diagnostic parameter inflammation was detected.

  16. Quantitative Studies of Antimicrobial Peptide Pore Formation in Large Unilamellar Vesicles by Fluorescence Correlation Spectroscopy (FCS)

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2013-01-01

    In spite of intensive research efforts over the past decades, the mechanisms by which membrane-active antimicrobial peptides interact with phospholipid membranes are not yet fully elucidated. New tools that can be used to characterize antimicrobial peptide-lipid membrane interactions are therefore...... to quantify leakage from large unilamellar vesicles is associated with a number of experimental pitfalls. Based on theoretical and experimental considerations, we discuss how to properly design experiments to avoid these pitfalls. Subsequently, we apply fluorescence correlation spectroscopy to quantify...

  17. Fluorescence Correlation Spectroscopy Using Octadecylrhodamine B as a Specific Micelle-Binding Fluorescent Tag, Light Scattering and Tapping Mode Atomic Force Microscopy Studies of Amphiphilic Water-Soluble Block Copolymer Micelles

    Czech Academy of Sciences Publication Activity Database

    Humpolíčková, J.; Procházka, K.; Hof, Martin; Tuzar, Zdeněk; Špírková, Milena

    2003-01-01

    Roč. 19, - (2003), s. 4111-4119 ISSN 0743-7463 R&D Projects: GA MŠk LN00A032; GA ČR GA203/01/0536; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913; CEZ:AV0Z4040901 Keywords : fluorescence * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.098, year: 2003

  18. Fluorescence Spectroscopy Approaches for the Development of a Real-Time Organophosphate Detection System Using an Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Paola Carullo

    2015-02-01

    Full Text Available Organophosphates are organic substances that contain a phosphoryl or a thiophosphoryl bond. They are mainly used around the world as pesticides, but can also be used as chemical warfare agents. Their detection is normally entrusted to techniques like GC- and LC-MS that, although sensitive, do not allow their identification on site and in real time. We have approached their identification by exploiting the high-affinity binding of these compounds with the esterase 2 from Alicyclobacillus acidocaldarius. Using an in silico analysis to evaluate the binding affinities of the enzyme with organophosphate inhibitors, like paraoxon, and other organophosphate compounds, like parathion, chlorpyriphos, and other organophosphate thio-derivatives, we have designed fluorescence spectroscopy experiments to study the quenching of the tryptophan residues after esterase 2 binding with the organophosphate pesticides. The changes in the fluorescence signals permitted an immediate and quantitative identification of these compounds from nano- to picomolar concentrations. A fluorescence based polarity-sensitive probe (ANS was also employed as a means to understand the extent of the interactions involved, as well as to explore other ways to detect organophosphate pesticides. Finally, we designed a framework for the development of a biosensor that exploits fluorescence technology in combination with a sensitive and very stable bio-receptor.

  19. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  1. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  2. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    International Nuclear Information System (INIS)

    Etienne, Emilien; Lenne, Pierre-Francois; Sturgis, James N.; Rigneault, Herve

    2006-01-01

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries,reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ∼50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes,permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry orthe FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichiacoli illustrates the capabilities of the technique

  3. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging.

    Science.gov (United States)

    Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Conformation of L-Tyrosine Studied by Fluorescence-Detected UV-UV and IR-UV Double-Resonance Spectroscopy

    OpenAIRE

    Inokuchi, Yoshiya; Kobayashi, Yusuke; Ito, Takafumi; Ebata, Takayuki

    2007-01-01

    The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm-1 region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm-1 for ...

  5. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    Science.gov (United States)

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  6. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  7. Fluorescence and Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Ralph S. DaCosta

    2007-01-01

    Full Text Available Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots. This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

  8. Application of fluorescence spectroscopy for dissolved organic matter characterization in constructed wetlands

    Science.gov (United States)

    Sardana, A.; Aziz, T. N.; Cottrell, B. A.

    2017-12-01

    In this presentation we will discuss our ongoing work to characterize the photochemical behavior of dissolved organic matter (DOM) from wastewater treated in constructed wetlands. We have used a suite of spectroscopic and chromatographic techniques to characterize the DOM and to quantify the potential production of reactive oxygenated species (ROS). In the present study, DOM was fractionated based on its hydrophobicity and both the natural water isolates and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs) and proton nuclear magnetic resonance (1H NMR). Photodegradation of wetland DOM and the formation of the hydroxyl radical (*OH), singlet oxygen (1O2), and the triplet-excited state (3DOM*) was also determined to assess the reactivity of DOM. EEM spectra exhibited the four main fluorescence peaks that are characteristic of DOM: peak A humic-like DOM, Peak C (fulvic or chromophoric DOM), Peak M (marine-like DOM), and peak T (tryptophan or protein-like absorbance). Two additional observed peaks with shorter emission wavelengths (A' Ex/Em = 243/278 nm and T' Ex/Em = 272/319 nm) were attributed to the microbial DOM in wastewater effluent. The spectral slope ratios decreased from 1.46 at the wetland inlet to 0.89 at the wetland outlet. The protein-like Peak T fluorescence decreased from 50% at the wetland inlet to 6.7% at the Wetland 2 outlet. A negative correlation between the percent fluorescence of Peak T and Peaks A, C and M confirmed the transition from the spectrum of pure wastewater with a primarily protein-like signature to a spectrum characteristic of terrestrially derived DOM. This transition coincided with enhanced formation rates and steady state concentrations of photochemically produced reactive intermediates (PPRIs). Size Exclusion Chromatography demonstrated that the influent wastewater had a lower molecular weight as compared to downstream wetland locations

  9. Micro-Raman spectroscopy in the identification of wulfenite and vanadinite in a Sasanian painted stucco fragment of the Ghaleh Guri in Ramavand, western Iran

    Science.gov (United States)

    Holakooei, Parviz; Karimy, Amir-Hossein; Hasanpour, Ata; Oudbashi, Omid

    2016-12-01

    This paper reports the results of studies performed on a painted stucco fragment excavated at the Ghaleh Guri in Ramavand, western Iran, and dated back to the late Sasanian period (224-651 AD). Analytical studies including micro-Raman spectroscopy (μ-Raman), micro-X-ray spectrometry (μ-XRF) and optical microscopy showed that red lead and vermilion were used as main pigments on this fragment. Moreover, carbon black was diagnosed to thinly cover some parts of the red lead. Peculiarly, wulfenite (PbMoO4) associated with vanadinite (Pb5(VO4)3Cl) was identified to compose a yellow stain sporadically dispersed on the other pigments.

  10. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    International Nuclear Information System (INIS)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-01-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy

  11. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  12. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    Science.gov (United States)

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  13. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  14. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  15. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  16. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.

    Science.gov (United States)

    Yang, Xiao-zhu; Chen, Zhen-hua; Zhang, Yu-lan; Chen, Li-jun

    2015-05-01

    The utilization of organic phosphorus (P) has directly or indirectly improved after exogenous phytase was added to soil. However, the mechanism by which exogenous phytase affected the soil phosphatases (phosphomonoesterase and phosphodiesterase) activities was not clear. The present work was aimed to study red soil, brown soil and cinnamon soil phosphomonoesterase (acid and alkaline) (AcP and AlP) and phosphodiesterase (PD) activities responding to the addition of exogenous phytase (1 g phytase/50 g air dry soil sample) based on the measurements performed via a fluorescence detection method combined with 96 microplates using a TECAN Infinite 200 Multi-Mode Microplate Reader. The results indicated that the acid phosphomonoesterase activity was significantly enhanced in red soil (p≤0. 01), while it was significantly reduced in cinnamon soil; alkaline phosphomonoesterase activity was significantly enhanced in cinnamon soil (p≤ 0. 01), while it was significantly reduced in red soil; phosphodiesterase activity was increased in three soils but it was significantly increased in brown soil (p≤0. 01) after the addition of exogenous phytase. The activities still remained strong after eight days in different soils, which indicated that exogenous phytase addition could be enhance soil phosphatases activities effectively. This effect was not only related to soil properties, such as pH and phosphorus forms, but might also be related to the excreted enzyme amount of the stimulating microorganism. Using fluorescence spectroscopy to study exogenous phytase addition influence on soil phosphatase activities was the first time at home and abroad. Compared with the conventional spectrophotometric method, the fluorescence microplate method is an accurate, fast and simple to use method to determine the relationships among the soil phosphatases activities.

  17. Detection and characterization of stomach cancer and atrophic gastritis with fluorescence and Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Lin, Junxiu; Jia, Chunde; Wang, Rong

    2003-12-01

    In this paper, we attempt to find a valid method to distinguish gastric cancer and atrophic gastritis. Auto-fluorescence and Raman spectroscopy of laser induced (514.5 nm and 488.0 nm) was measured. The serum spectrum is different between normal and cancer. Average value of diagnosis parameter for normal serum, red shift is less than 12 nm and Raman relative intensity of peak C by 514.5 nm excited is stronger than that of 488.0 nm. To gastric cancer, its red shift of average is bigger than 12 nm and relative intensity of Raman peak C by 514.5 nm excited is weaker than that by 488.0 nm. To atrophic gastritis, the distribution state of Raman peaks is similar with normal serum and auto-fluorescence spectrum's shape is similar to that of gastric cancer. Its average Raman peak red shift is bigger than 12 nm and the relative intensity of peak C by 514.5 excited is stronger than that of by 488.0. We considered it as a criterion and got an accuracy of 85.6% for diagnosis of gastric cancer compared with the result of clinical diagnosis.

  18. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  19. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  20. Fluorescence cystoscopy in patients with non-muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    I. G. Rusakov

    2015-01-01

    Full Text Available The main challenge of treating non-muscle invasive bladder cancer is multifocal tumors. Current methods of diagnosis are failed to detect all superficial flat tumor lesions in bladder mucosa. The use of fluorescence imaging with 5-aminolevulinic acid (5-ALA allows to improve the sensibility of routine cystoscopy, but low specificity decreases its diagnostic accuracy. The method of fluorescence imaging combined with local fluorescence spectroscopy developed in P.A. Herzen MCRI has been shown to increase the specificity from 71% to 84%. Thus, local fluorescence spectroscopy in visible fluorescence of 5-ALA-induced protoporphyrin allows to perform guided biopsy and decrease the rate of diagnostic mistakes. 

  1. In vivo fluorescent detection of Fe-S clusters coordinated by human GRX2.

    Science.gov (United States)

    Hoff, Kevin G; Culler, Stephanie J; Nguyen, Peter Q; McGuire, Ryan M; Silberg, Jonathan J; Smolke, Christina D

    2009-12-24

    A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster. In addition, we find that maximal fluorescence in the cytosol of mammalian cells requires the iron-sulfur cluster assembly proteins ISCU and NFS1. These findings provide evidence that glutaredoxins can dimerize within mammalian cells through coordination of a 2Fe2S cluster as observed with purified recombinant proteins. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Solvent dependence of organic exciplex fluorescence studied by magnetic effect on reaction yield (M.A.R.Y) spectroscopy

    International Nuclear Information System (INIS)

    Pal, K.

    2011-01-01

    This work aims at understanding the various facets of one of the elementary reactions in nature, the electron transfer reaction using MARY (Magnetic effect on Reaction Yield) spectroscopy as a tool. The prime focus of study by the use this technique was the solvent dependence of organic exciplex fluorescence. Apart from that temperature dependent measurements using MARY spectroscopy have been performed to extract the activation energy parameters of electron transfer reaction. The discovery of magnetic field effect on new system was also a part of our study. The study of solvent dependence of organic exciplex fluorescence using MARY spectroscopy was carried out on the system of 9,10-dimethylanthracene (as the fluorophore) and N,N'-dimethylaniline and 4,4'-Bis(dimethylamino) diphenylmethane (as quenchers) in binary solvent mixtures of toluene/dimethylsulfoxide, benzylacetate/dimethylsulfoxide, toluene/propylenecarbonate and propylacetate/butyronitrile. The work focuses on the use of solvent mixtures rather than pure solvents. The solvent mixtures, tailored to simulate different microenvironemets, were employed to find out the effect of preferential solvation on electron transfer reaction. The contrast in the absolute field effect and linewidth values of the MARY spectra obtained in the four system as a function of dielectric constant scan suggest the imperative effect of concentration fluctuation on the electron transfer reaction. Temperature dependent measurements were performed on the system of N,N,N',N'- tetramethylparaphenylendiamin, photo-ionizing in a mixture of toluene/dimethylsulfoxide. However the sluggish response of the system to temperature changes does not really permit us to extract fruitful results. The magnetic field effect on the much studied system of Perylene/ N.N'-dimethylaniline was discovered for the first time. (author) [de

  3. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  4. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  5. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  6. [Fluorescence excitation-emission matrix spectroscopy of CDOM from Yundang Lagoon and its indication for organic pollution].

    Science.gov (United States)

    Zhuo, Jian-Fu; Guo, Wei-Dong; Deng, Xun; Zhang, Zhi-Ying; Xu, Jing; Huang, Ling-Feng

    2010-06-01

    Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with absorption spectroscopy were applied to study the optical properties of CDOM samples from highly-polluted Yundang Lagoon in Xiamen in order to demonstrate the feasibility of using these spectral properties as a tracer of the degree of organic pollution in similar polluted coastal waters. Surface water samples were collected from 13 stations 4 times during April and May, 2008. Parallel factor analysis (PARAFAC) model was used to resolve the EEMs of CDOM. Five separate fluorescent components were identified, including two humic-like components (C1: 240, 325/422 nm; C5: 260, 380/474 nm), two protein-like components (C2: 225, 275/350 nm; C4: 240, 300/354 nm) and one xenobiotic-like component (C3: 225/342 nm), which could be used as a good tracer for the input of the anthropogenic organic, pollutants. The concentrations of component C3 and dissolved organic carbon (DOC) are much higher near the inlet of sewage discharge, demonstrating that the discharge of surrounding sewage is a major source of organic pollutants in Yundang Lagoon. CDOM absorption coefficient alpha (280) and the score of humic-like component C1 showed significant linear relationships with COD(Mn), and a strong positive correlation was also found between the score of protein-like component C2 and BOD5. This suggested that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the water quality in Yundang Lagoon and that of similar polluted coastal waters.

  7. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.

    Science.gov (United States)

    Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S

    2016-04-19

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ultratrace analysis of actinides via coprecipitation/laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Miller, S.M.

    1982-01-01

    Actinides were selectively preconcentrated by coprecipitating each out of solution with a fluoride matrix and calcining each sample at 800 0 C. The fluorescence spectrum of each sample was recorded by illuminating the sample with laser light and detecting fluorescence with either a fluorescence/Raman spectrometer, an infrared spectrometer or in certain cases a filter fluorimeter. Three previously unobserved actinide spectra were recorded. Narrow lines at 546.9 nm, 564.6 nm, and 569.6 nm were found for CaF 2 :PuO 2++ at 10K. CaF 2 :Am + 3 displayed two broadband fluorescent peaks at 625 nm and 746 nm at room temperature and CaF 2 :Pu + 3 possessed a fluorescent peak at 1.22 microns at 10K. Energy transfer was observed in the form of Tb fluorescence quenching in TbF 3 :Pu + 3 when Pu was present in quantities of 10 ppM or more and in the form of Tb fluorescence enhancement in TbF 3 :Am + 3 when 1 ppM or more of Am was present. Careful sample preparation and the use of temporal as well as a spectral discrimination system extended the detection limit of U from 1 ml samples to the subfemtogram level. The fluorescence detection limits for Pu and Am were extended to 0.48 and 0.032 pg/ml. 39 figures, 9 tables

  9. Quantification of tumor fluorescence during intraoperative optical cancer imaging.

    Science.gov (United States)

    Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil

    2015-11-13

    Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.

  10. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    Science.gov (United States)

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release

  11. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  12. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian

    2018-06-01

    Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

  13. Application of EEM fluorescence spectroscopy in understanding of the "LIGA" phenomenon in the Bay of Biscay (France)

    Science.gov (United States)

    Parot, Jérémie; Susperregui, Nicolas; Rouaud, Vanessa; Dubois, Laurent; Anglade, Nathalie; Parlanti, Edith

    2014-05-01

    Marine mucilage is present in all oceans over the world, and in particular in the Mediterranean Sea and in the Pacific Ocean. Surface water warming and hydrodynamic processes can favor the coalescence of marine mucilage, large marine aggregates representing an ephemeral and extreme habitat for biota. DOM is a heterogeneous, complex mixture of compounds, including extracellular polymeric substances (EPS), with wide ranging chemical properties and it is well known to interact with pollutants and to affect their transport and their fate in aquatic environment. The LIGA French research program focuses on tracing colloidal dissolved organic matter (DOM) sources and cycling in the Bay of Biscay (South Western French coast). This ephemeral phenomenon (called "LIGA" in the South West of France) has been observed more than 750 times since 2010. It presents a great ecological impact on marine ecosystems and has been shown to be concomitant with the development of pathogen organisms. A one-year intensive survey of fluorescent DOM was undertaken. From April 2013 until May 2014, water samples were monthly collected from the Adour River (main fresh water inputs) and from 2 sites in the Bay of Biscay at 3 depths of the water column (surface water, at the maximum of chlorophyll-a, and deep water). Moreover, intensified samplings took place from the appearance of the phenomenon twice a week during 4 weeks. UV/visible absorbance and excitation emission matrix (EEM) fluorescence spectroscopy combined with PARAFAC and PCA analyses have been used to characterize colloidal DOM in the Bay of Biscay in order to estimate DOM sources as well as spatial and temporal variability of DOM properties. The preliminary results, obtained for about 70 samples of this survey, have already highlighted spatial and temporal variations of DOM optical properties and a peculiar fluorescent component (exc300nm/em338nm) was detected while the LIGA phenomenon arises. The appearance of this specific

  14. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    Science.gov (United States)

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab') 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab') 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    Science.gov (United States)

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  16. Two-colour dip spectroscopy of jet-cooled molecules

    Science.gov (United States)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  18. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  19. Method of using a nuclear magnetic resonance spectroscopy standard. [SO/sub 2/ in gases by fluorescence

    Science.gov (United States)

    Spicer, L.D.; Bennett, D.W.; Davis, J.F.

    1983-05-09

    (CH/sub 3/)/sub 3/SiNSO is produced by the reaction of ((CH/sub 3/)/sub 3/SI)/sub 2/NH with SO/sub 2/. Also produced in the reaction are ((CH/sub 3/)/sub 3/Si)/sub 2/O and a new solid compound (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/). Both (CH/sub 3/)/sub 3/SiNSO and (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO/sub 2/ pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH/sub 3/)/sub 3/Si)/sub 2/NH, whereby any SO/sub 2/ present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO/sub 2/ in the original gas sample. The solid product (NH/sub 4/)((CH/sub 3/)/sub 3/SiOSO/sub 2/) may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either /sup 1/H, /sup 13/C, /sup 15/N, or /sup 29/Si may be used as a reference.

  20. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  1. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics.

    Science.gov (United States)

    Ali, Hina; Saleem, Muhammad; Anser, Muhammad Ramzan; Khan, Saranjam; Ullah, Rahat; Bilal, Muhammad

    2018-01-01

    Due to high price and nutritional values of extra virgin olive oil (EVOO), it is vulnerable to adulteration internationally. Refined oil or other vegetable oils are commonly blended with EVOO and to unmask such fraud, quick, and reliable technique needs to be standardized and developed. Therefore, in this study, adulteration of edible oil (sunflower oil) is made with pure EVOO and analyzed using fluorescence spectroscopy (excitation wavelength at 350 nm) in conjunction with principal component analysis (PCA) and partial least squares (PLS) regression. Fluorescent spectra contain fingerprints of chlorophyll and carotenoids that are characteristics of EVOO and differentiated it from sunflower oil. A broad intense hump corresponding to conjugated hydroperoxides is seen in sunflower oil in the range of 441-489 nm with the maximum at 469 nm whereas pure EVOO has low intensity doublet peaks in this region at 441 nm and 469 nm. Visible changes in spectra are observed in adulterated EVOO by increasing the concentration of sunflower oil, with an increase in doublet peak and correspondingly decrease in chlorophyll peak intensity. Principal component analysis showed a distinct clustering of adulterated samples of different concentrations. Subsequently, the PLS regression model was best fitted over the complete data set on the basis of coefficient of determination (R 2 ), standard error of calibration (SEC), and standard error of prediction (SEP) of values 0.99, 0.617, and 0.623 respectively. In addition to adulterant, test samples and imported commercial brands of EVOO were also used for prediction and validation of the models. Fluorescence spectroscopy combined with chemometrics showed its robustness to identify and quantify the specified adulterant in pure EVOO.

  2. Use of fluorescence spectroscopy to measure molecular autofluorescence in diabetic subjects; Utilizacao da espectroscopia de fluorescencia para mensuramento de moleculas autofluorescentes em individuos diabeticos

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Cinthia Zanini

    2011-07-01

    Diabetes Mellitus (DM) comprises a complex metabolic syndrome, caused by reduced or absent secretion of insulin by pancreatic beta cells, leading to hyperglycemia. Hyperglycemia promotes glycation of proteins and, consequently, the appearance of advanced glycation end products (AGEs). Currently, diabetic patients are monitored by determining levels of glucose and glycated hemoglobin (HbA1c). The complications caused by hyperglycemia may be divided into micro and macrovascular complications, represented by retinopathy, nephropathy, neuropathy and cardiovascular disease. Albumin (HSA) is the most abundant serum protein in the human body and is subject to glycation. The Protoporphyrin IX (PpIX) is the precursor molecule of heme synthesis, structural component of hemoglobin. The in vitro and animals studies have indicated that hyperglycemia promotes a decrease in its concentration in erythrocytes. The fluorescence spectroscopy is a technique widely used in biomedical field. The autofluorescence corresponds to the intrinsic fluorescence present in some molecules, this being associated with the same structure. The aim of this study was to use fluorescence spectroscopy to measure levels of erythrocyte PpIX autofluorescence and AGE-HSA in diabetic and healthy subjects and compare them with levels of blood glucose and HbA1c. This study was conducted with 151 subjects (58 controls and 93 diabetics). Epidemiological data of patients and controls were obtained from medical records. For control subjects, blood glucose levels were obtained from medical records and levels of Hb1Ac obtained by using commercial kits. The determination of the PpIX autofluorescence was performed with excitation at 405 nm and emission at 632 nm. Determination of AGE-HSA was performed with excitation at 370 nm and emission at 455 nm. Approximately 50% of diabetic had micro and macrovascular lesions resulting from hyperglycemia. There were no significant differences in the PpIX emission intensity values

  3. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  4. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  5. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    Science.gov (United States)

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  6. Automatic classification of fluorescence and optical diffusion spectroscopy data in neuro-oncology

    Science.gov (United States)

    Savelieva, T. A.; Loshchenov, V. B.; Goryajnov, S. A.; Potapov, A. A.

    2018-04-01

    The complexity of the biological tissue spectroscopic analysis due to the overlap of biological molecules' absorption spectra, multiple scattering effect, as well as measurement geometry in vivo has caused the relevance of this work. In the neurooncology the problem of tumor boundaries delineation is especially acute and requires the development of new methods of intraoperative diagnosis. Methods of optical spectroscopy allow detecting various diagnostically significant parameters non-invasively. 5-ALA induced protoporphyrin IX is frequently used as fluorescent tumor marker in neurooncology. At the same time analysis of the concentration and the oxygenation level of haemoglobin and significant changes of light scattering in tumor tissues have a high diagnostic value. This paper presents an original method for the simultaneous registration of backward diffuse reflectance and fluorescence spectra, which allows defining all the parameters listed above simultaneously. The clinical studies involving 47 patients with intracranial glial tumors of II-IV Grades were carried out in N.N. Burdenko National Medical Research Center of Neurosurgery. To register the spectral dependences the spectroscopic system LESA- 01-BIOSPEC was used with specially developed w-shaped diagnostic fiber optic probe. The original algorithm of combined spectroscopic signal processing was developed. We have created a software and hardware, which allowed (as compared with the methods currently used in neurosurgical practice) to increase the sensitivity of intraoperative demarcation of intracranial tumors from 78% to 96%, specificity of 60% to 82%. The result of analysis of different techniques of automatic classification shows that in our case the most appropriate is the k Nearest Neighbors algorithm with cubic metrics.

  7. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  8. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  9. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds

  10. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  11. Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy

    Directory of Open Access Journals (Sweden)

    Domenico Miriello

    2018-03-01

    Full Text Available During the excavations carried out in Via di Mercurio (Regio VI, 9, 3 in Pompeii, in 2015, some red, green, black, and brown wall painting fragments were found in the preparatory layer of an ancient pavement which was probably built after the 62 AD earthquake. These fragments, derived from the rubble, were used as coarse aggregate to prepare the mortar for building the pavement. The wall painting fragments are exceptionally well preserved, which is an uncommon occurrence in the city of Pompeii. However, as they were enclosed in the mortar, the wall painting fragments were protected from the high temperatures (probably ranging between 180 °C and 380 °C produced by the eruption in 79 AD. The pigmented outer surface of each sample was analyzed using a non-destructive multi-analytical approach, by combining spectrophotometric colorimetry and portable X-ray fluorescence with micro-Raman spectroscopy. The compositional characterization of the samples revealed the presence of cuprorivaite, goethite, and celadonite in the green pigments; hematite in the red pigments; goethite in the brown pigment; and charcoal in the black pigment. These data probably provide us with the most “faithful picture” of the various red, green, black, and brown pigments used in Pompeii prior to the 79 AD eruption.

  12. Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2011-12-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    Science.gov (United States)

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  14. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Multicolor-based discrimination of 21 short tandem repeats and amelogenin using four fluorescent universal primers.

    Science.gov (United States)

    Asari, Masaru; Okuda, Katsuhiro; Hoshina, Chisato; Omura, Tomohiro; Tasaki, Yoshikazu; Shiono, Hiroshi; Matsubara, Kazuo; Shimizu, Keiko

    2016-02-01

    The aim of this study was to develop a cost-effective genotyping method using high-quality DNA for human identification. A total of 21 short tandem repeats (STRs) and amelogenin were selected, and fluorescent fragments at 22 loci were simultaneously amplified in a single-tube reaction using locus-specific primers with 24-base universal tails and four fluorescent universal primers. Several nucleotide substitutions in universal tails and fluorescent universal primers enabled the detection of specific fluorescent fragments from the 22 loci. Multiplex polymerase chain reaction (PCR) produced intense FAM-, VIC-, NED-, and PET-labeled fragments ranging from 90 to 400 bp, and these fragments were discriminated using standard capillary electrophoretic analysis. The selected 22 loci were also analyzed using two commercial kits (the AmpFLSTR Identifiler Kit and the PowerPlex ESX 17 System), and results for two loci (D19S433 and D16S539) were discordant between these kits due to mutations at the primer binding sites. All genotypes from the 100 samples were determined using 2.5 ng of DNA by our method, and the expected alleles were completely recovered. Multiplex 22-locus genotyping using four fluorescent universal primers effectively reduces the costs to less than 20% of genotyping using commercial kits, and our method would be useful to detect silent alleles from commercial kit analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    Science.gov (United States)

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  17. Application of laser fluorescence spectroscopy by two-photon excitation into atomic hydrogen density measurement in reactive plasmas

    International Nuclear Information System (INIS)

    Kajiwara, Toshinori; Takeda, Kazuyuki; Kim, Hee Je; Park, Won Zoo; Muraoka, Katsunori; Akazaki, Masanori; Okada, Tatsuo; Maeda, Mitsuo.

    1990-01-01

    Density profiles of hydrogen atoms in reactive plasmas of hydrogen and methane gases were measured, for the first time, using the laser fluorescence spectroscopy by two-photon excitation of Lyman beta transition and observation at the Balmer alpha radiation. Absolute density determinations showed atomic densities of around 3 x 10 17 m -3 , or the degree of dissociation to be 10 -4 . Densities along the axis perpendicular to the RF electrode showed peaked profiles, which were due to the balance of atomic hydrogen production by electron impact on molecules against diffusion loss to the walls. (author)

  18. Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels

    International Nuclear Information System (INIS)

    Wang, Jinjie; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2016-01-01

    The article describes sensitive and selective homogeneous immunoassays for the liver cancer biomarker alpha-fetoprotein (AFP) in human serum by using single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS). Both competitive and sandwich immunoassay modes were applied, and AFP served as a model analyte. Fluorescent CdSe/ZnS quantum dots (with a 655 nm emission peak) and the fluorophore Alexa Fluor 488 (520 nm emission) were chosen to label the antibodies in the sandwich mode, and the antibody and the antigen in the competitive mode. Under optimized conditions, the sandwich assay has a linear dynamic range that covers the 20 pM to 5.0 nM concentration range. The competitive assay, in turn, extends from 180 pM to 15.0 nM. The respective detection limits are 20 pM and 180 pM. The method was successfully applied to directly determine AFP in (spiked) clinical samples, and results were in good agreement with data obtained via ELISAs. (author)

  19. Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN.

    Science.gov (United States)

    Aretz, Jonas; Baukmann, Hannes; Shanina, Elena; Hanske, Jonas; Wawrzinek, Robert; Zapol'skii, Viktor A; Seeberger, Peter H; Kaufmann, Dieter E; Rademacher, Christoph

    2017-06-12

    DC-SIGN is a cell-surface receptor for several pathogenic threats, such as HIV, Ebola virus, or Mycobacterium tuberculosis. Multiple attempts to develop inhibitors of the underlying carbohydrate-protein interactions have been undertaken in the past fifteen years. Still, drug-like DC-SIGN ligands are sparse, which is most likely due to its hydrophilic, solvent-exposed carbohydrate-binding site. Herein, we report on a parallel fragment screening against DC-SIGN applying SPR and a reporter displacement assay, which complements previous screenings using 19 F NMR spectroscopy and chemical fragment microarrays. Hit validation by SPR and 1 H- 15 N HSQC NMR spectroscopy revealed that although no fragment bound in the primary carbohydrate site, five secondary sites are available to harbor drug-like molecules. Building on key interactions of the reported fragment hits, these pockets will be targeted in future approaches to accelerate the development of DC-SIGN inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  1. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  2. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and

  3. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    Science.gov (United States)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  4. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    Science.gov (United States)

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  5. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  6. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  7. The role of total-reflection x-ray fluorescence in atomic spectroscopy

    International Nuclear Information System (INIS)

    Toelg, G.; Klockenkaemper, R.

    1993-01-01

    Total-reflection X-ray fluorescence (TXRF) is a universal and economic method for the simultaneous determination of elements with atomic numbers > 11 down to the lower pg-level. It is a microanalytical tool for the analysis of small sample amounts placed on flat carriers and for contaminations on flat sample surfaces. Analyses of stratified near-surface layers are made possible by varying the incident angle of the primary beam in the region of total-reflection. This non-destructive method is especially suitable for thin layers of a few nanometres, deposited on wafer material although not usable as a microprobe method with a high lateral resolution. Furthermore, depth profiles of biological samples can be recorded by means of microtome sectioning of only a few micrometres, as, for example in the gradient analysis of human organs. In addition to micro- and surface-layer analysis, TXRF is effectively applied to element trace analysis. Homogeneous solutions, for example aqueous solutions, high-purity acids or body fluids, are pipetted onto carriers and, after evaporation, the dry residues are analyzed directly down to the pg/ml region. Particularly advantageous is the absence of matrix effects, so that an easy calibration can be carried out by adding a single internal standard element. A digestion or separation step preceding the actual determination becomes necessary if a more complex matrix is to be analysed or especially low detection limits have to be reached. A critical evaluation of the recent developments in atomic spectroscopy places TXRF in a leading position. Its outstanding features compete with those of e.g. electrothermal atomic absorption spectrometry (ETAAS), microwave induced plasma optical emission spectroscopy (MIP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) in the field of micro- and trace analysis and with Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS) in the surface-layer analysis. (author)

  8. Characterization of Roman glass tesserae from the Coriglia excavation site (Italy) via energy-dispersive X-ray fluorescence spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Donais, Mary Kate; Sparks, Andrew; Redente, Monica [Saint Anselm College, Department of Chemistry, Manchester, NH (United States); Pevenage, Jolien van; Moens, Luc; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Ghent (Belgium); George, David B. [Saint Anselm College, Department of Classics, Manchester, NH (United States); Vandenabeele, Peter [Ghent University, Department of Archaeology, Ghent (Belgium)

    2016-12-15

    The combined use of handheld energy-dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and micro-energy-dispersive X-ray fluorescence spectrometry permitted the characterization of Roman glass tesserae excavation from the Coriglia (Italy) archeological site. Analyses of ten different glass colors were conducted as spot analyses on intact samples and as both spot analyses and line scans on select cross-sectioned samples. The elemental and molecular information gained from these spectral measurements allowed for the qualitative chemical characterization of the bulk glass, decolorants, opacifiers, and coloring agents. The use of an antimony opacifier in many of the samples supports the late Imperial phasing as determined through numismatic, fresco, ceramics, and architectural evidence. And dealinization of the exterior glass layers caused by the burial environment was confirmed. (orig.)

  9. Proceedings of the Third Symposium Optical Spectroscopy SOS-84

    International Nuclear Information System (INIS)

    Fassler, D.; Feller, K.H.; Wilhelmi, B.

    1985-01-01

    The main topics of the symposium were: 1) new developments and applications of laser spectroscopy including time resolved UV/VIS spectroscopy, time resolved fluorescence spectroscopy, and laser Raman spectroscopy, 2) dynamics and photokinetics of molecular systems, and 3) spectroscopy and photoprocesses in organized biological systems

  10. Bimodal spectroscopy in elastic scattering and spatially resolved auto-fluorescence: instrumentation, light-tissues interaction modeling and application to ex vivo and in vivo biological tissues characterization for cancers detection

    International Nuclear Information System (INIS)

    Pery, Emilie

    2007-01-01

    This research activity aims at developing and validating a multimodal spectroscopy method in elastic scattering and auto-fluorescence to characterize biological tissues in vitro and in vivo. It is articulated in four axes. At first, instrumentation is considered with the development, the engineering and the experimental characterization of a fibers bimodal, multi-points spectrometry system allowing the acquisition of spectra in vivo (variable distances, fast acquisition). Secondly, the optical properties of tissues are modelled with the development and the experimental validation on phantoms of a photons propagation simulation algorithm in turbid media and multi-fluorescent. Thirdly, an experimental study has been conducted ex vivo on fresh and cryo-preserved arterial rings. It confirms the complementarity of spectroscopic measurements in elastic scattering and auto-fluorescence, and validates the method of multi-modality spectroscopy and the simulation of photons propagation algorithm. Results have well proved a correlation between rheological and optical properties. Finally, one second experimental study in vivo related to a pre-clinical tumoral model of bladder has been carried out. It highlights a significant difference in diffuse reflectance and/or auto-fluorescence and/or intrinsic fluorescence between healthy, inflammatory and tumoral tissues, on the basis of specific wavelength. The results of not supervised classification show that the combination of various spectroscopic approaches increases the reliability of the diagnosis. (author) [fr

  11. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  12. Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881

  13. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  14. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  15. Fluorescence spectroscopy studies of HEK293 cells expressing DOR-Gi1alfa fusion protein; the effect of cholesterol depletion

    Czech Academy of Sciences Publication Activity Database

    Brejchová, Jana; Sýkora, Jan; Dlouhá, Kateřina; Roubalová, Lenka; Ostašov, Pavel; Vošahlíková, Miroslava; Hof, Martin; Svoboda, Petr

    2011-01-01

    Roč. 1808, č. 12 (2011), s. 2819-2829 ISSN 0005-2736 R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) LC554; GA ČR(CZ) GD305/08/H037 Grant - others:GA ČR(CZ) GAP208/10/1090 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40400503 Keywords : plasma membrane * cholesterol depletion * fluorescence spectroscopy * hydrophobic membrane interior * delta-opioid receptor ( DOR ), * G protein Subject RIV: BO - Biophysics Impact factor: 3.990, year: 2011

  16. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    Science.gov (United States)

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  17. Characterization by fluorescence of dissolved organic matter in rural drinking water storage tanks in Morocco.

    Science.gov (United States)

    Aziz, Faissal; Ouazzani, Naaila; Mandi, Laila; Assaad, Aziz; Pontvianne, Steve; Poirot, Hélène; Pons, Marie-Noëlle

    2018-04-01

    Water storage tanks, fed directly from the river through opened channels, are particular systems used for water supply in rural areas in Morocco. The stored water is used as drinking water by the surrounding population without any treatment. UV-visible spectroscopy and fluorescence spectroscopy (excitation-emission matrices and synchronous fluorescence) have been tested as rapid methods to assess the quality of the water stored in the reservoirs as well as along the river feeding them. Synchronous fluorescence spectra (SFS50), collected with a difference of 50 nm between excitation and emission wavelengths, revealed a high tryptophan-like fluorescence, indicative of a pollution induced by untreated domestic and/or farm wastewater. The best correlations were obtained between the total SFS50 fluorescence and dissolved organic carbon (DOC) and biological oxygen demand, showing that the contribution of humic-like fluorescent substances cannot be neglected to rapidly assess reservoir water quality in terms of DOC by fluorescence spectroscopy.

  18. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  19. Porphyrin involvement in redshift fluorescence in dentin decay

    Science.gov (United States)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  20. Uptake Of Trivalent Actinides (Cm(III)) And Lanthanides (Eu(III)) By Cement-Type Minerals: A Wet Chemistry And Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) Study

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Stumpf, T; Wieland, E.; Fanghaenel, T

    2003-03-01

    The interaction of the two chemical homologues Cm (III) and Eu(III) with calcium silicate hydrates at pH 13.3 has been investigated in batch-type sorption studies using Eu(III), and complemented with time-resolved laser fluorescence spectroscopy using Cm(III). The sorption data for Eu(III) reveal fast sorption kinetics, and a strong uptake by CSH phases, with distribution ratios of 6({+-}3)*105 L kg-1. Three different types of sorbed Cm(III) species have been identified: a non-fluorescing species, which was identified as Cm cluster present either as surface precipitate or as Cm(III) colloid in solution, and two sorbed fluorescing species. The sorbed fluorescing species have characteristic emission spectra (main peak maxima at 618.9 nm and 620.9 nm) and fluorescence emission lifetimes (289 {+-} 11 ms and 1482{+-} 200 ms). From the fluorescence lifetimes, it appears that the two fluorescing Cm(III) species have, respectively, one to two or no water molecules left in their first coordination sphere, suggesting that these species are incorporated into the CSH structure. A structural model for Cm(III) and Eu(III) incorporation into CSH phases is proposed based on the substitution of Ca at two different types of sites in the CSH structure. (author)

  1. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  2. “Turn on” fluorescence enhancement of Zn octacarboxyphthaloyanine-graphene oxide conjugates by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Shumba, Munyaradzi; Mashazi, Philani; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za

    2016-02-15

    Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates were characterized by absorption spectroscopy, transmission electron microscopy, fluorescence spectroscopy, X-ray diffraction, thermo gravimetric analysis and X-ray photon spectroscopy. The presence of reduced graphene oxide or graphene oxide resulted in the quenching (turn on) of Zn octacarboxy phthalocyanine fluorescence which can be explained by photoinduced electron transfer. Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates “turned on” fluorescence showed a linear response to hydrogen peroxide hence their potential to be used as sensors. The nanoprobe developed showed high selectivity towards hydrogen peroxide in the presence of physiological interferences.

  3. “Turn on” fluorescence enhancement of Zn octacarboxyphthaloyanine-graphene oxide conjugates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Shumba, Munyaradzi; Mashazi, Philani; Nyokong, Tebello

    2016-01-01

    Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates were characterized by absorption spectroscopy, transmission electron microscopy, fluorescence spectroscopy, X-ray diffraction, thermo gravimetric analysis and X-ray photon spectroscopy. The presence of reduced graphene oxide or graphene oxide resulted in the quenching (turn on) of Zn octacarboxy phthalocyanine fluorescence which can be explained by photoinduced electron transfer. Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates “turned on” fluorescence showed a linear response to hydrogen peroxide hence their potential to be used as sensors. The nanoprobe developed showed high selectivity towards hydrogen peroxide in the presence of physiological interferences.

  4. Applying fluorescence correlation spectroscopy to investigate peptide-induced membrane disruption

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2017-01-01

    to quantify leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles, thereby providing a tool for estimating the size of peptide-induced membrane disruptions. If fluorescently labeled lipids are incorporated into the membranes of the vesicles, FCS can also be used to obtain...

  5. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  6. Interaction of gallic acid with trypsin analyzed by spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Song

    2015-06-01

    Full Text Available The interactions between trypsin and gallic acid (GA were investigated by means of fluorescence spectroscopy, UV-vis absorption spectroscopy, resonance light scattering (RLS spectroscopy, synchronous fluorescence spectroscopy, and enzymatic inhibition assay. It was found that GA can cause the fluorescence quenching of trypsin during the process of formation of GA-trypsin complex, resulting in inhibition of trypsin activity (IC50 = 3.9 × 10−6 mol/L. The fluorescence spectroscopic data showed that the quenching efficiency can reach about 80%. The binding constants were 1.9371 × 104 L/mol, 1.8192 × 104 L/mol, and 1.7465 × 104 L/mol at three temperatures, respectively. The thermodynamic parameters revealed that hydrogen bonds, van der Waals, hydrophobic, and electrostatic interactions were involved in the binding process of GA to trypsin. Molecular modeling studies illustrated a specific display of binding information and explained most of the experiment phenomena. The microenvironments of tryptophan and tyrosine residue in trypsin were changed by the GA. Results indicated that GA was a strong quencher and inhibitor of trypsin.

  7. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.

    Science.gov (United States)

    Sherman, Eilon; Itkin, Anna; Kuttner, Yosef Yehuda; Rhoades, Elizabeth; Amir, Dan; Haas, Elisha; Haran, Gilad

    2008-06-01

    Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.

  8. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    KAUST Repository

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, Anissa; Ould-Chikh, Samy; Bare, Simon R.; Basset, Jean-Marie; Gates, B. C.

    2016-01-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  9. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    KAUST Repository

    Hoffman, A. S.

    2016-07-26

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  10. Fluorescence diagnosis of pre-tumor and tumor pathology of endometrium

    Directory of Open Access Journals (Sweden)

    E. V. Filonenko

    2014-01-01

    Full Text Available The technique of fluorescence hysteroscopy with Alasens includes visual assessment of fluorescence of Alasens-induced protoporphyrin IX and local fluorescence spectroscopy. The technique allows to improve the efficacy of early diagnosis for endometrial pathology including early endometrial cancer, to assess definitely an extent of pre-tumor and tumor process. The sensitivity of fluorescence hysteroscopy accounts for 100%, the specificity – 98%. 

  11. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  12. Dual fluorescence of single LH2 antenna nanorings

    International Nuclear Information System (INIS)

    Freiberg, A.; Raetsep, M.; Timpmann, K.; Trinkunas, G.

    2004-01-01

    A dual nature of fluorescence from LH2 pigment-protein complexes, which is a part of the light harvesting system of purple bacteria, is confirmed by fluorescence-lifetime dependence on recording wavelength and spectrally selective spectroscopy. An analysis based on the Holstein molecular crystal model, modified by allowing diagonal disorder, suggests coexistence of large- and small-radius self-trapped excitons, which serve as the origin of the dual fluorescence

  13. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenxing; Bhatt, Avni [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States); Smith, Adam N. [University of Florida, Department of Chemistry, College of Liberal Arts and Sciences (United States); Crowley, Paula J.; Brady, L. Jeannine, E-mail: jbrady@dental.ufl.edu [University of Florida, Department of Oral Biology, College of Dentistry (United States); Long, Joanna R., E-mail: jrlong@ufl.edu [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States)

    2016-02-15

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  14. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin

  15. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    Science.gov (United States)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  16. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  17. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  18. Tar analysis from biomass gasification by means of online fluorescence spectroscopy

    Science.gov (United States)

    Baumhakl, Christoph; Karellas, Sotirios

    2011-07-01

    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  19. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    Science.gov (United States)

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  20. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses

    Directory of Open Access Journals (Sweden)

    Maydla dos Santos Vasconcelos

    2018-01-01

    Full Text Available The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.. The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB and ∼90% (RSLB. The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2, about 49%, and the oleic monounsaturated (18  :  1, ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3, ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  1. Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions

    International Nuclear Information System (INIS)

    Billard, I.; Luetzenkirchen, K.

    2003-01-01

    Equilibrium constants for aqueous reactions between lanthanide or actinide ions and (in-) organic ligands contain important information for various radiochemical problems, such as nuclear reprocessing or the migration of radioelements in the geosphere. We study the conditions required to determine equilibrium constants by time-resolved fluorescence spectroscopy measurements. Based on a simulation study it is shown that the possibility to determine equilibrium constants depends upon the reaction rates in the photoexcited states of the lanthanide or actinide ions. (orig.)

  2. Short communication: Suitability of fluorescence spectroscopy for characterization of commercial milk of different composition and origin.

    Science.gov (United States)

    Ntakatsane, M P; Yang, X Q; Lin, M; Liu, X M; Zhou, P

    2011-11-01

    Thirteen milk brands comprising 76 pasteurized and UHT milk samples of various compositions (whole, reduced fat, skimmed, low lactose, and high protein) were obtained from local supermarkets, and milk samples manufactured in various countries were discriminated using front-face fluorescence spectroscopy (FFFS) coupled with chemometric tools. The emission spectra of Maillard reaction products and riboflavin (MRP/RF; 400 to 600 nm) and tryptophan (300 to 400 nm) were recorded using FFFS, and the excitation wavelengths were set at 360 nm for MRP/RF and 290 nm for tryptophan. Principal component analysis (PCA) was applied to analyze the normalized spectra. The PCA of spectral information from MRP/RF discriminated the milk samples originating in different countries, and PCA of spectral information from tryptophan discriminated the samples according to composition. The fluorescence spectral data were compared with liquid chromatography-mass spectrometry results for the glycation extent of the milk samples, and a positive association (R(2)=0.84) was found between the degree of glycation of α-lactalbumin and the MRP/RF spectral data. This study demonstrates the ability and sensitivity of FFFS to rapidly discriminate and classify commercial milk with various compositions and processing conditions. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products

    International Nuclear Information System (INIS)

    Abbasi, Hamed; Nazeri, Majid; Mireei, Seyed Ahmad

    2016-01-01

    Over the past several years, the demand for high quality agricultural products has been remarkably increased. Thus, it is important to use non-destructive methods for product quality monitoring. LED-induced fluorescence spectroscopy has proved its potential for nondestructive detection of some defects in agricultural products, such as tissue browning and bruising. Due to such defects, changes in the polyphenol and chlorophyll contents occur which can be considered as the visible marks of decreasing fruit quality. In the present work, a fluorescence spectrometer (spectrofluorometer) controlled by LabVIEW software was designed and developed. In this spectrometer, a consumer-grade webcam was used as an imaging sensor. The spectrometer was able to measure the fluorescence spectra directly from the fruit and vegetable surface in the desired regions. To do so, the spectrometer was equipped with a suitable fiber-optic probe. The hardware solution was based on data acquisition working on the USB platform and controlled by the application running on the PC. In this system, light emitting diodes with different wavelengths were used as the excitation sources for inducing fluorescence spectra of some famous fruits and vegetables. (paper)

  4. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    Science.gov (United States)

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  5. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    Science.gov (United States)

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability.

  6. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ke Liu; Yu Tian; Burrows, Sean M.; Reif, Randall D. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Pappas, Dimitri, E-mail: d.pappas@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)

    2009-09-28

    The ability to quickly measure flow parameters in microfluidic devices is critical for micro total analysis system ({mu}TAS) applications. Macrofluidic methods to assess flow suffer from limitations that have made conventional methods unsuitable for the flow behavior profiling. Single molecule fluorescence correlation spectroscopy (FCS) has been employed in our study to characterize the fluidic vortex generating at a T-shape junction of microscale channels. Due to its high spatial and temporal resolution, the corresponding magnitudes relative to different flow rates in the main channel can be quantitatively differentiated using flow time ({tau}{sub F}) measurements of dye molecules traversing the detection volume in buffer solution. Despite the parabolic flow in the channel upstream, a heterogeneous distribution of flow has been detected across the channel intersection. In addition, our current observations also confirmed the aspect of vortex-shaped flow in low-shear design that was developed previously for cell culture. This approach not only overcomes many technical barriers for examining hydrodynamic vortices and movements in miniature structures without physically integrating any probes, but it is also especially useful for the hydrodynamic studies in polymer-glass based micro -reactor and -mixer.

  7. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Silvia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Stella, Lorenzo [Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Neuromed, IRCCS, Pozzilli 86077 (Italy); Petrarca, Patrizia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Battistoni, Andrea [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Desideri, Alessandro [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Falconi, Mattia, E-mail: falconi@uniroma2.it [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Fluorescence data indicate that the His-loop of ZnuA interacts with Zn{sup +2} ions. Black-Right-Pointing-Pointer The ZnuA structural model proposed validates these spectroscopic findings. Black-Right-Pointing-Pointer It is proposed that a zinc loaded His-loop may facilitate the ZnuA-ZnuB recognition. -- Abstract: ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.

  8. GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots

    International Nuclear Information System (INIS)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Fujioka, Kouki; Hanada, Sanshiro; Yamamoto, Kenji; Yasuhara, Masato; Kondo, Akihiko

    2008-01-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/gene-construct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as (1) the reading direction of the gene-fragments, (2) the quantity of gene-fragments attached on the surface of the QD-constructs, (3) the surface electronic charges varied according to the structure of the QD/gene-constructs, and (4) the particle size of QD/gene complex varied according to the structure and amounts of gene-fragments. Using this QD/gene-construct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs had disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes.

  9. Excimer fluorescence of liquid crystalline systems

    Science.gov (United States)

    Sakhno, Tamara V.; Khakhel, Oleg A.; Barashkov, Nikolay N.; Korotkova, Irina V.

    1996-04-01

    The method of synchronous scanning fluorescence spectroscopy shows a presence of dimers of pyrene in a polymeric matrix. The results suggest that excimer formation takes place with dimers in liquid crystalline systems.

  10. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  11. A High-Performance Fluorescence Immunoassay Based on the Relaxation of Quenching, Exemplified by Detection of Cardiac Troponin I

    Directory of Open Access Journals (Sweden)

    Seung-Wan Kim

    2016-05-01

    Full Text Available The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA was coupled with the fluorescent BODIPY dye (Red BSA, and then immobilized on a solid surface. When the insolubilized Red BSA was treated with proteinase K (10 units/mL for 30 min, the fluorescent signal was significantly increased (3.5-fold compared to the untreated control. In the second case, fluorophore-tagged DNA probes were linked to gold nanoparticles by hybridization with capture DNA strands densely immobilized on the surface. The quenched fluorescence signal was recovered (3.7-fold by thermal dehybridization, which was induced with light of a specific wavelength (e.g., 530 nm for less than 1 min. We next applied the Red BSA self-quenching relaxation technique employing enzymatic fragmentation to a high-performance immunoassay of cardiac troponin I (cTnI in a microtiter plate format. The detection limit was 0.19 ng/mL cTnI, and the fluorescent signal was enhanced approximately 4.1-fold compared with the conventional method of direct measurement of the fluorescent signal from a non-fragmented fluorophore-labeled antibody.

  12. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  13. Laser-induced Fluorescence Spectroscopy for applications in chemical sensing and optical refrigeration

    Science.gov (United States)

    Kumi Barimah, Eric

    Laser-induced breakdown spectroscopy (LIBS) is an innovative technique that has been used as a method for fast elemental analysis in real time. Conventional ultraviolet-visible (UV-VIS) LIBS has been applied to detect the elemental composition of different materials, including explosives, pharmaceutical drugs, and biological samples. The extension of conventional LIBS to the infrared region (˜1-12 mum) promises to provide additional information on molecular emission signatures due to rotational-vibrational transitions. In this research, a pulsed Nd: YAG laser operating at 1064 nm was focused onto several sodium compounds (NaCl, NaClO3, Na2CO3 and NaClO4) and potassium compounds (KCl, KClO3, K2CO3 and KClO4) to produce an intense plasma at the target surface. Several distinct infrared (IR) atomic emission signatures were observed from all sodium and potassium containing compounds. The atomic emission lines observed from the investigated samples matched assigned transitions of neutral sodium and potassium atoms published in the National Institute of Standards and Technology (NIST) atomic database. In addition to the intense atomic lines, the rst evidence of molecular LIBS emission structures were observed at ˜10.0 m in KClO3 and NaClO3 for the chlorate anion (ClO3 --1), at ˜6.7 to 8.0 mum in KNO3 and NaNO 3 for the nitrate anion (NO3--1 ), ˜8.0 to 10.0 mum in KClO4 and NaClO4 for perchlorate anion (ClO4--1 ), and ˜6.88 mum and 11.53 mum in Na2CO3 for the carbonate anion (CO3--1 ). The observed molecular emission showed strong correlation with the conventional Fourier Transform Infrared Spectrometry (FTIR) absorption spectra of the investigated samples. IR LIBS was also applied to determine the limit of detection (LOD) for the perchlorate anion in KClO4 using the 8.0 -11.0 mum IR-LIBS emission band. The calibration curve of ClO4 in KClO4 was constructed using peak and integrated emission intensities for known concentrations of mixed KClO4/NH4NO3 samples. The

  14. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments

    International Nuclear Information System (INIS)

    Kirley, Terence L.; Greis, Kenneth D.; Norman, Andrew B.

    2016-01-01

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’) 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’) 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be used, simplifying

  15. Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain

    2009-01-01

    The number of negatively charged nitrogen-vacancy centers (N-V) - in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V) - fluorophores and simulating the probability distribution of their effective numbers (N e ), we found that the actual number (N a ) of the fluorophores is in linear correlation with N e , with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N a =8±1 for 28 nm FND particles prepared by 3 MeV proton irradiation

  16. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural

  17. Fragmentation dynamics of molecular hydrogen in strong ultrashort laser pulses

    International Nuclear Information System (INIS)

    Rudenko, A; Feuerstein, B; Zrost, K; Jesus, V L B de; Ergler, T; Dimopoulou, C; Schroeter, C D; Moshammer, R; Ullrich, J

    2005-01-01

    We present the results of a systematic experimental study of dissociation and Coulomb explosion of molecular hydrogen induced by intense ultrashort (7-25 fs) laser pulses. Using coincident recoil-ion momentum spectroscopy we can distinguish the contributions from dissociation and double ionization even if they result in the same kinetic energies of the fragments. The dynamics of all fragmentation channels drastically depends on the pulse duration, and for 7 fs pulses becomes extremely sensitive to the pulse shape

  18. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  19. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  20. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Mateu, Batirtze Prats; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José L; Kainz, Birgit

    2014-01-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  1. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    Science.gov (United States)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  2. A flexible fluorescence correlation spectroscopy based method for quantification of the DNA double labeling efficiency with precision control

    International Nuclear Information System (INIS)

    Hou, Sen; Tabaka, Marcin; Sun, Lili; Trochimczyk, Piotr; Kaminski, Tomasz S; Kalwarczyk, Tomasz; Zhang, Xuzhu; Holyst, Robert

    2014-01-01

    We developed a laser-based method to quantify the double labeling efficiency of double-stranded DNA (dsDNA) in a fluorescent dsDNA pool with fluorescence correlation spectroscopy (FCS). Though, for quantitative biochemistry, accurate measurement of this parameter is of critical importance, before our work it was almost impossible to quantify what percentage of DNA is doubly labeled with the same dye. The dsDNA is produced by annealing complementary single-stranded DNA (ssDNA) labeled with the same dye at 5′ end. Due to imperfect ssDNA labeling, the resulting dsDNA is a mixture of doubly labeled dsDNA, singly labeled dsDNA and unlabeled dsDNA. Our method allows the percentage of doubly labeled dsDNA in the total fluorescent dsDNA pool to be measured. In this method, we excite the imperfectly labeled dsDNA sample in a focal volume of <1 fL with a laser beam and correlate the fluctuations of the fluorescence signal to get the FCS autocorrelation curves; we express the amplitudes of the autocorrelation function as a function of the DNA labeling efficiency; we perform a comparative analysis of a dsDNA sample and a reference dsDNA sample, which is prepared by increasing the total dsDNA concentration c (c > 1) times by adding unlabeled ssDNA during the annealing process. The method is flexible in that it allows for the selection of the reference sample and the c value can be adjusted as needed for a specific study. We express the precision of the method as a function of the ssDNA labeling efficiency or the dsDNA double labeling efficiency. The measurement precision can be controlled by changing the c value. (letter)

  3. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Science.gov (United States)

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  4. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy.

    Science.gov (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin

    2018-03-15

    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  6. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    Science.gov (United States)

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis and Application of Polymeric Fluorescent Compounds Based on Coumarin

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-06-01

    Full Text Available In this work, a multifunctional yellowing inhibitor was synthesized by the Pechmann method. In order to obtain the target compound, 7-hydroxy-4-methyl coumarin was prepared by using the raw materials of resorcinol and ethyl acetoacetate, with toluene-p-sulfonic acid as the catalyst. New polymeric fluorescent compounds were synthesized by connecting the 7-hydroxy-4-methyl coumarin, the hindered amine light stabilizer 4-amion-2,2,6,6-tetramentylniperidine, and a series of polyethylene glycol segments into the same molecule with cyanuric chloride as a bridge. The structures of the synthesized molecules were confirmed by FT-IR, 1H NMR, and elemental analysis. The luminescent properties of the fluorescent compounds were studied by UV-vis spectroscopy and fluorescence spectroscopy. The integration effect between the fluorescent compounds and paper was tested by a scanning electron microscope. The light stability effect on the paper sheet was tested using an ultraviolet aging apparatus. The results indicate that the polymeric fluorescent compounds had a positive effect on the light stability of the high-yield pulp.

  8. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  9. Intrinsic fluorescence biomarkers in cells treated with chemopreventive drugs

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Brands, William R.; Zou, Changping; Brewer, Molly A.; Utzinger, Urs

    2005-03-01

    Non-invasive monitoring of cellular metabolism offers promising insights into areas ranging from biomarkers for drug activity to cancer diagnosis. Fluorescence spectroscopy can be utilized in order to exploit endogenous fluorophores, typically metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), and estimate the redox status of the sample. Fluorescence spectroscopy was applied to follow metabolic changes in epithelial ovarian cells as well as bladder epithelial cancer cells during treatment with a chemopreventive drug that initiates cellular quiescence. Fluorescence signals consistent with NADH, FAD, and tryptophan were measured to monitor cellular activity, redox status, and protein content. Cells were treated with varying concentrations of N-4-(hydroxyphenyl) retinamide (4-HPR) and measured in a stable environment with a sensitive fluorescence spectrometer. A subset of measurements was completed on a low concentration of cells to demonstrate feasibility for medical application such as in bladder or ovary washes. Results suggest that all of the cells responded with similar dose dependence but started at different estimated redox ratio baseline levels correlating with cell cycle, growth inhibition, and apoptosis assays. NADH and tryptophan related fluorescence changed significantly while FAD related fluorescence remained unaltered. Fluorescence data collected from approximately 1000 - 2000 cells, comparable to a bladder or ovary wash, was measurable and useful for future experiments. This study suggests that future intrinsic biomarker measurements may need to be most sensitive to changes in NADH and tryptophan related fluorescence while using FAD related fluorescence to help estimate the baseline redox ratio and predict response to chemopreventive agents.

  10. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  11. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  12. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  13. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Abraham, Jerrold L.; Chandra, Subhash; Agrawal, Anoop

    2014-01-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease (CBD) from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water, and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry (SIMS) instrument, CAMECA IMS 3f SIMS ion microscope. The beryllium content of shrapnel (~100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (~25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y-and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (~0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either present in an

  14. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS).

    Science.gov (United States)

    Abraham, J L; Chandra, S; Agrawal, A

    2014-11-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry instrument, CAMECA IMS 3f secondary ion mass spectrometry ion microscope. The beryllium content of shrapnel (∼100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (∼25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y- and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (∼0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either

  15. Determination of aromatic fragment content in phenol-containing fractions of solid fuel conversion products using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1986-03-01

    Optimum conditions are determined for obtaining quantitative nuclear magnetic resonance /sup 13/C spectra of fragments in phenol-containing fraction of coal products. Causes are analyzed of residual signals in spectra of un-protonized carbon atoms. The tests were carried out on: low-temperature carbonization tar and phenol fraction obtained during medium-temperature coking of Cherenkhovskii coal (which contains 84.13% C; 9.68% H; 1.23% S; 4.96% O); products of tar hydrogenation with various phenol content; standard phenol mixture. It was found that quantitative determination of aromatic fraction content in coal conversion products and other phenol- and amine-containing complex mixtures, using NMR spectroscopy requires the addition of dimethylsulfide or acetone in order to suppress specific interactions of phenols (amines) with relaxants and obtain quantitative subspectra of Tertiary and Quaternary aromatic carbon atoms. 16 references.

  16. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  17. Evaluation of the removal of antiestrogens and antiandrogens via ozone and granular activated carbon using bioassay and fluorescent spectroscopy.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Wu, Yuchao; Liu, Rui

    2016-06-01

    Antiestrogens and antiandrogens are relatively rarely studied endocrine disrupting chemicals which can be found in un/treated wastewaters. Antiestrogens and antiandrogens in the wastewater treatment effluents could contribute to sexual disruption of organisms. In this study, to assess the removal of non-specific antiestrogens and antiandrogens by advanced treatment processes, ozonation and adsorption to granular activated carbon (GAC), the biological activities and excitation emission matrix fluorescence spectroscopy of wastewater were evaluated. As the applied ozone dose increased to 12 mg/L, the antiestrogenic activity dramatically decreased to 3.2 μg 4-hydroxytamoxifen equivalent (4HEQ)/L, with a removal efficiency of 84.8%, while the antiandrogenic activity was 23.1 μg flutamide equivalent (FEQ)/L, with a removal efficiency of 75.5%. The removal of antiestrogenic/antiandrogenic activity has high correlation with the removal of fulvic acid-like materials and humic acid-like organics, suggesting that they can be used as surrogates for antiestrogenic/antiandrogenic activity during ozonation. The adsorption kinetics of antiestrogenic activity and antiandrogenic activity were well described by pseudo-second-order kinetics models. The estimated equilibrium concentration of antiestrogenic activity is 7.9 μg 4HEQ/L with an effective removal efficiency of 70.5%, while the equilibrium concentration of antiandrogenic activity is 33.7 μg FEQ/L with a removal efficiency of 67.0%. Biological activity evaluation of wastewater effluents is an attractive way to assess the removal of endocrine disrupting chemicals by different treatment processes. Fluorescence spectroscopy can be used as a surrogate measure of bioassays during ozonation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Optical absorption and fluorescence spectroscopy studies of Artepillin C, the major component of green propolis

    Science.gov (United States)

    Camuri, Isamara Julia; Costa, Adriano Batista; Ito, Amando Siuiti; Pazin, Wallance Moreira

    2018-06-01

    The bioactivity of propolis against several pathogens is well established, leading to the extensive consumption of that bee product to prevent diseases. Brazilian green propolis, collected by the species Apis mellifera, is one of the most consumed in the world. The chemical composition of green propolis is complex and it has been shown that it displays antioxidant, antimicrobial, anti-inflammatory and antitumor activities, especially due to the high content of Artepillin C. The molecule is a derivative of cinnamic acid with two prenylated groups, responsible for the improvement of the affinity of the compound for lipophilic environment. A carboxylic group (COOH) is also present in the molecule, making it a pH-sensitive compound and the pH-dependent structure of Artepillin C, may modulate its biological activity related to interactions with the cellular membrane of organisms and tissues. Molecular properties of Artepillin C on aqueous solution were examined by optical absorption, steady state and time-resolved fluorescence spectroscopies. Acid-base titration based on the spectral position of the near UV absorption band, resulted in the pKa value of 4.65 for the carboxylic group in Artepillin C. In acidic pH, below the pKa value, an absorption band raised around 350 nm at Artepillin C concentration above 50 μM, due to aggregation of the molecule. In neutral pH, with excitation at 310 nm, Artepillin C presents dual emission at 400 and 450 nm. In pH close to the pKa, the optical spectra show contribution from both protonated and deprotonated species. A three-exponential function was necessary to fit the intensity decays at the different pHs, dominated by a very short lifetime component, around 0.060 ns. The fast decay resulted in emission before fluorescence depolarization, and in values of fluorescence anisotropy higher than could be expected for monomeric forms of the compound. The results give fundamental knowledge about the protonation-deprotonation state of the

  19. Crystal and solution spectroscopy of einsteinium

    International Nuclear Information System (INIS)

    Carnall, W.T.

    1978-01-01

    Work on spectra and electronic structure of Es 3+ is reviewed. Laser-excited fluorescence spectroscopy was used to study Es 3+ -doped LaCl 3 crystals; fluorescence transitions and lifetimes were determined. A complete ground-state splitting diagram was also constructed for Es 3+ : LaCl 3 . Some data on excited states of Fm 3+ are also included. 12 figures

  20. Multicharged Ion-induced simple molecule fragmentation dynamics

    International Nuclear Information System (INIS)

    Tarisien, M.

    2003-10-01

    The aim of this work is to study the dynamics of swift multicharged ion-induced fragmentation of diatomic (CO) and triatomic (CO 2 ) molecules. Performed at the GANIL facility, this study used the Recoil Ion Momentum Spectroscopy technique (RIMS), which consists of a time-of-flight mass spectrometer, coupled with a multi-hit capability position sensitive detector (delay line anode). The high-resolution measurement of the kinetic energy distribution released (KER) during the CO fragmentation points out the limitation of the Coulomb Explosion Model, revealing, for example, the di-cation CO 2 + electronic state contribution in the case of C + /O + fragmentation pathway. Furthermore, the multi-ionization cross section dependence with the orientation of the internuclear axis of CO is compared with a geometrical model calculation. Finally, different behaviours are observed for the dissociation dynamics of a triatomic molecule (CO 2 ). While triple ionization leads mainly to a synchronous concerted fragmentation dynamics, a weak fraction of dissociating molecule follows a sequential dynamics involving CO 2 + metastable states. In the case of double ionization, (CO 2 ) 2+ di-cation dissociation dynamics is asynchronously concerted and has been interpreted using a simple model involving an asymmetrical vibration of the molecule. (author)

  1. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  2. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  3. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  4. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  5. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    Science.gov (United States)

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  6. Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment.

    Science.gov (United States)

    Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng

    2014-10-01

    The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. CHARACTERIZATION OF SOIL HUMIC SUBSTANCES BY ULTRAVIOLET-VISIBLE AND SYNCHRONOUS FLUORESCENCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    NADĚŽDA FASUROVÁ

    2011-01-01

    Full Text Available We focused our study on ultraviolet-visible and synchronous fluorescence spectra and indexes of humic subctances isolated from five Czech soil samples: Haplic Chernozem, Luvic Chernozem, Gleyic Luvisol, Haplic Cambisol and Leptic Cambisol. Results indicated the following HS quality: Haplic Chernozem > Luvic Chernozem > Gleyic Luvisol > Haplic Cambisol > Leptic Cambisol. Humic acids and fulvic acids ratios (HA/FA were increasing together with decreasing values of Q4/6 measured in visible spectral range. Highest absorbance in visible spectral range was detected in Haplic Chernozem and Luvic Chernozem. Maximum relative fluorescence was found in Haplic Chernozem. SFS spectra (in emission mode at Δλ=20 nm showed five main fluorophore peaks at: 360, 470, 488, 502 and 512 nm. Fluorescence behaviour of studied samples was compared with Elliot soil humic acid standard (IHSS. Correlation between fluorescence indexes (F and humification degree (HD R2= 0.88 and between calculated humification degree (HD* and humic acids content (HA sum R2=0.84 and between fluorescence indexes F and HA/FA ratios (R2=0.88 were found.

  8. Multi-parameter spectroscopy of fission fragments and related emission products

    International Nuclear Information System (INIS)

    Ruben, A.; Jahnke, U.

    1993-01-01

    An exclusive measurement of the 252 C f(sf) fragment distribution in mass and energy in coincidence with the related emission products by combining a twin ionization chamber with a 4π-neutron tank, a n-γ-detector, and a solid-state detector telescope is presented. The experimental set-up, data handling and acquisition is described followed by a discussion of the raw data evaluation. (orig.)

  9. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.; Zhang, Ruomeng; Hallani, Rawad K.; Pensack, Ryan D.; Sanders, Samuel N.; Oblinsky, Daniel G.; Parkin, Sean R.; Campos, Luis M.; Anthony, John E.; Scholes, Gregory D.

    2017-01-01

    carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance

  10. Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra

    Directory of Open Access Journals (Sweden)

    Thomas J. A. Wolf

    2017-07-01

    Full Text Available Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.

  11. [Construction of RNA-containing virus-like nanoparticles expression vector with cysteine residues on surface and fluorescent decoration].

    Science.gov (United States)

    Cheng, Yang-Jian; Liang, Ji-Xuan; Li, Qing-Ge

    2005-08-01

    Site-directed mutagenesis was performed at the codon 15 of the MS2 bacteriophage coat protein gene,which had been cloned to the virus-like particles expression vector containing non-self RNA fragment. The produced expression vector,termed pARSC, was transformed to E. coli DH5alpha. The positive clones were selected and proliferated. The harvested cells were treated with sonication and the supernatant was then subjected to linear sucrose density gradients centrifugation (15% to 60%) at 32000 r/min for 4 h at 4 degrees C. The virus-like particles, VLP-Cy, were collected at 35% sucrose density. The particles were examined by transmission electron microscopy and the spherical viral particles of approximately 27 nm in diameter were found. The thiolated VLP-Cy was then chemically modified with fluorescein -5'-maleimide. The covalent fluorescent labeling was confirmed by absorption analysis, SDS-PAGE and MALDI-TOF mass spectroscopy. This is the first report of preparation of RNA-containing natural fluorescent nanoparticles. The study highlight the versatility of MS2 bacteriophage capsids as building blocks for functional nanomaterials construction for a variety of application purposes.

  12. Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil.

    Science.gov (United States)

    Kassouf, Amine; El Rakwe, Maria; Chebib, Hanna; Ducruet, Violette; Rutledge, Douglas N; Maalouly, Jacqueline

    2014-08-11

    Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  14. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

    Science.gov (United States)

    Reineck, P; Capelli, M; Lau, D W M; Jeske, J; Field, M R; Ohshima, T; Greentree, A D; Gibson, B C

    2017-01-05

    Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for the production of fluorescent NV nanodiamonds for use in bioimaging applications.

  15. Analysis of the substrate recognition state of TDP-43 to single-stranded DNA using fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2018-07-01

    Full Text Available Normal function and abnormal aggregation of transactivation response (TAR DNA/RNA-binding protein 43 kDa (TDP-43 are directly associated with the lethal genetic diseases: cystic fibrosis, amyotrophic lateral sclerosis (ALS, and frontotemporal lobar degeneration (FTLD. The binding of TDP-43 to single-stranded DNA (ssDNA or RNA is involved in transcriptional repression, regulation of RNA splicing, and RNA stabilization. Equilibrium dissociation constants (Kd of TDP-43 and ssDNA or RNA have been determined using various methods; however, methods that can measure Kd with high sensitivity in a short time using a small amount of TDP-43 in solution would be advantageous. Here, in order to determine the Kd of TDP-43 and fluorescence-labeled ssDNA as well as the binding stoichiometry, we use fluorescence correlation spectroscopy (FCS, which detects the slowed diffusion of molecular interactions in solution with single-molecule sensitivity, in addition to electrophoretic mobility shift assay (EMSA. Using tandem affinity chromatography of TDP-43 dually tagged with glutathione-S-transferase and poly-histidine tags, highly purified protein was obtained. FCS successfully detected specific interaction between purified TDP-43 and TG ssDNA repeats, with a Kd in the nanomolar range. The Kd of the TDP-43 mutant was not different from the wild type, although mutant oligomers, which did not bind ssDNA, were observed. Analysis of the fluorescence brightness per dimerized TDP-43/ssDNA complex was used to evaluate their binding stoichiometry. The results suggest that an assay combining FCS and EMSA can precisely analyze ssDNA recognition mechanisms, and that FCS may be applied for the rapid and quantitative determination of the interaction strength between TDP-43 and ssDNA or RNA. These methods will aid in the elucidation of the substrate recognition mechanism of ALS- and FTLD-associated variants of TDP-43.

  16. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    Science.gov (United States)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  17. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  18. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong

    2013-01-01

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K a (×10 5 /M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K b (×10 4 /M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb

  20. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenjuan [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Zhang, Daoyong [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Xiangliang, E-mail: xlpan@ms.xjb.ac.cn [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Lee, Duu-Jong [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2013-04-15

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K{sub a} (×10{sup 5}/M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K{sub b} (×10{sup 4}/M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb.

  1. Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology

    Science.gov (United States)

    Kozikowski, Raymond T.; Smith, Sarah E.; Lee, Jennifer A.; Castleman, William L.; Sorg, Brian S.; Hahn, David W.

    2012-06-01

    Fluorescence spectroscopy has been widely investigated as a technique for identifying pathological tissue; however, unrelated subject-to-subject variations in spectra complicate data analysis and interpretation. We describe and evaluate a new biosensing technique, differential laser-induced perturbation spectroscopy (DLIPS), based on deep ultraviolet (UV) photochemical perturbation in combination with difference spectroscopy. This technique combines sequential fluorescence probing (pre- and post-perturbation) with sub-ablative UV perturbation and difference spectroscopy to provide a new spectral dimension, facilitating two improvements over fluorescence spectroscopy. First, the differential technique eliminates significant variations in absolute fluorescence response within subject populations. Second, UV perturbations alter the extracellular matrix (ECM), directly coupling the DLIPS response to the biological structure. Improved biosensing with DLIPS is demonstrated in vivo in a murine model of chemically induced skin lesion development. Component loading analysis of the data indicates that the DLIPS technique couples to structural proteins in the ECM. Analysis of variance shows that DLIPS has a significant response to emerging pathology as opposed to other population differences. An optimal likelihood ratio classifier for the DLIPS dataset shows that this technique holds promise for improved diagnosis of epithelial pathology. Results further indicate that DLIPS may improve diagnosis of tissue by augmenting fluorescence spectra (i.e. orthogonal sensing).

  2. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: towards rational catalyst immobilization

    NARCIS (Netherlands)

    Marras, F.; Kluwer, A.M.; Siekierzycka, J.R.; Vozza, A.; Brouwer, A.M.; Reek, J.N.H.

    2010-01-01

    Spotless catalysts: Ligand immobilization was studied by two-photon fluorescence microscopy with a fluorescent nixantphos ligand as probe (see picture). In the immobilization process ligand aggregates form in solution and are deposited on the support, where they appear as bright spots in

  3. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  5. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  6. The rise of fragment-based drug discovery.

    Science.gov (United States)

    Murray, Christopher W; Rees, David C

    2009-06-01

    The search for new drugs is plagued by high attrition rates at all stages in research and development. Chemists have an opportunity to tackle this problem because attrition can be traced back, in part, to the quality of the chemical leads. Fragment-based drug discovery (FBDD) is a new approach, increasingly used in the pharmaceutical industry, for reducing attrition and providing leads for previously intractable biological targets. FBDD identifies low-molecular-weight ligands (∼150 Da) that bind to biologically important macromolecules. The three-dimensional experimental binding mode of these fragments is determined using X-ray crystallography or NMR spectroscopy, and is used to facilitate their optimization into potent molecules with drug-like properties. Compared with high-throughput-screening, the fragment approach requires fewer compounds to be screened, and, despite the lower initial potency of the screening hits, offers more efficient and fruitful optimization campaigns. Here, we review the rise of FBDD, including its application to discovering clinical candidates against targets for which other chemistry approaches have struggled.

  7. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  8. Fluorescence relaxation spectroscopy : light on dynamical structures of flavoproteins

    NARCIS (Netherlands)

    Burten - Bastiaens, P.I.H.

    1992-01-01

    Refinements in technique and data analysis have opened new avenues for a detailed interpretation of protein fluorescence. What is more, by combining new insights in protein structure and dynamics with improved knowledge of photophysics of biological chromophores, the coupling between

  9. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  10. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    Science.gov (United States)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  11. Smartphone-based fluorescence spectroscopy device aiding in preliminary skin screening

    Science.gov (United States)

    Sahoo, Aparajita; Wahi, Akshat; Das, Anshuman

    2018-02-01

    Preliminary diagnosis of closely resembling skin conditions can be highly subjective for dermatologists. In ambiguous cases, it often leads to performing invasive procedures like biopsies. Different skin conditions, however, have varying concentrations of fluorophores (like collagen, NADH) and chromophores (like melanin, hemoglobin) which can alter their fluorescence spectra. We demonstrate a handheld, portable, smartphone-based spectrometer that leverages these alterations in skin autofluorescence spectra for rapid screening of skin conditions. This methodology involves excitation of affected skin areas with ultraviolet (UV-A) 385 nm light, capturing the generated fluorescence spectra and sending the data wirelessly to a companion mobile application for data storage, analysis and visualization. By collecting the fluorescence spectral signals from healthy and unhealthy skin conditions, we establish that the signals collected using this portable device can be used to develop a classification method to help in differentially diagnosing these conditions. It shows promise as a useful skin screening tool for both dermatologists and primary health care workers. This device can enable quick, non-invasive and a more objective preliminary examination. We envision the device to be especially useful in primary healthcare centers of developing countries where availability of dermatologists is limited.

  12. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    Science.gov (United States)

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  14. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  15. Laser induced fluorescence of biochemical for UV LIDAR application.

    Science.gov (United States)

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.

  16. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films.

    NARCIS (Netherlands)

    Humbs, W.; Zhang, H.; Glasbeek, M.

    2000-01-01

    Abstract Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the fluorescence from thin Alq3 films has been studied by means of the femtosecond fluorescence upconversion technique. From the temporally resolved

  17. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  18. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    International Nuclear Information System (INIS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-01-01

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  19. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute-Deemed University, Gandhigram 624 302, Tamilnadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)

    2016-10-30

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  20. Development of a method for the in situ measurement of polycyclic aromatic hydrocarbons with time resolved laser fluorescence spectroscopy. Final report

    International Nuclear Information System (INIS)

    Jaeger, E.; Weissbach, A.; Koenig, F.; Paul, T.

    1994-01-01

    A method was developed for the detection of polycyclic aromatic hydrocarbons (PAH) in water on the basis of time resolved laser fluorescence spectroscopy. The detection of the sum of PAH in ground- and surfacewater is possible with high sensitivity and selectivity. The fluorescence of other substances like chlorophyll or dissolved organic matter is suppressed by a special choice of spectral and temporal windows. The method works without any sample preparation and gives the results in a very short time. On the basis of this method a first device was built with a sensitivity of 0,1 μg/1 PAH in water. The measuring time was less than one minute. The on site use of this prototype is possible because of the use of a battery driven nitrogen laser together with a notebook computer for system control The application of fiberoptic cables up to 30 meter length makes it possible to use the system for screening and monitoring of polluted areas both in existing wells and without any well by using geological probe techniques. (orig.) [de

  1. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  2. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    Science.gov (United States)

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  3. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  4. Fluorescence diagnosis of pre-invasive cervical pathology

    Directory of Open Access Journals (Sweden)

    I. P. Aminodova

    2015-01-01

    Full Text Available Results of local fluorescence spectroscopy in 185 women with underlying and pre-invasive disease of cervix and high-risk HPV infection are represented. Fluorescence study was performed 2h after intravenous injection of fotoditazin in a dose of 1 mg/kg (wavelength 636.5 nm. Accumulation of the photosensitizer was estimated by diagnostic parameter (DP value, calculated as mean value of fluorescence scaled to each type of tissue. For normal tissues DP accounted for 0.6±0.4, showing accumulation of the photosensitizer. According to the study the medication did not also accumulate in retention cysts (DP 0.3±0.1, explaining low efficiency of photodynamic therapy for this pathology. The accumulation of fotoditazin depends significantly on type of pathologic tissue. In patients with inflammation, leukoplakia and CIN I accumulation of the photosensitizer in pathologic foci was negligible: DP accounted for 1.7±0.2, 1.8±0.2 and 2.1±0.3, respectively. In sites of endometriosis and CIN II DP was significantly higher and accounted for 8.3±2.1 and 14.1±4.1, respectively. The greatest accumulation of the photosensitizer was registered in sites of CIN III, squamous cell carcinoma and adenocarcinoma. Though DP value for these pathologies had almost no difference and accounted for 23.1±4.7, 22.7±1.8 and 23.3±1.4, respectively. For fluorescence diagnosis of severe dysplasia in 48% of patients borders of fluorescence regions were beyond lesions detected for extended colposcopy with additional areas of fluorescence. Targeted biopsy of these regions proved pathology in all patients: CIN II, CIN III, mild dysplasia or CIS. Thus, local spectroscopy allows to diagnosis multifocal lesions on cervix, to define correctly borders of lesion and consider excisional biopsy in-time.  

  5. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake [Toyota Central R& D Labs., Inc., Yokomichi 41-1, Nagakute, Aichi 480-1192 (Japan); Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru [Catalysis Research Center, Hokkaido University, Kita 21-10, Sapporo, Hokkaido 001-0021 (Japan); Nimura, Tomoyuki [AVC Co., Ltd., Inada 1450-6, Hitachinaka, Ibaraki 312-0061 (Japan)

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  6. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    Science.gov (United States)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  7. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  8. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  9. Recent developments in fast spectroscopy for plant mineral analysis

    Directory of Open Access Journals (Sweden)

    Marie evan Maarschalkerweerd

    2015-03-01

    Full Text Available Ideal fertilizer management to optimize plant productivity and quality is more relevant than ever, as global food demands increase along with the rapidly growing world population. At the same time, sub-optimal or excessive use of fertilizers leads to severe environmental damage in areas of intensive crop production. The approaches of soil and plant mineral analysis are briefly compared and discussed here, and the new techniques using fast spectroscopy that offer cheap, rapid and easy-to-use analysis of plant nutritional status are reviewed. The majority of these methods use vibrational spectroscopy, such as Visual-Near Infrared (Vis-NIR and to a lesser extent Ultraviolet (UV and Mid-Infrared (MIR spectroscopy. Advantages of and problems with application of these techniques are thoroughly discussed. Spectroscopic techniques considered having major potential for plant mineral analysis, such as chlorophyll a fluorescence, X-ray fluorescence (XRF and Laser-Induced Breakdown Spectroscopy (LIBS are also described.

  10. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    International Nuclear Information System (INIS)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-01-01

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  11. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    Energy Technology Data Exchange (ETDEWEB)

    Crivianu-Gaita, Victor [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada); Romaschin, Alexander [Clinical Biochemistry, St. Michael' s Hospital, Toronto, ON M5B 1W8 (Canada); Thompson, Michael, E-mail: mikethom@chem.utoronto.ca [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)

    2015-12-30

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  12. Dynamic effects in fragmentation reactions

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Esbensen, H.

    2002-01-01

    Fragmentation reactions offer a useful tool to study the spectroscopy of halo nuclei, but the large extent of the halo wave function makes the reaction theory more difficult. The simple reaction models based on the eikonal approximation for the nuclear interaction or first-order perturbation theory for the Coulomb interaction have systematic errors that they investigate here, comparing to the predictions of complete dynamical calculations. They find that stripping probabilities are underpredicted by the eikonal model, leading to extracted spectroscopy strengths that are two large. In contrast, the Coulomb excitation is overpredicted by the simple theory. They attribute this to a screening effect, as is well known in the Barkas effect on stopping powers. The errors decrease with beam energy as E(sub beam)(sup -1), and are not significant at beam energies above 50 MeV/u. At lower beam energies, the effects should be taken into account when extracting quantitative spectroscopic strengths

  13. Isomeric signatures in the fragmentation of pyridazine and pyrimidine induced by fast ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Montenegro, Eduardo C. [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil)

    2015-07-28

    We present fast proton impact induced fragmentations of pyrimidine and pyridazine as an experimental resource to investigate isomeric signatures. Major isomeric imprints are identified for few fragment ions and differences of more than an order of magnitude for the cross sections of fragments of the same mass were measured. The observation of the molecular structure of these isomers gives no apparent indication for the reasons for such substantial differences. It is verified that the simple displacement of the position of one nitrogen atom strongly inhibits or favors the production of some ionic fragment species. The dependency of the fragmentation cross sections on the proton impact energy, investigated by means of time of flight mass spectroscopy and of a model calculation based in first order perturbation theory, allows us to disentangle the complex collision dynamics of the ionic fragments. The proton-induced fragmentation discriminates rather directly the association between a molecular orbital ionization and the fragment-ions creation and abundance, as well as how the redistribution of the energy imparted to the molecules takes place, triggering not only single but also double vacancy and leads to specific fragmentation pathways.

  14. Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy

    International Nuclear Information System (INIS)

    Stosnach, Hagen; Mages, Margarete

    2009-01-01

    In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.

  15. Rare Earth Elements as Potential Biosignatures on Mars in SuperCam Time Resolved Laser Fluorescence Spectroscopy Data

    Science.gov (United States)

    Ollila, A.; Beyssac, O.; Sharma, S. K.; Misra, A. K.; Clegg, S. M.; Gauthier, M.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lanza, N.

    2017-12-01

    The rare earth elements (REE, La to Lu) are a group of elements with similar chemical properties that are generally present in geologic materials at trace concentrations. REEs may be concentrated via processes such as igneous fractional crystallization in accessory minerals, e.g. apatite, zircon, and titanite. Additionally, however, concentrations of REE may serve to identify regions of high astrobiological interest. For example, Fe-oxyhydroxide deposits in hydrothermal vent systems and biologically related manganese nodules may be enriched in REEs. REEs have not been measured in situ on Mars, therefore their prevalence and distribution on Mars is as yet unknown, except as observed in martian meteorites. SuperCam is a survey instrument that will analyze materials around the Mars 2020 rover using a variety of spectral techniques including laser-induced breakdown spectroscopy (LIBS), Raman, VIS-IR, and time-resolved laser fluorescence (TRLF) spectroscopy. Recently, the SuperCam Engineering Development Unit was tested at the Los Alamos National Laboratory for its capabilities to detect REEs in minerals using TRLF spectroscopy. While this instrument was not designed to precisely replicate the flight model, the spectral resolution and light transmission was sufficient to obtain TRLF spectra on a number of minerals demonstrating a variety of REE luminescent centers. These include apatite (Sm3+, Nd3+, Eu3+, Dy3+), fluorite (Ho3+, Sm3+, Dy3+, Nd3+), and zircon (Er3+, Pr3+, Nd3+). Future work includes expanding this suite to include minerals associated with biological activities, for example Mn-oxides (desert varnish and manganese nodules), hydrothermal Fe-oxides, and stromatolite-associated carbonates. In this way and in combination with its other techniques, SuperCam may direct the rover team to perform further analyses of similar samples by the in situ chemical and mineralogical suite of instruments, or aid in prioritization for sample return.

  16. Release and characteristics of fungal fragments in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mensah-Attipoe, Jacob [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Saari, Sampo [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Veijalainen, Anna-Maria; Pasanen, Pertti [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Keskinen, Jorma [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Leskinen, Jari T.T. [SIB Labs, University of Eastern Finland, Yliopistonranta 1E, P. O. Box 1627, FI-70211, Kuopio (Finland); Reponen, Tiina, E-mail: reponeta@ucmail.uc.edu [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056 (United States)

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, d{sub p} ≥ 0.8 μm) and fragments (d{sub p} ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment–spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based

  17. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator

    Science.gov (United States)

    Roshan, Shamim; Sarabi Dariani, Ali Asghar; Mokhtari, Javad

    2018-05-01

    In the present study, successful performance of 8-hydroxyquinoline (8-HQ) as a ferric ion sensitive indicator is described. 8-HQ was used in epoxy coating because of its desirable properties. It doesn't exhibit premature fluorescence when mixed with coating precursors. Additionally it shows fluorescence turn-on mechanism upon chelate formation with Fe2+/Fe3+ ions produced during anodic reaction. The effect of different concentrations of 8-HQ (0.05, 0.1, 0.5 and 1 wt.%) incorporated in the epoxy coating on corrosion detection as well as optical and electrochemical behavior of the applied coating were studied. The fluorescence property of 8-HQ/Fe3+ solutions was evaluated by using fluorometer. The UV-Visible spectroscopy was used to investigate the effect of 8-HQ presence in the coating on transparency of the free films of the samples. The corrosion detection was performed by fluorescence microscope and the anti-corrosion performance of coated samples containing different concentrations of 8-HQ was studied using salt spray standard test and electrochemical impedance spectroscopy (EIS). The results of UV-Visible spectroscopy demonstrated that increasing 8-HQ concentration causes a slight decrease in coating transparency. According to the results of electrochemical impedance spectroscopy (EIS) measurements, the polarization resistance of the coated St-37 sample containing 0.1 wt.% 8-HQ was about 109 Ohm cm2 after 6 weeks immersion in corrosive electrolyte, while St-37 plates coated with other 8-HQ concentrations showed decreased resistance levels of about 106 Ohm cm2, during the same immersion period. Based on fluorescence microscopic investigation, as a result of incorporating 8-HQ into the epoxy matrix, fluorescence could be observed in regions where Fe2+/Fe3+ ions were produced through anodic reactions. This method is capable of detecting corrosion in situ at early stages before the metal surface suffers serious damages.

  18. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis

    Science.gov (United States)

    Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.

    2011-12-01

    Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.

  19. On the mobility of biomolecules : a fluorescence microscopy approach

    NARCIS (Netherlands)

    Bogaart, Geert van den

    2008-01-01

    This thesis describes the development and application of a number of fluorescence spectroscopy related techniques (FCS, FRAP, DCFBA) to measure diffusion of biomolecules in cells, in membranes and through membrane pores.

  20. The development of methods of analysis of documents on the basis of the methods of Raman spectroscopy and fluorescence analysis

    Science.gov (United States)

    Gorshkova, Kseniia O.; Tumkin, Ilya I.; Kirillova, Elizaveta O.; Panov, Maxim S.; Kochemirovsky, Vladimir A.

    2017-05-01

    The investigation of natural aging of writing inks printed on paper using Raman spectroscopy was performed. Based on the obtained dependencies of the Raman peak intensities ratios on the exposure time, the dye degradation model was proposed. It was suggested that there are several competing bond breaking and bond forming reactions corresponding to the characteristic vibration frequencies of the dye molecule that simultaneously occur during ink aging process. Also we propose a methodology based on the study of the optical properties of paper, particularly changes in the fluorescence of optical brighteners included in its composition as well as the paper reflectivity using spectrophotometric methods. These results can be implemented to develop the novel and promising method of criminology.

  1. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S. [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu (India)

    2016-12-30

    Graphical abstract: Schematic representation of CQDs from sugarcane bagasse carbon. - Highlights: • CQDs were synthesised from sugarcane bagasse waste with top down approaches. • Synthesis method is green, simple and efficient process. • CQDs possess high quantum yield, good stability and highly fluorescent in nature. • The morphological and topographical study of CQDs was done by HR-TEM and AFM and was observed that the average size is 4.1 ± 0.17 nm and surface thickness is 5 nm. - Abstract: Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV–vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  2. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  3. Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector

    Science.gov (United States)

    Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae

    2013-07-01

    Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

  4. Chemical characterization of archaeological ceramics fragments by X-ray (μ-XRF) micro fluorescence

    International Nuclear Information System (INIS)

    Silva, Richard Maximiliano da Cunha e; Nascimento Filho, Virgilio Franco do; Appoloni, Carlos Roberto; Perez, Carlos Alberto

    2002-01-01

    The concentrations of the inorganic chemical elements presents in archaeological ceramic samples and clay samples allows the study about the clay sources determination used in the ceramic production. The analyzed samples are fragments of Brazilian indigenous ceramic, found in the area of the city of Londrina, North of Parana, and they belong to the archaeological collection of the 'Padre Carlos Weiss' Historical Museum, of the State University of Londrina. The determination of the chemical elements in these fragments was performed by energy dispersive X-ray microfluorescence (μ-XRF), for being not destructive and multielementar. The analytic technique allowed the identification of the K, Ca, Ti, Mn, Fe minority elements, and the Cr, Ni, Cu, Zn and Rb trace elements. The cluster analysis for the method of the medium grouping was used, and it was obtained two different groups, taking to conclude that indigenous Tupiguaranis used two clay sources in the making of its ceramic. (author)

  5. Bacteria and fluorescent organic matter: processing and production.

    Science.gov (United States)

    Fox, B. G.; Thorn, R. M. S.; Reynolds, D. M.

    2017-12-01

    There is a need for a greater understanding of the importance of aquatic organic matter (OM) within global biogeochemical cycling. This need has prompted characterisation of OM using fluorescence spectroscopy. The origin, transformation and fate of fluorescent organic matter (FOM) is not fully understood within freshwater systems. This work demonstrates the importance of microbial processing in the creation and transformation of FOM, highlighting the dynamics of microbial-FOM interactions, using a model system. The FOM signature of different bacterial species common to surface freshwaters were analysed using a non-fluorescent media; Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. By undertaking bacterial growth curves, alongside fluorescence spectroscopy, we have been able to determine FOM development in relation to population growth. Within this, we have identified that FOM peaks are associated with different species and driven by bacterial processes, such as cell multiplication or as metabolic by-products. The intracellular and extracellular fluorescence signature of each species has also been analysed to better understand how the microbial community structure may impact the FOM signal in aquatic systems. For example, Peak T develops within the growth curves of all the cultured species and has been identified as both intracellular and extracellular FOM. Whilst Peak T has been termed `microbially-derived' previously, other fluorescence peaks associated with terrestrial high molecular weight compounds, e.g. Peak C, have also been shown to be produced by bacteria throughout growth stages. Additionally, the notion that cell lysis is responsible for the presence of larger FOM compounds was also explored. Our work highlights the capacity of bacteria to not only utilise and process OM but to actively be a source of both labile and recalcitrant OM in situ. The bacteria fluorescence signatures seen are complex with comparable fluorescence peaks to those

  6. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  7. Impurity monitoring by laser-induced fluorescence techniques

    International Nuclear Information System (INIS)

    Gelbwachs, J.A.

    1984-01-01

    Laser-induced fluorescence spectroscopy can provide a highly sensitive and selective means of detecting atomic and ionic impurities. Because the photodetector can be physically isolated from the laser-excited region, these techniques can be applied to monitoring in hostile environments. The basic concepts behind fluorescence detection are reviewed. Saturated optical excitation is shown to maximize impurity atom emission yield while mitigating effects of laser intensity fluctuations upon absolute density calibration. Monitoring in high- and low-pressure monitoring environments is compared. Methods to improve detection sensitivity by luminescence background suppression are presented

  8. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel

    2012-07-23

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  9. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel; Hostein, Richard; Mahboub, Oussama; Devaux, Eloï se; Rigneault, Hervé ; Ebbesen, Thomas W.; Wenger, Jé rô me

    2012-01-01

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  10. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  11. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes.

    Science.gov (United States)

    Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D

    1992-01-01

    Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535

  12. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  13. Fluorescence and phosphorescence of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, Stanislav L., E-mail: bondarev@imaph.bas-net.by [Minsk State Higher Radioengineering College, 220005 Minsk (Belarus); Knyukshto, Valeri N. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2013-10-15

    Rutin is one of the most promising flavonoid from a pharmacological and biochemical point of view. Here we have explored its spectroscopic and photophysical properties at room temperature and 77 K using steady-state absorption-luminescence methods and pulse spectroscopy equipment. By excitation into the absorption band 1 of rutin in methanol at room temperature the normal Stokes' shifted fluorescence with a maximum at 415 nm and quantum yield of 2×10{sup −4} was revealed. However, by excitation into the bands 2 and 3 any emission wasn’t observed. At 77 K in ethanol glass we have observed fluorescence at 410 nm and phosphorescence at 540 nm for the first time. As a result the adequate energetic scheme including the lowest electronic excited singlet at 26000 cm{sup −1} and triplet at 19600 cm{sup −1} states was proposed. -- Highlights: • Rutin fluorescence and phosphorescence at 77 K were revealed for the first time. • Room temperature fluorescence is determined by maximum at 415 nm and yield of 2×10{sup −4}. • Violation of Vavilov–Kasha rule by excitation into the absorption bands 2 and 3. • Fluorescence and phosphorescence in rutin are caused by the allowed π, π{sup (⁎)} transitions.

  14. Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments

    Science.gov (United States)

    Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162

  15. Multicharged Ion-induced simple molecule fragmentation dynamics; Dynamique de la fragmentation de molecules simples induite par impact d'ion multicharge

    Energy Technology Data Exchange (ETDEWEB)

    Tarisien, M

    2003-10-01

    The aim of this work is to study the dynamics of swift multicharged ion-induced fragmentation of diatomic (CO) and triatomic (CO{sub 2}) molecules. Performed at the GANIL facility, this study used the Recoil Ion Momentum Spectroscopy technique (RIMS), which consists of a time-of-flight mass spectrometer, coupled with a multi-hit capability position sensitive detector (delay line anode). The high-resolution measurement of the kinetic energy distribution released (KER) during the CO fragmentation points out the limitation of the Coulomb Explosion Model, revealing, for example, the di-cation CO{sub 2}{sup +} electronic state contribution in the case of C{sup +}/O{sup +} fragmentation pathway. Furthermore, the multi-ionization cross section dependence with the orientation of the internuclear axis of CO is compared with a geometrical model calculation. Finally, different behaviours are observed for the dissociation dynamics of a triatomic molecule (CO{sub 2}). While triple ionization leads mainly to a synchronous concerted fragmentation dynamics, a weak fraction of dissociating molecule follows a sequential dynamics involving CO{sub 2}{sup +} metastable states. In the case of double ionization, (CO{sub 2}){sup 2+} di-cation dissociation dynamics is asynchronously concerted and has been interpreted using a simple model involving an asymmetrical vibration of the molecule. (author)

  16. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.

    Science.gov (United States)

    Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang

    2011-07-10

    We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America

  17. Cu2+-labeled dansyl compounds as fluorescent and PET probes for imaging apoptosis.

    Science.gov (United States)

    Han, Junyan; Wang, Xukui; Yu, MeiXiang

    2016-11-15

    Compound DNSTT-Cu 2+ , a novel chelate of Cu 2+ with DOTA conjugated to a fluorescent dansyl fragment, is developed for imaging cell apoptosis. Apoptotic U-87MG cells could be selectively visualized by the fluorescence of DNSTT-Cu 2+ from cytoplasm of cells, confirmed by the fluorescence of apoptosis cells co-labeled with Alexa Fluor 568-labeled annexin V, a conventional probe for selectively labeling membranes of apoptosis cells. A radioactive 64 Cu 2 + analog, DNSTT- 64 Cu 2+ , was easily synthesized, providing a potential PET probe for imaging apoptosis in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  19. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  20. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)