WorldWideScience

Sample records for fracturing fluids

  1. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  2. Minimizing the Fluid Used to Induce Fracturing

    Science.gov (United States)

    Boyle, E. J.

    2015-12-01

    The less fluid injected to induce fracturing means less fluid needing to be produced before gas is produced. One method is to inject as fast as possible until the desired fracture length is obtained. Presented is an alternative injection strategy derived by applying optimal system control theory to the macroscopic mass balance. The picture is that the fracture is constant in aperture, fluid is injected at a controlled rate at the near end, and the fracture unzips at the far end until the desired length is obtained. The velocity of the fluid is governed by Darcy's law with larger permeability for flow along the fracture length. Fracture growth is monitored through micro-seismicity. Since the fluid is assumed to be incompressible, the rate at which fluid is injected is balanced by rate of fracture growth and rate of loss to bounding rock. Minimizing injected fluid loss to the bounding rock is the same as minimizing total injected fluid How to change the injection rate so as to minimize the total injected fluid is a problem in optimal control. For a given total length, the variation of the injected rate is determined by variations in overall time needed to obtain the desired fracture length, the length at any time, and the rate at which the fracture is growing at that time. Optimal control theory leads to a boundary condition and an ordinary differential equation in time whose solution is an injection protocol that minimizes the fluid used under the stated assumptions. That method is to monitor the rate at which the square of the fracture length is growing and adjust the injection rate proportionately.

  3. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  4. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  5. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  6. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  7. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  8. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    Science.gov (United States)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi

  9. Slow Waves in Fractures Filled with Viscous Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  10. Total phosphorus recovery in flowback fluids after gelled hydrocarbon fracturing fluid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fyten, G.; Houle, P.; Taylor, R.S. [Halliburton Energy Services, Calgary, AB (Canada); Stemler, P.S. [Petro-Canada Oil and Gas Inc., Calgary, AB (Canada); Lemieux, A. [Omnicon Consultants Inc., Calgary, AB (Canada)

    2006-07-01

    Carbon dioxide miscible hydrocarbon fracturing fluids are used in unconventional gas reservoirs such as tight gas, shale gas, and coalbed methane. These fracturing fluids address phase trapping concerns by using oil-based fracturing fluid technology for use in reservoirs that are water sensitive. This paper addressed the problem of refinery tower fouling caused by volatile phosphorous components found in phosphate ester oil gellants. In order to address costly unplanned refinery shutdowns, a maximum 0.5 ppm volatile phosphorus in crude specification has been proposed. However, this specification is based on average concentrations of phosphorus added to the oil to gel it. The specification also falsely assumes that the oil is phosphorus free to begin with. The authors noted that refinery tower fouling is actually the result of total phosphorus throughput rather than peak concentrations at any one point. This paper focused on the total phosphorus recovery in addition to peak concentrations. It also examined what percentage of the total recovered phosphorus is in fact volatile, since this is the material that plugs the trays. The total per cent recovery of phosphorus originally added as phosphorus based gellant was examined along with the total percent recovery of volatile phosphorus as a function of total phosphorus. The phosphorus concentrations in both new and reused fracturing fluids before addition of gellants was also examined along with the potential explanations for phosphorus concentrations higher than those originally added. It was shown that the first 50 per cent of a hydraulic fracturing fluid flowback can result in recovery of greater than or less than the amount of phosphorus added to that portion of the fracturing fluid. The initial high concentrations of total and volatile phosphorus are greater than the phosphorus concentrations inherent in the system. Therefore, as flowback continues, there would be a rapid decline in the concentration of phosphorus

  11. Optimized CO{sub 2} miscible hydrocarbon fracturing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Fyten, G.; Attaway, D.; Watkins, H. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S. [Chevron Canada Resources, Calgary, AB (Canada); Loree, D. [FracEx Inc. (Canada)

    2006-07-01

    Carbon dioxide (CO{sub 2}) miscible hydrocarbon fracturing fluids address issues of fluid retention in low-permeability gas reservoirs, including undersaturated and underpressured reservoirs. An optimized surfactant gel technology using carbon dioxide (CO{sub 2}) hydrocarbon fracturing fluids applicable to all gas-well stimulation applications was discussed in this paper. The crosslinked surfactant gel technology improved proppant transport, leakoff control, and generation of effective fracture half-length. Tests indicated that application of the surfactant cooled the fracture face, which had the effect of extending break times and increasing viscosity during pumping periods. Rapid recovery of the fracturing fluid eliminated the need for swabbing in some cases, and the fluid system was not adversely affected by shear. However, rheological test equipment capable of mixing liquid CO{sub 2} and viscosified hydrocarbons at downhole temperatures is required to determine rheology and required chemical concentrations. It was recommended that to achieve an effective methane-drive cleanup mechanism, treatments should be designed so that the gellant system can be effective with up to 50 per cent CO{sub 2} dissolved in oil. It was concluded that it should be possible to apply the technology to low permeability gas reservoirs. Viscosity curves and friction data were presented. Issues concerning the selection of tubulars and flowback procedures were also discussed. It was suggested that the cost of the hydrocarbon fracturing fluid can be recovered by the sale of recovered load fluid. 6 refs., 4 figs.

  12. The fluid mechanics of channel fracturing flows: experiment

    Science.gov (United States)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  13. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  14. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

    Science.gov (United States)

    Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu

    2018-01-01

    Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

  15. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  16. Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction

    International Nuclear Information System (INIS)

    Liu Moubin; Meakin, Paul; Huang Hai

    2007-01-01

    Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction

  17. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the

  18. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  19. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    Science.gov (United States)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  20. Fluid transfers in fractured media: scale effects

    International Nuclear Information System (INIS)

    Bour, Olivier

    1996-01-01

    As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr

  1. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  2. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

  3. Low-frequency fluid waves in fractures and pipes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  4. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  5. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    Science.gov (United States)

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  6. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  7. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    Science.gov (United States)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  8. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  9. The study of crosslinked fluid leakoff in hydraulic fracturing physical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, Vinicius Perrud; Ribeiro, Paulo Roberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Sousa, Jose Luiz Antunes de Oliveira e [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia. Dept. de Estruturas; Fernandes, Paulo Dore [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2000-07-01

    The fluid loss plays an important role in the design and execution of hydraulic fracturing treatments. The main objectives of this work were: the study of the fluid loss associated with the propagation of hydraulic fractures generated at laboratory; and the comparison of two distinct methods for estimating leakoff coefficients - Nolte analysis and the filtrate volume vs. square root of time plot. Synthetic rock samples were used as well as crosslinked hydroxypropyl guar (HPG) fluids in different polymer concentrations. The physical simulations comprised the confinement of (0.1 x 0.1 x 0.1) m{sup 3} rock samples in a load cell for the application of an in situ stress field. Different flow rates were employed in order to investigate shear effects on the overall leakoff coefficient. Horizontal radial fractures were hydraulically induced with approximate diameters, what was accomplished by controlling the injection time. Leakoff coefficients determined by means of the pressure decline analysis were compared to coefficients obtained from static filtration tests, considering similar experimental conditions. The research results indicated that the physical simulation of hydraulic fracturing may be regarded as an useful tool for evaluating the effectiveness of fracturing fluids and that it can supply reliable estimates of fluid loss coefficients. (author)

  10. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  11. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  12. Reasons for the low flowback rates of fracturing fluids in marine shale

    Directory of Open Access Journals (Sweden)

    Yongjun Lu

    2018-02-01

    Full Text Available In this paper, marine shale cores taken from Zhaotong, Changning and Weiyuan Blocks in South China were used as samples to investigate the interaction between fracturing fluids and shale and the retention mechanisms. Firstly, adsorption, swelling, dissolution pore, dissolution fluid mineralization degree and ionic composition were experimentally studied to reveal the occurrence of water in shale and the reason for a high mineralization degree. Then, the mechanisms of water retention and mineralization degree increase were simulated and calculated. The scanning electron microscopy (SEM analysis shows that there are a large number of micro fractures originated from clay minerals in the shale. Mineral dissolution rates of shale immersed in ultrasonic is around 0.5–0.7%. The ionic composition is in accordance with that of formation water. The clay minerals in core samples are mainly composed of chlorites and illites with a small amount of illites/smectites, but no montmorillonites (SS, and its content is between 18% and 20%. It is verified by XRD and infrared spectroscopy that the fracturing fluid doesn't flow into the space between clay mineral layers, so it can't lead to shale swelling. Thus, the retention of fracturing fluids is mainly caused by the adsorption at the surface of the newly fractured micro fractures in shale in a mode of successive permeation, and its adsorptive saturation rates is proportional to the pore diameters. It is concluded that the step-by-step extraction of fracturing fluids to shale and the repulsion of nano-cracks to ion are the main reasons for the abrupt increase of mineralization degree in the late stage of flowing back. In addition, the liquid carrying effect of methane during the formation of a gas reservoir is also a possible reason. Based on the experimental and field data, fracturing fluid flowback rates and gas production rates of 9 wells were analyzed. It is indicated that the same block follows an overall

  13. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  14. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    Science.gov (United States)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  15. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  16. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  17. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    Science.gov (United States)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  18. Radar Mapping of Fractures and Fluids in Hydrocarbon Reservoirs

    Science.gov (United States)

    Stolarczyk, L. G.; Wattley, G. G.; Caffey, T. W.

    2001-05-01

    A stepped-frequency radar has been developed for mapping of fractures and fluids within 20 meters of the wellbore. The operating range has been achieved by using a radiating magnetic dipole operating in the low- and medium-frequency bands. Jim Wait has shown that the electromagnetic (EM) wave impedance in an electrically conductive media is largely imaginary, enabling energy to be stored in the near field instead of dissipated, as in the case for an electric dipole. This fact, combined with the low attenuation rate of a low-frequency band EM wave, enables radiation to penetrate deeply into the geology surrounding the wellbore. The radiation pattern features a vertical electric field for optimum electric current induction into vertical fractures. Current is also induced in sedimentary rock creating secondary waves that propagate back to the wellbore. The radiation pattern is electrically driven in azimuth around the wellbore. The receiving antenna is located in the null field of the radiating antenna so that the primary wave is below the thermal noise of the receiver input. By stepping the frequency through the low- and medium-frequency bands, the depth of investigation is varied, and enables electrical conductivity profiling away from the wellbore. Interpretation software has been developed for reconstructive imaging in dipping sedimentary layers. Because electrical conductivity can be related to oil/water saturation, both fractures and fluids can be mapped. Modeling suggests that swarms of fractures can be imaged and fluid type determined. This information will be useful in smart fracking and sealing. Conductivity tomography images will indicate bed dip, oil/water saturation, and map fluids. This paper will provide an overview of the technology development program.

  19. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    International Nuclear Information System (INIS)

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself

  20. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  1. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  2. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  3. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  4. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  5. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  6. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  7. Estimation of Dry Fracture Weakness, Porosity, and Fluid Modulus Using Observable Seismic Reflection Data in a Gas-Bearing Reservoir

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2017-05-01

    Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.

  8. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  9. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    Science.gov (United States)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  10. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  11. Characterization of fracture networks for fluid flow analysis

    International Nuclear Information System (INIS)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs

  12. Integrated Experimental and Computational Study of Hydraulic Fracturing and the Use of Alternative Fracking Fluids

    Science.gov (United States)

    Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.

    2014-12-01

    Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  13. A New Thickener for CO2 Anhydrous Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available CO2 dry fracturing technology is well-known for its advantages. Little water is used in this technology, which is able to ease the pressure of consumption on water resources. Many abroad theoretical researches, laboratory experiments and field tests have been taken to explore the yield mechanism, the adaptability and the technology of pure liquid CO2 fracturing. These achievements have been applied to a variety of reservoirs transformation and improven the effectiveness of stimulation treatment in a degree. The researches and studies in the domestic didn’t get popular until recent years. Thus, this article firstly introduces the main development and application about pure CO2 anhydrous fracturing technology, and sums up the effect and evaluation of its fluid through application examples both in the domestic and abroad. However, although this technology has many excellent qualities, but systematic studies indicate that its proppant-carrying capacity is less competitive because of the low viscosity of pure CO2 liquid and other reasons. In a consequence, it is necessary to develop an appropriate thickener for CO2 anhydrous fracturing fluid to improve its carrying capacity. Then this article describes some studies of previous scholars about CO2 thickener. Then we put forward our own research ideas and transform it into actual experiments. Thanks to the valid performances of these tests, we successfully develop a thickener X and cosolvent B.

  14. A borehole fluid conductivity logging method for the determination of fracture inflow parameters

    International Nuclear Information System (INIS)

    Tsang, C.F.; Hufschmied, P.

    1988-01-01

    It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to provide data in the estimation of the hydrologic behavior of fractured rocks. In particular the fluid inflow rates from the fractures into the wellbore are important quantities to measure. However often these inflows are at very low rates. In addition very often one finds that only a few percent of the fractures identified by core inspection and geophysical logging are water-conducting fractures, the rest being closed, clogged or isolated from the water flow system. A new method has been developed to locate water-conducting fractures and obtain fracture inflow parameters by means of a time sequence of electric conductivity logs of the borehole fluid. The physical basis of the analysis method is discussed. The procedure is applied to an existing set of data, which shows initiation and growth of nine conductivity peaks in a 900-m section of a 1690-m borehole, corresponding to nine waterconducting fractures intersecting the borehole. We are able to match all nine peaks and determine the flow rates from these fractures. A discussion is given on the applicability of this technique in the context of a borehole testing program. (author) 18 refs., 30 figs., 5 tabs

  15. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  16. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    Science.gov (United States)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  17. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  18. Influences of Hydraulic Fracturing on Fluid Flow and Mineralization at the Vein-Type Tungsten Deposits in Southern China

    Directory of Open Access Journals (Sweden)

    Xiangchong Liu

    2017-01-01

    Full Text Available Wolframite is the main ore mineral at the vein-type tungsten deposits in the Nanling Range, which is a world-class tungsten province. It is disputed how wolframite is precipitated at these deposits and no one has yet studied the links of the mechanical processes to fluid flow and mineralization. Finite element-based numerical experiments are used to investigate the influences of a hydraulic fracturing process on fluid flow and solubility of CO2 and quartz. The fluids are aqueous NaCl solutions and fluid pressure is the only variable controlling solubility of CO2 and quartz in the numerical experiments. Significant fluctuations of fluid pressure and high-velocity hydrothermal pulse are found once rock is fractured by high-pressure fluids. The fluid pressure drop induced by hydraulic fracturing could cause a 9% decrease of quartz solubility. This amount of quartz deposition may not cause a significant decrease in rock permeability. The fluid pressure decrease after hydraulic fracturing also reduces solubility of CO2 by 36% and increases pH. Because an increase in pH would cause a major decrease in solubility of tungsten, the fluid pressure drop accompanying a hydraulic fracturing process facilitates wolframite precipitation. Our numerical experiments provide insight into the mechanisms precipitating wolframite at the tungsten deposits in the Nanling Range as well as other metals whose solubility is strongly dependent on pH.

  19. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    OpenAIRE

    Huang Bo; Cheng Hao; He Yidong; Fu Yanming

    2017-01-01

    The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc.), high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the ...

  20. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  1. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Harris, Aubrey [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-07-07

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015). There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde

  2. A review of crosslinked fracturing fluids prepared with produced water

    Directory of Open Access Journals (Sweden)

    Leiming Li

    2016-12-01

    Full Text Available The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing, particularly in unconventional formations, have expanded the need for fresh water in many oilfield locations. In the meantime, it is costly for services companies and operators to properly dispose large volumes of produced water, generated annually at about 21 billion barrels in the United States alone. The high operating costs in obtaining fresh water and dealing with produced water have motivated scientists and engineers, especially in recent years, to use produced water in place of fresh water to formulate well treatment fluids. The objective of this brief review is to provide a summary of the up-to-date technologies of reusing oilfield produced water in preparations of a series of crosslinked fluids implemented mainly in hydraulic fracturing operations. The crosslinked fluids formulated with produced water include borate- and metal-crosslinked guar and derivatized guar fluids, as well as other types of crosslinked fluid systems such as crosslinked synthetic polymer fluids and crosslinked derivatized cellulose fluids. The borate-crosslinked guar fluids have been successfully formulated with produced water and used in oilfield operations with bottomhole temperatures up to about 250 °F. The produced water sources involved showed total dissolved solids (TDS up to about 115,000 mg/L and hardness up to about 11,000 mg/L. The metal-crosslinked guar fluids prepared with produced water were successfully used in wells at bottomhole temperatures up to about 250 °F, with produced water TDS up to about 300,000 mg/L and hardness up to about 44,000 mg/L. The Zr-crosslinked carboxymethyl hydroxypropyl guar (CMHPG fluids have been successfully made with produced water and implemented in operations with bottomhole temperatures at about 250+ °F, with produced water TDS up to about 280,000 mg/L and hardness up to about 91,000

  3. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  4. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    Science.gov (United States)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  5. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-09-15

    Hydraulic fracturing, coupled with the advances in horizontal drilling, has been used for recovering oil and natural gas from shale formations and has aided in increasing the production of these energy resources. The large volumes of hydraulic fracturing fluids used in this technology contain chemical additives, which may be toxic organics or produce toxic degradation byproducts. This paper investigated the chemicals introduced into the hydraulic fracturing fluids for completed wells located in Pennsylvania and West Virginia from data provided by the well operators. The results showed a total of 5071 wells, with average water volumes of 5,383,743 ± 2,789,077 gal (mean ± standard deviation). A total of 517 chemicals was introduced into the formulated hydraulic fracturing fluids. Of the 517 chemicals listed by the operators, 96 were inorganic compounds, 358 chemicals were organic species, and the remaining 63 cannot be identified. Many toxic organics were used in the hydraulic fracturing fluids. Some of them are carcinogenic, including formaldehyde, naphthalene, and acrylamide. The degradation of alkylphenol ethoxylates would produce more toxic, persistent, and estrogenic intermediates. Acrylamide monomer as a primary degradation intermediate of polyacrylamides is carcinogenic. Most of the chemicals appearing in the hydraulic fracturing fluids can be removed when adopting the appropriate treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fracture-related fluid flow in sandstone reservoirs - Insights from outcrop analogues of South-eastern Utah

    NARCIS (Netherlands)

    Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Petrie, E.; Evans, J.P.

    2012-01-01

    Fault- And fold-related fractures influence the fluid circulation in the subsurface, thus being of high importance for CO2 storage site assessment, especially in terms of reservoir connectivity and leakage. In this context, discrete regions of concentrated sub-parallel fracturing known as fracture

  7. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  9. Hydrothermal fluid flow within a tectonically active rift-ridge transform junction: Tjörnes Fracture Zone, Iceland

    Science.gov (United States)

    Lupi, M.; Geiger, S.; Graham, C. M.

    2010-05-01

    We investigate the regional fluid flow dynamics in a highly faulted transform area, the Tjörnes Fracture Zone in northern Iceland which is characterized by steep geothermal gradients, hydrothermal activity, and strong seismicity. We simulate fluid flow within the Tjörnes Fracture Zone using a high-resolution model that was based on the available geological and geophysical data and has the aim to represent the complex geological structures and the thermodynamical processes that drive the regional fluid flow in a physically realistic way. Our results show that convective heat flow and mixing of cold and saline seawater with deep hydrothermal fluids controls the large-scale fluid flow. The distribution of faults has a strong influence on the local hydrodynamics by focusing flow around clusters of faults. This explains the nature of isolated upflow zones of hot hydrothermal fluids which are observed in the Tjörnes Fracture Zone. An important emergent characteristic of the regional fluid flow in the Tjörnes Fracture Zone are two separate flow systems: one in the sedimentary basins, comprising more vigorous convection, and one in the crystalline basement, which is dominated by conduction. These two flow systems yield fundamental insight into the connection between regional hydrothermal fluid flow and seismicity because they form the basis of a toggle switch mechanism that is thought to have caused the hydrogeochemical anomalies recorded at Húsavik before and after the 5.8 M earthquake in September 2002.

  10. A critical review of the data requirements for fluid flow models through fractured rock

    International Nuclear Information System (INIS)

    Priest, S.D.

    1986-01-01

    The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)

  11. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  12. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    Science.gov (United States)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  13. Hydraulic Properties of Closely Spaced Dipping Open Fractures Intersecting a Fluid-Filled Borehole Derived From Tube Wave Generation and Scattering

    Science.gov (United States)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2017-10-01

    Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.

  14. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    Science.gov (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  15. Simulation of fluid flow in fractured rock: a probabilistic approach

    International Nuclear Information System (INIS)

    Samaniego, J.A.; Priest, S.D.

    1985-02-01

    This report describes the results of a research project designed to investigate the influence of discontinuities on fluid flow through fractured rock masses. The aim has been to provide a rational basis for the assessment of prospective intermediate level radioactive waste repository sites. The results of this work are presented in the form of two groups of FORTRAN computer programs. The first of these is designed to process data obtained from exposed rock faces and thereby provide an unbiased estimate of discontinuity characteristics. The resulting data are input to the second group of programs which generate a two-dimensional random realisation of discontinuity geometry. When appropriate boundary conditions have been specified, the resulting network of channels is solved numerically to determine nodal potentials, flow quantities and equivalent permeabilities. A number of validation runs are presented, together with some parametric studies, to investigate the influence of excavation size and discontinuity geometry on fluid flow. A practical application is given in the form of a case study involving the prediction of fluid flow into a 2.8 m diameter tunnel in water bearing, fractured rock. Finally, the applications and limitations of the programs in site assessment for radioactive waste repositories are discussed. (author)

  16. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  17. 4D synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid

    Science.gov (United States)

    Kiss, A. M.; Bargar, J.; Kohli, A. H.; Harrison, A. L.; Jew, A. D.; Lim, J. H.; Liu, Y.; Maher, K.; Zoback, M. D.; Brown, G. E.

    2016-12-01

    Unconventional (shale) reservoirs have emerged as the most important source of petroleum resources in the United States and represent a two-fold decrease in greenhouse gas emissions compared to coal. Despite recent progress, hydraulic fracturing operations present substantial technical, economic, and environmental challenges, including inefficient recovery, wastewater production and disposal, contaminant and greenhouse gas pollution, and induced seismicity. A relatively unexplored facet of hydraulic fracturing operations is the fluid-rock interface, where hydraulic fracturing fluid (HFF) contacts shale along faults and fractures. Widely used, water-based fracturing fluids contain oxidants and acid, which react strongly with shale minerals. Consequently, fluid injection and soaking induces a host of fluid-rock interactions, most notably the dissolution of carbonates and sulfides, producing enhanced or "secondary" porosity networks, as well as mineral precipitation. The competition between these mechanisms determines how HFF affects reactive surface area and permeability of the shale matrix. The resultant microstructural and chemical changes may also create capillary barriers that can trap hydrocarbons and water. A mechanistic understanding of the microstructure and chemistry of the shale-HFF interface is needed to design new methodologies and fracturing fluids. Shales were imaged using synchrotron micro-X-ray computed tomography before, during, and after exposure to HFF to characterize changes to the initial 3D structure. CT reconstructions reveal how the secondary porosity networks advance into the shale matrix. Shale samples span a range of lithologies from siliceous to calcareous to organic-rich. By testing shales of different lithologies, we have obtained insights into the mineralogic controls on secondary pore network development and the morphologies at the shale-HFF interface and the ultimate composition of produced water from different facies. These results

  18. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    Science.gov (United States)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the

  19. Modelling of fluid flow in fractured porous media by the singular integral equations method

    International Nuclear Information System (INIS)

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  20. Uncertainty in forecasting breakthrough of fluid transported through fractures

    International Nuclear Information System (INIS)

    Horne, R.N.

    1989-01-01

    Tracer experiments in geothermal reservoirs emphasize the very great variability in rates of fluid movement through fractured rocks. This variability extends from the 10-meter to the kilometer-length scale. Thus tracer returns have been observed at some locations within hours at distances of up to 1 kilometer from the injection point, while other much nearer locations in the same formation do not observe the tracer until much later. In addition, transport rates have sometimes been extremely fast (up to 100 m/hr) even over such distances. This paper discusses the conclusions reached after compiling the results of a large number of tracer tests in several different fractured reservoirs. It is evident in some cases that large-scale geological features, such as faults, are responsible for the variations in tracer return time. In other cases, there is no clear physical description that explains the differences. These results suggest that there will be no a priori way of forecasting transport rates in fractured systems without performing a tracer test

  1. Unified fluid flow model for pressure transient analysis in naturally fractured media

    International Nuclear Information System (INIS)

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  2. Origins and ages of fracture fluids in the South African Crust

    Science.gov (United States)

    Heard, A. W.; Warr, O.; Borgonie, G.; Linage-Alvarez, B.; Kuloyo, O.; Magnabosco, C.; Lau, M.; Erasmus, M.; Cason, E. D.; van Heerden, E.; Kieft, T. L.; Mabry, J.; Onstott, T. C.; Sherwood Lollar, B.; Ballentine, C. J.

    2017-12-01

    Crustal fracture fluids can remain isolated for millions (Myr) to billions of years (Gyr), and contain information on paleohydrogeology, subsurface ecology, and conservative components that may elucidate the atmospheric evolution of the early Earth [1-3]. Stable isotope analyses of water combined with isotopic analyses of the dissolved noble gases provide insight into the history of aqueous fracture fluids. We report stable isotope and noble gas data for fracture fluids from 5 different sites in the Witwatersrand Basin and Bushveld Igneous Province, South Africa. We determine radiogenic noble gas residence times ranging from thousands of years to tens of millions of years. The oldest sample, from Masimong Mine, has a water stable isotopic composition close to the global meteoric water line (GMWL), indicating its preservation in the crust and making it one of the oldest recorded paleometeoric waters. The δ2H and δ18O of water in this sample and similar age samples from the same mining district [1,4] require isotopically depleted groundwater recharge compared to modern precipitation. This could reflect a recharge regime at a higher paleolatitude, elevation, or with higher rainfall, established up to tens of Myr ago, and perhaps similar to the recharge regime in the modern Lesotho Highlands [5]. These data suggest that groundwater isotopes may provide useful paleoclimatic information for many Myr. As hypothesized, such paleometeoric water samples lack 124-128Xe enrichments reported from Gyr age groundwaters discovered on the Canadian Shield [3] and in Archean fluid inclusions [6], providing an important control set and reaffirming that those samples record the evolution of ancient atmospheric Xe rather than subsurface alteration. [1] Lippmann, J. et al. (2003) GCA 67, 4597-4619. [2] Lin, L.-H. (2006) et al. Science 314, 479-482. [3] Holland, G. et al. (2013) Nature 497, 357-360. [4] Lippmann-Pipke, J. et al. (2011) Chem. Geol. 283, 287-296. [5] West, A. G. et al

  3. Fracturing formations in wells

    Energy Technology Data Exchange (ETDEWEB)

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  4. Cerebrospinal Fluid Phosphate in Delirium after Hip Fracture

    Directory of Open Access Journals (Sweden)

    Ane-Victoria Idland

    2017-09-01

    Full Text Available Aims: Phosphate is essential for neuronal activity. We aimed to investigate whether delirium is associated with altered phosphate concentrations in cerebrospinal fluid (CSF and serum. Methods: Seventy-seven patients with hip fracture were assessed for delirium before and after acute surgery. Prefracture dementia was diagnosed by an expert panel. Phosphate was measured in CSF obtained immediately before spinal anesthesia (n = 77 and in serum (n = 47. CSF from 23 cognitively healthy elderly patients undergoing spinal anesthesia was also analyzed. Results: Hip fracture patients with prevalent delirium had higher CSF phosphate concentrations than those without delirium (median 0.63 vs. 0.55 mmol/L, p = 0.001. In analyses stratified on dementia status, this difference was only significant in patients with dementia. Serum phosphate was ∼1 mmol/L; there was no association between serum phosphate concentration and delirium status. CSF phosphate did not correlate with serum levels. Conclusion: Patients with delirium superimposed on dementia have elevated phosphate levels.

  5. Liquid petroleum gas fracturing fluids for unconventional gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Watkins, H.; Attaway, D. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S.; Wilson, L. [Chevron Canada Resources, Calgary, AB (Canada)

    2006-07-01

    This paper presented details of a gelled liquid petroleum gas (LPG) based fracturing fluid designed to address phase trapping concerns by replacing water with a mixture of LPG and a volatile hydrocarbon fluid. The system eliminates the need for water, which is a growing concern in terms of its availability. In the application process, up to 100 per cent gelled LPG is used for the pad and flush. Sand slurry stages are comprised of a mixture of up to 90 per cent LPG, with the balance of the volume being a volatile hydrocarbon base fluid. The fluid system is not adversely affected by shear, which ensures that acceptable fluid rheology is delivered. Viscosity can be adjusted during the treatment because the surfactant gellant and crosslinker are run in a 1:1 ratio and have good tolerance to concentration variations. The application ratio also allows for fast and accurate visual checks on amounts pumped during the treatment. A portion of the LPG in the fluid can be reproduced as a gas, while the remaining LPG is dissolved in the hydrocarbon fluid and is produced back as a miscible mixture through the use of a methane drive mechanism. Clean-up is facilitated by eliminating water and having LPG as up to 80-90 per cent of the total fluid system, even when wells have low permeability and reservoir pressure. However, LPG and optimized base oils are more expensive than other fluids. It was concluded that the higher costs of the system can be recovered through eliminating the need for swabbing, coiled tubing and nitrogen. Higher final stabilized productions rates may also offset initial costs. 7 refs., 2 tabs., 2 figs.

  6. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, H; Kawano, S [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Okitsu, T [Transplantation Unit, Kyoto University Hospital, Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Matsumoto, S [Baylor Research Institute Islet Cell Laboratory, 1400 Eight Avenue, Fort Worth, TX 76104 (United States); Suzuki, T; Kanno, I; Kotera, H [Department of Microengineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shintaku@me.es.osaka-u.ac.jp

    2008-06-07

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications.

  7. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    International Nuclear Information System (INIS)

    Shintaku, H; Kawano, S; Okitsu, T; Matsumoto, S; Suzuki, T; Kanno, I; Kotera, H

    2008-01-01

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications

  8. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  9. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  10. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2015-01-01

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  11. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  12. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials

    NARCIS (Netherlands)

    Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.

    2015-01-01

    In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong

  13. Experiments and Simulations of Fluid Flow in Heterogeneous Reservoir Models - Emphasis on Impacts from Crossbeds and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Boerresen, Knut Arne

    1996-12-31

    Hydrocarbon recovery from subsurface reservoirs has become increasingly dependent on advanced recovery techniques that require improved understanding of the physics of fluid flow within and across geological units including small-scale heterogeneities and fractures. In this thesis, impacts from heterogeneities on local fluid flow are studied experimentally by means of imaging techniques to visualize fluid flow in two dimensions during flooding of larger reservoir models. Part 1 reflects the multi-disciplinary collaboration, by briefly introducing the relevant geology, the literature on experiments on fluid flow in bedded structures, and outlining the applied numerical simulator and imaging techniques applied to visualize fluid flow. The second part contains a synopsis of displacement experiments in naturally laminated sandstones and in crossbed laboratory models, and of the impact from incipient shear fractures on oil recovery. The detailed results obtained from the experiments and simulations are described in six papers, all included. 215 refs., 108 figs., 16 tabs.

  14. Experiments and Simulations of Fluid Flow in Heterogeneous Reservoir Models - Emphasis on Impacts from Crossbeds and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Boerresen, Knut Arne

    1997-12-31

    Hydrocarbon recovery from subsurface reservoirs has become increasingly dependent on advanced recovery techniques that require improved understanding of the physics of fluid flow within and across geological units including small-scale heterogeneities and fractures. In this thesis, impacts from heterogeneities on local fluid flow are studied experimentally by means of imaging techniques to visualize fluid flow in two dimensions during flooding of larger reservoir models. Part 1 reflects the multi-disciplinary collaboration, by briefly introducing the relevant geology, the literature on experiments on fluid flow in bedded structures, and outlining the applied numerical simulator and imaging techniques applied to visualize fluid flow. The second part contains a synopsis of displacement experiments in naturally laminated sandstones and in crossbed laboratory models, and of the impact from incipient shear fractures on oil recovery. The detailed results obtained from the experiments and simulations are described in six papers, all included. 215 refs., 108 figs., 16 tabs.

  15. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  16. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  17. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S

    2005-07-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  18. Validity of cubic law for fluid flow in a deformable rock fracture. Technical information report No. 23

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; Gale, J.E.

    1979-10-01

    The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 μm. The law may be given in simplified form by Q/Δh = C(2b) 3 , where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature using homogeneous samples of granite, basalt, and marble. Tension fractures were artifically induced and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 μm down to 4 μm. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/f. The factor f varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture and since flow depends on (2b) 3 , a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field

  19. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  20. Characterization and modelling of fluid flows in fissured and fractured media. relation with hydrothermal alterations and paleo-stress quantification; Caracterisation et modelisation des ecoulements fluides en milieu fissure. relation avec les alterations hydrothermales et quantification des paleocontraintes

    Energy Technology Data Exchange (ETDEWEB)

    Sausse, J.

    1998-10-15

    In all materials (rocks, concretes, ceramics,...), the presence of fractures at different scales implies high permeability and often oriented fluid flows. These fluid circulations in fractures induce more or less intense fluid-rock interactions with mineral crystallisation and/or dissolution. These phenomena directly depend on the nature of the fluids and the rocks, the physical and chemical properties of the media and the rate of fluid renewal (permeabilities). Usually, the development of such alterations leads to a massive sealing of the fractures (vein alterations) and of the fissures (fluid inclusion planes and microcracks, pervasive alteration). Therefore, their study brings us precious indications for the understanding of the mechanisms of fluid migrations in fossil systems. A geometrical study of the fracture systems at micro or macroscopic scales, based on the spatial distribution of sealing minerals, is applied to two different granites: the Soultz-sous-Foret granite (Bas-Rhin, France) and the Brezouard granite (Vosges, France). At the macroscopic scale, a new graphical method is proposed in order to study drilling data (Soultz granite). It allows to identify the presence of three independent mineral associations (quartz - illite, calcite-chlorite and hematite) in independent fracture systems characterised by a specific 3D geometry and hydraulic properties. These three types of vein alteration correspond to distinct and non contemporaneous fluid percolations. At the microscopic scale, the reconstitution of crack opening - fluid percolation - crack sealing stages is delicate. However, the study of their geometrical characteristics (orientations, radius, volume densities) and thereby the quantification of their porosities, exchange surfaces and permeabilities, allow to identify their respective roles in the fluid propagation. These microstructures, which are very numerous in granites, imply high but variable matrix permeabilities. This has been confirmed by

  1. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  2. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    Science.gov (United States)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  3. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  4. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    Science.gov (United States)

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  5. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-01-01

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  6. Fractures inside crystalline rocks. Effects of deformations on fluid circulations

    International Nuclear Information System (INIS)

    Gentier, S.

    2005-01-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  7. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    Science.gov (United States)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  8. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  9. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  10. Assessing the role of cation exchange in controlling groundwater chemistry during fluid mixing in fractured granite at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to simulate the mixing of dilute shallow groundwater with deeper more saline groundwater in the fractured granite of the Redox Zone at the Aespoe underground Hard Rock Laboratory (HRL). Fluid mixing simulations were designed to assess the role that cation exchange plays in controlling the composition of fluids entering the HRL via fracture flow. Mixing simulations included provision for the effects of mineral precipitation and cation exchange on fluid composition. Because the predominant clay mineral observed in fractures in the Redox Zone has been identified as illite or mixed layer illite smectite, an exchanger with the properties of illite was used to simulate cation exchange. Cation exchange on illite was modeled using three exchange sites, a planar or basal plane site with properties similar to smectite, and two edge sites that have very high affinities for K, Rb, and Cs. Each site was assumed to obey an ideal Vanselow exchange model, and exchange energies for each site were taken from the literature. The predicted behaviors of Na, Ca, and Mg during mixing were similar to those reported in a previous study in which smectite was used as the model for the exchanger. The trace elements Cs and Rb were predicted to be strongly associated with the illite exchanger, and the predicted concentrations of Cs in fracture fill were in reasonable agreement with reported chemical analyses of exchangeable Cs in fracture fill. The results of the geochemical modeling suggest that Na, Ca, and Sr concentrations in the fluid phase may be controlled by cation exchange reactions that occur during mixing, but that Mg appears to behave conservatively. There is currently not enough data to make conclusions regarding the behavior of Cs and Rb

  11. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    Science.gov (United States)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  12. Effect of deformability on fluid flow through a fractured-porous medium

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Witherspoon, P.A.

    1985-01-01

    A permeable geologic medium containing interstitial fluids generally undergoes deformation as the fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal to finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon which can basically be formulated in the generalized three-dimensional theory of consolidation. Dealing mainly with media of little deformability, traditional hydrogeology accounts for medium deformability as far as it affects the volume of pore spaces, through the introduction of a coefficient of specific storage in the fluid flow equation. This treatment can be justified on the basis of a one-dimensional effective stress law and the assumption of homogeneity of the total stress field throughout the medium. The present paper uses a numerical model called ROCMAS (Noorishad et al., 1982; Noorishad e al., 1984) which was developed to calculate fluid flow through a deformable fractured-porous medium. The code employs the Finite Element Method based on a variational approach. It has been verified against a number of simple analytic solutions. In this work, the code is used to address the role of medium deformability in continuous and pulse testing techniques. The errors that may result because of application of traditional fluid flow methods are discussed. It is found that low pressure continuous well testing or pulse testing procedures can reduce such errors. 16 references, 9 figures, 1 table

  13. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  14. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  15. Invasion-Flowback Processes During Hydraulic Fracturing Well Interference

    Science.gov (United States)

    Kenzhekhanov, Shaken; He, Kai; Xu, Liang; Lord, Paul; Lozano, Martin; Neeves, Keith; Yin, Xiaolong

    2017-11-01

    Drainage-imbibition cycles that simulate hydraulic fracturing fluid's invasion and flowback during well interference were investigated using NOA81 microfluidic micromodels. Well interference is quite common in unconventional oil and gas fields. It is not unusual for the fracturing fluid injected into a well to be discovered in a nearby well. Normally, the effect of such interference is considered to be negative, as fracturing fluid will be imbibed into the porous rock and block the flow path of hydrocarbons. However, field data show that some interferences are beneficial, and microfluidic experiments presented in this study show that surfactant in the fracturing fluid may be a reason for the observed positive interference. Two fluid drainage-imbibition cycles were conducted in micromodels. The first cycle simulates fracturing of the old well and the second cycle simulates fluid invasion from the new well into the old well's fracture network. The experimental data show that while most such interferences indeed can cause production loss, when the old well's fracturing fluid does not contain surfactant yet the new well's fracturing fluid does, interference can be positive, as the residual water saturation in the porous medium is effectively reduced by surfactants.

  16. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  17. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  18. Understanding the evolution of channeling and fracturing in porous medium due to fluid flow.

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Langliné, Olivier; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2017-04-01

    Fluid induced brittle deformation of porous medium is a phenomenon commonly present in everyday life. From an espresso machine to volcanoes, from food industry to construction, it is possible to see traces of this phenomenon. In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that occur during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems - in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary - using two monitoring techniques: optical imaging using a high speed camera (1000 fps), high frequency resolution accelerometers and piezoelectrical sensors. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. These peaks on the spectrum are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an exponent p value around 0.5. An analytical model of overpressure diffusion predicting p = 0.5 and two other free parameters of the Omori Law (prefactor and origin time) is developed. The spatial density of the seismic events, and the time of end of formation of the channels can also be predicted using this developed model. Different

  19. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    Science.gov (United States)

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-04

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

  20. Origin and timing of Dauphiné twins in quartz cement in fractured sandstones from diagenetic environments: Insight from fluid inclusions

    Science.gov (United States)

    Fall, András; Ukar, Estibalitz; Laubach, Stephen E.

    2016-09-01

    Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins and fluid inclusion assemblages from which temperature and possibly timing can be inferred provides a way to research timing as well as magnitude of paleostress in some diagenetic settings.

  1. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  2. Multiphase flow in geometrically simple fracture intersections

    Science.gov (United States)

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  3. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Blyth, A.; Frape, S.; Blomqvist, R.; Nissinen, P.; McNutt, R.

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site

  4. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, A.; Frape, S. [Univ. of Waterloo, ON (Canada); Blomqvist, R.; Nissinen, P. [Geological Survey of Finland, Espoo (Finland); McNutt, R. [McMaster Univ. of Hamilton, ON (Canada)

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site 39 refs.

  5. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  6. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  7. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    Science.gov (United States)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  8. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  9. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  10. Leakage losses from a hydraulic fracture and fracture propagation

    International Nuclear Information System (INIS)

    Johnson, R.E.; Gustafson, C.W.

    1988-01-01

    The fluid mechanics of viscous fluid injection into a fracture embedded in a permeable rock formation is studied. Coupling between flow in the fracture and flow in the rock is retained. The analysis is based on a perturbation scheme that assumes the depth of penetration of the fluid into the rock is small compared to the characteristic length w 3 0 /k, where w 0 is the characteristic crack width and k is the permeability. This restriction, however, is shown to be minor. The spatial dependence of the leakage rate per unit length from the fracture is found to be linear, decreasing from the well bore to the fracture tip where it vanishes. The magnitude of the leakage rate per unit length is found to decay in time as t -1 /sup // 3 if the injection rate at the well bore is constant, and as t -1 /sup // 2 if the well bore pressure is held constant. The results cast considerable doubt on the validity of Carter's well-known leakage formula (Drilling Prod. Prac. API 1957, 261) derived from a one-dimensional theory. Using the simple fracture propagation model made popular by Carter, the present work also predicts that the fracture grows at a rate proportional to t 1 /sup // 3 for a fixed well bore injection rate and a rate proportional to t 1 /sup // 4 for a fixed well bore pressure

  11. Green line fracturing systems fluids in Campos Basin, Brazil; Sistemas de fluidos de fraturamento na Bacia de Campos: evolucao em beneficio do meio ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Alexandre B. de; Araujo, Cosme J.C. de; Martinho, Flavio M.; Gaspar, Fernando [BJ Services do Brasil, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The constant demand for Services Companies in Oil and Gas Industry to reduce the environmental impacts has led to a race in search of new cleaner technologies. Fluids with low toxicity are the target of research and development by the companies which are committed to ensure the aspects of quality, health, safety and environment from manufacturing up to the use in the final destination of these products. The replacement of these fluids is happening at a larger speed than in the past on the based in two factors: greater awareness on the part of these companies in relation to the environmental and by new environmental laws. The fluids systems used in fracturing operations are not an exception to this rule. Service companies today are in the process of replacing their formulations with systems less aggressive to the environment so-called 'green' systems. In this context the new technological developments of fracturing fluids are of fundamental importance to assist the new environmental requirements of both operators and government regulatory bodies and also to ensure better effectiveness of these products. This paper reports the research, development and application of new environmentally acceptable fracturing fluids technology, reviews the pioneering case histories in offshore operations and the benefits experienced in the Campos Basin - Brazil. (author)

  12. Egyptian diatomite as high fluid loss squeeze slurry in sealing fractures and

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-09-01

    Full Text Available Lost circulation is the most costly mud related drilling problem, and induced fracture. Water slurry of diatomite is used as the high fluid loss squeeze slurry in the treatment of lost circulation and in decreasing fluid loss. Egypt has diatomite deposits, especially in El-Fayuom Depression. Fourteen samples were collected from Qasr El-Sagha at the northern shore of Birket Qarun. Samples were examined to identify the diatom species then subjected to X-ray fluorescence, XRD and grain size distribution tests. A total of 38 species related to 13 diatom genera were identified. Cocconeis, Epithemia and Rhopalodia were the predominant genera. The diatomaceous earth which acts as a filter aid material was tested with different additives; bentonite, lime, finely divided paper, polymer, barite and different concentrations with different types of lost circulation materials (LCM to form a high fluid loss squeeze slurry. As a result the required time for collecting the filtrate was decreased to be in the range of 50 s to 1 min and 49 s comparing with the international standard which recommended the filtrate should be collected maximum within 2–3 min.

  13. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  14. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  15. Can introduction of hydraulic fracturing fluids induce biogenic methanogenesis in the shale reservoirs?

    Science.gov (United States)

    Sharma, S.; Wilson, T.; Wrighton, K. C.; Borton, M.; O'Banion, B.

    2017-12-01

    The hydraulic fracturing fluids (HFF) injected into the shale formation are composed primarily of water, proppant and some chemical additives ( 0.5- 2% by volume). The additives contain a lot of organic and inorganic compounds like ammonium sulfate, guar gum, boric acid, hydrochloric acid, citric acid, potassium carbonate, glutaraldehyde, ethylene glycols which serve as friction reducers, gelling agents, crosslinkers, biocides, corrosion/scale inhibitors, etc. The water and additives introduced into the formation ensue a variety of microbiogechmical reactions in the reservoir. For this study produced, water and gas samples were collected from several old and new Marcellus wells in SE Pennsylvania and NE West Virginia to better understand these microbe-water-rock interactions. The carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the produced fluids and CO2 in produced gas (δ13CCO2) are highly enriched with values > +10‰ and +14 ‰ V-PDB respectively. The injected hydraulic fracturing fluid had low δ13CDIC values of detectable carbon in them. The drilling mud and carbonate veins had δ13C values of -1.8 and < 2.0 ‰ V-PDB respectively. Therefore, the high δ13CDIC signatures in produced water are possibly due to the microbial utilization of lighter carbon (12C) by microbes or methanogenic bacteria in the reservoir. It is possible that introduction of C containing nutrients like guar, methanol, methylamines, etc. stimulates certain methanogen species in the reservoir to produce biogenic methane. Genomic analysis reveals that methanogen species like Methanohalophilus or Methanolobus could be the possible sources of biogenic methane in these shale reservoirs. The evidence of microbial methanogenesis raises the possibility of enhanced gas recovery from these shales using biological amendments.

  16. Numerical investigation on hydraulic fracture cleanup and its impact on the productivity of a gas well with a non-Newtonian fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)

    2006-07-01

    There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.

  17. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  18. Seismic Characterizations of Fractures: Dynamic Diagnostics

    Science.gov (United States)

    Pyrak-Nolte, L. J.

    2017-12-01

    Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  19. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    Science.gov (United States)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  20. Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Kamal

    2018-06-01

    Full Text Available Hydraulic Fracturing is considered to be one of the most important stimulation methods. Hydraulic Fracturing is carried out by inducing fractures in the formation to create conductive pathways for the flow of hydrocarbon. The pathways are kept open either by using proppant or by etching the fracture surface using acids. A typical fracturing fluid usually consists of a gelling agent (polymers, cross-linkers, buffers, clay stabilizers, gel stabilizers, biocide, surfactants, and breakers mixed with fresh water. The numerous additives are used to prevent damage resulting from such operations, or better yet, enhancing it beyond just the aim of a fracturing operation. This study introduces a new smart fracturing fluid system that can be either used for proppant fracturing (high pH or acid fracturing (low pH operations in sandstone formations. The fluid system consists of glutamic acid diacetic acid (GLDA that can replace several additives, such as cross-linker, breaker, biocide, and clay stabilizer. GLDA is also a surface-active fluid that will reduce the interfacial tension eliminating the water-blockage effect. GLDA is compatible and stable with sea water, which is advantageous over the typical fracturing fluid. It is also stable in high temperature reservoirs (up to 300 °F and it is also environmentally friendly and readily biodegradable. The new fracturing fluid formulation can withstand up to 300 °F of formation temperature and is stable for about 6 h under high shearing rates (511 s−1. The new fracturing fluid formulation breaks on its own and the delay time or the breaking time can be controlled with the concentrations of the constituents of the fluid (GLDA or polymer. Coreflooding experiments were conducted using Scioto and Berea sandstone cores to evaluate the effectiveness of the developed fluid. The flooding experiments were in reasonable conformance with the rheological properties of the developed fluid regarding the thickening and

  1. Origin and Timing of Dauphiné Twins Using Fluid Inclusions in Quartz-Cement Fractures in Sandstones from Diagenetic Environments

    Science.gov (United States)

    Fall, A.; Ukar, E.; Laubach, S.

    2016-12-01

    Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Under diagenetic temperatures (fluid inclusion trails. The association of Dauphiné twins and fluid inclusion trails from which temperature and possibly timing can be inferred provides a way to research mechanism and timing of twinning, and potentially the magnitude of paleostrain and stress in some diagenetic settings. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions, ranging from 130°C to 159°C in the East Texas Basin, and from 162°C to 176°C in the Piceance Basin, record true trapping temperatures. Inclusions in wall-normal trails are large and irregularly shaped compared to those in wall-parallel trails, but both show similar liquid-to-vapor ratios. Trapping temperatures for wall-normal inclusion trails are usually higher than those in the wall-parallel trails. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and electron backscattered diffraction (EBSD) images demonstrates that the twin boundaries are localized along wall-normal inclusion trails. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails imply that twinning is

  2. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  3. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  4. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  5. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  6. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  7. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  8. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  9. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  10. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  11. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  12. Primary drainage in geological fractures: Effects of aperture variability and wettability

    Science.gov (United States)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability

  13. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  14. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-01-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  15. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  16. Facilitation of bone resorption activities in synovial lavage fluid patients with mandibular condyle fractures.

    Science.gov (United States)

    Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M

    2016-05-01

    The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.

  17. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  18. Numerical studies of fluid and heat flow near high-level nuclear waste packages emplaced in partially saturated fractured tuff

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-11-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs

  19. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    Science.gov (United States)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  20. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  1. A method of providing a barrier in a fracture-containing system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method of providing a barrier in a fracture-containing system, comprising: i) Providing a treatment fluid comprising: a) a base fluid; b) an elastomeric material, wherein said elastomeric material comprises at least one polymer capable of crosslinking into an el......The present invention relates to a method of providing a barrier in a fracture-containing system, comprising: i) Providing a treatment fluid comprising: a) a base fluid; b) an elastomeric material, wherein said elastomeric material comprises at least one polymer capable of crosslinking...... into an elastomer, and c) at least one crosslinking agent; ii) Placing the treatment fluid in a fracture-containing system; iii) Allowing the elastomeric material to crosslink with itself to form a barrier in said fracture-containing system; wherein the elastomeric material and/or the crosslinking agent...... are of neutral buoyancy with regard to the base fluid. The invention is contemplated to having utility not only in the oil-drilling industry but also in the plugging of fractures in sewer drains, pipelines etc....

  2. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    Science.gov (United States)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  3. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    Science.gov (United States)

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  4. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  5. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  6. Mechanical transport in two-dimensional networks of fractures

    International Nuclear Information System (INIS)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  7. Simulation of two-phase flow in horizontal fracture networks with numerical manifold method

    Science.gov (United States)

    Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.

    2017-10-01

    The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.

  8. On the mechanical interaction between a fluid-filled fracture and the earth's surface

    Science.gov (United States)

    Pollard, D.D.; Holzhausen, G.

    1979-01-01

    The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2

  9. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  10. An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Jianming He

    2018-03-01

    Full Text Available The process of hydraulic fracturing makes use of a liquid to fracture reservoir rocks for the exploitation of unconventional resources. Hence, it is vital to understand the processes that produce the fracture networks that occur during hydraulic fracturing. A shale reservoir is one of the largest unconventional resources and it displays obvious anisotropic characteristics due to its inherent sedimentary structures. The viscosity and flow ability of the fracturing fluid plays an important role in this process. We conducted a series of hydraulic fracturing tests on shale cores (from the southern Sichuan Basin using freshwater and supercritical CO2 (SCO2 as fracturing fluids to investigate the different modes of fracture propagation. The pump pressure curves that we obtained during the fracturing experiment show how the shale responded to each of the fracturing fluids. We examined the influence of the anisotropic characteristics on the propagation of hydraulic fractures by conducting a series of hydraulic fracturing experiments on the shale cores using different bedding orientations. The bedding orientation of the shale had a profound influence on the fracture propagation when using either freshwater or a SCO2 fluid. The breakdown pressure of the shale core was affected not only by the bedding orientation but also by the fracturing fluid. A macroscopic observation of the fractures revealed different fracture geometries and propagation patterns. The results demonstrated that the anisotropic structures and the fracturing fluids could influence the path of the hydraulic fracture.

  11. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  12. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  13. The use of LiDCO based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: Neck of femur optimisation therapy - targeted stroke volume (NOTTS: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Moran Chris G

    2011-09-01

    Full Text Available Abstract Background Approximately 70,000 patients/year undergo surgery for repair of a fractured hip in the United Kingdom. This is associated with 30-day mortality of 9% and survivors have a considerable length of acute hospital stay postoperatively (median 26 days. Use of oesophageal Doppler monitoring to guide intra-operative fluid administration in hip fracture repair has previously been associated with a reduction in hospital stay of 4-5 days. Most hip fracture surgery is now performed under spinal anaesthesia. Oesophageal Doppler monitoring may be unreliable in the presence of spinal anaesthesia and most patients would not tolerate the probes. An alternative method of guiding fluid administration (minimally-invasive arterial pulse contour analysis has been shown to reduce length of stay in high-risk surgical patients but has never been studied in hip fracture surgery. Methods Single-centre randomised controlled parallel group trial. Randomisation by website using computer generated concealed tables. Setting: University hospital in UK. Participants: 128 patients with acute primary hip fracture listed for operative repair under spinal anaesthesia and aged > 65 years. Intervention: Stroke volume guided intra-operative fluid management. Continuous measurement of SV recorded by a calibrated cardiac output monitor (LiDCOplus. Maintenance fluid and 250 ml colloid boluses given to achieve sustained 10% increases in stroke volume. Control group: fluid administration at the responsible (blinded anaesthetist's discretion. The intervention terminates at the end of the surgical procedure and post-operative fluid management is at the responsible anaesthetist's discretion. Primary outcome: length of acute hospital stay is determined by a blinded team of clinicians. Secondary outcomes include number of complications and total cost of care. Funding NIHR/RfPB: PB-PG-0407-13073. Trial registration number Trial registration: Current Controlled Trials ISRCTN

  14. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  15. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    Science.gov (United States)

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.

  16. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  17. Ultrasonographic diagnosis of pancreatic fracture

    International Nuclear Information System (INIS)

    Woo, Seong Ku; Lim, Jae Hoon; Ko, Young Tae; Choi, Yong Dae; Yoon, Yup; Kim, Soo yong

    1983-01-01

    The pancreatic fracture, known also as complete transection of the pancreas, is severe injury of the pancreas characterized by complete vertical transection of its body overlying the body of the vertebra. The authors diagnosed three cases of traumatic fracture of the pancreas by ultrasonography and these were confirmed surgically. Ultrasonography disclosed an anechoic fluid collection between the separated parenchyma of the body of the pancreas anterior to the superior mesenteric artery. The remaining pancreas enlarged diffusely and decreased in echogenecity. Associated feature was accumulation of fluid in the lesser sac and the peritoneal cavity

  18. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  19. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    Science.gov (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  20. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  1. Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing

    Science.gov (United States)

    Viswanathan, H. S.

    2016-12-01

    Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  2. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  3. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  4. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  5. Linking fault permeability, fluid flow, and earthquake triggering in a hydrothermally active tectonic setting: Numerical Simulations of the hydrodynamics in the Tjörnes Fracture Zone, Iceland.

    Science.gov (United States)

    Lupi, M.; Geiger, S.; Graham, C.; Claesson, L.; Richter, B.

    2007-12-01

    A good insight into the transient fluid flow evolution within a hydrothermal system is of primary importance for the understanding of several geologic processes, for example the hydrodynamic triggering of earthquakes or the formation of mineral deposits. The strong permeability contrast between different crustal layers as well as the high geothermal gradient of these areas are elements that strongly affect the flow behaviour. In addition, the sudden and transient occurrence of joints, faults and magmatic intrusions are likely to change the hydrothermal flow paths in very short time. The Tjörnes Fracture Zone (TFZ) north of Iceland, is such a hydrothermal area where a high geothermal gradient, magmatic bodies, faults, and the strong contrast between sediments and fractured lava layers govern the large-scale fluid flow. The TFZ offsets the Kolbeinsey Ridge and the Northern Rift Zone. It is characterized by km-scale faults that link sub-seafloor sediments and lava layers with deeper crystalline rocks. These structures focus fluid flow and allow for the mixing between cold seawater and deep hydrothermal fluids. A strong seismic activity is present in the TFZ: earthquakes up to magnitude 7 have been recorded over the past years. Hydrogeochemical changes before, during and after a magnitude 5.8 earthquake suggest that the evolving stress state before the earthquake leads to (remote) permeability variations, which alter the fluid flow paths. This is in agreement with recent numerical fluid flow simulations which demonstrate that fluid flow in magmatic- hydrothermal systems is often convective and very sensitive to small variations in permeability. In order to understand the transient fluid flow behaviour in this complex geological environment, we have conducted numerical simulations of heat and mass transport in two geologically realistic cross-sectional models of the TFZ. The geologic models are discretised using finite element and finite volume methods. They hence have

  6. Heat Recovery from Multiple-Fracture Enhanced Geothermal Systems: The Effect of Thermoelastic Fracture Interactions

    DEFF Research Database (Denmark)

    Vik, Hedda Slatlem; Salimzadeh, Saeed; Nick, Hamid

    2018-01-01

    This study investigates the effect of thermoelastic interactions between multiple parallel fractures on energy production from a multiple-fracture enhanced geothermal system. A coupled thermo-hydro-mechanical finite element model has been developed that accounts for non-isothermal fluid flow within...... increased to maximise the net energy production from the system. Otherwise, the multiple-fracture system fails to improve the energy recovery from the geothermal reservoir, as initially intended....... aperture in the adjacent fracture, and facilitates the creation of favourable flow pathways between the injection and production wells. These flow paths reduce the energy production from the system. The effects of fracture spacing, reservoir temperature gradient and mechanical properties of the rock matrix...

  7. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  8. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    Science.gov (United States)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  9. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  10. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  11. Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method

    Science.gov (United States)

    E Santos, J.; Prodanovic, M.; Landry, C. J.

    2017-12-01

    Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.

  12. Understanding hydraulic fracturing: a multi-scale problem

    Science.gov (United States)

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  13. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a

  14. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Science.gov (United States)

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  15. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing

    Directory of Open Access Journals (Sweden)

    Yongming Li

    2018-02-01

    Full Text Available In multi-stage hydraulic fracturing, the limited-entry method is widely used to promote uniform growth of multiple fractures. However, this method's effectiveness may be lost because the perforations will be eroded gradually during the fracturing period. In order to study the influence of perforation erosion on multiple growing hydraulic fractures, we combined the solid–fluid coupled model of hydraulic fracture growth with an empirical model of perforation erosion to implement numerical simulation. The simulations show clearly that the erosion of perforation will significantly deteriorate the non-uniform growth of multiple fractures. Based on the numerical model, we also studied the influences of proppant concentration and injection rates on perforation erosion in multi-stage hydraulic fracturing. The results indicate that the initial erosion rates become higher with the rising proppant concentration, but the growth of multiple hydraulic fractures is not sensitive to the varied proppant concentration. In addition, higher injection rates are beneficial significantly to the limited-entry design, leading to more uniform growth of fractures. Thus, in multi-stage hydraulic fracturing enough high injection rates are proposed to keep uniform growths. Keywords: Unconventional oil and gas reservoir, Horizontal well, Perforation friction, Perforation erosion, Multi-stage hydraulic fracturing, Numerical simulation, Mathematic model, Uniform growth of fractures

  16. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  17. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Science.gov (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  18. Impact of Fractures on CO2 Storage Monitoring: Keys for an Integrated Approach Impact de la présence de fractures pour le monitoring des stockages de CO2 : éléments pour une approche intégrée

    Directory of Open Access Journals (Sweden)

    Dubos-Sallée N.

    2012-04-01

    Full Text Available The monitoring of CO2 storage in fractured reservoirs (depleted hydrocarbon fields or brine aquifers requires the study of the impact of fracturation and fluid substitution on seismic data. Seismic data can provide information about the additional compliance due to the fractures and the fluids through the analysis of seismic azimuthal anisotropy with an appropriate rock physics model. We introduce a rock physics model built in collaboration with geologists, providing a realistic description of fractured media. This model concerns fractured geological media in the presence of fluids characterized by some degree of matrix porosity, the presence of pore fluids, connected and/or non-connected fractures, the presence of several fracture sets, and an inherent seismic anisotropy. The direct application of this rock model shows that the P-wave anisotropy value measured through seismic data can be explained by several sets of different parameters such as the fracture density, the pore fluid compliance or the porosity. The presence of inherent layer-induced anisotropy can also modify the P-wave anisotropy and thus the interpretation of this value in terms of fluid substitution in a fractured porous medium. As far as fluid substitution monitoring is concerned, if seismic data are acquired before and after this substitution, a change in the P-wave anisotropy value can be linked to the modification of the compliance of the fluid content in the same medium exhibiting the same fracture network and the same porosity. This relative value can only be correctly interpreted in terms of fluid substitution provided we have some constraints on a few of the parameters involved in the P-wave anisotropy value such as the porosity, and a rough idea of the level of normalized fracture compliance. Then, a multidisciplinary approach is mandatory to constrain these parameters. For instance, borehole and outcrop geological information can give the upper limit of the fracture

  19. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  20. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  1. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  2. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases

    Science.gov (United States)

    Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.

    2018-02-01

    We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all

  3. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  4. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  5. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  6. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  7. A theory for fracture of polymeric gels

    Science.gov (United States)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  8. CO2 injection into fractured peridotites: a reactive percolation experiment

    Science.gov (United States)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.

    2017-12-01

    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with

  9. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  10. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  11. U.S. National Committee for Rock Mechanics and conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997 - July 27, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy's Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided

  12. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT (United States); Harris, Joel [Univ. of Utah, Salt Lake City, UT (United States)

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  13. Poroelastic Response of Orthotropic Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2011-12-16

    In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s second coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio af ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes

  14. Fracture Sealing in Shales: Geological and Geochemical Factors

    International Nuclear Information System (INIS)

    Cathelineau, Michel

    2001-01-01

    The so-called self-sealing processes can be re-examined at the light of geological and geochemical consideration about the past history of the rocks. The concept of 'self sealing' needs to consider the formation and the sealing of fractures, especially three main stages: (i) the initiation of the fracture (development of micro-cracks initiated from previous heterogeneities up to fracturing), ii) the fracturing processes which occur generally at depth in presence of a fluid phase, iii) the healing or sealing of the fractures which corresponds basically to two main processes: a restoration of the initial permeability of the rock block by reducing the transmissivity of the discontinuity down to values equivalent to that of the homogeneous medium before fracturing, or the sealing of the open discontinuity by precipitation of newly formed minerals. In the latter case, the evolution of the open fracture is driven by re-arrangement of particles or precipitation of newly formed material, either by dissolution/crystallisation processes or by crystallisation from the percolating fluids (advective processes). Such processes are governed by chemical processes, especially the rate of precipitation of minerals which depends of the degree of saturation with respect to the mineral, and the kinetics of precipitation. (author)

  15. Effect of Poroelasticity on Hydraulic Fracture Interactions

    DEFF Research Database (Denmark)

    Usui, Tomoya; Salimzadeh, Saeed; Paluszny, Adriana

    2017-01-01

    This study investigates, by performing finite element-based simulations, the influence of fluid leak-off and poroelasticity on growth of multiple hydraulic fractures that initiate from a single horizontal well. In this research, poroelastic deformation of the matrix is coupled with fluid flow in ...

  16. Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients

    Science.gov (United States)

    2013-01-01

    Background Aging and neurodegenerative disease predispose to delirium and are both associated with increased activity of the innate immune system resulting in an imbalance between pro- and anti-inflammatory mediators in the brain. We examined whether hip fracture patients who develop postoperative delirium have altered levels of inflammatory mediators in cerebrospinal fluid (CSF) prior to surgery. Methods Patients were 75 years and older and admitted for surgical repair of an acute hip fracture. CSF samples were collected preoperatively. In an exploratory study, we measured 42 cytokines and chemokines by multiplex analysis. We compared CSF levels between patients with and without postoperative delirium and examined the association between CSF cytokine levels and delirium severity. Delirium was diagnosed with the Confusion Assessment Method; severity of delirium was measured with the Delirium Rating Scale Revised-98. Mann–Whitney U tests or Student t-tests were used for between-group comparisons and the Spearman correlation coefficient was used for correlation analyses. Results Sixty-one patients were included, of whom 23 patients (37.7%) developed postsurgical delirium. Concentrations of Fms-like tyrosine kinase-3 (P=0.021), Interleukin-1 receptor antagonist (P=0.032) and Interleukin-6 (P=0.005) were significantly lower in patients who developed delirium postoperatively. Conclusions Our findings fit the hypothesis that delirium after surgery results from a dysfunctional neuroinflammatory response: stressing the role of reduced levels of anti-inflammatory mediators in this process. Trial registration The Effect of Taurine on Morbidity and Mortality in the Elderly Hip Fracture Patient. Registration number: NCT00497978. Local ethical protocol number: NL16222.094.07. PMID:24093540

  17. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  18. Hydraulic fracture diagnostic: recent advances and their impact; Analyses de la fracturation hydraulique: progres recents et leur impact

    Energy Technology Data Exchange (ETDEWEB)

    Wolhart, St.L. [GRI, United States (United States)

    2000-07-01

    The use of hydraulic fracturing has grown tremendously since its introduction over 50 years ago. Most wells in low permeability reservoirs are not economic without hydraulic fracture stimulation. Hydraulic fracturing is also seeing increasing use in high permeability applications. The success of this technology can be attributed to the great strides made in three areas: hydraulic fracture theory and modeling, improved surface and subsurface equipment and advanced fluid systems and proppers. However, industry still has limited capabilities when it comes to determining the geometry of the created hydraulic fracture. This limitation, in turn places limits on the continued improvement of hydraulic fracturing as a means to optimize productivity and recovery. GRI's Advanced Hydraulic Fracture Diagnostics Program has developed two new technologies, microseismic hydraulic fracture mapping and downhole tilt-meter hydraulic fracture mapping, to address this limitation. These two technologies have been utilized to improve field development and reduce hydraulic fracturing costs. This paper reviews these technologies and presents case histories of their use. (author)

  19. Development and application of antiswelling agent used in fracturing fluid%压裂液防膨剂的研制与应用

    Institute of Scientific and Technical Information of China (English)

    杨帆; 王琳; 杨小华; 姚奕明; 王海波; 杜涛

    2017-01-01

    The antiswelling agent which is currently used in fracturing fluid is disadvantageous with large consumption, poor com-patibility and inconvenient preparation on site. To solve these problems, three-step method was used to synthesize liquid antiswelling agent of organic cation type with high antiswelling rate and good compatibility. The optimal reactant proportion, reaction temperature and reaction time of intermediate product and the optimal formula of end product were determined. It is shown that when the mass frac-tion of antiswelling agent is 0.3%, the antiswelling rate of fracturing fluid with drag reducing solution is 70.5% and its drag reduction rate is unchanged. Compared with similar antiswelling agents available in current markets, the antiswelling agent of pilot production is 17%-33% higher in antiswelling rate. It is applied actually to multiple-hole-interval fracturing in Xinjiang and Chongqing, presenting good compatibility and antiswelling performance. It is demonstrated that this newly developed antiswelling agent can satisfy the require-ments on antiswelling and continuous mixture of fracturing fluid.%为了解决现有压裂液防膨剂用量大、配伍性差、不便于现场配液等问题,室内实验研究合成了防膨率高、配伍性好的有机阳离子型液体防膨剂,同时确定了中间产物的最优反应物配比、反应温度和反应时间,以及终产物的最优配方.经评价,防膨剂质量分数为0.3%时,减阻水压裂液的防膨率为70.5%,且不影响压裂液减阻率.中试生产的防膨剂产品与现场市售同类商品相比,防膨率提高17%~33%,在新疆、重庆等现场进行了多井段的压裂施工,表现出优良的配伍性和防膨性,能满足压裂液防膨和连续混配要求.

  20. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  1. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  2. Temporal moment analysis of solute transport in a coupled fracture ...

    Indian Academy of Sciences (India)

    by considering an inlet boundary condition of constant continuous source in a single fracture. The effect of various fracture-skin parameters like porosity, thickness and ... Study on fluid flow and transport of solute through fractures has been an .... of solutes is happening normal to the direction of flow due to the free molecular.

  3. Fluid flow in 0.5-m scale blocks of Topopah Spring tuff

    International Nuclear Information System (INIS)

    Blair, S. C.; Carlson, S. R.; Constantino, M. S.

    1999-01-01

    A laboratory experiment was conducted on a 0.5-m scale block of Topopah Spring tuff, to measure fluid flow and mechanical deformation properties under conditions that approximate the near-field environment of a potential nuclear waste repository, and to provide an intermediate-scale test case for numerical model validation. The test specimen is a 0.25 x 0.25 x 0.50 m rectangular prism bisected by an artificial (saw-cut) fracture orthogonal to the tuff fabric. Water was supplied by a point source at the center of the fracture under various pressures of up to 0.04 MPa. Both fluid flow and mechanical properties were found to be anisotropic and strongly correlated with the ash flow fabric. Fluid mass-balance measurements revealed that only minor imbibition of water occurred through the fracture surfaces and that flow rates were independent of normal stress to 14.0 MPa and temperature to 140 C. Flow through the fracture occurred largely through uncorrelated porosity that intersected the fracture plane

  4. Electrical potential changes and acoustic emissions generated by fracture and fluid flow during experimental triaxial rock deformation

    Science.gov (United States)

    Clint, Oswald Conan

    Natural electrical potential signals have been recorded from numerous seismically active areas around the world and therefore have been proposed as a potential earthquake prediction tool. The streaming potential is being used to locate sub-surface water reservoirs, to monitor steam fronts during enhanced oil recovery techniques, and to delineate the anisotropy of fractures in geothermal and oil reservoirs. The generating mechanism for these signals is still unclear although plausible theories include: - Piezoelectric fields produced through stress changes on piezoelectric materials, such as quartz, found in many rocks. - Electrokinetic currents induced through a pressure gradient and caused by electrical charge transport within a moving fluid. - Less well-established theories for instance involving current carrying mobile O' charges. To investigate the relative significance of these mechanisms, I have measured the direct current electrical potential and acoustic emissions during constant strain rate rock deformation under simulated crustal conditions of pressure and pore fluid pressure. Some sixty-one experiments were done on rock samples of quartz rich Darley Dale and Bentheim sandstone and quartz free basalt from Iceland. A computer and servo-controlled conventional triaxial cell was used to deform dry, water-saturated and brine-saturated rock samples at confining pressures between 20 and 200MPa, pore fluid pressures between 10 and 50MPa and strain rates from 10-4 s-1 to 10-6 s-1 I identify the primary sources of the electrical potential signals as being generated by (i) piezoelectricity in dry sandstone experiments and (ii) electrokinetic effect in saturated basalt experiments. I show that electrical potential signals from the other proposed methods are not detectable above the background noise level. It can therefore be argued that the electrokinetic effect is the main electrical potential generating mechanism within the upper crust.Both precursory and

  5. Fracture flow due to hydrothermally induced quartz growth

    Science.gov (United States)

    Kling, Tobias; Schwarz, Jens-Oliver; Wendler, Frank; Enzmann, Frieder; Blum, Philipp

    2017-09-01

    Mineral precipitations are a common feature and limitation of initially open, permeable rock fractures by forming sealing structures or secondary roughness in open voids. Hence, the objective of this numerical study is the evaluation of hydraulic properties of fractures sealed by hydrothermally induced needle and compact quartz growth. Phase-field models of progressive syntaxial and idiomorphic quartz growth are implemented into a fluid flow simulation solving the Navier-Stokes equation. Flow simulations for both quartz types indicate an obvious correlation between changes in permeability, fracture properties (e.g. aperture, relative roughness and porosity) and crystal growth behavior, which also forms distinct flow paths. Thus, at lower sealing stages initial fracture permeability significantly drops down for the 'needle fracture' forming highly tortuous flow paths, while the 'compact fracture' records a considerably smaller loss. Fluid flow in both sealing fractures most widely is governed by a ;parallel plate;-like cubic law behavior. However, the 'needle fracture' also reveals flow characteristics of a porous media. A semi-theoretical equation is introduced that links geometrical (am) with hydraulically effective apertures (ah) and the relative fracture roughness. For this purpose, a geometry factor α is introduced being α = 2.5 for needle quartz and α = 1.0 for compact quartz growth. In contrast to most common ah-am-relationships this novel formulation not only reveals more precise predictions for the needle (RMSE = 1.5) and the compact fractures (RMSE = 3.2), but also exhibit a larger range of validity concerning the roughness of the 'needle' (σ/am = 0-2.4) and the 'compact fractures' (σ/am = 0-1.8).

  6. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  7. Editorial: Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  8. Reaction-Infiltration Instabilities in Fractured and Porous Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Anthony [Univ. of Florida, Gainesville, FL (United States)

    2017-09-19

    In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.

  9. Stress, Flow and Particle Transport in Rock Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomofumi

    2007-09-15

    The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured

  10. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  11. Lubrication theory analysis of the permeability of rough-walled fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Kumar, S.; Bodvarsson, G.S.

    1991-01-01

    The flow of a fluid between the rough surfaces of a rock fracture is very complex, due to the tortuous paths followed by the fluid particles. Exact analytical modeling of these flows is made difficult by the irregular geometry of rock fracture surfaces, while full three-dimensional numerical simulations of these flows are as yet still impractical. To overcome the difficulties of working with the three-dimensional Navier-Stokes equations, the simpler Reynolds lubrication equation has sometimes been used to model flow in fractures. This paper focuses on two aspects of lubrication theory. First, lubrication theory is applied to two simplified aperture profiles, sinusoidal and sawtooth, and analytical expressions are found for the permeabilities. These results are then compared with numerical results obtained by solving the lubrication equation for fractures with random surfaces. Secondly, the validity of the lubrication equations for modeling flow in rough fractures is studied by examining higher-order perturbation solutions, as well as numerical solutions, to the Navier-Stokes equations for flow in fractures with sinusoidally-varying apertures. 22 refs., 6 figs

  12. Fracture fragility of HFIR vessel caused by random crack size or random toughness

    International Nuclear Information System (INIS)

    Chang, Shih-Jung; Proctor, L.D.

    1993-01-01

    This report discuses the probability of fracture (fracture fragility) versus a range of applied hoop stresses along the HFIR vessel which is obtained as an estimate of its fracture capacity. Both the crack size and the fracture toughness are assumed to be random variables that follow given distribution functions. Possible hoop stress is based on the numerical solution of the vessel response by applying a point pressure-pulse it the center of the fluid volume within the vessel. Both the fluid-structure interaction and radiation embrittlement are taken into consideration. Elastic fracture mechanics is used throughout the analysis. The probability of vessel fracture for a single crack caused by either a variable crack depth or a variable toughness is first derived. Then the probability of fracture with multiple number of cracks is obtained. The probability of fracture is further extended to include different levels of confidence and variability. It, therefore, enables one to estimate the high confidence and low probability capacity accident load

  13. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  14. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  15. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    Science.gov (United States)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  16. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  17. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  18. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  19. Fracture capacity of HFIR vessel with random crack size and toughness

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    The probability of fracture versus a range of applied hoop stresses along the High Flux Isotope Reactor vessel is obtained as an estimate of its fracture capacity. Both the crack size and the fracture toughness are assumed to be random variables and subject to assumed distribution functions. Possible hoop stress is based on the numerical solution of the vessel response by applying a point pressure-pulse at the center of the fluid volume within the vessel. Both the fluid-structure interaction and radiation embrittlement are taken into consideration. Elastic fracture mechanics is used throughout the analysis. The probability function of fracture for a single crack due to either a variable crack depth or a variable toughness is derived. Both the variable crack size and the variable toughness are assumed to follow known distributions. The probability of vessel fracture with multiple number of cracks is then obtained as a function of the applied hoop stress. The probability of fracture function is, then, extended to include different levels of confidence and variability. It, therefore, enables one to estimate the high confidence and low probability fracture capacity of the reactor vessel under a range of accident loading conditions

  20. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  1. The Fate of Colloidal Swarms in Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  2. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  3. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs

    Directory of Open Access Journals (Sweden)

    Sonja Leonie Philipp

    2013-12-01

    Full Text Available Fractures generated by internal fluid pressure, for example, dykes, mineral veins, many joints and man-made hydraulic fractures, are referred to as hydrofractures. Together with shear fractures, they contribute significantly to the permeability of fluid reservoirs such as those of petroleum, geothermal water, and groundwater. Analytical and numerical models show that – in homogeneous host rocks – any significant overpressure in hydrofractures theoretically generates very high crack tip tensile stresses. Consequently, overpressured hydrofractures should propagate and help to form interconnected fracture systems that would then contribute to the permeability of fluid reservoirs. Field observations, however, show that in heterogeneous and anisotropic, e.g., layered, rocks many hydrofractures become arrested or offset at layer contacts and do not form vertically interconnected networks. The most important factors that contribute to hydrofracture arrest are discontinuities (including contacts, stiffness changes between layers, and stress barriers, where the local stress field is unfavourable to hydrofracture propagation. A necessary condition for a hydrofracture to propagate to the surface is that the stress field along its potential path is everywhere favourable to extension-fracture formation so that the probability of hydrofracture arrest is minimised. Mechanical layering and the resulting heterogeneous stress field largely control whether evolving hydrofractures become confined to single layers (strata¬bound frac¬tures or not (non-stratabound fractures and, there¬fore, if a vertically intercon¬nec¬ted fracture system forms. Non-stratabound hydrofractures may propagate through many layers and generate interconnected fracture systems. Such systems commonly reach the percolation threshold and largely control the overall permeability of the fluid reservoirs within which they develop.

  4. Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

    NARCIS (Netherlands)

    Salimi, H.

    2010-01-01

    This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world’s oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a

  5. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging.

    Science.gov (United States)

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong

    2016-06-21

    X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.

  6. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.

    2014-07-01

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m 2 /s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E -6 to 1.6E -1 1 m 2 /s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m 2 /s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m 2 /s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl eq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl eq . The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions

  7. Analysis of fluid flow and solute transport though a single fracture intersecting a canister: comparison between fractal and Gaussian fractures

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    2005-01-01

    Full text of publication follows: Canisters with spent fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90 deg. intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown the previous basic model can be simply amended to account for these effects. The mean and the standard deviation of the water flowrate in the fractures are obtained from the statistics of the aperture variations by a simple formula. Likewise, the statistical form of distribution of the so-called 'equivalent flowrate', which describes the mass transfer of solutes between the canister and the flowing water, is also obtained by a simple relation. These simple statistical relations obviate the need to simulate each fracture that intersects a canister in great detail. The water flowrate and the equivalent flowrate of a fracture are instead taken from the simple distributions presented in this work. This allows the use of complex fractures also in very large fracture network models used in performance assessment. The distributions have been obtained by generating a multitude of fractures and by studying their flow and transport properties. Fractal as well as Gaussian aperture distributions have been studied. It has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both types of fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of

  8. Hydrodynamic analysis of clastic injection and hydraulic fracturing structures in the Jinding Zn-Pb deposit, Yunnan, China

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2012-01-01

    Full Text Available The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpressured fluids. This study reports new observations of fluid overpressure-related structures from underground workings (Paomaping and Fengzishan, which show clearer crosscutting relationships than in the open pit. The observed structures include: 1 sand (±rock fragment dikes injecting into fractures in solidified rocks; 2 sand (±rock fragment bodies intruding into unconsolidated or semi-consolidated sediments; 3 disintegrated semi-consolidated sand bodies; and 4 veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to mineralization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection

  9. Method for detecting fractures in formations surroundingearth boreholes

    International Nuclear Information System (INIS)

    Fertl, W.H.

    1979-01-01

    A well is first logged with gamma ray detection system to provide a base log. Fluid containing salt of potassium, uranium or thorium is then injected into the well opposite the interval of interest. When the well head pressure is increased, some of the injected fluid will move into the fracture or other highly permeable localized zones. The gamma ray detection system is then run again one or more times through the well to provide a log which is compared with the base log. The fracture is detected by localized drastically higher readings observed on the repeat run of the gamma ray detection logging system

  10. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    Science.gov (United States)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  11. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    Science.gov (United States)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  12. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  13. Studies of Transport Properties of Fractures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  14. A code to compute borehole fluid conductivity profiles with multiple feed points

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1988-03-01

    It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to understand the hydrologic behavior of fractured rocks. Often inflow from these fractures into the wellbore is at very low rates. A new procedure has been proposed and a corresponding method of analysis developed to obtain fracture inflow parameters from a time sequence of electric conductivity logs of the borehole fluid. The present report is a companion document to NTB--88-13 giving the details of equations and computer code used to compute borehole fluid conductivity distributions. Verification of the code used and a listing of the code are also given. (author) 9 refs., 5 figs., 7 tabs

  15. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: A reconnaissance study of fluid inclusions in fracture-filling quartz and calcite from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Konnerup-Madsen, Jens

    2006-07-01

    Full Text Available Fracture-filling calcite and quartz from the Lopra-1/1A well (at 2380 m and 3543 m depth contains both aqueous low-salinity fluid inclusions and hydrocarbon-dominated fluid inclusions. Microthermometry indicates that the aqueous fluids contain 0.2 to 1.4 equivalent weight% NaCl and occasionally contain traces of hydrocarbons. Homogenisation to liquid occurred between 90°C and 150°C. Modelling based on these fluid inclusion observations indicates that during burial the basaltic section was subjected to temperatures of 160°C and 170°C, occasional pressures of 600–700 bars and the simultaneous percolation of aqueous and hydrocarbon fluids. These fluid conditions may also be relevant to the formation of zeolite observed in the Lopra-1/1A well.

  16. Porosity determination of damaged fault zones and role of rock state on fluid flow during fluid rock interactions. Mineralogy, porosity structures and mechanical properties; Determination de la porosite des zones endommagees autour des failles et role de l'etat du materiau sur les proprietes d'echange fluides-roches: Mineralogie, structures de porosite, caracteristiques mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Surma, F.

    2003-07-01

    Fault zone structure is characterized by a fault core (gouge, cataclasite, mylonite), a damage zone (small faults, fractures, veins fold) and a proto-lith. We can clearly describe these structures in the Soultz-sous-Forets granite (HDR Project, France) and in the Nojima Fault zone (Kobe, Japan). This work shows us that the structures are the same ones in the two sites in spite of their different deformation mode one in extension and the other in compression. We propose, starting from the petrographic observations, a study of porosity and physical properties, a fluid flow model in a altered and fractured granite, taking into account the evolution of the fluid pressure and the processes of dissolution-precipitation during an earthquake. In the case of extension, the inter-seismic period is associated to an opening of the fractures in the fault damaged zone and an increase in porosity due to the rock alteration. During the earthquake, the fractures are closed and the fluid is expelled. In the case of compression, the inter-seismic period is associated to the closing of the fractures in the matrix and the expulsion of the fluids towards the fault whereas curing the earthquake the fractures open because of the fluid pressure increase. Thus, there is a constant competition between the processes which enhance permeability and those which tend to reduce it. These processes (stresses, mineral precipitation, fluid pressure variation... etc) are the same ones in the various contexts, but they do not interfere at the same time during an earthquake. (author)

  17. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    Science.gov (United States)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  18. Geochemical signatures of fluid paleo-transfer in fracture filling calcite from low permeability rock masses: examples taken from Bure's and Tournemire's site in France and northern Switzerland; Signatures geochimiques de paleocirculations aqueuses dans la calcite de remplissage de fracture de massifs argileux peu permeables et de leurs encaissants: exemples pris sur les sites de Bure, Tournemire et Suisse du nord

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, D

    2002-12-15

    Fractures in rock masses represent preferential path for fluid transfer and, as such, are the most efficient way for migration of radionuclides at a regional scale. The impact of fracturing on hydrogeological system is a major challenge for underground radioactive waste storage projects. In this context, geochemistry of fracture-filling calcite is used to better understand physical and chemical properties of palaeo-fluids. A new methodology has been developed to analyze Mg, Mn, Fe, Sr and Rare Earth Elements REE (La, Ce, Nd, Sm, Eu, Dy and Yb) in calcite by Secondary Ion Mass Spectrometry. Analyses of calcite crystals have been performed in fractures from Jurassic clays and limestones in France (Bure and Tournemire sites) and northern Switzerland (Mt Terri's tunnel and deep borehole). On each case, several geochemical signatures are observed, according to REE partitioning and Mn and Fe concentrations. In the Bure site, a dependence of calcite geochemistry from fracture host rock has been evidenced. On the other hand, speciation of REE in solution equilibrated with clayey or calcareous rocks at circum-neutral pH (7 to 8) is not significantly influenced by the media: speciation is dominated by carbonate species in both cases and phosphate complexes can modify heavy REE availability in relatively to light REE. These results point out that in fractures in clays, calcite crystallizes at equilibrium with a fluid expulsed during diagenesis from clay minerals, recording the effect of clays and accessory phases. In limestone fractures, calcite records a later event related to the past functioning of the present aquifer, and the fluid has reached equilibrium with the rock minerals. In secondary filling calcite from Toarcian Argilites faults close to Tournemire's tunnel, three successive generations of calcite are observed in an extensive fault, and a fourth in a compressive one. In Aalenian Opalinus Clays veins, comparison between existing isotopic data and Mn, Fe

  19. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  20. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  1. Common hydraulic fracturing fluid additives alter the structure and function of anaerobic microbial communities

    Science.gov (United States)

    Mumford, Adam C.; Akob, Denise M.; Klinges, J. Grace; Cozzarelli, Isabelle M.

    2018-01-01

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.

  2. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  3. Localizing Fracture Hydromechanical Response using Fiber Optic Distributed Acoustic Sensing in a Fractured Bedock Aquifer

    Science.gov (United States)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2017-12-01

    Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured

  4. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    Science.gov (United States)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  5. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications

    National Research Council Canada - National Science Library

    ...--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations...

  6. Effect of Discrete Fracture Network Characteristics on the Sustainability of Heat Production in Enhanced Geothermal Reservoirs

    Science.gov (United States)

    Riahi, A.; Damjanac, B.

    2013-12-01

    Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid

  7. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  8. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    International Nuclear Information System (INIS)

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  9. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    Science.gov (United States)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  10. Understanding Aero-Fractures using optics and acoustics

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that develop during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems using two imaging techniques: optical imaging using a high speed camera (1000 fps) and high frequency resolution accelerometers. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system, with a constant injection pressure, from the point opposite to the semi-permeable boundary. At large enough injection pressures, the fluid also displaces grains and creates large channels and thin fractures towards the semi-permeable boundary. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. The power spectrum initially follows a power law trend and when the channel network is developed, stick-slip events generating peaks with characteristic frequencies at 10, 30, 60 and 180 kHz are seen. These peaks are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an

  11. Use of the high-resolution satellite images for detection of fractures related to the ore deposits

    Science.gov (United States)

    Cruz-Mondaca, M.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2012-12-01

    The Aster and GeoEye satellite high-resolution images were used to detect the structures related to the fracturing of the upper crust in the North of Chile. In particular, lineament analysis has been applied to detect the presence of epithermal fluids of low sulfurization associated with the Paleozoic ore deposits. These results have been compared with the location of the minerals altered by the presence of geothermal fluids detected using the spectral libraries. Later, the presence of fractures has been corroborated during recognition of fractures in situ and the geochemical analysis of samples of minerals altered by the presence of fluids. It was shown that the results obtained are relevant for the gold vein detection.

  12. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  13. Formation fracturing by energy waves

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-11-28

    A method described for recovering oil from an oil strata penetrated by a well bore includes a step of applying fluid pressure to the interior of the well bore across the face of the stratum, and alternately varying the applied fluid pressure, first above and then below the reservoir pressure. This is in order to fracture and break up the face of the strata from internal pressure exerted on the strata. The pressure is affected using liquefied gas at low pressure across the formation.

  14. Numerical Analysis of the Source of Excessive Na+ and Cl Species in Flowback Water From Hydraulically Fractured Shale Formations

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2016-10-01

    Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is useful when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.

  15. Numerical modelling of flow and transport in rough fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs

    2014-12-01

    Full Text Available Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM and random walk (RW, respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs. Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow; and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.

  16. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  17. Dynamic aerofracture or hydrofracture of dense granular packing: pressure and viscosity control of the fracture patterns

    Science.gov (United States)

    Niebling, Michael J.; Toussaint, Renaud; Flekkøy, Eirik G.; Jørgen Måløy, Knut

    2013-04-01

    Stress induced by fluid or gases can cause diverse materials to break and fracture. Such hydraulic fractures are a natural and common phenomenon in the field of volcanism and are artificially initiated to enhance the recovery of natural gas and mineral oil by fracturing the reservoir rock with pressurized fluids. A procedure also known as fracking. Recently a new perspective on hydrofractures was added with the storage of supercritical CO2. In this respect two scenarios are considered. First it is one option to inject CO2 into existing hydrofractures, and second the injection of the CO2 can create additional fractures. The typical components for such fractures are a porous material and a compressible gas. The dynamics of such fractures and displacement patterns are simulated and studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional granular layer. The model used, mixing highly deformable solid and fluid components, can simulate sedimentation problems [1,2], as well as hydrofracture or aerofracture ones. The emerging displacement patterns and fractures variate according to the properties of the injected fluid or gas and the characteristics of the granular phase [3]. The physics behind these variations is discussed and explained. The role of the fluid viscosity and system size shows to lead to a transition from fracturing to compaction, depending on the dynamics of convection versus diffusion of overpressure. The dependence of the obtained patterns on the injection pressure is also explored [4]. References: [1] Niebling, M.J., E.G. Flekkøy, K.J. Måløy, R. Toussaint, Sedimentation instabilities: impact of the fluid compressibility and viscosity, Phys. Rev. E 82, 051302, 2010. doi: 10.1103/PhysRevE.82.051302 [2] Niebling, M.J., E.G. Flekkøy, K.J. Måløy, R. Toussaint, Mixing of a granular layer falling through a fluid, Phys. Rev. E 82, 011301 (2010) doi: 10.1103/PhysRevE.82.011301 [3] Niebling, M., R. Toussaint, E.G. Flekk

  18. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  19. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  20. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  1. Growth Kinematics of Opening-Mode Fractures

    Science.gov (United States)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation

  2. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  3. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  4. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  5. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    Science.gov (United States)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension

  6. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  7. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    Science.gov (United States)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity

  8. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  9. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  10. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  11. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  12. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  13. FTRANS, Radionuclide Flow in Groundwater and Fractured Rock

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1987-01-01

    1 - Description of program or function: FTRANS (Fractured flow and Transport of Radionuclides) is a two-dimensional finite-element code designed to simulate ground-water flow and transport of radioactive nuclides in a fractured porous return medium. FTRANS takes into account fluid interactions between the fractures and porous matrix blocks, advective-dispersive transport in the fractures and diffusion in the porous matrix blocks, and chain reactions of radionuclide components. It has the capability to model the fractured system using either the dual-porosity or the discrete- fracture modeling approach or a combination of both. FTRANS can be used to perform two-dimensional near-field or far-field predictive analyses of ground-water flow and to perform risk assessments of radionuclide transport from nuclear waste repository subsystems to the biosphere. 2 - Restrictions on the complexity of the problem: Although FTRANS does cannot account for deformation processes which can affect the flow capacity and velocity field

  14. Fracture diagnostics with tube wave reflection logs

    International Nuclear Information System (INIS)

    Medlin, W.L.

    1991-01-01

    This paper reports on the Tube Wave Reflection Log (TWRL) which is acoustic logging method which provides information about the height, location and conductivity of hydraulically induced fractures behind perforated casing. The TWRL tool consists of a transmitter and closely spaced receiver. The transmitter is driven with a short, low frequency tone burst to generate long wavelength tube waves which are little attenuated in unperforated casing. They are partially reflected when they pass perforated intervals communicating with a hydraulically induced fracture. The tool listens for such reflections for 0.1 seconds following each excitation burst. As the tool is moved uphole at logging speed, the transmitter is excited at each foot of depth. VDL displays of the TWRL records provide reflection traces whose projections define the uppermost and lower-most perforations communicating with the fracture. The strength of the reflections depends on the ease of fluid flow into the fracture and thus, is an indicator of fracture conductivity

  15. Fracture Flow Characterization from Seismic and Electric Properties: Insight from Experimental and Numerical Approaches

    Science.gov (United States)

    Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.

    2017-12-01

    The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as

  16. Cavitation-based hydro-fracturing simulator

    Science.gov (United States)

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2016-11-22

    An apparatus 300 for simulating a pulsed pressure induced cavitation technique (PPCT) from a pressurized working fluid (F) provides laboratory research and development for enhanced geothermal systems (EGS), oil, and gas wells. A pump 304 is configured to deliver a pressurized working fluid (F) to a control valve 306, which produces a pulsed pressure wave in a test chamber 308. The pulsed pressure wave parameters are defined by the pump 304 pressure and control valve 306 cycle rate. When a working fluid (F) and a rock specimen 312 are included in the apparatus, the pulsed pressure wave causes cavitation to occur at the surface of the specimen 312, thus initiating an extensive network of fracturing surfaces and micro fissures, which are examined by researchers.

  17. Estimating the hydraulic conductivity of two-dimensional fracture networks

    Science.gov (United States)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  18. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    Science.gov (United States)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically analysis indicates some fraction of returning fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of

  19. Convective heat transfer of supercritical CO_2 in a rock fracture for enhanced geothermal systems

    International Nuclear Information System (INIS)

    Zhang, Le; Jiang, Peixue; Wang, Zhenchuan; Xu, Ruina

    2017-01-01

    Highlights: • Contrasting experiments between a rough and a smooth fracture were performed. • A numerical model of rough fracture was reconstructed based on CT scanning data. • Heat transfer in rough fracture was affected by channeling and disturbance effects. - Abstract: Convective heat transfer characteristics of supercritical pressure fluid in a rock fracture are important for building an accurate heat transfer model of enhanced geothermal systems. This paper presents experimental investigations of laminar convection heat transfer of supercritical pressure CO_2 in an artificial smooth parallel-plate fracture and a rough and tortuous fracture that was created using the Brazilian technique. Hot rock with a relatively high initial temperature reserves more heat, which can ensure a larger heat extraction rate for a longer time when cold fluid flows through the fracture. Compared with the smooth parallel-plate fracture, CO_2 flowing through the rough and tortuous fracture with an equivalent hydraulic aperture extracted less heat from the hot rock due to the less efficient heat exchange in a rough fracture caused by channeling effect. This was illustrated by numerical simulation results of the reconstructed fracture based on micro-computed tomography scan data. The overall Nusselt number obtained from the numerical results was larger in a rough fracture with a larger Reynolds number due to disturbance effect on the boundary layer development. The heat transfer performance in a rough fracture is therefore influenced by interactions of the channeling and disturbance effects caused by the tortuous flow path.

  20. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3-4, 1997

    International Nuclear Information System (INIS)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report

  1. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    Science.gov (United States)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  2. Engineering Fracking Fluids with Computer Simulation

    Science.gov (United States)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  3. Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil

    Science.gov (United States)

    Ennes-Silva, Renata; Cazarin, Caroline; Bezerra, Francisco; Auler, Augusto; Klimchouk, Alexander

    2015-04-01

    Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil Ennes-Silva, R.A; Cazarin, C.L.; Bezerra, F.H.; Auler, A.S.; Klimchouk, A.B. Dissolution along zones of preferential flow enhances anisotropy in geological media and increases its complexity. Changes in parameters such as porosity and permeability due to diagenesis and presence of ascendant fluids along fractures and faults can be responsible for hypogenic karstic system. The present study investigates the relationship between lithofacies, tectonics and karstification in the Neoproterozoic Salitre Formation, located in the central-eastern Brazil. This unit comprises several systems of caves including the Toca da Boa Vista and da Barriguda hypogenic caves, the largests in South America, and focus of this study. We focused on cave mapping and morphogenetic analysis, determination of petrophysical properties, thin-section description, micro-tomography, and isotopic analysis. The Salitre Formation, deposited in an epicontinental sea, comprises mud/wakestones, grainstones, microbial facies, and fine siliciclastic rocks. Passages occur in several levels within ca. 60 m thick cave-forming section, limited at the top by lithofacies with low permeability and fractures. Cave development occurred in phreatic sluggish-flow environment with overall upwelling flow. Fluids rise via cross-formational fractures and were distributed laterally within the cave-forming section using geological heterogeneities to eventually discharge up through outlets breaching across the upper confining beds. Maps of conduits show preferred directions for development of conduits: NNE-SSW and E-W. These two directions represents a relation between structures and hypogenic morphology. Joints, axis fold and fractures allowed pathways to the fluid rises, and then development of channels of entrance (feeders), outputs (outlets) and some cupolas, which are clearly aligned to fractures. Our data indicate several events

  4. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    Science.gov (United States)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  5. Transport of synthetic colloids through single saturated fractures: A literature review

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1995-07-01

    Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as open-quotes worst-caseclose quotes tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations

  6. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    Science.gov (United States)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  7. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  8. Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2018-01-01

    Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.

  9. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  10. Characterization of Fractures in the Chicxulub Peak Ring: Preliminary Results from IODP/ICDP Expedition 364

    Science.gov (United States)

    McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.

    2017-12-01

    During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections

  11. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  12. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  13. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  14. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  15. Minimally invasive approach of panfacial fractures

    Directory of Open Access Journals (Sweden)

    Yudi Wijaya

    2017-08-01

    Full Text Available Background. Panfacial fractures involves fractures of several bones of face. They are associated with malocclusion, dish face deformity, enopthalmos, diplopia, cerebrospinal fluid leak and soft tissue injuries. Purpose. The purpose of this paper is to present a case of minimizing surgical wound and morbidity. Case. A 40 year old female presented with severe maxillofacial injuries caused by motor vehicle collisions about 5 days prior to admission. The assessment of the patient is mild head injury, panfacial fractures, lacerated wound at face,  rupture of globe of occular sinistra. An open reduction and internal fixation  (ORIF and enucleation of globe occular sinistra was performed.  Intraoral vestibular incision is made in the upper and lower vestibular region. Mucoperiosteal flap elevation of vestibular will exposure of the anterior maxilla and mandibular fractures. Intermaksilary fixation within 3 week and restore aesthetic with prosthesis fitting eyeball and denture. Discusion. The goal of  treatment of  panfacial fracture is to restore both the functions and pre-injury 3-dimensional facial contours. To achieve this goal two common  sequences of management of Panfacial fractures are proposed, “Bottom up and inside out” or “Top down and outside in”. Other sequences exist but there are variations of these two major approaches. Conclusion. A minimally invasive approach to  the fracture site is an alternative method  to manage panfacial fracture with a simple, effective and lower complication rate.

  16. Influence of fracture networks on radionuclide transport from solidified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, S.C., E-mail: suresh.seetharam@sckcen.be [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Perko, J.; Jacques, D. [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Mallants, D. [CSIRO Land and Water, Waite Road – Gate 4, Glen Osmond, SA 5064 (Australia)

    2014-04-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  17. Influence of fracture networks on radionuclide transport from solidified waste forms

    International Nuclear Information System (INIS)

    Seetharam, S.C.; Perko, J.; Jacques, D.; Mallants, D.

    2014-01-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  18. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  19. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  20. Wetted-region structure in horizontal unsaturated fractures: Water entry through the surrounding porous matrix

    International Nuclear Information System (INIS)

    Glass, R.J.; Norton, D.L.

    1991-01-01

    Small-scale processes that influence wetted structure within the plane of a horizontal fracture as the fracture wets or drains through the matrix are investigated. Our approach integrates both aperture-scale modeling and physical experimentation. Several types of aperture-scale models have been defined and implemented. A series of physical experimental systems that allow us to measure wetted-region structure as a function of system parameters and water pressure head in analogue fractures also have been designed. In our preliminary proof-of-concept experiment, hysteresis is clearly evident in the measured saturation/pressure relation, as is the process of air entrapment, which causes a reduction in the connected areas between blocks and the wetted region available for flow in the plane of the fracture. A percolation threshold where the system is quickly spanned, allowing fluid conduction in the fracture plane, is observed which is analogous to that found in the aperture-scale models. A fractal wetted and entrapped-region structure is suggested by both experiment and modeling. This structure implies that flow tortuosity for both flow in the fracture and for inter-block fluid transfer is a scale-dependent function of pressure head

  1. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  2. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    Science.gov (United States)

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of

  3. Method and apparatus for injecting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, W E

    1966-07-05

    A method and apparatus are described for injecting grouting material into porous, fractured, unconsolidated, or other formations, whose cohesion is to be increased and/or whose permeability is to be decreased. A tool for injecting the fluid consists of a packer and valves through which the pressurized fluid may pass from the interior of the tool to the packer to expand it. Another valve allows pressure fluid to be vented so as to allow contraction of the packer. A third valve allows a flow of pressurized flow out of the tool and into the material when a predetermined pressure within the tool has been attained. (9 claims)

  4. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

    Science.gov (United States)

    Ishida, Tsuyoshi; Chen, Youqing; Bennour, Ziad; Yamashita, Hiroto; Inui, Shuhei; Nagaya, Yuya; Naoi, Makoto; Chen, Qu; Nakayama, Yoshiki; Nagano, Yu

    2016-11-01

    We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC-CO2), liquid carbon dioxide (L-CO2), water, and viscous oil with viscosity of 0.051-336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low-viscosity fluid induced three-dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes.

  5. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    Science.gov (United States)

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. MR findings in cases of suspected impacted fracture of the femoral neck

    International Nuclear Information System (INIS)

    Stiris, M.G.; Lilleaas, F.G.

    1997-01-01

    Purpose: To evaluate MR imaging of the hip in patients with a clinically suspected impacted fracture of the femoral neck in cases where conventional plain films show negative or equivocal findings. Material and Methods: Twenty-seven such patients were prospectively examined by MR imaging with a 1.0 T unit, within 24 hours of admittance to hospital. A coronal T1-weighted turbo spin-echo sequence (n=27), and a coronal STIR sequence (n=25) or a coronal T2-weighted turbo spin-echo fast saturation sequence (n=2) were used. The evaluations were made by 2 radiologists with experience in musculoskeletal radiology. Results: There were 6 patients with a petrochanteric fracture, 2 without and 4 with slight displacement. Five patients had an impacted fracture of the femoral neck, and 3 had a fracture of the superior pubic bone. Of 2 patients with advanced arthrosis, i had an impacted femoral neck fracture and the other a nondisplaced intertrochanteric fracture. There was 1 patient who had sustained a nondisplaced acetabular fracture with increased joint fluid and muscle contusions. Three patients had muscle contusions only. Two patients had bone marrow contusions only, while 2 others with advanced coxarthrosis had increased joint fluid only. Three patients showed normal findings. Our findings led to emergency surgery in 13 cases, and conservative measures directed to the specific MR findings in 14 patients. Conclusion: MR imaging should be the first modality of choice in examining patients with a clinically suspected impacted fracture of the femoral neck where conventional films show negative or equivocal findings. (orig.)

  7. MR findings in cases of suspected impacted fracture of the femoral neck

    Energy Technology Data Exchange (ETDEWEB)

    Stiris, M.G.; Lilleaas, F.G. [Aker Hospital, Oslo (Norway). Dept. of Diagnostic Radiology

    1997-09-01

    Purpose: To evaluate MR imaging of the hip in patients with a clinically suspected impacted fracture of the femoral neck in cases where conventional plain films show negative or equivocal findings. Material and Methods: Twenty-seven such patients were prospectively examined by MR imaging with a 1.0 T unit, within 24 hours of admittance to hospital. A coronal T1-weighted turbo spin-echo sequence (n=27), and a coronal STIR sequence (n=25) or a coronal T2-weighted turbo spin-echo fast saturation sequence (n=2) were used. The evaluations were made by 2 radiologists with experience in musculoskeletal radiology. Results: There were 6 patients with a petrochanteric fracture, 2 without and 4 with slight displacement. Five patients had an impacted fracture of the femoral neck, and 3 had a fracture of the superior pubic bone. Of 2 patients with advanced arthrosis, i had an impacted femoral neck fracture and the other a nondisplaced intertrochanteric fracture. There was 1 patient who had sustained a nondisplaced acetabular fracture with increased joint fluid and muscle contusions. Three patients had muscle contusions only. Two patients had bone marrow contusions only, while 2 others with advanced coxarthrosis had increased joint fluid only. Three patients showed normal findings. Our findings led to emergency surgery in 13 cases, and conservative measures directed to the specific MR findings in 14 patients. Conclusion: MR imaging should be the first modality of choice in examining patients with a clinically suspected impacted fracture of the femoral neck where conventional films show negative or equivocal findings. (orig.).

  8. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    Science.gov (United States)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  9. Whitby Mudstone, flow from matrix to fractures

    Science.gov (United States)

    Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.

  10. Fluid inclusion investigations in Nagra's boreholes of Northern Switzerland

    International Nuclear Information System (INIS)

    Mullis, J.

    1987-01-01

    Fluid inclusions studied in quartz and calcite from 6 Nagra-boreholes and the oil exploration well Pfaffnau in northern Switzerland were used to evaluate the evolution of fluid composition and trapping conditions. The studied boreholes covered representative sections of the Tertiary, Mesozoic and Permo-Carboniferous sedimentary rocks in addition to the underlying crystalline basement. Two fluid groups were identified, one containing salt-poor NaCl-(KCl) fluids of Upper Carboniferous age, and a second group containing salt-rich to salt-poor CaCl 2 -NaCl-(MgCl 2 ) fluids trapped between Permian and Tertiary times. The inclusions of the first group were trapped at relatively high temperatures (100 degrees to 350 degrees C, rarely up to 400 degrees C) and low pressures (probably below 1 kbar). Their widespread occurrence along healed fractures in rock forming minerals of the crystalline basement and in detrital quartz grains of the Permo-Carboniferous and Triassic sandstones imply a tectonic/thermic event on a regional scale during late Variscan orogeny. The second group of fluids comprises early salt-rich and late salt-poor inclusions. The inclusions were trapped between 30 degrees and 140 degrees C and are detected preferentially in fissure minerals and porefilling cements. The widespread occurrence of the salt-poor fluids along healed fractures inside the host minerals imply major tectonic events especially during Tertiary times. These tectonic events are probably responsible for increased fluid migration and possibly also for brine dilution. The two fluid groups display a considerable similarity with the high-temperature/low-saliniferous Variscan fluid system of the Black Forest and Oberpfalz. (author) 44 refs., 5 figs., 2 tabs

  11. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  12. Coupling a fluid flow simulation with a geomechanical model of a fractured reservoir

    OpenAIRE

    Segura Segarra, José María; Paz, C.M.; de Bayser, M.; Zhang, J.; Bryant, P.W.; Gonzalez, Nubia Aurora; Rodrigues, E.; Vargas, P.E.; Carol, Ignacio; Lakshmikantha, Ramasesha Mookanahallipatna; Das, K. C.; Sandha, S.S.; Cerqueira, R.; Mello,, U.

    2013-01-01

    Improving the reliability of integrated reservoir development planning and addressing subsidence, fault reactivation and other environmental impacts, requires increasingly sophisticated geomechanical models, especially in the case of fractured reservoirs where fracture deformation is strongly coupled with its permeability change. Reservoir simulation has historically treated any geomechanical effects by means of a rock compressibility term/table, which can be improved by simulating the actual...

  13. Pathological Fracture of Clavicle Following Sub-Acromial Decompression-Infraclavicular Compartment Syndrome?

    Directory of Open Access Journals (Sweden)

    S Mukhopadhyay

    2009-11-01

    Full Text Available A 34-year-old factory worker presented with pain and weakness of the left shoulder following a fall on ice on her left shoulder. An ultrasound scan of the shoulder taken 4 months after injury showed small partial articular surface tear of the supraspinatus tendon. Ten days following subacromial decompression she suffered a pathological fracture of her left clavicle. MRI, CT, and isotope bone scans showed no evidence of malignancy or infection but a collection of fluid was noted underlying the clavicle communicating to the acromioclavicular joint. Ultrasound scan guided aspiration of 20 millilitres of bloodstained fluid underlying the clavicle resulted in gradual recovery and adequate healing of the fracture.

  14. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  15. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  16. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  17. Optimizing the productivity of acid-fracture treatments in horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.

    1995-12-31

    Existing prediction methods are inadequate for unstable radial displacement, with prediction errors of up to 500%. This work provides a new theoretical basis for understanding unstable displacements in both Newtonian and non-Newtonian fluids, based on a detailed analysis of the fingering morphology and a new derivation using fractional flow theory for radial flow. Design guidelines are given to assist in optimizing the design of fingered acid-fracture treatments for horizontal wells in carbonate formations. Unstable radial displacement creates power-law (fractal) displacement patterns, for a wide range of mobility ratios, and the displacement efficiency can be expressed as a function of the mobility ratio M. The finger wavelength is a function of the Peclet number and the fracture aperture, and the detailed morphology can be understood in terms of the fluid theology. The size of the fingering zone can be predicted from the mobility ratio and Peclet number. A productivity index factor PIF can be used to compare different treatment scenarios, and thus optimise the productivity of acid-fracture treatments.

  18. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  19. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  20. A multi-scale experimental and simulation approach for fractured subsurface systems

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  1. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  2. Open channels in fractures maintained by deposition and erosion of colloids

    International Nuclear Information System (INIS)

    Kessler, J.H.; Hunt, J.R.

    1993-01-01

    Material in the colloidal size range is present in many natural groundwater systems at existing or proposed radioactive waste storage locations. Colloids initially suspended in the water in fractures can deposit onto the fracture surfaces, and will partially or fully clog the fracture. The amount of clogging will depend on whether the deposited colloidal material can erode from the fracture surfaces. If the fracture remains only partially clogged the unclogged regions take the form of open channels. The purpose of this paper is to assess under what conditions these open channels form. An analytical model of a steady state, average open channel width is presented which is a function of the fluid flow rate and viscosity, fracture aperture, and the permeability and shear strength of the deposited colloidal material. The implications of the presence of open channels for colloidal transport is also discussed. However, for most repository conditions the fractures are expected to fully clog with colloids

  3. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Science.gov (United States)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  4. Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks

    Science.gov (United States)

    Trommsdorff, Volkmar; Skippen, George

    1986-11-01

    The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.

  5. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    Science.gov (United States)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  6. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  7. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    Science.gov (United States)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains ( 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  8. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    Science.gov (United States)

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Toxicological evaluation of fracturing fluids; Toxikologische Bewertung von Fracking-Fluiden

    Energy Technology Data Exchange (ETDEWEB)

    Frimmel, Fritz H.; Gordalla, Birgit [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Lehrstuhl fuer Wasserchemie und Wassertechnologie und DVGW-Forschungsstelle Engler-Bunte-Inst.; Ewers, Ulrich [Hygiene-Institut des Ruhrgebiets, Gelsenkirchen (Germany). Abt. fuer Umweltmedizin und Toxikologie; Schmitt-Jansen, Mechthild; Altenburger, Rolf [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Dept. Bioanalytische Oekotoxikologie

    2012-11-01

    The fracturing technology utilizes chemicals which have to be evaluated according to the safety and environmental compatibility. Under this aspect, the authors of the contribution under consideration present an integrated evaluation in terms of human toxicology, ecotoxicology as well as in terms of protection of drinking water on the basis of selected examples.

  10. Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff

    International Nuclear Information System (INIS)

    Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D.

    1990-02-01

    Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs

  11. History matching of large scale fractures to production data; Calage de la geometrie des reseaux de fractures aux donnees hydrodynamiques de production d'un champ petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Jenni, S.

    2005-01-01

    Object based models are very helpful to represent complex geological media such as fractured reservoirs. For building realistic fracture networks, these models have to be constrained to both static (seismic, geomechanics, geology) and dynamic data (well tests and production history). In this report we present a procedure for the calibration of large-scale fracture networks to production history. The history matching procedure includes a realistic geological modeling, a parameterization method coherent with the geological model and allowing an efficient optimization. Fluid flow modeling is based on a double medium approach. The calibration procedure was applied to a semi-synthetic case based on a real fractured reservoir. The calibration to water-cut data was performed. (author)

  12. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    Science.gov (United States)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  13. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  14. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    International Nuclear Information System (INIS)

    Foltz, S.D.

    1992-01-01

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards' equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment

  15. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  16. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    Science.gov (United States)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  17. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    Science.gov (United States)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.

  18. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.

    Science.gov (United States)

    Wang, Kevin G

    2017-10-01

    A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max  = 35.0MPa, p min  =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Early Intra-Articular Complement Activation in Ankle Fractures

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2014-01-01

    Full Text Available Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001. Furthermore, synovial expressions of both proteins correlated with each other (P<0.001. Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01 and serological C-reactive protein concentrations 2 days after surgery (P<0.05. Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02. Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01. Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures.

  20. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  1. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  2. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers

    Science.gov (United States)

    Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam

    2013-04-01

    Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.

  3. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Suzart, Joao Walter Pereira; Araujo, Paulo Fernando de

    2000-01-01

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  4. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  5. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    Science.gov (United States)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  6. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  7. P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates

    Science.gov (United States)

    Matonti, C.; Guglielmi, Y.; Viseur, S.; Garambois, S.; Marié, L.

    2017-05-01

    Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vp anisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements. The block is affected by two en-échelon fracture clusters, both being formed in opening mode (mode 1) and cemented, but only one being reactivated in shear. We compared the diagenetic evolution of the fractures, which are almost all 100% filled with successive calcite cements, with the P-wave velocities measured across this meter-scale block of carbonate, which recorded the tectonic and diagenetic changes of a South Provence sedimentary basin. We found that a directional Vp anisotropy magnitude as high as 8-16% correlates with the reactivated fractures' cluster dip angle, which is explained by the complex filling sequence and softer material present inside the fractures that have been reactivated during the basin's tectonic inversion. We show that although a late karstification phase preferentially affected these reactivated fractures, it only amplified the pre-existing anisotropy due to tectonic shear. We conclude that Vp anisotropy measurements may help to identify the fracture sealing/opening processes associated with polyphased tectonic history, the anisotropy being independent of the current stress-state. This case shows that velocity anisotropies induced by fractures resulted here from a cause that is different from how these features have often been interpreted

  8. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    Science.gov (United States)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  9. Impacts of transient heat transfer modeling on prediction of advanced cladding fracture during LWR LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-03-15

    Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.

  10. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in the United States

    Science.gov (United States)

    Bleiwas, Donald I.

    2015-01-01

    The practice of fracturing reservoir rock in the United States as a method to increase the flow of oil and gas from wells has a relatively long history and can be traced back to 1858 in Fredonia, New York, when a gas well situated in shale of the Marcellus Formation was successfully fractured using black powder as a blasting agent. Nearly all domestic hydraulic fracturing, often referred to as hydrofracking or fracking, is a process where fluids are injected under high pressure through perforations in the horizontal portion of a well casing in order to generate fractures in reservoir rock with low permeability (“tight”). Because the fractures are in contact with the well bore they can serve as pathways for the recovery of gas and oil. To prevent the fractures generated by the fracking process from closing or becoming obstructed with debris, material termed “proppant,” most commonly high-silica sand, is injected along with water-rich fluids to maintain or “prop” open the fractures. The first commercial application of fracking in the oil and gas industry took place in Oklahoma and Texas during the 1940s. In 1949, over 300 wells, mostly vertical, were fracked (ALL Consulting, LLC, 2012; McGee, 2012; Veil, 2012) and used silica sand as a proppant (Fracline, 2011). The resulting increase in well productivity demonstrated the significant potential that fracking might have for the oil and gas industry.

  11. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  12. The mechanics and physics of fracturing: application to thermal aspects of crack propagation and to fracking.

    Science.gov (United States)

    Cherepanov, Genady P

    2015-03-28

    By way of introduction, the general invariant integral (GI) based on the energy conservation law is presented, with mention of cosmic, gravitational, mass, elastic, thermal and electromagnetic energy of matter application to demonstrate the approach, including Coulomb's Law generalized for moving electric charges, Newton's Law generalized for coupled gravitational/cosmic field, the new Archimedes' Law accounting for gravitational and surface energy, and others. Then using this approach the temperature track behind a moving crack is found, and the coupling of elastic and thermal energies is set up in fracturing. For porous materials saturated with a fluid or gas, the notion of binary continuum is used to introduce the corresponding GIs. As applied to the horizontal drilling and fracturing of boreholes, the field of pressure and flow rate as well as the fluid output from both a horizontal borehole and a fracture are derived in the fluid extraction regime. The theory of fracking in shale gas reservoirs is suggested for three basic regimes of the drill mud permeation, with calculating the shape and volume of the local region of the multiply fractured rock in terms of the pressures of rock, drill mud and shale gas. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Continental basinal origin of ore fluids from southwestern Massif central fluorite veins (Albigeois, France): evidence from fluid inclusion and stable isotope analyses

    International Nuclear Information System (INIS)

    Munoz, M.; Boyce, A.J.; Courjault-Rade, P.; Fallick, A.E.; Tollon, F.

    1999-01-01

    The most important fluorspar mining district in France is located in the Palaeozoic basement of the Albigeois in southwestern French Massif Central. The massive fluorite is hosted within large E-W striking fractures, crosscutting Cambro-Ordovician clastics, associated with large zones of hypersilicified tectonic breccia which form the wall of the mined deposits. Fluid inclusion data for pre-fluorite and fluorite stage fluids have salinities between 20-26 wt% NaCl equiv., with homogenisation temperatures between 85-170C. Furthermore, low first ice melting temperatures (around -50C) indicates the presence of significant CaCl 2 and possibly MgCl 2 together with NaCl. Calculated fluid δ 18 O for pre-fluorite quartz ranges from -9.1per thousand to -5.2per thousand, with δD between -55per thousand to -64per thousand, placing the data directly on the present day meteoric water line. Fluorite stage fluids have δ 18 O between +0.1per thousand to +3.2per thousand, and δD ranging from -53per thousand to -75per thousand, indicating an interacted meteoric fluid origin. Combining the fluid inclusion and stable isotope data illustrates that the main fluorite depositing fluid has characteristics typical of a basinal brine. The authors have no evidence that a magmatic system was involved in the deposit genesis. The proposed model highlights that mineralisation was related to major Mesozoic extensional events coinciding with the gradual opening of the Atlantic and Tethys oceans. In order to account for the chemistry of the fluids, and the siting of the deposits, the authors postulate a genetic relationship with local, continental, evaporite-bearing basins coincident with, and controlled by the E-W fractures. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Microseismic Velocity Imaging of the Fracturing Zone

    Science.gov (United States)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  15. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  16. Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture

    Science.gov (United States)

    Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2017-12-01

    Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on

  17. The rheological behavior of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ledevin, M.; Arndt, N.; Simionovici, A.

    2014-05-01

    A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and

  18. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA)

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan

    2014-01-01

    Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors

  19. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    Science.gov (United States)

    Hydraulic fracturing, a method of increasing fluid flow within the subsurface, should improve the effectiveness of several remedial techniques, including pump and treat, vapor extraction, bio-remediation, and soil-flushing. he technique is widely used to increase the yields of oi...

  20. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    Science.gov (United States)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  1. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  2. Fluids in the Siilinjärvi carbonatite complex, eastern Finland: Fluid inclusion evidence for the formation conditions of zircon and apatite

    Directory of Open Access Journals (Sweden)

    Poutiainen, M.

    1995-06-01

    Full Text Available In the studied zircon and apatite crystals, data recorded two different compositional types of fluid inclusions: Type 1 H2O-CO2, low salinity inclusions (XCO2 = 0.42 to 0.87; XNaCl = 0.001 to 0.005 with bulk densities of 0.73 to 0.87 g/cm3, and Type 2 H2O moderate salinity (XNaCl = 0.03 to 0.06 inclusions with densities of 0.83 to 1.02 g/cm3. The Type 1 inclusions are not present in apatite. In zircon, the observed fluid inclusion types occur in separate domains: around (Type 1 and outside (Type 2 the apparent core. Fluid inclusions are further subdivided into pseudosecondary and secondary inclusions. Using a combination of SEM-EDS, optical characteristics and crushing-stage, various daughter and captive minerals were identified. The fluid inclusion data suggest that the pseudosecondary Type 1 and Type 2 inclusions in zircon and apatite were trapped during the pre-emplacement evolution of the carbonatite at mid-crustal conditions (P≥4 kbar, T≥625°C. The Type 1 fluid was depleted in CO2, during crystal fractionation and cooling leading to a fluid phase enriched in water and alkalies. Fenitization was obviously induced by these saline aqueous fluids. During emplacement of the carbonatite to the present level, zircon phenocrysts were intensively fractured, some Type 1 inclusions were re-equilibrated, and multiphase Type 2 inclusions were trapped. It is assumed that all these inclusions in zircon and the pseudosecondary Type 2 inclusions in apatite have a magmatic origin. In apatite, calcite inclusions occur side-by-side with the secondary Type 2 inclusions. These calcites co-existed with the aqueous fluid during fracturing and metamorphic re-crystallization of apatites. Probably, this metamorphic fluid also is responsible for the transport and deposition of at least some of the calcite at low temperatures (200-350°C.

  3. Temporal bone fracture following blunt trauma caused by a flying fish.

    Science.gov (United States)

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus.

  4. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  5. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  6. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  7. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  8. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  9. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures

  10. Study of pore pressure reaction on hydraulic fracturing

    Science.gov (United States)

    Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr

    2017-04-01

    We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil

  11. Spontaneous recovery of post-traumatic cerebrospinal fluid rhinorrhea following meningitis: A case report

    OpenAIRE

    Citisli, Veli; Kocaoglu, Murat; Necan, Ceyda; İbrahimoglu, Muhammet; Celiker, Özkan; Baykara, Eyüp; Ozdemir, Mevci; Acar, Feridun; Coskun, Mehmet Erdal

    2015-01-01

    The aim of the present report was to present the patient with an anterior cranial base fracture who developed post-traumatic cerebrospinal fluid rhinorrhea, which recovered after onset of meningitis complication. A 26-year-old male patient who had a traffic accident one week ago was sent to our clinic because of his rhinorrhea persisting for 4 days. On cranial computed tomography, fracture of the left frontal skull base and sinus walls, a fracture line on temporal bone, parenchymal bleeding i...

  12. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  13. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  14. Investigation of gas-oil gravity drainage in naturally fractured reservoirs using discrete fracture and matrix numerical model

    International Nuclear Information System (INIS)

    Bazr-Afkan, S.

    2012-01-01

    To simulate fluid flow in Naturally Fractured Reservoirs (NFRs), a new Descrete Fracture and Matrix (DFM) simulation technique is developed as a physically more realistic alternative to the dual continuum approach. This Finite-Element Centered Finite-Volume method (FECFVM) has the advantage over earlier FECFVM approaches that it honors saturation dicontinuities that can arise at material interfaces from the interplay of viscous, capillary and gravitational forces. By contrast with an earlier embedded-discontinuity DFEFVM method, the FECFVM achieves this without introducing additional degrees of freedom. It also allows to simulate capillary- and other fracture-matrix exchange processes using a lower dimensional representation of fractures, simplifying model construction and unstructured meshing as well as speeding up computations. A further step-up is obtained by solving the two-phase fluid-flow and saturation transport equations only on 'active elements'. This also diminishes round-off and truncation errors, reducing numerical diffusion during the solution of the transport equation. The FECFVM is verified by comparing IMPES operator-splitting sequential solutions with analytical ones, as well as benchmarking it against commercial reservoir simulators on simple geometries that these can represent. This testing confirms that my 2D FECFVM implementation simulates gravitational segregation, capillary redistribution, capillary barriers, and combinations thereof physically realistically, achieving (at least) first-order solution accuracy. Following this verification, the FECFVM is applied to study Gas-Oil Gravity Drainage (GOGD) process in cross-sectional models of layered NFRs. Here comparisons with dual continua simulations show that these do not capture a range of block-to-block effects, yielding over-optimistic drainage rates. Observations made on individual matrix blocks in the DFM simulations further reveal that their saturation evolution is at odds with the

  15. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  16. Pioneer hydraulic fracturing intervention on Brazilian Amazon Forest; Operacao pioneira de fraturamento hidraulico na selva Amazonica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cledeilson; Silva, Luis A.; Duque, Luis H.; Steffan, Rodolfo H.P.; Guimaraes, Zacarias [Baker Hughes, Houston, TX (United States); Sabino, Afonso H. dos S.; Corregio, Fabio; Ferreira, Jose Carlos da Silva; Melo, Marcelo Moura; Ludovice, Roberto C. [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Hydraulic fracturing is a stimulation technique where fluid is pumped with enough energy to create a fracture in the reservoir and to propagate it filling the broken zone with proppant agent. To the end of the treatment the proppant agent will support the fracture creating a production flow path, once it will have permeability higher than the original formation. Since a long time it was desired to use that technique to explore tight reservoirs in the Solimoes basin. However the lack of information on the interest zones, the great amount of equipment and fluids volumes involved hindered the application in an area that withholds a environmental certification. In November 10th of 2011 these challenges were surpassed. This article describes the technique, job details and results of the pioneering hydraulic fracturing intervention in the heart of the Amazon forest that became economically viable the gas production in tight reservoirs of the Solimoes basin with minimum environmental impact. (author)

  17. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  18. Quantifying Water-Rock Interactions during Hydraulic Fracturing from the Analysis of Flowback Water

    Science.gov (United States)

    Osselin, F.; Nightingale, M.; Kloppmann, W.; Gaucher, E.; Clarkson, C.; Mayer, B.

    2017-12-01

    Hydraulic fracturing technologies have facilitated the rapid development of shale gas and other unconventional resources throughout the world. In order to get sufficient access to the trapped hydrocarbon, it is necessary to fracture the bedrock and increase its permeability. Fracturing fluids are usually composed of tens of thousand of cubic meters of low salinity water with numerous additives, such as viscosity agent or breakers. The objective of this study was to investigate and quantify the water-rock interactions during hydraulic fracturing. This study was based on repeated sampling of flowback water from a hydraulically fractured well in Alberta, Canada. The flowback water was sampled 24 times during the first week and one last time after one, and analyzed for major ions and trace elements, as well as stable isotopes of sulfate and water among others. Results showed that salinity rapidly increases up to 100 000 mg/L at the end of the first week. We demonstrate that conservative species such as Na and Cl follow a clear two end-members mixing line, while some species including sulfate had much higher concentrations (8 times higher than the expected value from the mixing line). This indicates that the rapid increase of salinity in flowback water is caused by both mixing with formation water initially present in the shale formation, and from water-rock interactions triggered by the fracturing fluid and in some cases by the additives. Stable isotope data suggest that additional sulfate is mobilized as a consequence of pyrite oxidation, releasing sulfate, iron and potentially other heavy metals into the flowback water. This release of excess sulfate can be detrimental because it has the potential to promote scaling of sulfate minerals. Moreover, pyrite oxidation is a highly acidifying reaction and this may decrease the effectiveness of other additives, and promote carbonate minerals dissolution enhancing further scaling. We propose that a better control of the

  19. Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation

    Science.gov (United States)

    Nishimoto, Shoji; Yoshida, Hidekazu

    2010-03-01

    This paper investigates the mineralogical effects of hydrothermal alteration at depth in fractures in granite. A fracture accompanied by an alteration halo and filled with clay was found at a depth of 200 m in a drill core through Toki granite, Gifu, central Japan. Microscopic observation, XRD, XRF, EPMA and SXAM investigations revealed that the microcrystalline clays consist of illite, quartz and pyrite and that the halo round the fracture can be subdivided into a phyllic zone adjacent to the fracture, surrounded by a propylitic zone in which Fe-phyllosilicates are present, and a distinctive outer alteration front characterized by plagioclase breakdown. The processes that result in these changes took place in three successive stages: 1) partial dissolution of plagioclase with partial chloritization of biotite; 2) biotite dissolution and precipitation of Fe-phyllosilicate in the dissolution pores; 3) dissolution of K-feldspar and Fe-phyllosilicate, and illite precipitation associated with development of microcracks. These hydrothermal alterations of the granite proceed mainly by a dissolution-precipitation process resulting from the infiltration of hydrothermal fluid along microcracks. Such infiltration causes locally high mobility of Al and increases the ratio of fluid to rock in the alteration halo. These results contribute to an understanding of how granitic rock becomes altered in orogenic fields such as the Japanese island arc.

  20. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  1. A review and comparison of fracture mineral investigations and their application to radioactive waste disposal

    International Nuclear Information System (INIS)

    Blyth, A.R.; Frape, S.K.; Tullborg, E.-L.

    2009-01-01

    A compilation and comparison of fracture mineral studies from the Canadian and Fennoscandian Shields and the French Massif Central shows many similarities indicating larger external control over fracture mineral deposition, with different rock types exerting local controls. The sites investigated represent a wide range of geological settings, and host rock types ranging from felsic intrusive and extrusives to ultramafic intrusives and volcanics that span an age range from 2.5 to 0.36 Ga. Typical fracture minerals found at Canadian Shield sites include calcite, quartz, chlorite and clays, and these do not appear to be dependant on age, erosional depth or geological environment. The Fennoscandian Shield has a much larger variety of fracture filling minerals with epidote, zeolites, prehnite, fluorite, pyrrhotite, Fe oxides, serpentine, graphite, magnesite and barite in addition to the minerals typically found at Canadian Shield sites. The major control on fracture mineral type is most likely variations in rock type, and fluid chemistry and temperature. The C and O isotopic range of calcite is very similar among sites. Late-stage hydrothermal calcite, with strongly depleted δ 18 O values, is common at many sites. All of the sites have calcite with δ 18 O isotopic values in the range of -5 to -20 per mille PDB, indicative of formation from meteoric water or basinal brines that have undergone varying degrees of water/rock interaction. One Canadian and a few Swedish sites have calcite in the shallower portion of the rock that shows isotopic evidence of dissolution and re-precipitation in equilibrium with the present-day waters. There are some striking similarities in fluid inclusion data among sites. Most sites have an elevated temperature (100-300 deg. C), low salinity group of fluid inclusions within the NaCl-H 2 O system, and a lower temperature (50-150 deg. C), higher salinity group of fluid inclusions within the NaCl-CaCl 2 -H 2 O system. Fluid inclusion density

  2. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  3. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J hydraulic gradient. When the fluid flow is in a linear regime (i.e., J reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when

  4. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory - Part II: Results of Numerical and Experimental Tests

    Science.gov (United States)

    Wang, Ding; Ding, Pin-bo; Ba, Jing

    2018-03-01

    In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.

  5. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  6. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    Science.gov (United States)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  7. Three-Dimensional poroelastic effects during hydraulic fracturing in permeable rocks

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert W.

    2017-01-01

    A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  8. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  9. Geometrical properties of tension-induced fractures in granite

    International Nuclear Information System (INIS)

    Sato, Hisashi; Sawada, Atsushi; Yasuhara, Hideaki

    2011-03-01

    Considering a safe, long-term sequestration of energy byproducts such as high level radioactive wastes, it is of significant importance to well-constrain the hydraulic and transport behavior of targeted permeants within fractured rocks. Specifically, fluid flow within low-permeability crystalline rock masses (e.g., granite) is often dominated by transport in through-cutting fractures, and thus careful considerations are needed on the behavior. There are three planes along that granites fail most easily under tension, and those may be identified as the rift, grain, and hardway planes. This anisotropic fabric may be attributed to preferentially oriented microcrack sets contained within intact rock. In this research, geometrical properties of tension-induced fractures are evaluated as listed below; (1) Creation of tension-induced fractures considering the anisotropy clarified by elastic wave measurements. (2) Evaluation of geometrical properties in those fractures characterized by the anisotropy. In the item (1), the three planes of rift, grain and hardway were identified by measuring elastic wave. In the item (2), JRC, variogram, fractal dimension and distributions of elevations in the fracture surfaces were evaluated using digitized data of the fracture surfaces measured via a laser profilometry. Results show that rift planes are less rougher than the other planes of grain and hardway, and grain planes are generically rougher than the other planes of rift and hardway. It was also confirmed that the fracture shape anisotropy was correlated with the direction of the slit which constructed during tensile tests. On the other hand, the tendency peculiar to the direction of slit and granites fail about the estimated aperture distribution from fracture shape was not seen. (author)

  10. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  11. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  12. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang

    2017-03-01

    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  13. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  14. Impact of comorbidities on hospitalization costs following hip fracture.

    Science.gov (United States)

    Nikkel, Lucas E; Fox, Edward J; Black, Kevin P; Davis, Charles; Andersen, Lucille; Hollenbeak, Christopher S

    2012-01-04

    Hip fractures are common in the elderly, and patients with hip fractures frequently have comorbid illnesses. Little is known about the relationship between comorbid illness and hospital costs or length of stay following the treatment of hip fracture in the United States. We hypothesized that specific individual comorbid illnesses and multiple comorbid illnesses would be directly related to the hospitalization costs and the length of stay for older patients following hip fracture. With use of discharge data from the 2007 Nationwide Inpatient Sample, 32,440 patients who were fifty-five years or older with an isolated, closed hip fracture were identified. Using generalized linear models, we estimated the impact of comorbidities on hospitalization costs and length of stay, controlling for patient, hospital, and procedure characteristics. Hypertension, deficiency anemias, and fluid and electrolyte disorders were the most common comorbidities. The patients had a mean of three comorbidities. Only 4.9% of patients presented without comorbidities. The average estimated cost in our reference patient was $13,805. The comorbidity with the largest increased hospitalization cost was weight loss or malnutrition, followed by pulmonary circulation disorders. Most other comorbidities significantly increased the cost of hospitalization. Compared with internal fixation of the hip fracture, hip arthroplasty increased hospitalization costs significantly. Comorbidities significantly affect the cost of hospitalization and length of stay following hip fracture in older Americans, even while controlling for other variables.

  15. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    Science.gov (United States)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  16. Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks

    Science.gov (United States)

    Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.

    2017-12-01

    Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated

  17. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0

  18. Field study of completion fluids to enhance gas production in the Barnett Shale

    Energy Technology Data Exchange (ETDEWEB)

    Penny, G.S.; Pursley, J.T. [CESI Chemical, Houston, TX (United States); Clawson, T.D. [Antero Resources Corp., Denver, CO (United States)

    2006-07-01

    In the mid 1990s, the initial Barnett shale wells were completed with massive hydraulic fracturing treatments. Light sand fracturing in slick water consisting of water and friction reducer was used in order to reduce stimulation costs without reducing production. Field and lab data were presented for commonly used fluids pumped in the Barnett Shale. An evaluation of these surfactants as well as a microemulsion system was also conducted. An illustration of how the microemulsion system speeds up the cleanup of injected fluids in tight gas cores was presented, Overall, the study treated and analysed over 200 wells and made side by side comparisons of treatment variations. Laboratory studies that were presented included leakoff control, capillary end effect control, relative permeability and fracture cleanup. The field studies in the Barnett Shale provided the following information: a geological overview, a description of the Barnett Shale fracturing/refracturing program, and evaluation of production data. It was concluded that water saturation decreased and relative permeability to gas improved as evidenced through the core data. The study also showed that including the microemulsion in low permeability gas cores would cut the capillary pressure by half. 12 refs., 16 figs., 3 tabs.

  19. Summary review of workshop on movement of fluids in largely impermeable rocks

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1977-01-01

    As a starting point for the workshop, the following general question was posed, ''What data base, analytical methodology, and technology are necessary to adequately forecast the physical behavior of the subsurface disposal facility.'' The critical consideration was the movement of fluids through fractured rock masses. The first day of the workshop was devoted to general discussions of selected topics. On the second day, the participants were divided into six working groups: (1) definition and characterization of the fracture system; (2) in-situ measurement of fluid flow; (3) effects of perturbations on the flow system; (4) role of numerical modeling; (5) isotopic and geochemical methods; and (6) monitoring programs to verify flow system. The reports prepared by each working group were edited to some extent

  20. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  1. Cracking mechanism of shale cracks during fracturing

    Science.gov (United States)

    Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.

    2018-06-01

    In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.

  2. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  3. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  4. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2002-12-31

    We have extended a three-dimensional finite difference elastic wave propagation model previously developed at the Massachusetts Institute of Technology (MIT) Earth Resources Laboratory (ERL) for modeling and analyzing the effect of fractures on seismic waves. The code has been translated into C language and parallelized [using message passing interface (MPI)] to allow for larger models to be run on Linux PC computer clusters. We have also obtained another 3-D code from Lawrence Berkeley Laboratory, which we will use for verification of our ERL code results and also to run discrete fracture models. Testing of both codes is underway. We are working on a new finite difference model of borehole wave propagation for stressed formations. This code includes coordinate stretching to provide stable, variable grid sizes that will allow us to model the thin fluid annulus layers in borehole problems, especially for acoustic logging while drilling (LWD) applications. We are also extending our analysis routines for the inversion of flexural wave dispersion measurements for in situ stress estimates. Initial results on synthetic and limited field data are promising for a method to invert cross dipole data for the rotation angle and stress state simultaneously. A meeting is being scheduled between MIT and Shell Oil Company scientists to look at data from a fractured carbonate reservoir that may be made available to the project. The Focus/Disco seismic processing system from Paradigm Geophysical has been installed at ERL for field data analysis and as a platform for new analysis modules. We have begun to evaluate the flow properties of discrete fracture distributions through a simple 2D numerical model. Initial results illustrate how fluid flow pathways are very sensitive to variations in the geometry and apertures of fracture network.

  5. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  6. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  7. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  8. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    Science.gov (United States)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  9. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  10. Fluids and the evolution of rock mechanical properties

    International Nuclear Information System (INIS)

    Reuschle, Thierry

    1989-01-01

    This research thesis reports the study of the various phenomena of fluid-solid interaction (mechanical or chemical interaction with fracturing by fluid overpressure, slow crack propagation, and pore deformation by transfer in solution) which may occur in the interaction of fluids with rocks. The author first presents the formalism of slow crack propagation based on the generalisation of the Griffith criterion. The model results are compared with experimental results obtained on four materials (glass, quartz, sandstone, and micrite) by using the double-torsion test. In the second part, the author addresses the issue of pore deformation by transfer in solution: dissolution and crystallisation under stress. The Gibbs chemical potential equation is firstly generalised to the case of a circular pore, and a formalism combining mechanics and thermodynamics is then proposed. A set of simulations highlights important parameters. In the third part, the author addresses the problem of fluid-rock mechanical interaction by studying the mechanical role of fluid pressure in crack initiation and propagation [fr

  11. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  12. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  13. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  14. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  15. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  16. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    Science.gov (United States)

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid

  17. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Science.gov (United States)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  18. First successful multistage hydraulic fracture monitoring for a horizontal well in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Guillermo; Rios, Austreberto; Riano, Juan M. [PEMEX, Mexico, DF (Mexico); Sanchez, Adrian; Bustos, Tomas [Schlumberger, Mexico DF (Mexico)

    2008-07-01

    In their constant effort to increase the production from Chicontepec, PEMEX drilled a multilateral well with three horizontal lateral sections; the intention was to increase the production in comparison with vertical wells. In the second arm of this well four intervals were identified to be fractured, this was a new approach since it was the first occasion that multiple fractures were planned in a horizontal well. An important part of the project was the evaluation of the effectiveness of the hydraulic fracturing. This evaluation was performed by micro seismic monitoring during the treatment. This technology allows the detection of events generated during the fluid injection in the reservoir, with receivers located in a nearby monitoring well. The interpretation of this data allows the identification in 3 D space of the fracture locations. This information is valuable for optimization of subsequent treatments and for planning the field development. The data is recorded in real time and can be used to make decisions during the fracturing operation. In this paper we describe the results of the hydraulic fracturing monitoring performed in four intervals in a horizontal well showing the geometry and direction of each one of the fractures. (author)

  19. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  20. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    Science.gov (United States)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the

  1. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  2. Modelling of reactive fluid transport in deformable porous rocks

    Science.gov (United States)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  3. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  4. HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method

    International Nuclear Information System (INIS)

    Advani, S.H.; Lee, J.K.; Lee, T.S.

    2001-01-01

    1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport

  5. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Everitt, R A; Martin, C D; Davison, C C [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL`s Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics.

  6. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Brown, A.; Everitt, R.A.; Martin, C.D.; Davison, C.C.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL's Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics

  7. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  8. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  9. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  10. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1994-06-01

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, q i , for each inflow into the well bore. In the present code the user supplies the location, constant pressure, h i , transmissivity, T i , and storativity, S i , for each fracture, as well as the initial water level in the well, h w (0), In addition, the input data contains changes in the water level at later times, Δh w (t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρ i , and the initial uniform density of the well bore fluid, ρ w (0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  11. Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden

    International Nuclear Information System (INIS)

    Drake, Henrik; Tullborg, Eva-Lena

    2009-01-01

    Fracture minerals calcite, pyrite, gypsum, barite and quartz, formed during several events have been analysed for δ 13 C, δ 18 O, δ 34 S, 87 Sr/ 86 Sr, trace element chemistry and fluid inclusions in order to gain knowledge of the paleohydrogeological evolution of the Simpevarp area, south-eastern Sweden. This area is dominated by Proterozoic crystalline rocks and is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in order to find a suitable location for a deep-seated repository for spent nuclear fuel. Knowledge of the paleohydrogeological evolution is essential to understand the stability or evolution of the groundwater system over a time scale relevant to the performance assessment for a spent nuclear fuel repository. The ages of the minerals analysed range from the Proterozoic to possibly the Quaternary. The Proterozoic calcite and pyrite show inorganic and hydrothermal-magmatic stable isotope signatures and were probably formed during a long time period as indicated by the large span in temperatures (c. 200-360 deg. C) and salinities (0-24 wt.% eq. CaCl 2 ), obtained from fluid inclusion analyses. The Paleozoic minerals were formed from organically influenced brine-type fluids at temperatures of 80-145 deg. C. The isotopic results indicate that low temperature calcite and pyrite may have formed during different events ranging in time possibly from the end of the Paleozoic until the Quaternary. Formation conditions ranging from fresh to brackish and saline waters have been distinguished based on calcite crystal morphologies. The combination of δ 18 O and crystal morphologies show that the fresh-saline water interface has changed considerably over time, and water similar to the present meteoric water and brackish seawater at the site, have most probably earlier been residing in the bedrock. Organic influence and closed system in situ microbial activity causing disequilibrium are indicated by extremely low δ 13 C (down

  12. Etude hydromecanique d'une fracture en cisaillement sous contrainte normale constante

    Science.gov (United States)

    Lamontagne, Eric

    This research study deals with the effects of shear direction and injection flow rate on the flow directional anisotropy for a given normal stress. It presents experimental works on hydromechanical shear behaviour of a fracture under constant normal stress conditions that permits the characterisation of the intrinsic hydraulic transmissivity in relation with the directional anisotropy of the roughness morphology on the fracture surfaces. Tests were performed on mortar replicas of a natural fracture so that the fracture roughness and void space geometry were kept the same for each test. The experimental work program was performed through direct shear tests on the fracture replicas in four shear directions under four constant normal stress levels. The application of the normal stress was followed by several injections of fluid under constant flow rate. Then, for each defined shear displacement, several injections of fluid were done at different flow rate but under constant flow rate. The test results show that: (1) for the whole shear tests, the global intrinsic transmissivity is included within an enveloping zone of about one order of size. The transmissivity curves within the enveloping zone has a particularity to increase about two orders of size in the first millimetre of shear displacement and subsequently stabilised rapidly; (2) the highest dilatancy do not correspond necessarily with the highest intrinsic transmissivity so that, the behaviour of the global intrinsic transmissivity is not directly proportional to the fracture dilatancy during shear; (3) after the peak shear stress, the divergence is more marked between the global intrinsic transmissivity curves at various flow rate; (4) after peak shear strength and the beginning of asperity degradation, the gradual passage to residual friction shear behaviour causes a directional flow anisotropy and a reorientation of the flow chenalisation direction sub perpendicularly to the shear direction; (5) the

  13. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  14. Modifications of Carbonate Fracture Hydrodynamic Properties by CO 2 -Acidified Brine Flow

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-15

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  15. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks

    International Nuclear Information System (INIS)

    Rios, Francisco Javier; Fuzikawa, Kazuo; Alves, James Vieira; Neves, Jose Marques Correia

    2003-01-01

    A detailed fluid inclusion study of host rocks, is of fundamental importance in the selection of geologically suitable areas for high level nuclear waste repository constructions (HLRW). The LIFM-CDTN is enabled to develop studies that confirm: the presence or not, of corrosive fluid in minerals from host rocks of the repository and the possible presence of micro fractures (and fluid leakage) when these rocks are submitted to high temperatures. These fluid geochemistry studies, with permeability determinations by means of pressurized air injection must be carried out in rocks hosting nuclear waste. Micro fracture determination is of vital importance since many naturally corrosive solutions, present in the mineral rocks, could flow out through these plans affecting the walls of the repository. (author)

  16. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  17. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  18. Microbially Induced Calcite Precipitation (MICP) - A Technology for Managing Flow and Transport in Porous and Fractured Media

    Science.gov (United States)

    Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.

    2014-12-01

    Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.

  19. Experimental and Numerical Investigation of Preferential Flow in Fractured Network with Clogging Process

    Directory of Open Access Journals (Sweden)

    Xiaobing Chen

    2014-01-01

    Full Text Available In this study, physical experiments and numerical simulations are combined to provide a detailed understanding of flow dynamics in fracture network. Hydraulic parameters such as pressure head, velocity field, Reynolds number on certain monitoring cross points, and total flux rate are examined under various clogging conditions. Applying the COMSOL Multiphysics code to solve the Navier-Stokes equation instead of Reynolds equation and using the measured data to validate the model, the fluid flow in the horizontal 2D cross-sections of the fracture network was simulated. Results show that local clogging leads to a significant reshaping of the flow velocity field and a reduction of the transport capacity of the entire system. The flow rate distribution is highly influenced by the fractures connected to the dominant flow channels, although local disturbances in velocity field are unlikely to spread over the whole network. Also, modeling results indicate that water flow in a fracture network, compared with that in a single fracture, is likely to transit into turbulence earlier under the same hydraulic gradient due to the influence of fracture intersections.

  20. Electromagnetic Monitoring of Hydraulic Fracturing: Relationship to Permeability, Seismicity, and Stress

    Science.gov (United States)

    Thiel, Stephan

    2017-09-01

    Hydraulic fracking is a geoengineering application designed to enhance subsurface permeability to maximize fluid and gas flow. Fracking is commonly used in enhanced geothermal systems (EGS), tight shale gas, and coal seam gas (CSG) plays and in CO_2 storage scenarios. Common monitoring methods include microseismics and mapping small earthquakes with great resolution associated with fracture opening at reservoir depth. Recently, electromagnetic (EM) methods have been employed in the field to provide an alternative way of direct detection of fluids as they are pumped in the ground. Surface magnetotelluric (MT) measurements across EGS show subtle yet detectable changes during fracking derived from time-lapse MT deployments. Changes are directional and are predominantly aligned with current stress field, dictating preferential fracture orientation, supported by microseismic monitoring of frack-related earthquakes. Modeling studies prior to the injection are crucial for survey design and feasibility of monitoring fracks. In particular, knowledge of sediment thickness plays a fundamental role in resolving subtle changes. Numerical forward modeling studies clearly favor some form of downhole measurement to enhance sensitivity; however, these have yet to be conclusively demonstrated in the field. Nevertheless, real surface-based monitoring examples do not necessarily replicate the expected magnitude of change derived from forward modeling and are larger than expected in some cases from EGS and CSG systems. It appears the injected fluid volume alone cannot account for the surface change in resistivity, but connectedness of pore space is also significantly enhanced and nonlinear. Recent numerical studies emphasize the importance of percolation threshold of the fracture network on both electrical resistivity and permeability, which may play an important role in accounting for temporal changes in surface EM measurements during hydraulic fracking.

  1. Acute nursing care of the older adult with fragility hip fracture

    DEFF Research Database (Denmark)

    Maher, A.B.; Meehan, A.J.; Hertz, K.

    2013-01-01

    . Pressure Ulcers. Fluid Balance/Nutrition. Constipation/Catheter Associated Urinary Tract Infection. Vigilant nursing assessment and prompt intervention may prevent the development of the complications we discuss. If they do occur and are identified early on, they may resolve with appropriate and timely......The second part of this paper provides those who care for orthopaedic patients with evidence-supported international perspectives about acute nursing care of the older adult with fragility hip fracture. Developed by an international group of nurse experts and guided by a range of information from...... research and clinical practice, it focuses on nurse sensitive quality indicators during the acute hospitalisation for fragility hip fracture. Optimal care for the patient who has experienced such a fracture is the focus. This includes (in the first, earlier, part):. Pain. Delirium. and in this part...

  2. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    Science.gov (United States)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    experiments, there is a high pressure gradient in the leak-off zone in the direction normal to the fracture. Fluid pressure does not decrease considerably along the fracture, however, due to the relatively wide fracture aperture. This suggests that hydraulically induced fractures in unconsolidated materials may be considered to be within the toughness-dominated regime of hydraulic fracturing. Our results indicate that the primary influence on peak or initiation pressure comes from the remote stresses. However, fracture morphology changes significantly with other chosen parameters (stress, flow rate, rheology and permeability). Additionally, an important characteristic feature of fractures in our experiments is the frequent bluntness of the fracture tip, which suggests that plastic deformation at the fracture tip is important. Modeling shows that large openings at the fracture tip correspond to relatively large 'effective' fracture (surface) energy, which can be orders of magnitude greater than for typical (solid) rocks.

  3. Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method

    Directory of Open Access Journals (Sweden)

    Yunfeng Dai

    2017-01-01

    Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.

  4. Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer

    Science.gov (United States)

    Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul

    2017-12-01

    A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.

  5. Numerical modelling of single-phase flow in rough fractures with contacts

    Science.gov (United States)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2017-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  6. Monitoring massive fracture growth at 2-km depths using surface tiltmeter arrays

    Science.gov (United States)

    Wood, M.D.

    1979-01-01

    Tilt due to massive hydraulic fractures induced in sedimentary rocks at depths of up to 2.2 km have been recorded by surface tiltmeters. Injection of fluid volumes up to 4 ?? 105 liters and masses of propping agent up to 5 ?? 105 kg is designed to produce fractures approximately 1 km long, 50-100 m high and about 1 cm wide. The surface tilt data adequately fit a dislocation model of a tensional fault in a half-space. Theoretical and observational results indicate that maximum tilt occurs at a distance off the strike of the fracture equivalent to 0.4 of the depth to the fracture. Azimuth and extent of the fracture deduced from the geometry of the tilt field agree with other kinds of geophysical measurements. Detailed correlation of the tilt signatures with pumping parameters (pressure, rate, volume, mass) have provided details on asymmetry in geometry and growth rate. Whereas amplitude variations in tilt vary inversely with the square of the depth, changes in flow rate or pressure gradient can produce a cubic change in width. These studies offer a large-scale experimental approach to the study of problems involving fracturing, mass transport, and dilatancy processes. ?? 1979.

  7. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    Science.gov (United States)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation

  8. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Science.gov (United States)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  9. Proterozoic to Quaternary events of fracture mineralisation and oxidation in SE Sweden

    International Nuclear Information System (INIS)

    Drake, Henrik

    2008-12-01

    Fracture minerals and altered wall rock have been analysed to reveal the low-temperature evolution, especially regarding redox conditions, of the Simpevarp area, SE Sweden. This area is one of the two areas in Sweden investigated by the Swedish Nuclear fuel and Waste Management Co. in order to find a potential geological repository for spent nuclear fuel. The 1.8 Ga granitic to dioritic rocks in the area are generally un-metamorphosed and structurally well-preserved, although low-grade ductile shear zones and repeatedly reactivated fractures exist. Investigations of cross-cutting fractures along with a wide variety of fracture mineral analyses, such as stable isotopes and 40Ar/39Ar geochronology, have been used to distinguish a sequence of fracture filling generations. The characteristics of these generations indicate the low-temperature evolution of the area, including information of e.g. fluid origin, formation temperature, paleo stresses and relation to known geological events. Knowledge of the fracture mineral evolution is important for the conceptual geological and hydrogeochemical understanding of the site and supports predictions of future scenarios in the safety assessment. The fracture mineral generations identified have been formed at widely varying conditions starting in the Proterozoic with formation from inorganic hydrothermal fluids, continuing in the Paleozoic with formation from lower temperature brine type fluids with organic influence, and ranging into minerals formed from waters of varying salinity and with significant organic influence at conditions similar to the present conditions. However, the amount of potentially recent precipitates is very small compared to Proterozoic and Paleozoic precipitates. The fracture mineral parageneses have been associated, with varying confidence, to far-field effects of at least four different orogenies; the Svecokarelian orogeny (>1.75 Ga), the Danapolonian orogeny (∼1.47-1.44 Ga), the Sveconorwegian orogeny

  10. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model

    International Nuclear Information System (INIS)

    Sun, Zhi-xue; Zhang, Xu; Xu, Yi; Yao, Jun; Wang, Hao-xuan; Lv, Shuhuan; Sun, Zhi-lei; Huang, Yong; Cai, Ming-yu; Huang, Xiaoxue

    2017-01-01

    The Enhanced Geothermal System (EGS) creates an artificial geothermal reservoir by hydraulic fracturing which allows heat transmission through the fractures by the circulating fluids as they extract heat from Hot Dry Rock (HDR). The technique involves complex thermal–hydraulic–mechanical (THM) coupling process. A numerical approach is presented in this paper to simulate and analyze the heat extraction process in EGS. The reservoir is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks. Based on thermal non-equilibrium theory, the mathematical model of THM coupling process in fractured rock mass is used. The proposed model is validated by comparing it with several analytical solutions. An EGS case from Cooper Basin, Australia is simulated with 2D stochastically generated fracture model to study the characteristics of fluid flow, heat transfer and mechanical response in geothermal reservoir. The main parameters controlling the outlet temperature of EGS are also studied by sensitivity analysis. The results shows the significance of taking into account the THM coupling effects when investigating the efficiency and performance of EGS. - Highlights: • EGS reservoir comprising discrete fracture networks and matrix rock is modeled. • A THM coupling model is proposed for simulating the heat extraction in EGS. • The numerical model is validated by comparing with several analytical solutions. • A case study is presented for understanding the main characteristics of EGS. • The THM coupling effects are shown to be significant factors to EGS's running performance.

  11. Contribution de l'homogénéisation à l'étude de la filtration d'un fluide en milieu poreux fracturé Contribution of the Homogenization Process to the Seepage Through Fractured Porous Media

    Directory of Open Access Journals (Sweden)

    Boutin C.

    2006-11-01

    Full Text Available Cet article est consacré à la modélisation de l'écoulement d'un fluide dans un massif poreux fracturé. Contrairement aux approches phénoménologiques, nous traitons le problème au moyen de la méthode d'homogénéisation par développements asymptotiques en milieux périodiques. Les comportements macroscopiques sont ainsi déduits de la physique à l'échelle microscopique, sans autre prérequis. Deux cas ont été examinés : l'écoulement d'un gaz dans un massif rigide et l'écoulement d'un fluide incompressible dans une matrice déformable. Dans ces deux situations, on met en évidence le rôle fondamental du rapport entre les deux séparations d'échelles (échelle macroscopique-échelle des fissures et échelle des fissures-échelle des pores. Les descriptions macroscopiques sont conditionnées par la relation entre les séparations d'échelles, le couplage interéchelle étant maximum lorsque les rapports d'échelles sont identiques. This paper deals with the seepage of a fluid through a fissured porous medium. Conversely to the phenomenological approaches we treat this problem by using the homogenization method of asymptotic developments for periodic structures. Thus the macroscopic behaviours are directly deduced from the physics at the microscopic scale, without any prerequisite. Two cases have been investigated : the flow of a gas through a rigid medium and the flow of an incompressible fluid through a deformable matrix. In both situations, it appears that the ratio between the two scale separations (macroscopic scale-fissure scale and fissure scale-pore scale plays an essential role. The macroscopic description depends on the scale separations, the interscale coupling being maximum when the scales are equally separated.

  12. A novel approach proposed for fractured zone detection using petrophysical logs

    International Nuclear Information System (INIS)

    Tokhmechi, B; Memarian, H; Noubari, H A; Moshiri, B

    2009-01-01

    Fracture detection is a key step in wellbore stability and fractured reservoir fluid flow simulation. While different methods have been proposed for fractured zones detection, each of them is associated with certain shortcomings that prevent their full use in different related engineering applications. In this paper, a novel combined method is proposed for fractured zone detection, using processing of petrophysical logs with wavelet, classification and data fusion techniques. Image and petrophysical logs from Asmari reservoir in eight wells of an oilfield in southwestern Iran were used to investigate the accuracy and applicability of the proposed method. Initially, an energy matching strategy was utilized to select the optimum mother wavelets for de-noising and decomposition of petrophysical logs. Parzen and Bayesian classifiers were applied to raw, de-noised and various frequency bands of logs after decomposition in order to detect fractured zones. Results show that the low-frequency bands (approximation 2, a 2 ) of de-noised logs are the best data for fractured zones detection. These classifiers considered one well as test well and the other seven wells as train wells. Majority voting, optimistic OWA (ordered weighted averaging) and pessimistic OWA methods were used to fuse the results obtained from seven train wells. Results confirmed that Parzen and optimistic OWA are the best combined methods to detect fractured zones. The generalization of method is confirmed with an average accuracy of about 72%

  13. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    Science.gov (United States)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  14. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Science.gov (United States)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  15. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  16. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  17. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  18. Coupled deformation and fluid-flow behavior of a natural fracture in the CSM in situ test block

    International Nuclear Information System (INIS)

    Gertsch, L.S.

    1989-01-01

    The primary goal was the evaluation of an in situ block test as a data source for modeling the coupled flow and mechanical behavior of natural rock fractures. The experiments were conducted with the Colorado School of Mines in situ test block, an 8 m 3 (280 ft 3 ) gneiss cube which has been the focus of several previous studies. A single continuous fracture within the block was surrounded with instruments to measure stresses, deformations, and gas conductivity. The setup was subjected to combinations of normal and shear stress by pressurizing the block sides differentially with hydraulic flatjacks. The induced fracture deformation, as measured by two separate sensor systems, did not correlate closely with the fracture conductivity changes or with each other. The test fracture is more complicated physically than two parallel rock faces. Many joints which were not detected by mapping intersect the test fracture and strongly influence its behavior. These invisible joints create sub-blocks which react complexly to changes in applied load. The flow tests reflected the aggregate sub-block dislocations in the flow path. The deformation readings, however, were the movements of discrete points sparsely located among the sub-blocks. High-confidence extrapolation of block test results to large volumes, such as required for nuclear waste repository design, is not feasible currently. Present instrumentation does not sample rock mass behavior in situ at the proper scales. More basically, however, a fundamental gap exists between the nature of jointed rock and our conception of it. Therefore, the near-field rock mass must be discounted as an easily controllable barrier to groundwater flow, until radically different approaches to rock mass testing and modeling are developed

  19. Fluids circulation during the Miocene rifting of the Penedès half-graben, NE Iberian Peninsula

    Science.gov (United States)

    Baqués, Vinyet; Travé, Anna; Cantarero, Irene

    2013-04-01

    The Penedès half-graben, located in the north-western part of the Mediterranean, is a NE-SW oriented basin generated during the Miocene rifting. This graben is bounded to the northwest by the SE-dipping Vallès-Penedès fault, which places the Mesozoic rocks in contact with the Miocene basin-fill. The basin is filled with an up to 4 km thick succession of sediments divided into three lithostratigraphic units. From base to top: (1) a lower continental complex, (2) a continental to marine complex and (3) an upper continental complex. These units are covered by Pliocene deposits which onlap a Messinian regional erosive surface. The structural features within the Penedès half-graben allow defining three deformational phases during the Miocene rifting. The first, during the syn-rift, two successive stages of NE-SW normal faults were formed. The second, during the early post-rift, one stage of NE-SW normal faults and one minor compression phase with a dextral directional developed. The third, during the late post-rift, two successive stages of N-S trending extensional fractures (faults and joints) and one minor compression with a sinistral component developed. The fractures related to the syn-rift stage acted as conduits for meteoric fluids both, in the phreatic and in the vadose zone. During the early post-rift, Fe2+- rich fluids precipitated oxides along the NE-SW fault planes. The dextral directional faults served as conduits for meteoric fluids which reequilibrated totally the marine Miocene host rocks under the phreatic environment. The late post-rift stage was characterized by marine fluids upflowing through the N-S fractures, probably derived from the Miocene marine interval, which mixed with meteoric fluids producing dolomitization. The second set of N-S fractures served as conduits for meteoric fluids characterised by δ13C-depleted soil-derived CO2 attributed to precipitation in the vadose zone. The change from phreatic to vadose meteoric environment and the

  20. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.K.; Hanks, C.L.; Whalen, M.T.; Jensen, J.; Atkinson, P.K.; Brinton, J.S.

    2001-01-09

    The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding and lithostratigraphy on fracture patterns, (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics, and (4) The influence of lithostratigraphy and deformation on fluid flow.

  1. Generation and maintenance of low effective pressures due to fluid flow in fractured rocks

    Science.gov (United States)

    Garagash, D.; Brantut, N.; Schubnel, A.; Bhat, H. S.

    2017-12-01

    The pore fluid pressure is expected to increase with increasing depth in the crust, primarily due to gravity forces. Because direct measurements are impossible beyond a few kilometers depths, the pore pressure gradient is often assumed to be linear (e.g., hydrostatic). However, a number of processes can severely modify the fluid pressure distribution in the crust. Here, we investigate the effect of fluid flow coupled to nonlinear permeability-effective pressure relationship. We performed a set of laboratory fluid flow experiments on thermally cracked Westerly granite at confining pressures up to 200 MPa and pore fluid pressures up to 120 MPa. Fluid flow was generated by imposing very strong pore pressure differences, up to 120 MPa, between the ends of the sample. The vertical fluid pressure distribution inside the sample was inferred by a set of 8 radial strain gauges, and an array of 10 P- and S-wave transducers. When the effective stress is kept near zero at one end of the sample and maintained high at the other end, the steady-state pore pressure profile is nonlinear. The effective stress, as inferred from the strain gauge array, remains close to zero through 2/3 of the sample, and increases sharply near the drained end of the sample. The ultrasonic data are used to build a vertical P- and S-wave velocity structure. The wave velocity profiles are consistent with a nonlinear relationship between wave velocity and effective pressure, as expected in thermally cracked granite. Taken together, our experimental data confirm the theoretical prediction that near zero effective stress can be generated through significant sections of rocks as a response to an imposed fluid flow. This has strong implications for the state of stress of the Earth's crust, especially around major continental transform faults that act as conduits for deep volatiles.

  2. Rostral mandibular fracture repair in a pet bearded dragon (Pogona vitticeps).

    Science.gov (United States)

    Nau, Melissa R; Eshar, David

    2018-04-15

    CASE DESCRIPTION A 2-year-old male bearded dragon (Pogona vitticeps) was evaluated because of a traumatic mandibular fracture. CLINICAL FINDINGS An open comminuted fracture of the rostral aspect of the right mandible was evident, with a fragment of bone exposed and dorsally displaced. Whole-body radiography revealed no evidence of additional injury. Other findings were unremarkable, except for moderate anemia (PCV, 19%). TREATMENT AND OUTCOME The fracture fragments were stabilized with 2 crossed 36-gauge interfragmentary wire loops. An external fixator device was fashioned from four 25-gauge needles inserted at alternating angles through the fracture fragments; plastic IV fluid line tubing filled with dental acrylic was used as a connecting bar. One day after surgery, the lizard had regained its typical activity level and appetite. Body weight was measured and the external fixator was inspected 1 week after surgery and monthly thereafter. Three months after initial injury, the fracture was stable, radiography revealed bony callus formation at the fracture site, and the external fixator was removed. Recheck radiography performed 5.5 months after initial injury revealed complete osseous union of the fracture fragments, and the interfragmentary wires were removed. CLINICAL RELEVANCE Surgical management of the traumatic comminuted mandibular fracture in this bearded dragon by means of a combination of internal and external fixation resulted in complete healing of the mandible and restoration of function. Management of this complicated fracture was achieved with the aid of readily available and inexpensive supplies in a clinical setting, which may be useful to other clinicians in the management of similar cases.

  3. Assessing the reactivation potential of pre-existing fractures in the southern Karoo, South Africa: Evaluating the potential for sustainable exploration across its Critical Zone

    Science.gov (United States)

    Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil

    2017-10-01

    Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible

  4. Cerebrospinal fluid markers of neuroinflammation in delirium: A role for interleukin-1β in delirium after hip fracture

    Science.gov (United States)

    Cape, Eleanor; Hall, Roanna J; van Munster, Barbara C; de Vries, Annick; Howie, Sarah EM; Pearson, Andrew; Middleton, Scott D; Gillies, Fiona; Armstrong, Ian R; White, Tim O; Cunningham, Colm; de Rooij, Sophia E; MacLullich, Alasdair MJ

    2014-01-01

    Objective Exaggerated central nervous system (CNS) inflammatory responses to peripheral stressors may be implicated in delirium. This study hypothesised that the IL-1β family is involved in delirium, predicting increased levels of interleukin-1β (IL-1β) and decreased IL-1 receptor antagonist (IL-1ra) in the cerebrospinal fluid (CSF) of elderly patients with acute hip fracture. We also hypothesised that Glial Fibrillary Acidic Protein (GFAP) and interferon-γ (IFN-γ) would be increased, and insulin-like growth factor 1 (IGF-1) would be decreased. Methods Participants with acute hip fracture aged > 60 (N = 43) were assessed for delirium before and 3–4 days after surgery. CSF samples were taken at induction of spinal anaesthesia. Enzyme-linked immunosorbent assays (ELISA) were used for protein concentrations. Results Prevalent delirium was diagnosed in eight patients and incident delirium in 17 patients. CSF IL-1β was higher in patients with incident delirium compared to never delirium (incident delirium 1.74 pg/ml (1.02–1.74) vs. prevalent 0.84 pg/ml (0.49–1.57) vs. never 0.66 pg/ml (0–1.02), Kruskal–Wallis p = 0.03). CSF:serum IL-1β ratios were higher in delirious than non-delirious patients. CSF IL-1ra was higher in prevalent delirium compared to incident delirium (prevalent delirium 70.75 pg/ml (65.63–73.01) vs. incident 31.06 pg/ml (28.12–35.15) vs. never 33.98 pg/ml (28.71–43.28), Kruskal–Wallis p = 0.04). GFAP was not increased in delirium. IFN-γ and IGF-1 were below the detection limit in CSF. Conclusion This study provides novel evidence of CNS inflammation involving the IL-1β family in delirium and suggests a rise in CSF IL-1β early in delirium pathogenesis. Future larger CSF studies should examine the role of CNS inflammation in delirium and its sequelae. PMID:25124807

  5. Fracture mechanics assessment of surface and sub-surface cracks in the RPV under non-symmetric PTS loading

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.

  6. Implications of Y-fluting microstructures in zircaloy stress-corrosion fracture and analogous systems

    International Nuclear Information System (INIS)

    Banks, T.M.; Garlick, A.

    1982-01-01

    Transgranular cleavage is an important mode of crack propagation during stress-corrosion cracking (SCC) of Zircaloy in iodine vapour; and another characteristic feature is the presence of parallel closely spaced ridges. These are often referred to as Y-flutings because each ridge takes the form of an inverted Y when viewed along the direction of crack growth. The flutings are shown here to be formed by localised ductile parting of the Zircaloy near the tips of cleavage cracks; high mechanical constraints in those regions and the limited number of available slip systems result in the formation of a planar array of parallel tunnels. Upon final separation these appear as a pattern of parallel ridges on each fracture face. Striking similarities in morphology have been noted here between Y-flutings in Zircaloy and those produced during tests on unstable fluid interfaces: the direction of motion of the fluid interface can be determined from the Y-morphology and is in agreement with observations from Zircaloy SCC tests. It is further demonstrated that equations governing thermodynamic and kinetic instability of fluid interfaces can be adapted to relate the fluting spacing in Zircaloy to standard fracture mechanics parameters. (author)

  7. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  8. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  9. The impact of a (hyper)alkaline plume on (fractured) crystalline rock

    International Nuclear Information System (INIS)

    Alexander, Russell

    2012-01-01

    system to increase temporarily prior to sealing. The flow will then move to yet other parts of the network. Will the supply of alkalinity from the concrete to the fracture network be maintained, and will the porosity of the concretes themselves become sealed (clogged) as a result of carbonation and calcite precipitation? Carbonation (cause by dissolved carbonate in groundwater) might well cause the concretes to become sealed. The tendency of the system to seal seems clear, but it is hard to predict with certainty where sealing might occur. This would need better integration amongst geologists, hydrogeological modellers and geochemical modellers to develop more consistent coupled models. Will fracture seals formed by mineral precipitates persist or at least re-establish themselves after tectonic disturbance? There is ample evidence of multiple fluid flow and fracture sealing events in fractures, but there is a clear tendency towards calcite precipitation in systems involving carbonate bearing groundwaters and cementitious pore fluids. However, there was agreement that it would be difficult to rely on a safety argument that pervasive sealing of a fracture network would occur and persist. This is part of the reason why most disposal programmes aim to minimise pH perturbations (e.g. by minimising use of cements or using low-pH cements), rather than promoting fracture sealing by using large amounts of OPC cements

  10. Distal clavicular osteolysis: MR evidence for subchondral fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kassarjian, Ara; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Radiology, Yawkey Center, Boston, MA (United States); Llopis, Eva [Hospital de la Ribera, Department of Radiology, Valencia (Spain)

    2007-01-15

    To investigate the association between distal clavicular osteolysis and subchondral fractures of the distal clavicle at MRI. This study was approved by the hospital human research committee, which waived the need for informed consent. Three radiologists retrospectively analyzed 36 shoulder MR examinations in 36 patients with imaging findings of distal clavicular osteolysis. The presence of a subchondral fracture of the distal clavicle, abnormalities of the acromioclavicular joint, rotator cuff tears and labral tears were assessed by MRI. These cases were then compared with 36 age-matched controls. At MRI, 31 of 36 patients (86%) had a subchondral line within the distal clavicular edema, consistent with a subchondral fracture. Of the 36 patients, 32 (89%) had fluid in the acromioclavicular joint, while 27 of 36 patients (75%) had cysts or erosions in the distal clavicle. There were 13 patients (36%) with associated labral tears, while eight patients (22%) had partial-thickness rotator cuff tears. In the control group one of 36 (3%) had a subchondral line (P<0.05), while ten of 36 (28%) had rotator cuff tears and 13 of 36 (36%) had labral tears. These latter two were not statistically significant between the groups. A distal clavicular subchondral fracture is a common finding in patients with imaging evidence of distal clavicular osteolysis. These subchondral fractures may be responsible for the propensity of findings occurring on the clavicular side of the acromioclavicular joint. (orig.)

  11. Distal clavicular osteolysis: MR evidence for subchondral fracture

    International Nuclear Information System (INIS)

    Kassarjian, Ara; Palmer, William E.; Llopis, Eva

    2007-01-01

    To investigate the association between distal clavicular osteolysis and subchondral fractures of the distal clavicle at MRI. This study was approved by the hospital human research committee, which waived the need for informed consent. Three radiologists retrospectively analyzed 36 shoulder MR examinations in 36 patients with imaging findings of distal clavicular osteolysis. The presence of a subchondral fracture of the distal clavicle, abnormalities of the acromioclavicular joint, rotator cuff tears and labral tears were assessed by MRI. These cases were then compared with 36 age-matched controls. At MRI, 31 of 36 patients (86%) had a subchondral line within the distal clavicular edema, consistent with a subchondral fracture. Of the 36 patients, 32 (89%) had fluid in the acromioclavicular joint, while 27 of 36 patients (75%) had cysts or erosions in the distal clavicle. There were 13 patients (36%) with associated labral tears, while eight patients (22%) had partial-thickness rotator cuff tears. In the control group one of 36 (3%) had a subchondral line (P<0.05), while ten of 36 (28%) had rotator cuff tears and 13 of 36 (36%) had labral tears. These latter two were not statistically significant between the groups. A distal clavicular subchondral fracture is a common finding in patients with imaging evidence of distal clavicular osteolysis. These subchondral fractures may be responsible for the propensity of findings occurring on the clavicular side of the acromioclavicular joint. (orig.)

  12. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  13. A stratified percolation model for saturated and unsaturated flow through natural fractures

    International Nuclear Information System (INIS)

    Pyrak-Nolte, L.J.

    1990-01-01

    The geometry of the asperities of contact between the two surfaces of a fracture and of the adjacent void spaces determines fluid flow through a fracture and the mechanical deformation across a fracture. Heuristically we have developed a stratified continuum percolation model to describe this geometry based on a fractal construction that includes scale invariance and correlation of void apertures. Deformation under stress is analyzed using conservation of rock volume to correct for asperity interpenetration. Single phase flow is analyzed using a critical path along which the principal resistance is a result of laminar flow across the critical neck in this path. Results show that flow decreases with apparent aperture raised to a variable power greater than cubic, as is observed in flow experiments on natural fractures. For two phases, flow of the non-wetting phase is likewise governed by the critical neck along the critical path of largest aperture but flow of the wetting phase is governed by tortuosity. 17 refs., 10 figs

  14. Treatment of back flow fluids from shale gas exploration with recovery of uranium

    International Nuclear Information System (INIS)

    Gajda, D.; Zakrzewska-Koltuniewicz, G.; Abramowska, A.; Kiegiel, K.; Niescior-Borowinska, P.; Miskiewicz, A.; Olszewska, W.; Kulisa, K.; Samszynski, Z.; Drzewicz, P.; Konieczynska, M.

    2015-01-01

    Shale gas exploitation is the cause of many social protests. According to the protesters gas extraction technology threatens the environment: it consumes huge amounts of water, creates danger of poisoning drinking water, the formation of toxic wastewater, air contamination, noise, etc. Hydro-fracturing fluids could also leach radioactive isotopes e.g. uranium from the rock. The upper content of the main elements found in examined back flow fluids in Poland are the following: chlorine: 100.00 Kg/m 3 , sodium: 40.00 kg/m 3 , potassium: 0.90 kg/m 3 , lithium: 0.15 kg/m 3 , magnesium: 2.00 kg/m 3 , calcium: 20.00 kg/m 3 , strontium: 0.80 kg/m 3 and cesium: 0.06 kg/m 3 while the upper content of trace elements are the following: uranium: 3.5 g/m 3 , lanthanum: 12.4 g/m 3 , vanadium: 1.3 g/m 3 , yttrium: 1.3 g/m 3 , molybdenum: 2.0 g/m 3 and manganese: 9.7 g/m 3 . The recovery of uranium, and other valuable metals, from back flow fluids will reduce an environmental impact of hydro-fracturing process. This poster details the treatment of back flow fluids in Poland allowing rare earth elements and uranium recovery

  15. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    Science.gov (United States)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  16. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  17. Poromechanical response of naturally fractured sorbing media

    Science.gov (United States)

    Kumar, Hemant

    The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).

  18. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  19. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  20. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.