WorldWideScience

Sample records for fractured rock formations

  1. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  2. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  3. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  4. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  5. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  6. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  7. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  8. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  9. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  10. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  11. Rock mechanics in the disposal of radioactive wastes by hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    McClain, W C

    1968-01-01

    The ultimate capacity of a hydraulic-fracturing waste disposal facility is governed primarily by the integrity of the rocks overlying the injected wastes. The objective of this study is to analyze theoretically the stresses and strains generated by the injected wastes in an effort to understand the behavior of the system sufficiently well that the failure mechanism can be predicted and the capacity of the injection well estimated. The surface uplifts at Oak Ridge National Laboratory's fracturing site were compared with theoretical curves obtained by assuming the uplifts to be inversely analogous to the subsidence which occurs over mining excavations. This analysis, based on assumptions of homogeneity, isotropy, and linear elasticity, provided considerable insight into the mechanics of the process. The most probable mechanism of failure of the rock appears to be by the formation of a vertical instead of a horizontal fracture. Fracture orientation is controlled primarily by the orientation of the principal stress field in the rock. Each successive waste injection slightly modifies this stress field toward a condition more favorable to the formation of a vertical fracture. (16 refs.)

  12. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  13. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    Science.gov (United States)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  14. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    Science.gov (United States)

    2015-09-29

    is characterized by dark gray slate or phyllite, alternating with thin layers of light gray siltstone or sandstone . Table 1 summarizes the primary...sedimentary rocks of the Newark Basin. Competent rocks are primarily mudstones and sandstones of the Lockatong and Stockton Formations. Fill, weathered silt... sandstone , and characterized by water bearing bedding plane fractures. An array of open boreholes in the source area that were drilled for the 2002

  15. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  16. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    International Nuclear Information System (INIS)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented

  17. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented.

  18. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  19. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  20. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  1. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  2. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  3. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  4. Deep fracturation of granitic rock mass

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.; Bonijoly, D.; Dutartre, P.; Feybesse, J.L.; Gros, Y.; Landry, J.; Martin, P.

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater [fr

  5. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  6. Possible origin, nature, extent and tectomic position of joints and fracture in salt formations

    International Nuclear Information System (INIS)

    Weiss, H.M.

    1984-01-01

    The evaluation of about 500 bibliographic references for the safe ultimate storage in salt leds to the following results: fractures in rock salt and potash salt are formed in all types of storage, fractures are less numerous in a vertical storage than in a horizontal storage, nevertheless fissures are found in salt fomations containing liquids or gas undergoing rock pressures, fractures can be created during salt formation. Datation of formations by geologic methods and K-Ar method are considered. Deep formations (about 300m) are liquid and gas-tight, if homogenous and non perturbated. In all German permian formations are found indications of brine accumulation along fractures and tectonic zones

  7. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  8. Natural analogue studies in crystalline rock: the influence of water-bearing fractures on radionuclide immobilisation in a granitic rock repository

    International Nuclear Information System (INIS)

    Alexander, W.R.; MacKenzie, A.B.; Scott, R.D.; McKinley, I.G.

    1990-06-01

    Current Swiss concepts for the disposal of radioactive waste involve disposal in deep mined repositories to ensure that only insignificant quantities of radionuclides will ever reach the surface and so enter the biosphere. The rock formations presently considered as potential candidates for hosting radwaste repositories have thus been selected on the basis of their capacity to isolate radionuclides from the biosphere. An important factor in ensuring such containment is a very low solute transport rate through the host formation. However, it is considered likely that, in the formations of interest in the Swiss programme (eg. granites, argillaceous sediments, anhydrite), the rocks will be fractured to some extent even at repository depth. In the instance of the cumulative failure of near-field barriers in the repository, these hydraulically connected fractures in the host formation could be very important far-field routes of migration (and possible sites of retardation) of radionuclides dissolved in the groundwaters. In this context, the so-called 'matrix diffusion' mechanism is potentially very important for radionuclide retardation. This report is the culmination of a programme which has attempted to assess the potential influence of these water-bearing fractures on radionuclide transport in a crystalline rock radwaste repository. 162 refs., 36 figs., 16 tabs

  9. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  10. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  11. Matrix diffusion of simple cations, anions, and neutral species in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Sato, Haruo

    1999-01-01

    The diffusion of radionuclides into the pore spaces of a rock matrix and the pore properties in fractured crystalline rocks were studied. The work concentrated on the predominant water-conducting fracture system in the host granodiorite of the Kamaishi In Situ Test Site, which consists of fracture fillings and altered grandodiorite. Through-diffusion experiments to obtain effective and apparent diffusion coefficients (De and Da, respectively) for Na + , Cs + , HTO, Cl - , and SeO 3 2- as a function of ionic charge were conducted through the fracture fillings and altered and intact granodiorite. The total porosity φ, density, pore-size distribution, and specific surface area of the pores of the rocks were also determined by a water saturation method and Hg porosimetry. The average φ is, in the order from highest to lowest, as follows: fracture fillings (5.6%) greater than altered granodiorite (3.2%) greater than intact granodiorite (2.3%), and gradually it decreases into the matrix. The pore sizes of the intact and altered granodiorite range from 10 nm to 200 microm, and the fracture fillings from 50 nm to 200 microm, but almost all pores are found around 0.1 and 200 microm in the fracture fillings. The De values for all species are in the following order: fracture fillings greater than altered granodiorite greater than intact granodiorite, as with the rock porosity. In addition. no effect of ionic charge on De is found. No significant dependence for Da values on the rock porosity is found. The formation factors FF and geometric factors G of the rocks were evaluated by normalizing the free water diffusion coefficient Do for each species. The FF decreased with decreasing rock porosity, and an empirical equation for the rock porosity was derived to be FF = φ 1.57±0.02 . The G values showed a tendency to slightly decrease with decreasing rock porosity, but they were approximately constant (0.12 to 0.19) in this porosity range. This indicates that accessible pores

  12. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  13. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  14. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    Science.gov (United States)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation

  15. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    Science.gov (United States)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  16. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  17. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  18. Deep fracturation of granitic rock mass. Fracturation profonde des massifs rocheux granitiques

    Energy Technology Data Exchange (ETDEWEB)

    Bles, J L; Blanchin, R; Bonijoly, D; Dutartre, P; Feybesse, J L; Gros, Y; Landry, J; Martin, P

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater.

  19. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  20. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    International Nuclear Information System (INIS)

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  1. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  2. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    Science.gov (United States)

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  3. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2013-01-01

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  4. Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

    Directory of Open Access Journals (Sweden)

    Claudia Siqueira da Silveira

    2013-01-01

    Full Text Available Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.

  5. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  6. Experimental and Numerical Investigation of Rock Dynamic Fracture

    Directory of Open Access Journals (Sweden)

    Aliasghar Mirmohammadlou

    2017-06-01

    Full Text Available Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental methods are used for determination of dynamic fracture properties of materials. Among them, the Hopkinson pressure bar and the drop weight have been frequently used for rocks. On the other hand, numerical simulations are very useful in dynamic fracture studies. Among vast variety of numerical techniques, the powerful extended finite element method (XFEM enriches the finite element approximation with appropriate functions extracted from the fracture mechanics solution around a crack-tip. The main advantage of XFEM is its capability in modeling different on a fixed mesh, which can be generated without considering the existence of discontinuities. In this paper, first, the design of a drop weight test setup is presented. Afterwards, the experimental tests on igneous (basalt and calcareous (limestone rocks with single-edge-cracked bend specimen are discussed. Then, each experimental test is modeled with the XFEM code. Finally, the obtained experimental and numerical results are compared. The results indicate that the experimentally predicted dynamic fracture toughness has less than 8 percent difference with calculated dynamic fracture toughness from extended finite element method

  7. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  8. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    Science.gov (United States)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  9. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  10. Thermo-hydro-mechanical behavior of fractured rock mass

    International Nuclear Information System (INIS)

    Coste, F.

    1997-12-01

    The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)

  11. Example of fracture characterization in granitic rock

    International Nuclear Information System (INIS)

    Thorpe, R.K.

    1981-03-01

    A detailed study of geologic discontinuities for an underground heater test in highly fractured granitic rock is reported. Several prominent shear fractures were delineated within a 6 x 30 x 15 m rock mass by correlating surface mapping and borehole fracture logs. Oblique-reverse faulting is suspected on at least one of the surfaces, and its inferred borehole intercepts appear to be collinear in the direction of slickensiding observed in the field. Four distinct joint sets were identified, one of which coincides with the shear fractures. Another lies nearly horizontal, and two others are steeply inclined and orthogonal. Fracture lengths and spacings for the four joint sets are represented by lognormal probability distributions

  12. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  13. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  14. Creep in the sparsely fractured rock between a disposal vault and a zone of highly fractured rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1993-08-01

    AECL Research is responsible for investigating the feasibility and safety of the disposal of Canada's nuclear fuel waste deep in the plutonic rock of the Canadian Shield. The excavation of the disposal vault, the installation of sealing systems and the heat generated by the fuel waste will all perturb the in situ stress state of the rock mass. This computer codes HOTROK, MCROC and MCDIRC are used to analyze the influence of these stress perturbations on the mechanical behaviour of the rock mass. Time-dependent microcracking of the rock mass will lead to creep around openings in the vault. The analysis specifically estimates the resulting creep strain in the sparsely fractured rock between the edge of the disposal vault and a postulated zone of highly fractured rock. The estimates are extremely conservative. The conclusion reached is that the rock mass more than 3 m beyond the edge of the vault will experience < 0.001 creep strain 100 000 years after the fuel waste is emplaced. (author). 10 refs., 4 tabs., 4 figs

  15. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  16. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  17. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  18. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  19. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  20. Anisotropic characterization of rock fracture surfaces subjected to profile analysis

    International Nuclear Information System (INIS)

    Zhou, H.W.; Xie, H.

    2004-01-01

    The mechanical parameters of a rock fracture are dependent on its surface roughness anisotropy. In this Letter, we show how quantitatively describe the anisotropy of a rock fracture surface. A parameter, referred to as the index for the accumulation power spectral density psd*, is proposed to characterize the anisotropy of a rock fracture surface. Variation of psd*, with orientation angle θ of sampling, is also discussed

  1. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  2. Stress, Flow and Particle Transport in Rock Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomofumi

    2007-09-15

    The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured

  3. Large-Scale True Triaxial Apparatus for Geophysical Studies in Fractured Rock

    KAUST Repository

    Garcia, A. V.

    2018-05-12

    The study of fractured rock masses in the laboratory remains challenging because of the large specimen sizes and bulky loading systems that are required. This article presents the design, structural analysis, and operation of a compact and self-reacting true triaxial device for fractured rock. The frame subjects a 50 cm by 50 cm by 50 cm fractured rock specimen to a maximum stress of 3 MPa along three independent axes. Concurrent measurements include long-wavelength P-wave propagation, passive acoustic emission monitoring, deformations, and thermal measurements. The device can accommodate diverse research, from rock mass properties and geophysical fractured rock characterizations, to coupled hydro-chemo-thermo-mechanical processes, drilling, and grouting. Preliminary wave propagation data gathered under isotropic and anisotropic stress conditions for an assembly of 4,000 rock blocks demonstrate the system’s versatility and provide unprecedented information related to long-wavelength propagation in fractured rock under various stress anisotropies.

  4. Large-Scale True Triaxial Apparatus for Geophysical Studies in Fractured Rock

    KAUST Repository

    Garcia, A. V.; Rached, R. M.; Santamarina, Carlos

    2018-01-01

    The study of fractured rock masses in the laboratory remains challenging because of the large specimen sizes and bulky loading systems that are required. This article presents the design, structural analysis, and operation of a compact and self-reacting true triaxial device for fractured rock. The frame subjects a 50 cm by 50 cm by 50 cm fractured rock specimen to a maximum stress of 3 MPa along three independent axes. Concurrent measurements include long-wavelength P-wave propagation, passive acoustic emission monitoring, deformations, and thermal measurements. The device can accommodate diverse research, from rock mass properties and geophysical fractured rock characterizations, to coupled hydro-chemo-thermo-mechanical processes, drilling, and grouting. Preliminary wave propagation data gathered under isotropic and anisotropic stress conditions for an assembly of 4,000 rock blocks demonstrate the system’s versatility and provide unprecedented information related to long-wavelength propagation in fractured rock under various stress anisotropies.

  5. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  6. Transient diffusion from a waste solid into fractured porous rock

    International Nuclear Information System (INIS)

    Ahn, J.; Chambre, P.L.; Pigford, T.H.

    1988-01-01

    Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here the authors present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion

  7. Determining the REV for Fracture Rock Mass Based on Seepage Theory

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-01-01

    Full Text Available Seepage problems of the fractured rock mass have always been a heated topic within hydrogeology and engineering geology. The equivalent porous medium model method is the main method in the study of the seepage of the fractured rock mass and its engineering application. The key to the method is to determine a representative elementary volume (REV. The FractureToKarst software, that is, discrete element software, is a main analysis tool in this paper and developed by a number of authors. According to the standard of rock classification established by ISRM, this paper aims to discuss the existence and the size of REV of fractured rock masses with medium tractility and provide a general method to determine the existence of REV. It can be gleaned from the study that the existence condition of fractured rock mass with medium tractility features average fracture spacing smaller than 0.6 m. If average fracture spacing is larger than 0.6 m, there is no existence of REV. The rationality of the model is verified by a case study. The present research provides a method for the simulation of seepage field in fissured rocks.

  8. Channelling of flow through fractures in rock

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1987-05-01

    A method of mapping the channelling of flow in rock fractures formed by contacts between rock faces and of measuring the effective apertures of channels has been developed. Some typical results are given. (author)

  9. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  10. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  11. Long-range spatial dependence in fractured rock. Empirical evidence and implications for tracer transport

    International Nuclear Information System (INIS)

    Painter, S.

    1999-02-01

    Nonclassical stochastic continuum models incorporating long-range spatial dependence are evaluated as models for fractured crystalline rock. Open fractures and fracture zones are not modeled explicitly in this approach. The fracture zones and intact rock are modeled as a single stochastic continuum. The large contrasts between the fracture zones and unfractured rock are accounted for by making use of random field models specifically designed for highly variable systems. Hydraulic conductivity data derived from packer tests in the vicinity of the Aespoe Hard Rock Laboratory form the basis for the evaluation. The Aespoe log K data were found to be consistent with a fractal scaling model based on bounded fractional Levy motion (bfLm), a model that has been used previously to model highly variable sedimentary formations. However, the data are not sufficient to choose between this model, a fractional Brownian motion model for the normal-score transform of log K, and a conventional geostatistical model. Stochastic simulations conditioned by the Aespoe data coupled with flow and tracer transport calculations demonstrate that the models with long-range dependence predict earlier arrival times for contaminants. This demonstrates the need to evaluate this class of models when assessing the performance of proposed waste repositories. The relationship between intermediate-scale and large-scale transport properties in media with long-range dependence is also addressed. A new Monte Carlo method for stochastic upscaling of intermediate-scale field data is proposed

  12. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  13. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-01-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  14. Couple stresses and the fracture of rock.

    Science.gov (United States)

    Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier

    2015-03-28

    An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Drill-back studies examine fractured, heated rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs

  16. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    Science.gov (United States)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  17. Water flow characteristics of rock fractures

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    This report has been worked out within the project 'Groundwater flow and dispersion processes in fractured rock' supported by the National Board for Spent Nuclear Fuel (SKN) in Sweden, dnr 96/85. This project is attached to the safety problems involved in the final disposal of spent nuclear fuel. The purpose of the report is to give a survey of the knowledge of fracture characteristics and to discuss this knowledge in relation to the modelling of flow and dispersion of radioactive substances in the fractures

  18. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  19. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  20. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  1. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    International Nuclear Information System (INIS)

    Klavetter, E.A.; Peters, R.R.

    1986-07-01

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions

  2. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  3. Diffusivity and electrical resistivity measurements in rock matrix around fractures

    International Nuclear Information System (INIS)

    Kumpulainen, H.; Uusheimo, K.

    1989-12-01

    Microfracturing of rock matrix around permeable fractures was studied experimentally from drill core samples around major fractures. The methods used were diffusion measurements using a 36 Cl-tracer and electrical resistivity measurements. Rock samples were from the Romuvaara investigation site, the granite specimen around a partially filled carbonate fracture (KR4/333 m) and gneiss specimen around a slickenside fracture (KR1/645 m). A consistent difference of one to two orders of magnitude in the levels of the methods with regard to the effective diffusion coefficients for Cl - -ion was found, the electrical resistivity measurement giving higher values. On the basis of the diffusion measurements the diffusion porosities could be calculated but these remained one to two orders of magnitude lower than that expected for granitic rocks using the water saturation method. A possible reason for these differences could have been the low, in some cases 0.004 M NaC1-concentration in the diffusion experiments vs. the 1 M NaCl-concentration used in the electrical resistivity measurements. Due to the small number of specimens and cross sectional areas of only 2 cm 2 , rock inhomogeneity effects were significant making the interpretation of the results somewhat troublesome. Porosities on fracture surfaces seemed to be higher than in the deeper, more intact rock matrix

  4. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  5. Self-sealing of excavation induced fractures in clay host rock

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig (Germany)

    2015-07-01

    Excavation of an underground repository for disposal of radioactive waste in clay formations generates fractures around the openings, which may act as pathways for water transport and radionuclides migration. Because of the favorable properties of the clay rocks such as the rheological deformability and swelling capability, a recovery process of the excavation damaged zone (EDZ) can be expected due to the combined impact of rock compression, backfill resistance, and clay swelling during the post-closure phase. Another important issue is the impact of gases produced from anoxic corrosion of waste containers and other metallic components within the repository. The EDZ may act as a conduit for preferential gas flow, depending on the extent of the recovery process. For the safety assessment of a repository, the self-sealing behaviour and impact on water and gas transport through the EDZ have to be characterized, understood, and predicted. Recently, GRS has extensively investigated these important issues with various kinds of laboratory and in- situ experiments under relevant repository conditions. Test samples were taken from the Callovo-Oxfordian argillite at Bure in France and the Opalinus clay (shaly facies) at Mont Terri in Switzerland. Major findings are summarized as follows. As observed in laboratory and in-situ, the gas permeabilities of the claystones increase with stress-induced damage by several orders of magnitude from the impermeable state up to high levels of 10{sup -12}-10{sup -13} m{sup 2}. When hydrostatic confining stress is applied and increased, the fractures in the claystones tend to close up, leading to a decrease in gas permeability down to different levels of 10{sup -16}-10{sup -21} m{sup 2} at stresses in a range of 10 to 20 MPa. As water enters and flows through fractures, the clay matrix can take up a great amount of the water and expand into the interstices. Consequently, the hydraulic conductivity decreases dramatically by several orders of

  6. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  7. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Watkins, D.J.; Tsang, Y.W.

    1981-01-01

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  8. Formation evaluation of fractured basement, Cambay Basin, India

    International Nuclear Information System (INIS)

    Gupta, Saurabh Datta; Farooqui, M Y; Chatterjee, Rima

    2012-01-01

    Unconventional reservoirs such as fractured basalts, shale gas and tight sand are currently playing an important role in producing a significant amount of hydrocarbon. The Deccan Trap basaltic rocks form the basement of the Cambay Basin, India, and hold commercially producible hydrocarbon. In this study two wells drilled through fractured basalts are chosen for evaluating the lithology, porosity and oil saturation of the reservoir sections. Well logs, such as gamma ray, high resolution resistivity, litho density, compensated neutron and elemental capture spectroscopy, have been used in cross-plotting techniques for lithology and mineral identification. Formation micro imagery log data have been analysed to quantify the fractures and porosity in the fractured reservoirs for a well in the south Ahmedabad block of the Cambay Basin. The results of the analysis of two wells are presented and discussed and they are found to be in good agreement with geological and production data. (paper)

  9. Fracturing formations in wells

    Energy Technology Data Exchange (ETDEWEB)

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  10. Ozone generation by rock fracture: Earthquake early warning?

    Energy Technology Data Exchange (ETDEWEB)

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  11. Study on flow and mass transport through fractured sedimentary rocks (2)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Karasaki, Kenzi; Sato, Hisashi; Sawada, Atsushi

    2009-03-01

    It is important for safety assessment of HLW geological disposal to understand hydro-geological conditions at the investigation area, and to evaluate groundwater flow and mass transport model and parameters, at each investigation phase. Traditionally, for Neogene sedimentary rock, the grain spacing of sediments has been considered as the dominant migration path. However, fractures of sedimentary rock could act as dominant paths, although they were soft sedimentary rocks. In this study, as part of developing groundwater flow and mass transport evaluation methodologies of such a fractured sedimentary rock' distributed area, we conducted two different scale of studies; 1) core rock sample scale and 2) several kilometer scale. For the core rock sample scale, some of laboratory hydraulic and tracer experiments have conducted using the rock cores with tailored parallel fracture, obtained at pilot borehole drilled in the vicinity of ventilation shaft. From the test results, hydraulic conductivity, diffusion coefficient, transport aperture, dispersion length and etc. was evaluated. Based on these test results, the influence of these parameters onto mass transport behavior of fractures sedimentary rocks was examined. For larger scale, such as several kilometer scale, the regional scale groundwater flow was examined using temperature data observed along the boreholes at Horonobe site. The results show that the low permeable zone between the boreholes might be estimated. (author)

  12. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s -1 . An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm 3 . This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s -1 ), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model

  13. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  14. The impact of a (hyper)alkaline plume on (fractured) crystalline rock

    International Nuclear Information System (INIS)

    Alexander, Russell

    2012-01-01

    Russell Alexander from Bedrock Geosciences, Switzerland, gave a presentation on the possible effects of cement pore waters on a crystalline host rock. Field, laboratory and natural analogue studies as well as geochemical modelling indicate that cement leachates tend to induce the sealing of fractures in the rock. These studies also indicate that strongly alkaline waters might: - Accelerate the dissolution of vitrified waste, but probably not affect the dissolution rate of spent fuel. - Degrade bentonite to some degree. To avoid some of the effects associated with the use of concrete, several approaches may be used: - Minimisation and tracking/monitoring of the concrete masses. - Development and use of low-pH cements and alternative grouting materials. - The selection of less fractured rock volumes for a repository location. The sealing of fractures evidenced in the Maquarin natural analogue study might contribute to limiting the extent of perturbations caused by an alkaline plume and is likely to create a hydraulic barrier that affects groundwater flow. The effects of these processes should be analysed in a safety case since they may support the idea of a self-sealing repository. Uncertainties in the treatment of an alkaline plume in fractured rock include: - The possible formation of colloids. - Thermodynamic data for cement components and secondary mineral stability. - Cement carbonation. - The effects of super-plasticisers. Given these uncertainties, current assessments of perturbations around a HLW or spent fuel repository caused by cementitious materials are often conservative and provide a pessimistic view of disposal system performance. Discussion of the paper included: Will groundwater flows in deep systems be fast enough to cause pervasive sealing of fractures? The process of how a network of fractures may be sealed over time is uncertain. The flow field will be altered as fractures are sealed and this may cause flow rates in other parts of the fracture

  15. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  16. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  17. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  18. Statistical fracture mechanics approach to the strength of brittle rock

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1981-06-01

    Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models

  19. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  20. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  1. Analytic solution of pseudocolloid migration in fractured rock

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Lee, W.W.L.; Chambre, P.L.

    1989-06-01

    A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig

  2. Characterization of the fracturation of rock masses for determining flow

    International Nuclear Information System (INIS)

    Derlich, S.

    1984-02-01

    Flow in a rock mass is the consequence of the permeability of the rock, which can be roughly separated into matrix permeability and fissure permeability. In crystalline rocks fissure permeability is dominant, especially where the rocks are extensively fractured. It is thus essential, by means of studies either at the surface or underground, to characterize the volume fracturation in the mass considered. The purpose of this paper is to illustrate the methodology for analysing fracturation at a site by the studies performed on the granite mass of Auriat in the French Massif Central. A number of geology laboratories have participated in this study and a broad spectrum of observations has been made which can be used for determining the various stages of a study with a view to selection of a site, the advantages and limitations of each method or study plan and additional methods which need to be used for gaining as complete a picture as possible of the fracturation. A brief examination of the results obtained at Auriat enables the relative advantages of using these various methods at a particular site to be compared

  3. Flow and contaminant transport in fractured rocks

    International Nuclear Information System (INIS)

    Bear, J.; Tsang, C.F.; Marsily, G. de

    1993-01-01

    This book is a compilation of nine articles dealing with various aspect of flow in fractured media. Articles range from radionuclide waste to multiphase flow in petroleum reservoirs to practical field test methods. Each chapter contains copious figures to aid the reader, but is also a detailed in-depth analysis of some major flow problem. The subjects covered are as follows: an introduction to flow and transport models; solute transport in fractured rock with application to radioactive waste repositories; solute transport models through fractured networks; theoretical view of stochastic models of fracture systems; numerical models of tracers; multiphase flow models in fractured systems and petroleum reservoirs; unsaturated flow modeling; comparative analysis of various flow modeling techniques in fractured media; and, a summary of field methods for measuring transfers of mass, heat, contaminant, momentum, and electrical charge in fractured media

  4. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    Science.gov (United States)

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  5. Transient diffusion from a waste solid into water-saturated, fractured porous rock

    International Nuclear Information System (INIS)

    Ahn, J.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.-L.

    1989-09-01

    Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar fracture are shown based on Chambre's exact analytical solutions. The concentration at the cylinder surface is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix three-dimensional diffusion is assumed in the cylindrical coordinate. No advection is assumed. Radioactive decay and sorption equilibrium are included. Radioactive decay enhances the mass transfer from the cylinder. Due to the presence of the fracture, the mass flux from the cylinder to the rock matrix becomes smaller, but the fracture effect is limited in the vicinity of the fracture in early times. Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 8 refs., 4 figs

  6. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...

  7. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    Science.gov (United States)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  8. Time dependent fracture growth in intact crystalline rock: new laboratory procedures

    International Nuclear Information System (INIS)

    Backers, T.; Stephansson, O.

    2008-01-01

    Short term laboratory tests to determine the strength of rock material are commonly used to assess stability of rock excavations. However, loading the rock below its short term strength may lead to delayed failure due to slow stable fracture growth. This time-dependent phenomenon is called subcritical fracture growth. A fracture mechanics based approach is applied in this study to determine the parameters describing subcritical fracture growth under Mode Ⅰ (tensile) and Mode Ⅱ (in-plane shear) loading in terms of the stress intensity factors of saturated granodiorite from the) Aespoe HRL. A statistical method is applied to data from three-point bending (tension) and Punch-Through Shear with Confining Pressure, PTS/CP, (shear) experiments. One population of each set-up was subjected to rapid loading tests yielding a strength probability distribution. A second population was loaded up to a certain fraction of the statistical percentage for failure and the time-to-failure was determined. From these two populations the subcritical fracture growth parameters were determined successfully. Earlier studies demonstrated subcritical fracture growth under Mode I loading conditions, but this study shows that under a Mode Ⅱ load time-dependent fracture growth exists as well. (authors)

  9. Thermodynamics of energy extraction from fractured hot dry rock

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J S; Bejan, A [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Kim, J H [Electric Power Research Inst., Palo Alto, CA (United States)

    1992-03-01

    It has been proposed to extract energy from the subterranean hot dry rock bed (HDR) by creating one or more narrow fractures in the rock and circulating cold water through the fractures. In time, the temperature of the rock region surrounding the crack drops under the influence of time-dependent conduction. This study presents the most basic thermodynamic aspects (first law and second law) of the HDR energy extraction process. It shows which parameters most influence the amount of useful energy (exergy) extracted from the HDR reservoir over a fixed time interval. For example, the water flow rate can be selected optimally in order to maximize the delivery of exergy over the lifetime of the HDR system. (author).

  10. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  11. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena

    1997-01-01

    The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality...

  12. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  13. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  14. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  15. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  16. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  17. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    Science.gov (United States)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  18. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  19. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    Science.gov (United States)

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  20. Calculation of gas migration in fractured rock

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1987-09-01

    Calculations are presented for rock properties characteristic to the Forsmark area. The rock permeability was determined by flow tests in vertical boreholes. It is assumed that the permeability distribution obtained from these boreholes is representative also for the permeability distribution along the repository cavern. Calculations were worked out for two different types of boundary conditions, one in which a constant gas flow rate equivalent to a gas production of 33000 kg/year was assumed and the other in which a constant gas cushion of 0.5 metres was assumed. For the permeability distribution considered, the breakthrough at the sea bottom occurred within one hour. The gaswater displacement took place mainly through the fractures of high permeability and practically no flow took place in the fractures of low permeability. (orig./DG)

  1. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  2. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    NARCIS (Netherlands)

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter

    2016-01-01

    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  3. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  4. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  5. A new scripting library for modeling flow and transport in fractured rock with channel networks

    Science.gov (United States)

    Dessirier, Benoît; Tsang, Chin-Fu; Niemi, Auli

    2018-02-01

    Deep crystalline bedrock formations are targeted to host spent nuclear fuel owing to their overall low permeability. They are however highly heterogeneous and only a few preferential paths pertaining to a small set of dominant rock fractures usually carry most of the flow or mass fluxes, a behavior known as channeling that needs to be accounted for in the performance assessment of repositories. Channel network models have been developed and used to investigate the effect of channeling. They are usually simpler than discrete fracture networks based on rock fracture mappings and rely on idealized full or sparsely populated lattices of channels. This study reexamines the fundamental parameter structure required to describe a channel network in terms of groundwater flow and solute transport, leading to an extended description suitable for unstructured arbitrary networks of channels. An implementation of this formalism in a Python scripting library is presented and released along with this article. A new algebraic multigrid preconditioner delivers a significant speedup in the flow solution step compared to previous channel network codes. 3D visualization is readily available for verification and interpretation of the results by exporting the results to an open and free dedicated software. The new code is applied to three example cases to verify its results on full uncorrelated lattices of channels, sparsely populated percolation lattices and to exemplify the use of unstructured networks to accommodate knowledge on local rock fractures.

  6. Quantifying Water-Rock Interactions during Hydraulic Fracturing from the Analysis of Flowback Water

    Science.gov (United States)

    Osselin, F.; Nightingale, M.; Kloppmann, W.; Gaucher, E.; Clarkson, C.; Mayer, B.

    2017-12-01

    Hydraulic fracturing technologies have facilitated the rapid development of shale gas and other unconventional resources throughout the world. In order to get sufficient access to the trapped hydrocarbon, it is necessary to fracture the bedrock and increase its permeability. Fracturing fluids are usually composed of tens of thousand of cubic meters of low salinity water with numerous additives, such as viscosity agent or breakers. The objective of this study was to investigate and quantify the water-rock interactions during hydraulic fracturing. This study was based on repeated sampling of flowback water from a hydraulically fractured well in Alberta, Canada. The flowback water was sampled 24 times during the first week and one last time after one, and analyzed for major ions and trace elements, as well as stable isotopes of sulfate and water among others. Results showed that salinity rapidly increases up to 100 000 mg/L at the end of the first week. We demonstrate that conservative species such as Na and Cl follow a clear two end-members mixing line, while some species including sulfate had much higher concentrations (8 times higher than the expected value from the mixing line). This indicates that the rapid increase of salinity in flowback water is caused by both mixing with formation water initially present in the shale formation, and from water-rock interactions triggered by the fracturing fluid and in some cases by the additives. Stable isotope data suggest that additional sulfate is mobilized as a consequence of pyrite oxidation, releasing sulfate, iron and potentially other heavy metals into the flowback water. This release of excess sulfate can be detrimental because it has the potential to promote scaling of sulfate minerals. Moreover, pyrite oxidation is a highly acidifying reaction and this may decrease the effectiveness of other additives, and promote carbonate minerals dissolution enhancing further scaling. We propose that a better control of the

  7. Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer

    Science.gov (United States)

    Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul

    2017-12-01

    A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.

  8. Field test of ethanol/bentonite slurry grouting into rock fracture

    International Nuclear Information System (INIS)

    Motoyuki Asada; Hitoshi Nakashima; Takashi Ishii; Sumio Horiuchi

    2006-01-01

    Crystalline rocks have fractures which may cause unexpected routes of groundwater seepage. Cement grouting is one of the most effective methods to minimize seepage; however, cement materials may not be suitable for the purpose of extra-long durability, because cement is neutralized or degraded by chemical and physical influence of chemical reaction. Natural clay like bentonite is one of the most promising materials for seepage barrier; however, water/bentonite grout is so viscous that enough amount of bentonite can not be grouted into rock fractures. To increase bentonite content in grout with low viscosity, the utilization of ethanol as a mixing liquid was studied. Ethanol suppresses bentonite swelling, and more bentonite can be injected more than that of water/bentonite slurry. In this paper, grouting into in-situ rock mass fracture from the ground surface was tested to investigate the barrier performance and workability of ethanol/bentonite slurry as a grouting material. (author)

  9. Geometry, mechanics and transmissivity of rock fractures

    International Nuclear Information System (INIS)

    Lanaro, F.

    2001-04-01

    This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of

  10. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that

  11. Studies on groundwater transport in fractured crystalline rock under controlled conditions using nonradioactive tracers

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.-E.

    1981-04-01

    The purpose of the investigation has been study the following parameters along existing fractures between two boreholes: hydraulic properties of rock mass and fractures; adsorptive properties of some selected tracers during transport along fractures; dispersivity and dilution of tracers during transport in fractures; kinematic porosity of fractured bedrock. The procedure has been to determine the hydraulic properties of a rock mass by means of conventional hydraulic testing methods in 100 m deep boreholes, and to study transport mechanisms and properties of selected tracers in a selected fracture zone between two boreholes. (Auth.)

  12. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  13. Fracture Analysis of basement rock: A case example of the Eastern Part of the Peninsular Malaysia

    International Nuclear Information System (INIS)

    Shamsuddin, A; Ghosh, D

    2015-01-01

    In general, reservoir rocks can be defined into carbonates, tight elastics and basement rocks. Basement rocks came to be highlighted as their characteristics are quite complicated and remained as a significant challenge in exploration and production area. Motivation of this research is to solve the problem in some area in the Malay Basin which consist fractured basement reservoirs. Thus, in order to increase understanding about their characteristic, a study was conducted in the Eastern part of the Peninsular Malaysia. The study includes the main rock types that resemble the offshore rocks and analysis on the factors that give some effect on fracture characteristic that influence fracture systems and fracture networks. This study will allow better fracture prediction which will be beneficial for future hydrocarbon prediction in this region

  14. Developing two-phase flow modelling concepts for rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))

    2010-01-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  15. Developing two-phase flow modelling concepts for rock fractures

    International Nuclear Information System (INIS)

    Keto, V.

    2010-01-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)

  16. Hydraulic fracturing in anisotropic and heterogeneous rocks

    NARCIS (Netherlands)

    Valliappan, V.; Remmers, J.J.C.; Barnhoorn, A.; Smeulders, D.M.J.

    2017-01-01

    In this paper, we present a two dimensional model for modelling the hydraulic fracture process in anisotropic and heterogeneous rocks. The model is formulated using extended finite elements (XFEM) in combination with Newton-Raphson method for spatial and Euler's implicit scheme for time. The

  17. A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines

    Directory of Open Access Journals (Sweden)

    Wen Jinglin

    2015-01-01

    Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.

  18. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  19. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  20. Consideration on the Mechanism of Microwave Emission Due to Rock Fracture

    Science.gov (United States)

    Takano, Tadashi; Sugita, Seiji; Yoshida, Shingo; Maeda, Takashi

    2010-05-01

    Microwave emission due to rock fracture was found at 300 MHz, 2 GHz, and 22 GHz, and its power was calibrated in laboratory for the first time in the world. The observed waveform is impulsive, and contains correspondent frequency component inside the envelope at each frequency band. At such high frequencies, the electro-magnetic signal power can be calibrated as a radiating wave with high accuracy. Accordingly, it was verified that a substantial power is emitted. The microwave emission phenomena were also observed on occasions of hypervelocity impact, and esteemed as phenomena generally associated with material destruction. Earthquakes and volcanic activities are association with rock fractures so that the microwave is expected to be emitted. Actually, the e emission was confirmed by the data analysis of the brightness temperature obtained by a remote sensing satellite, which flew over great earthquakes of Wuenchan and Sumatra, and great volcanic eruptions of Reventador and Chanten. It is important to show the microwave emission during rock fracture in natural phenomena. Therefore, the field test to detect the microwave due to the collapse of a crater cliff was planned and persecuted at the volcano of Miyake-jima about 100 km south of Tokyo. Volcanic activity may be more convenient than an earthquake because of the known location and time. As a result, they observed the microwave emission which was strongly correlated with the cliff collapses. Despite of the above-mentioned phenomenological fruits, the reason of the microwave emission is not fixed yet. We have investigated the mechanism of the emission in consideration of the obtained data in rock fracture experiments so far and the study results on material destruction by hypervelocity impact. This paper presents the proposal of the hypothesis and resultant discussions. The microwave sensors may be useful to monitor natural hazards such as an earthquake or a volcanic eruption, because the microwave due to rock

  1. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  2. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  3. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  4. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marschall, P.; Horseman, S.; Gimmi, T.

    2005-01-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10 -20 to 10 -21 m 2 and a moderate anisotropy ratio ≤ 10. Porosity depends on clay content and burial depth; values of ∼ 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30% of voids can be classed as macro-pores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drill-cores demonstrate that gas transport through the rock is accompanied by pore water displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macro-pores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gas-fractures). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance. (authors)

  5. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  6. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  7. Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures

    International Nuclear Information System (INIS)

    Drake, Henrik; Tullborg, Eva-Lena; Annersten, Hans

    2008-01-01

    Red-staining and alteration of wall rock is common around water conducting fractures in the Laxemar-Simpevarp area (SE Sweden), which is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in common with many other places. Red-staining is often interpreted as a clear sign of oxidation but relevant analyses are seldom performed. The area is dominated by Palaeoproterozoic crystalline rocks ranging in composition from quartz monzodiorite to granite. In this study wall rock samples have been compared with reference samples from within 0.1 to 1 m of the red-stained rock, in order to describe mineralogical and geochemical changes but also changes in redox conditions. A methodology for tracing changes in mineralogy, mineral and whole rock chemistry and Fe 3+ /Fe tot ratio in silicates and oxides in the red-stained wall rock and the reference rock is reported. The results show that the red-stained rock adjacent to the fractures displays major changes in mineralogy; biotite, plagioclase and magnetite have been altered and chlorite, K-feldspar, albite, sericite, prehnite, epidote and hematite have been formed. The changes in chemistry are however moderate; K-enrichment, Ca-depletion and constant Fe tot are documented. The Fe 3+ /Fe tot ratio in the oxide phase is higher in the red-stained samples whereas the Fe 3+ /Fe tot ratio in the silicate phase is largely similar in the wall rock and the reference samples. Because most of the Fe is hosted in the silicate phase the decrease in reducing capacity (Fe 2+ ), if any, in the red-stained wall rock is very small and not as high as macroscopic observations might suggest. Instead, the mineralogical changes in combination with the modest oxidation and formation of minute hematite grains in porous secondary minerals in pseudomorphs after plagioclase have produced the red-staining. Increased porosity is also characteristic for the red-stained rock. Moderate alteration in the macroscopically fresh

  8. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  9. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Science.gov (United States)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  10. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Science.gov (United States)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  11. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  12. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  13. Fracture Initiation of an Inhomogeneous Shale Rock under a Pressurized Supercritical CO2 Jet

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2017-10-01

    Full Text Available Due to the advantages of good fracture performance and the application of carbon capture and storage (CCS, supercritical carbon dioxide (SC-CO2 is considered a promising alternative for hydraulic fracturing. However, the fracture initiation mechanism and its propagation under pressurized SC-CO2 jet are still unknown. To address these problems, a fluid–structure interaction (FSI-based numerical simulation model along with a user-defined code was used to investigate the fracture initiation in an inhomogeneous shale rock. The mechanism of fracturing under the effect of SC-CO2 jet was explored, and the effects of various influencing factors were analyzed and discussed. The results indicated that higher velocity jets of SC-CO2 not only caused hydraulic-fracturing ring, but also resulted in the increase of stress in the shale rock. It was found that, with the increase of perforation pressure, more cracks initiated at the tip. In contrast, the length of cracks at the root decreased. The length-to-diameter ratio and the aperture ratio distinctly affected the pressurization of SC-CO2 jet, and contributed to the non-linear distribution and various maximum values of the stress in shale rock. The results proved that Weibull probability distribution was appropriate for analysis of the fracture initiation. The studied parameters explain the distribution of weak elements, and they affect the stress field in shale rock.

  14. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  15. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  16. Water flow and solute transport through fractured rock

    International Nuclear Information System (INIS)

    Bolt, J.E.; Bourke, P.J.; Pascoe, D.M.; Watkins, V.M.B.; Kingdon, R.D.

    1990-09-01

    In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depth have been individually measured. These data have been used: to determine the dimensions of statistically representative volumes of the network of fractures and to predict, using discrete flow path modelling and the NAPSAC code, the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole. Corresponding measurements, which validated the NAPSAC code to factor of two accuracy for the Cornish site, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive, inter hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. (Author)

  17. Water flow and solute transport through fractured rock

    International Nuclear Information System (INIS)

    Bourke, P.J.; Kingdon, R.D.; Bolt, J.E.; Pascoe, D.M.; Watkins, V.M.B.

    1991-01-01

    In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depths have been individually measured. These data have been used: - to determine the dimensions of statistically representative volumes of the sheetwork of fractures; - to predict; using discrete flowpath modelling and the NAPSAC code; the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole; Corresponding measurements, which proved the modelling and validated the code to factor of two accuracy, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive inter-hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. 7 figs., 9 refs

  18. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    Science.gov (United States)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  19. Isotope techniques in the study of the hydrology of fractured and fissured rocks

    International Nuclear Information System (INIS)

    1989-01-01

    It is generally agreed that the hydrology of fractured rocks refers to the occurrence and movement of groundwater in rocks whose porosity is due to cracks, fissures and fractures in compact rocks. Until recently, crystalline rocks were considered to be impervious (the role of karst reservoirs for groundwater storage is already known). Thus, although fractured rocks cover approximately one-third of the Earth's surface, knowledge of groundwater flow dynamics still needs to be substantively improved. The Proceedings include the papers presented at the Advisory Group Meeting on the Application of Isotope Techniques in the Study of the Hydrology of Fractured and Fissured Rocks, which took place in Vienna from 17 to 21 November 1986. The meeting was attended by 21 scientists from 10 Member States. The Group agreed that the following topics should be given the highest priority: (1) Protection of groundwater resources should be incorporated into all future activities. This implies that recharge areas have to be delineated, not only using nuclear techniques but also other hydrogeological and geochemical methods. Research efforts in this direction should be intensified. (2) The Group was aware that new isotope techniques are being developed in hydrogeology and agreed that their application in fractured and fissured rocks showed promise. It was therefore suggested that information on new isotopes such as 36 Cl and 129 I should be gathered, either in the form of the various techniques currently being used by different laboratories or through the various activities that are being undertaken. Ways of co-ordinating the work being done and exchanging information at the international level should be encouraged. The Proceedings should be of interest to scientists responsible for the evaluation of water resources in crystalline rocks. It is hoped that hydrologists and hydrogeologists working in such terrains who are not familiar with the use of isotope techniques will find ideas and

  20. Fractures inside crystalline rocks. Effects of deformations on fluid circulations

    International Nuclear Information System (INIS)

    Gentier, S.

    2005-01-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  1. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  2. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  3. Discrete fracture modelling of the Finnsjoen rock mass. Phase 1: Feasibility study

    International Nuclear Information System (INIS)

    Geier, J.E.; Axelsson, C.L.

    1991-03-01

    The geometry and properties of discrete fractures are expected to control local heterogeneity in flow and solute transport within crystalline rock in the Finnsjoen area. The present report describes the first phase of a discrete-fracture modelling study, the goal of which is to develop stochastic-continuum and hydrologic properties. In the first phase of this study, the FracMan discrete fracture modelling package was used to analyse discrete fracture geometrical and hyrological data. Constant-pressure packer tests were analysed using fractional dimensional methods to estimate effective transmissivities and flow dimension for the packer test intervals. Discrete fracture data on orientation, size, shape, and location were combined with hydrologic data to develop a preliminary conceptual model for the conductive fractures at the site. The variability of fracture properties was expressed in the model by probability distributions. The preliminary conceptual model was used to simulate three-dimensional populations of conductive fractures in 25 m and 50 m cubes of rock. Transient packer tests were simulated in these fracture populations, and the simulated results were used to validate the preliminary conceptual model. The calibrated model was used to estimate the components of effective conductivity tensors for the rock by simulating steady-state groundwater flow through the cubes in three orthogonal directions. Monte Carlo stochastic simulations were performed for alternative realizations of the conceptual model. The number of simulations was insufficient to give a quantitative prediction of the effective conductivity heterogeneity and anisotropy on the scales of the cubes. However, the results give preliminary, rough estimates of these properties, and provide a demonstration of how the discrete-fracture network concept can be applied to derive data that is necessary for stochastic continuum and channel network modelling. (authors)

  4. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  5. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  6. Spatial statistics for predicting flow through a rock fracture

    International Nuclear Information System (INIS)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs

  7. A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock

    International Nuclear Information System (INIS)

    Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

    2006-01-01

    In heated tunnels such as those designated for emplacement of radioactive waste at Yucca Mountain, axial temperature gradients may cause natural convection processes that can significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells would provide an effective mechanism for axial vapor transport, driving moisture out of the formation away from the heated tunnel section into cool end sections (where no waste is emplaced). To study such processes, we have developed and applied an enhanced version of TOUGH2 (Pruess et al., 1999) adding a new module that solves for natural convection in open cavities. The new TOUGH2 simulator simultaneously handles (1) the flow and energy transport processes in the fractured rock; (2) the flow and energy transport processes in the cavity; and (3) the heat and mass exchange at the rock-cavity interface. The new module is applied to simulate the future thermal-hydrological (TH) conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages

  8. Distribution of uranium in the carbonate rock of Um Bogma formation, Southwest, Sinai, Egypt

    International Nuclear Information System (INIS)

    El-AAssy, I.E.; Ahmed, F.Y.; Morsy, A.M.; El-Fawal, F.M.; Mansour, M.Gh.

    1998-01-01

    The lower carboniferous Um bogma Formation is a potential source for Mn, Cu and U. it is mainly composed of dolostone and limestone with few clastic different interbeds of clay stone, siltstone and sandstone. The different diagenetic processes which affected this formation are mainly, compaction, cementation, neomorphism, dissolution, dolomitization, silicification and filling the veins and pores. The distribution of uranium and thorium within the three members and their correlation with the iron oxides and organic matter, were studied. The channel porosity and intercrystalline spaces which resulted from dolomitization acted as pathways for uraniferous solutions in the carbonate rocks. On the other hand, the shales and clay stones underneath the carbonates of Um bogma formation acted as barriers and good depositional environment for the accumulation of uranium on the surfaces of joints and fractures.The accumulated uranium minerals in the carbonate rocks are most likely of the efflorescent deposits

  9. Nanoparticles migration in fractured rocks and affects on contaminant migration

    Science.gov (United States)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  10. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  11. The application of positron emission tomography to the study of mass transfer in fractured rock

    International Nuclear Information System (INIS)

    Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.

    1991-06-01

    Water flow in hard rocks takes place dominantly in fractures. In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)

  12. Nuclide transport of decay chain in the fractured rock medium: a model using continuous time Markov process

    International Nuclear Information System (INIS)

    Younmyoung Lee; Kunjai Lee

    1995-01-01

    A model using continuous time Markov process for nuclide transport of decay chain of arbitrary length in the fractured rock medium has been developed. Considering the fracture in the rock matrix as a finite number of compartments, the transition probability for nuclide from the transition intensity between and out of the compartments is represented utilizing Chapman-Kolmogorov equation, with which the expectation and the variance of nuclide distribution for the fractured rock medium could be obtained. A comparison between continuous time Markov process model and available analytical solutions for the nuclide transport of three decay chains without rock matrix diffusion has been made showing comparatively good agreement. Fittings with experimental breakthrough curves obtained with nonsorbing materials such as NaLS and uranine in the artificial fractured rock are also made. (author)

  13. Coupled hydrological-mechanical effects due to excavation of underground openings in unsaturated fractured rocks

    International Nuclear Information System (INIS)

    Montazer, P.

    1985-01-01

    One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes

  14. Analog site for fractured rock characterization. Annual report FY 1995

    International Nuclear Information System (INIS)

    Long, J.C.S.; Loughty, C.; Faybishenko, B.

    1995-10-01

    This report describes the accomplishments of the Analog Site for Fracture Rock Characterization Project during fiscal year 1995. This project is designed to address the problem of characterizing contaminated fractured rock. In order to locate contaminant plumes, develop monitoring schemes, and predict future fate and transport, the project will address the following questions: What parts of the system control flow-geometry of a fracture network? What physical processes control flow and transport? What are the limits on measurements to determine the above? What instrumentation should be used? How should it be designed and implemented? How can field tests be designed to provide information for predicting behavior? What numerical models are good predictors of the behavior of the system? The answers to these question can be used to help plan drilling programs that are likely to intersect plumes and provide effective monitoring of plume movement. The work is done at an open-quotes analogueclose quotes site, i.e., a site that is not contaminated, but has similar geology to sites that are contaminated, in order to develop tools and techniques without the financial, time and legal burdens of a contaminated site. The idea is to develop conceptual models and investigations tools and methodology that will apply to the contaminated sites in the same geologic regimes. The Box Canyon site, chosen for most of this work represents a unique opportunity because the Canyon walls allow us to see a vertical plane through the rock. The work represents a collaboration between the Lawrence Berkeley National Laboratory (LBL), Stanford University (Stanford), Idaho National Engineering Laboratory (INEL) and Parsons Environmental Engineering (Parsons). LBL and Stanford bring extensive experience in research in fractured rock systems. INEL and Parsons bring significant experience with the contamination problem at INEL

  15. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    Science.gov (United States)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  16. Dynamic Fracturing Behavior of Layered Rock with Different Inclination Angles in SHPB Tests

    Directory of Open Access Journals (Sweden)

    Jiadong Qiu

    2017-01-01

    Full Text Available The fracturing behavior of layered rocks is usually influenced by bedding planes. In this paper, five groups of bedded sandstones with different bedding inclination angles θ are used to carry out impact compression tests by split Hopkinson pressure bar. A high-speed camera is used to capture the fracturing process of specimens. Based on testing results, three failure patterns are identified and classified, including (A splitting along bedding planes; (B sliding failure along bedding planes; (C fracturing across bedding planes. The failure pattern (C can be further classified into three subcategories: (C1 fracturing oblique to loading direction; (C2 fracturing parallel to loading direction; (C3 mixed fracturing across bedding planes. Meanwhile, a numerical model of layered rock and SHPB system are established by particle flow code (PFC. The numerical results show that the shear stress is the main reason for inducing the damage along bedding plane at θ = 0°~75°. Both tensile stress and shear stress on bedding planes contribute to the splitting failure along bedding planes when the inclination angle is 90°. Besides, tensile stress is the main reason that leads to the damage in rock matrixes at θ = 0°~90°.

  17. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    Science.gov (United States)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  18. Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Yamamoto, Koshi; Yoshida, Hidekazu; Akagawa, Fuminori; Nishimoto, Shoji; Metcalfe, Richard

    2013-01-01

    Highlights: • Deep redox front developed in orogenic granitic rock have been studied. • The process was controlled by the buffering capacity of minerals. • This is an analogue of redox front penetration into HLW repositories in Japan. - Abstract: Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to

  19. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  20. Modelling of excavation depth and fractures in rock caused by tool indentation

    International Nuclear Information System (INIS)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A.

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  1. Modelling of excavation depth and fractures in rock caused by tool indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A. [Luleaa Univ. of Technology (Sweden)

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  2. Evaluation of fracturing process of soft rocks at great depth by AE measurement and DEM simulation

    International Nuclear Information System (INIS)

    Aoki, Kenji; Mito, Yoshitada; Kurokawa, Susumu; Matsui, Hiroya; Niunoya, Sumio; Minami, Masayuki

    2007-01-01

    The authors developed the stress-based evaluation system of EDZ by AE monitoring and Distinct Element Method (DEM) simulation. In order to apply this system to the soft rock site, the authors try to grasp the relationship between AE parameters, stress change and rock fracturing process by performing the high stiffness tri-axial compression tests including AE measurements on the soft rock samples, and its simulations by DEM using bonded particle model. As the result, it is found that change in predominant AE frequency is effective to evaluate fracturing process in sedimentary soft rocks, and the relationship between stress change and fracturing process is also clarified. (author)

  3. Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2010-01-01

    Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. Assessing the long-term safety of geological disposal requires developing a comprehensive understanding of the geological environment. The transport pathways are key to this understanding. Of particular interest are fractures in the host rock, which may be either naturally occurring or induced, for example, during the construction of engineered portions of a repository. Such fractures could provide pathways for migration of contaminants. In argillaceous (clay) formations, there is evidence that, over time, fractures can become less conductive and eventually hydraulically insignificant. This process is commonly termed 'self-sealing'. The capacity for self-sealing relates directly to the function of clay host rocks as migration barriers and, consequently, to the safety of deep repositories in those geological settings. This report - conducted under the auspices of the NEA Clay Club - reviews the evidence and mechanisms for self-sealing properties of clays and evaluates their relevance to geological disposal. Results from laboratory tests, field investigations and geological analogues are considered. The evidence shows that, for many types of argillaceous formations, the understanding of self-sealing has progressed to a level that could justify its inclusion in performance assessments for geological repositories. (authors)

  4. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  5. Convective heat transfer of supercritical CO_2 in a rock fracture for enhanced geothermal systems

    International Nuclear Information System (INIS)

    Zhang, Le; Jiang, Peixue; Wang, Zhenchuan; Xu, Ruina

    2017-01-01

    Highlights: • Contrasting experiments between a rough and a smooth fracture were performed. • A numerical model of rough fracture was reconstructed based on CT scanning data. • Heat transfer in rough fracture was affected by channeling and disturbance effects. - Abstract: Convective heat transfer characteristics of supercritical pressure fluid in a rock fracture are important for building an accurate heat transfer model of enhanced geothermal systems. This paper presents experimental investigations of laminar convection heat transfer of supercritical pressure CO_2 in an artificial smooth parallel-plate fracture and a rough and tortuous fracture that was created using the Brazilian technique. Hot rock with a relatively high initial temperature reserves more heat, which can ensure a larger heat extraction rate for a longer time when cold fluid flows through the fracture. Compared with the smooth parallel-plate fracture, CO_2 flowing through the rough and tortuous fracture with an equivalent hydraulic aperture extracted less heat from the hot rock due to the less efficient heat exchange in a rough fracture caused by channeling effect. This was illustrated by numerical simulation results of the reconstructed fracture based on micro-computed tomography scan data. The overall Nusselt number obtained from the numerical results was larger in a rough fracture with a larger Reynolds number due to disturbance effect on the boundary layer development. The heat transfer performance in a rough fracture is therefore influenced by interactions of the channeling and disturbance effects caused by the tortuous flow path.

  6. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  7. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    Science.gov (United States)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  8. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  9. Characterization on the Fracture system in jurassic granitic rocks: Kosung and Yusung areas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon

    2001-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of regional lineaments and background fractures in eastern and western-type granite rock mass.

  10. Characterization on the Fracture system in jurassic granitic rocks: Kosung and Yusung areas

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon

    2001-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of regional lineaments and background fractures in eastern and western-type granite rock mass

  11. A numerical analytic method for electromagnetic radiation accompanying with fracture of rocks

    International Nuclear Information System (INIS)

    Zhen, Chen; Ka-Ma, Huang

    2010-01-01

    This paper studies Rabinovitch's compression experiments on granite and chalk and proposes an oscillating dipole model to analyse and simulate the electromagnetic radiation phenomenon caused by fracture of rocks. Our model assumes that the electromagnetic radiation pulses are initiated by vibrations of the charged rock grains on the tips of the crack. The vibrations of the rock grains are stimulated by the pulses of the cracks. Our simulations show comparable results with Rabinovitch's compression experiments. From the simulation results, it verifies an assumption that the crack width is inversely proportional to the circular frequency electromagnetic radiation, which is presented by Rabinovitch et al. The simulation results also imply that, by using our oscillating dipole model together with Rabinovitch's two equations about the crack length and crack width, we can quantitatively analyse and simulate the electromagnetic radiation phenomenon, which is induced from the fracture of the rocks. (fluids, plasmas and electric discharges)

  12. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For

  13. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  14. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  15. HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method

    International Nuclear Information System (INIS)

    Advani, S.H.; Lee, J.K.; Lee, T.S.

    2001-01-01

    1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport

  16. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  17. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile

    Science.gov (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.

    2017-11-01

    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  18. The Influence of Fractures on Radionuclide Transport in Granite Formations

    International Nuclear Information System (INIS)

    Guarracino, Luis; Quintana, Fernando; Bevilacqua, Arturo

    2003-01-01

    Simulation of radionuclide transport in fractured hard rocks is of interest to many research areas like geological disposal of high-level nuclear wastes.The objective of this study is to present a numerical simulation of water flow and radionuclide transport near a hypothetical repository in deep geological formations.The water flow is assumed to obey the highly nonlinear Richards' equation, which is approximated using a finite element method for the spatial discretization combined with a third order accurate Crank-Nicholson scheme in time.A Picard iteration scheme is used to treat the non-linear terms of the equation.Contaminant transport is described by the advection-diffusion-reaction equation, assuming linear adsorption and first order decay.This equation is solved using a Sub Grid Scale algorithm.Illustrative examples showing the influence of fractures in the contaminant process for different radioisotopes are presented

  19. Evaluation of permeable fractures in rock aquifers

    Science.gov (United States)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  20. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  1. A new method for real-time monitoring of grout spread through fractured rocks

    International Nuclear Information System (INIS)

    Henderson, A. E.; Robertson, I. A.; Whitfield, J. M.; Garrard, G. F. G.; Swannell, N. G.; Fisch, H.

    2008-01-01

    Reducing water ingress into the Shaft at Dounreay is essential for the success of future intermediate level waste (ILW) recovery using the dry retrieval method. The reduction is being realised by forming an engineered barrier of ultrafine cementitious grout injected into the fractured rock surrounding the Shaft. Grout penetration of 6 m in <50μm fractures is being reliably achieved, with a pattern of repeated injections ultimately reducing rock mass permeability by up to three orders of magnitude. An extensive field trials period, involving over 200 grout mix designs and the construction of a full scale demonstration barrier, has yielded several new field techniques that improve the quality and reliability of cementitious grout injection for engineered barriers. In particular, a new method has been developed for tracking in real-time the spread of ultrafine cementitious grout through fractured rock and relating the injection characteristics to barrier design. Fieldwork by the multi-disciplinary international team included developing the injection and real-time monitoring techniques, pre- and post injection hydro-geological testing to quantify the magnitude and extent of changes in rock mass permeability, and correlation of grout spread with injection parameters to inform the main works grouting programme. (authors)

  2. Hydraulic fracturing to enhance geothermal energy recovery in deep and tight formations. Modell approach in petrothermy research project OPTIRISS

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S.; Barsch, M. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    In Germany numerous projects were successfully conducted in developments of geothermal energy which applied so far mostly for the hydrothermal deposit type. In Thuringia and Saxony there are currently project developments of geothermal resource taking into account for deep, tight formations in petrothermy and Enhanced geothermal system, (EGS). One of the potential tasks in generating these petrothermal producers and in the design of the underground power plant appears to be hydraulic fracturing with multi frac method. This is to create the heat exchanger surfaces in the rock and ensure maximum volumetric flow through it. Therefore it is very important for a sustainable heat production. However the promise of its adequate conductivity in the deep formation is one of the dominant contests in geothermal energy industry. In a multi frac method, two wells (normally horizontal wellbores at different depths) are drilled in direction of minimum horizontal stress of the formation rock. By multiple frac operation in separate sections, flow paths are generated between the wells through which it is possible to extract the heat from the rock. The numerical simulation of hydraulic fracture propagation processes in the rock is mainly from the research in the area of oil and gas industry. These techniques are mainly used for very low permeable formations in petroleum engineering (e.g. Shale gas). The development is at the beginning for EGS (e.g. granites). In this work single and multi fracking propagation processes in a synthetic example of deep hard formation are investigated. The numerical simulation is carried out to design and characterize frac processes and frac dimensions. Sensitivities to various rock parameters and different process designs are examined and optimum criteria are concluded. This shows that the minimum stress profile has the most effective role and should be modelled properly. The analysis indicates the optimum fracture length and height for adequate thermal

  3. Self-sealing of fractures in argillaceous formations - Evidence, mechanisms and implications for performance assesment (an NEA Clay Club project)

    International Nuclear Information System (INIS)

    Bock, H.; Dehandschutter, B.; Martin, C.D.; Mazurek, M.; Haller, A. de; Skoczylas, F.; Davy, C.

    2010-01-01

    Document available in extended abstract form only. After some earlier attempts dating back to the year 1999, the Self-Sealing Project of the Clay Club of the NEA/OECD was re-launched in 2007 and recently completed with the publication of NEA monograph No. 6184 (Bock et al., 2010). The project aimed at providing an overview and synthesis of the current understanding of, and conceptual approaches to, the processes that lead to self-sealing of natural and man-induced fractures in argillaceous formations at typical repository depths. The term 'self-sealing' relates to a phenomenon that fractured argillaceous formations tend to become, with the passage of time, less conductive to groundwater and finally hydraulically insignificant. It directly addresses the long-term functionality of the host rock as a migration barrier to radio-nuclides and it is often considered as one of the decisive factors favouring the choice of argillaceous formations as host rocks for deep disposals. In its outcome the project has significantly consolidated the evidence on self-sealing in argillaceous formations. It reconfirmed that self-sealing is a common phenomenon in a wide variety of argillaceous formations which are currently considered in context with deep geological repositories; from plastic clays (Boom Clay in the HADES URF) to moderately indurated clays (Opalinus Clay at Mont Terri and Callovo- Oxfordian argillites at the Meuse-Haute Marne URL). One of the most compelling evidence stems from the fact that self-sealing is observed over a large spread of scales in terms of length and time: At the millimetre to metre scale in laboratory testing, at the repository scale (10 m to 100 m range) in URL field tests and at the kilometre scale in geologic and geotechnical analogues such as traffic tunnels and hydrocarbon reservoirs. Over geological time scales, it is, for example, evidenced in the existence of hydraulically and geochemically inactive geological faults, in the existence

  4. Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, J.; Li, G.; Tsang, C.F.; Tsang, Y.

    1998-01-01

    An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground opening in unsaturated media might act as capillary barriers, diverting water around them. In the present work, they study the potential rate of seepage into drifts as a function of the percolation flux at Yucca Mountain, based on a stochastic model of the fractured rock mass in the drift vicinity. A variety of flow scenarios are considered, assuming present-day and possible future climate conditions. They show that the heterogeneity in the flow domain is a key factor controlling seepage rates, since it causes channelized flow and local ponding in the unsaturated flow field

  5. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  7. Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Kim, Geon Young; Koh, Yong Kwon; Kim, Hyoung Soo

    2012-01-01

    The equation of the step-drawdown test 's w = BQ+CQ p ' written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated C (well head loss coefficient) and P (well head loss exponent) value of well head losses (CQ p ) ranged 3.689 x 10 -19 - 5.825 x 10 -7 and 3.459 - 8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The C and P value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of C and P value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between C and P value turned out very useful to interpret hydraulic properties of the fractured rocks.

  8. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  9. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    International Nuclear Information System (INIS)

    Neretnieks, Ivars

    2007-08-01

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to different time scales

  10. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars [Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)

    2007-08-15

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to

  11. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva

    2011-08-01

    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  12. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.

    1987-05-01

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  13. Demonstration and Validation of a Fractured Rock Passive Flux Meter

    Science.gov (United States)

    2015-04-01

    attenuation, and enhanced biodegradation as competitive remediation solutions to chlorinated ethene-contaminated fractured rock. The criteria and...located outside, then some form of weatherproofing for the gauges will be necessary. As a temporary measure, heavy-duty polyethylene bags , secured

  14. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both

  15. Determination of rock fracture parameters from crack models for failure in compression

    International Nuclear Information System (INIS)

    Kemeny, J.M.; Cook, N.G.W.

    1987-01-01

    Micromechanical models for axial splitting and for shear faulting are used to investigate parameters associated with rock fracture under compressive stresses. The fracture energies to create splitting fractures and shear faults are calculated using laboratory triaxial data. These energies are compared with the fracture energies for the propagation of microcracks that coalesce to form the larger scale fractures. It is found that for Westerly granite, the energies to create splitting fractures and shear faults are about three orders of magnitude greater than the energy needed to drive the tensile microcracks, due to the large amount of subsidiary crack surface area created in forming the larger scale fractures. A similar scale effect can be expected when extrapolating the laboratory results to field scale problems

  16. Summary report on the up-scaling of the retention properties by matrix diffusion in fractured rock

    International Nuclear Information System (INIS)

    Poteri, A.

    2009-02-01

    Fractured rocks are composed of porous but almost impermeable rock matrix and water conducting fractures. The main characteristic of the fractured rock is the great heterogeneity in different scales that leads to preferential flow paths and channelling of the flow. Three distinct flow environments can be identified: channeling that causes variable flow in the individual fracture planes, transmissivity differences between fractures that leads to preferential flow paths and extensive fracture zones that provide highly transmissive connections over long distances. Large and transmissive fractures have an important role to the flow and transport properties of the fractured rock. Flow paths tend to accumulate on the large features that carry the majority of the flow. Modelling exercises have indicated persistence of the flow properties along the flow paths. This means that once a particle has entered a major flow path it tends to follow the high flow rate channel. The main challenge in spatial up-scaling of the retention properties is connected to the description of the flow characteristics in the fractured rock. The importance of individual fractures to the overall retention is proportional to the flow rate along the fracture. This means that simulations need to consider individual fractures. Fracture network modelling offers a suitable approach that is able to take into account the multiscale structure of the fractured rock and to determine retention properties of the flow paths. It also provides a straightforward way to up-scale transport properties along the preferential flow paths through the fracture network. However, the computational feasibility of the site scale applications in the performance assessment limits the range of different size fractures that can be taken into account in the fracture network simulations. Heterogeneity in the immobile zone properties may influence effective retention properties if the heterogeneity is coupled with a limited capacity

  17. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  18. Healing of shear strength and its time dependency in a single rock fracture

    International Nuclear Information System (INIS)

    Kawaguchi, Yuta; Nakashima, Shinichiro; Yasuhara, Hideaki; Kishida, Kiyoshi

    2011-01-01

    Evolution of the long-term mechanical, hydraulic, and transport characteristics of rock fractures should be, in advance, predicted in considering an issue on entombment of energy byproducts of high level radioactive wastes. Under stressed and temperature conditions, those behaviors of the rock fractures of interest may be evolved in time and space likely due to the change in topographical aperture distributions. This irreversible process may be induced by pure mechanical and/or chemo-mechanical creeps such as water-rock reactions like stress corrosion and pressure solution, and chemical effects including mineral dissolution and reprecipitation in the free-walls of fractures. Specifically, the chemo-mechanical processes active at the contacting asperities within rock fractures may exert a significant influence on the mechanical, hydraulic, and transport behaviors throughout a long period, and thus, should be vigorously examined theoretically and experimentally. This paper presents the slide-hold-slide shear test results for fully saturated, single-jointed mortar specimens so as to investigate the effects of load holding on mechanical properties of rock joints. From the test results, it was confirmed that shear strength increased for mortar specimens in both short and long time holding cases. However, the evolution of shear strength recovery in two cases is different. This is because a dominant factor of shear strength recovery during the short time holding may be attributed to a pure mechanical process like creep deformation at contacting asperities, while the one during long time holding is affected by both mechanical and chemical processes like pressure solution. Moreover, to reproduce the shear strength recovery during short time holding we develop a direct shear model by including temporal variation of dilation during holding. The model predictions are in relatively good agreement with the test measurements. (author)

  19. Three-Dimensional poroelastic effects during hydraulic fracturing in permeable rocks

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert W.

    2017-01-01

    A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  20. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  1. Penetration of liquid fingers into superheated fractured rock

    Science.gov (United States)

    Birkholzer, Jens

    2003-04-01

    Water infiltrating down a fracture in unsaturated rock experiences complex fluid flow and heat transfer phenomena when entering above-boiling rock temperature regions. Such conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. A new efficient semianalytical method is proposed in this paper that simulates the flow processes of infiltration events subject to vigorous boiling from the adjacent hot rock. It is assumed that liquid flow forms in localized preferential flow paths and that infiltration events are typically short in duration but large in magnitude relative to the average net infiltration. The new solution scheme is applied to several test cases studying sensitivity to a variety of input parameters. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A characteristic parameter is introduced that provides a quick estimate of the relative significance of boiling at a given location of interest.

  2. Penetration of liquid fingers into superheated fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2002-01-01

    Water infiltrating down a fracture in unsaturated rock experiences complex fluid-flow and heat-transfer phenomena when entering above-boiling rock temperature regions. Such conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. A new, efficient semi-analytical method is proposed in this paper that simulates the flow processes of infiltration events subject to vigorous boiling from the adjacent hot rock. It is assumed that liquid flow forms in localized preferential flow paths, and that infiltration events are typically short in duration but large in magnitude relative to the average net infiltration. The new solution scheme is applied to several test cases studying sensitivity to a variety of input parameters. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A characteristic parameter is introduced that provides a quick estimate of the relative significance of boiling at a given location of interest

  3. Contamination in fractured-rock aquifers: Research at the former Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Goode, Daniel J.; Tiedeman, Claire; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Shapiro, Allen M.; Chapelle, Francis H.

    2007-01-01

    The U.S. Geological Survey and cooperators are studying chlorinated solvents in a fractured sedimentary rock aquifer underlying the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey. Fractured-rock aquifers are common in many parts of the United States and are highly susceptible to contamination, particularly at industrial sites. Compared to 'unconsolidated' aquifers, there can be much more uncertainty about the direction and rate of contaminant migration and about the processes and factors that control chemical and microbial transformations of contaminants. Research at the NAWC is improving understanding of the transport and fate of chlorinated solvents in fractured-rock aquifers and will compare the effectiveness of different strategies for contaminant remediation.

  4. An Alternative to Conventional Rock Fragmentation Methods Using SCDA: A Review

    Directory of Open Access Journals (Sweden)

    Radhika Vidanage De Silva

    2016-11-01

    Full Text Available Global energy and material consumption are expected to rise in exponential proportions during the next few decades, generating huge demands for deep earth energy (oil/gas recovery and mineral processing. Under such circumstances, the continuation of existing methods in rock fragmentation in such applications is questionable due to the proven adverse environmental impacts associated with them. In this regard; the possibility of using more environmentally friendly options as Soundless Chemical Demolition Agents (SCDAs play a vital role in replacing harmful conventional rock fragmentation techniques for gas; oil and mineral recovery. This study reviews up to date research on soundless cracking demolition agent (SCDA application on rock fracturing including its limitations and strengths, possible applications in the petroleum industry and the possibility of using existing rock fragmentation models for SCDA-based rock fragmentation; also known as fracking. Though the expansive properties of SCDAs are currently used in some demolition works, the poor usage guidelines available reflect the insufficient research carried out on its material’s behavior. SCDA is a cementitious powdery substance with quicklime (CaO as its primary ingredient that expands upon contact with water; which results in a huge expansive pressure if this CaO hydration reaction occurs in a confined condition. So, the mechanism can be used for rock fragmentation by injecting the SCDA into boreholes of a rock mass; where the resulting expansive pressure is sufficient to create an effective fracture network in the confined rock mass around the borehole. This expansive pressure development, however, dependent on many factors, where formation water content creates a negative influence on this due to required greater degree of hydration under greater water contents and temperature creates a positive influence by accelerating the reaction. Having a precise understanding of the fracture

  5. Small-scale electrical resistivity tomography of wet fractured rocks.

    Science.gov (United States)

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  6. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    Science.gov (United States)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  7. Concepts of flow in fractured rocks

    International Nuclear Information System (INIS)

    Black, J.H.

    1989-01-01

    The role of well testing is considered in the context of tracer tests in fractured rock. It is shown that the important information required by a tracer test includes not just the hydrogeological parameters (transmissivity and storage), but also the geometry of flow. This is usually implicit in well testing, perhaps because the tests are generally interpretationally insensitive to variations in flow geometry. It is also argued that both well and tracer tests change their flow geometry during their lifetime. They often start as pipe flow near a well and change to large scale, almost spherical, flow after long periods of time. The duration of a tracer test is compared with that of a well test and is found to reach an equivalent duration (of dimensionless time) that is at least 10 4 times longer. Care should be exercised in transposing flow geometries derived from mature well tests on to tracer tests which are not similar in dimensionless time. Finally, a 'sinusoidal flow test' is outlined which has prompted a new way of looking at well tests in terms of their flow geometry. The new analysis involves 'partial dimension' of flow and is probably highly appropriate to fissured rocks. Fissured rocks have, for too long, been seen as a regular system of planar, fully transmissive fissures. (author). 12 refs, 4 figs, 1 tab

  8. Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Wu, Y.T.; Sagar, B.

    1992-12-01

    Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported

  9. Simulation of fluid flow in fractured rock: a probabilistic approach

    International Nuclear Information System (INIS)

    Samaniego, J.A.; Priest, S.D.

    1985-02-01

    This report describes the results of a research project designed to investigate the influence of discontinuities on fluid flow through fractured rock masses. The aim has been to provide a rational basis for the assessment of prospective intermediate level radioactive waste repository sites. The results of this work are presented in the form of two groups of FORTRAN computer programs. The first of these is designed to process data obtained from exposed rock faces and thereby provide an unbiased estimate of discontinuity characteristics. The resulting data are input to the second group of programs which generate a two-dimensional random realisation of discontinuity geometry. When appropriate boundary conditions have been specified, the resulting network of channels is solved numerically to determine nodal potentials, flow quantities and equivalent permeabilities. A number of validation runs are presented, together with some parametric studies, to investigate the influence of excavation size and discontinuity geometry on fluid flow. A practical application is given in the form of a case study involving the prediction of fluid flow into a 2.8 m diameter tunnel in water bearing, fractured rock. Finally, the applications and limitations of the programs in site assessment for radioactive waste repositories are discussed. (author)

  10. Clay club initiative: self-healing of fractures in clay-rich host rocks

    International Nuclear Information System (INIS)

    Horseman, S.T.; Cuss, R.J.; Reeves, H.J.

    2004-01-01

    The capacity of fractures in argillaceous rocks to self-heal (or become, with the passage of time, less conductive to groundwater) is often cited as a primary factor favouring the choice of such materials as host rocks for deep disposal. The underlying processes which contribute to self-healing can be broadly subdivided into: (a) mechanical and hydro-mechanical processes linked to the change in the stress field, movement of pore water, swelling, softening, plastic deformation and creep, and (b) geochemical processes linked to chemical alterations, transport in aqueous solution and the precipitation of minerals. Since chemical alteration can cause profound changes to the mechanical properties of argillaceous rocks, it is often difficult to draw a firm line between these two subdivisions. Based on the deliberations of the recent Cluster Conference in Luxembourg, there would appear to be some support for the use of the term 'self-sealing' for processes affecting fracture conductivity in argillaceous rock that are largely mechanical or hydro-mechanical in their origin. There are four main areas in which the self-healing capacity of the host rock becomes relevant to repository design and performance assessment: - potential for radionuclide transport within the excavation damage zone (EDZ); - design and performance of repository sealing systems; - potential impact of gas migration; - long-term performance considering erosional unloading, seismicity and fault reactivation. The presence of an EDZ is acknowledged to be a particularly important issue in performance assessment. Interconnection of fractures in the EDZ could lead to the development of a preferential flow path extending along the emplacement holes, access tunnels and shafts of a repository towards overlying aquifers and the biosphere. In the preliminary French Safety Analyses, for example, the treatment of scenarios relating to early seal failure have highlighted the hydraulic role of the damaged zone as a

  11. Explosively fracturing a productive oil and gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-06-23

    In this method of fracturing an oil- or gas-producing strata, a portion of the formation adjacent to, but separated from, the producing strata is fractured. Explosives are then introduced into the fracture in this portion of the formation and thereafter detonated to fracture the productive strata. Also claimed are a method of variably controlling the extent and force of the explosives used, and a method of increasing oil and gas production from a productive strata.

  12. Trends, prospects and challenges in quantifying flow and transport through fractured rocks

    Science.gov (United States)

    Neuman, Shlomo P.

    2005-03-01

    Among the current problems that hydrogeologists face, perhaps there is none as challenging as the characterization of fractured rock (Faybishenko and Benson 2000). This paper discusses issues associated with the quantification of flow and transport through fractured rocks on scales not exceeding those typically associated with single- and multi-well pressure (or flow) and tracer tests. As much of the corresponding literature has focused on fractured crystalline rocks and hard sedimentary rocks such as sandstones, limestones (karst is excluded) and chalk, so by default does this paper. Direct quantification of flow and transport in such rocks is commonly done on the basis of fracture geometric data coupled with pressure (or flow) and tracer tests, which therefore form the main focus. Geological, geophysical and geochemical (including isotope) data are critical for the qualitative conceptualization of flow and transport in fractured rocks, and are being gradually incorporated in quantitative flow and transport models, in ways that this paper unfortunately cannot describe but in passing. The hydrogeology of fractured aquifers and other earth science aspects of fractured rock hydrology merit separate treatments. All evidence suggests that rarely can one model flow and transport in a fractured rock consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Instead, one must generally account for the highly erratic heterogeneity, directional dependence, dual or multicomponent nature and multiscale behavior of fractured rocks. One way is to depict the rock as a network of discrete fractures (with permeable or impermeable matrix blocks) and another as a nonuniform (single, dual or multiple) continuum. A third way is to combine these into a hybrid model of a nonuniform continuum containing a relatively small number of discrete dominant features. In either case the description can be deterministic or stochastic. The paper contains a brief assessment

  13. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Noorishad, J.; Tsang, C.F. [Lawrence Berkeley National Lab., Berkeley, CA (United States). Earth Sciences Division

    1999-08-01

    The recent interest in coupled thermohydromechanical (THM) processes associated with geological disposal of spent nuclear fuel, and in particular the issue of resaturation of a clay buffer around a waste canister, has encouraged major development of the finite element computer program ROCMAS in the past three years. The main objective is to develop a tool for analysis of THM processes in practical field scale, including fractured rock masses and detailed behavior of the near-field, nonisothermal and unsaturated system composed of rock fractures and clay buffer. In this report, the ROCMAS code is presented and applied for modeling of coupled THM processes in small laboratory samples of bentonite clay as well as a large in situ THM experiment in fractured rocks, at Kamaishi Mine, Japan. The fundamental responses of a bentonite clay material were investigated in a number of laboratory tests, including suction tests, infiltration tests, thermal gradient tests, and swelling pressure tests. These laboratory tests are modeled with ROCMAS for determination of material properties and for validation of the newly implemented algorithms. The ROCMAS code is also applied for modeling of a 3-year in situ heater experiment conducted in fractured hard rock, which consists of a heater-clay buffer system and simulates a nuclear waste repository. The temperature of the heater was set to 100 deg C during 8.5 months followed by a 6-month cooling period. The bentonite and the rock surrounding the heater were extensively instrumented for monitoring of temperature, moisture content, fluid pressure, stress, strain, and displacements. An overall good agreement between the modeling and measured results, both against the laboratory experiments and the in situ heater test, indicates that the THM responses in fractured rock and bentonite are well represented by the coupled numerical model, ROCMAS. In addition, robustness and applicability of ROCMAS to practical scale problems is demonstrated

  14. External fixation to correct tarsal-metatarsal fracture in rock pigeon (Columba livia

    Directory of Open Access Journals (Sweden)

    Leandro Almeida Rui

    Full Text Available ABSTRACT Orthopedic conditions, such as bone fractures, are very common in avian medicine. External fixators have been considered the gold standard for birds, since they allow early movement of the limbs and minimal invasive surgery. Fractures in several bones have been successfully treated in pigeons. However, to the best of our knowledge, this case represents the first report of successful surgical repair of tarsal-metatarsal fracture in rock pigeon. External fixator was made with four 24G catheters, being inserted manually proximal and distal to the fracture and connected with polymerizable acrylic. Radiographic consolidation of fracture was observed 60 days post-surgery and anti-inflammatory and antibiotic protocols were successful on avoiding pain and infection during surgery and bone healing.

  15. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  16. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  17. Dynamic seismic signatures of saturated porous rocks containing two orthogonal sets of fractures: theory versus numerical simulations

    Science.gov (United States)

    Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris

    2018-05-01

    The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.

  18. Experimental assessment of the sealing effectiveness of rock fracture grouting

    International Nuclear Information System (INIS)

    Schaffer, A.; Daemen, J.J.K.

    1987-03-01

    The objective of this investigation is to determine the effectiveness of cement grouts as sealants of fractures in rock. Laboratory experiments have been conducted on seven 15-cm granite cubes containing saw cuts, three 23-cm diameter andesite cores containing induced tension cracks, and one 15-cm diameter marble core containing a natural fracture. Prior to grouting, the hydraulic conductivity of the fractures is determined under a range of normal stresses, applied in loading and unloading cycles, from 0 to 14 MPa (2000 psi). Grout is injected through an axial borehole, at a pressure of 1.2 to 8.3 MPa (180 to 1200 psi), pressure selected to provide a likely groutable fracture aperture, while the fracture is stressed at a constant normal stress. The fracture permeability is measured after grouting. Flow tests on the ungrouted samples confirm the inverse relation between normal stress and fracture permeability. The equivalent aperture determined by these tests is a reliable indicator of groutability. Postgrouting permeability measurements as performed here, and frequently in practice, can be misleading, since incomplete grouting of fractures can result in major apparent reductions in permeability. The apparent permeability reduction is caused by grouting of a small area of a highly preferential flowpath directly adjacent to the hole used for grouting and for permeability testing. Experimental results confirm claims in the literature that ordinary portland cement inadequately penetrates fine fractures

  19. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  20. The moderately fractured rock experiment: Background and overview

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2001-01-01

    The Moderately Fractured Rock (MFR) experiment is conducted at Atomic Energy of Canada Limited's Underground Research Laboratory (URL) as part of Ontario Power Generation's Deep Geologic Repository Technology Program. The MFR experiment was initiated in the mid-1990s with the purpose of advancing the understanding of mass transport in MFR (fractures 1-5/m, k ≅ 10 -15 m 2 ) in which groundwater flow and solute migration occurs through a network of interconnected fractures. The experimental program has involved a series of multi-well forced gradient tracer tests at scales of 10-50 m within a ≅ 100,000 m 3 volume of MFR accessed from the 240 m level of the URL. The tracer tests conducted with non-reactive, reactive and colloidal tracers have served to explore the applicability of continuum models for prediction of groundwater flow and mass transport. Recently, a Modeling Task Force was created to re-examine tracer test experimental methodologies, MFR flow and transport conceptual models and provide a broader forum in which to apply alternative dual-permeability, discrete fracture and hybrid mathematical codes for flow system analysis. This paper provides a description of the MFR experiment, preliminary research findings and plans for the future

  1. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks

    Directory of Open Access Journals (Sweden)

    M. Cacace

    2017-09-01

    Full Text Available Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres and temporal scales (from minutes to hundreds of years.

  2. Disposal of waste by hydraulic fracturing

    International Nuclear Information System (INIS)

    Tamura, T.; Weeren, H.

    1984-01-01

    Liquid radioactive waste solutions at the Oak Ridge National Laboratory (ORNL) have been disposed of for nearly 20 years by preparing a slurry, injecting it into bedding plane fractures formed in low-permeability shale, and allowing the slurry to set into a solid. Three major considerations are required for this method: a rock formation that forms horizontal or bedding plane fractures and is highly impermeable, a plant facility that can develop sufficient hydraulic pressure to fracture the rock and to inject the slurry, and a slurry that can be pumped into the fracture and that will set, preferably, into a low-leaching solid. The requirements and desirable conditions of the formation, the process and facility as used for radioactive waste disposal, and the mix formulation and slurry properties that were required for injection and solidification are described. The intent of this paper is to stimulate interest in this technique for possible application to nonnuclear wastes

  3. Is the permeability of naturally fractured rocks scale dependent?

    Science.gov (United States)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  4. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  5. Leakage losses from a hydraulic fracture and fracture propagation

    International Nuclear Information System (INIS)

    Johnson, R.E.; Gustafson, C.W.

    1988-01-01

    The fluid mechanics of viscous fluid injection into a fracture embedded in a permeable rock formation is studied. Coupling between flow in the fracture and flow in the rock is retained. The analysis is based on a perturbation scheme that assumes the depth of penetration of the fluid into the rock is small compared to the characteristic length w 3 0 /k, where w 0 is the characteristic crack width and k is the permeability. This restriction, however, is shown to be minor. The spatial dependence of the leakage rate per unit length from the fracture is found to be linear, decreasing from the well bore to the fracture tip where it vanishes. The magnitude of the leakage rate per unit length is found to decay in time as t -1 /sup // 3 if the injection rate at the well bore is constant, and as t -1 /sup // 2 if the well bore pressure is held constant. The results cast considerable doubt on the validity of Carter's well-known leakage formula (Drilling Prod. Prac. API 1957, 261) derived from a one-dimensional theory. Using the simple fracture propagation model made popular by Carter, the present work also predicts that the fracture grows at a rate proportional to t 1 /sup // 3 for a fixed well bore injection rate and a rate proportional to t 1 /sup // 4 for a fixed well bore pressure

  6. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES - APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    Science.gov (United States)

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  7. Two-phase flow in fractured rock

    International Nuclear Information System (INIS)

    Davies, P.; Long, J.; Zuidema, P.

    1993-11-01

    This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here

  8. Development and application of groundwater flow meter in fractured rocks: Measurement of velocity and direction of groundwater flow in single well

    International Nuclear Information System (INIS)

    Kawanishi, M.; Miyakawa, K.; Hirata, Y.

    2001-01-01

    For the confirmation of safety for the geological disposal of radioactive wastes, it is very important to demonstrate the groundwater flow by in-situ investigation in the deep underground. We have developed a groundwater flow meter to measure simultaneously the velocity and direction of groundwater flow by means of detecting the electric potential difference between the groundwater to evaluate and the distilled water as a tracer in a single well. In this paper, we describe the outline of the groundwater flow meter system developed by CRIEPI and Taisei-Kiso-Sekkei Co. Ltd. and the evaluation methodology for observed data by using it in fractured rocks. Furthermore, applied results to in-situ tests at the Tounou mine of Japan Nuclear Fuel Cycle Development Institute (JNC) and the Aespoe Hard Rock Laboratory (HRL) of Swedish Nuclear Fuel and Waste Management Co. (SK) are described. Both sites are different type of fractured rock formations of granite. From these results, it was made clear that this flow meter system can be practically used to measure the groundwater flow direction and velocity as low as order of 1x10 -3 ∼10 -7 cm/sec. (author)

  9. Magma fracturing and degassing associated with obsidian formation: The explosive–effusive transition

    Science.gov (United States)

    Cabrera, Agustin; Weinberg, Roberto; Wright, Heather M.

    2015-01-01

    This paper explores the role of melt fracturing in degassing rhyolitic volcanic systems. The Monte Pilato-Rocche Rosse eruptions in Italy evolved from explosive to effusive in style, and H2O content in quenched glasses changed over time from relatively H2O-rich (~ 0.90 wt.%) to H2O-poor dense obsidian (~ 0.10–0.20 wt.%). In addition, healed fractures have been recorded in all different eruptive materials, from the glass of early-erupted tube pumice and rinds of breadcrusted obsidian pyroclasts, to the glass of late-erupted dense obsidian pyroclasts, and throughout the final effusive Rocche Rosse lava flow. These rocks show multiple fault sets, some with crenulated fault planes indicating resumption of viscous flow after faulting, complex obsidian breccias with evidence for post-brecciation folding and stretching, and centimetre- to metre-thick tuffisite preserved in pyroclasts and lava, representing collapsed foam due to fracturing of vesicle walls. These microstructural observations indicate that multiple fracturing and healing events occurred during both explosive and effusive eruptions. H2O content in glass decreases by as much as 0.14 wt.% towards healed fractures/faults and decreases in stretched obsidian breccias towards regions of intense brecciation. A drop in pressure and/or increase in temperature along fractures caused diffusive H2O migration through melt towards fracture surfaces. Repetitive and pervasive fracturing and healing thereby create conditions for diffusive H2O loss into fractures and subsequent escape through permeable paths. This type of progressive magma degassing provides a potential mechanism to explain the formation of dense obsidian and the evolution from explosive to effusive eruption style.

  10. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  11. Rock-water interaction involving uranium and thorium isotopes in the fractures of El Berrocal granite, Spain

    International Nuclear Information System (INIS)

    Ivanovich, M.; Cahmbers, N.; Hernandez-Benitez, A.

    1996-01-01

    In the framework of a number of R and D programmes, low permeability rocks in which the groundwater flow is governed by fractures are being considered as potentially suitable candidates for the long-term storage of radioactive waste at depth [1]. Such rocks are often one of the main sources of the radionuclides deriving from the natural radioactive decay chains headed by U and Th. This characteristic makes this type of rock very useful in providing geochemical analogues for the behaviour of transuranic radionuclides present in the nuclear waste [2,3]. The main aim of the work reported here is to study in detail the distribution of naturally occurring radionuclides in several types of fracture infill material from the El Berrocal granitic pluton. The pluton in situated at the southern edge of the Spanish Central System and contains a uranium-mineralized quartz vein (UQV) that has been mined for uranium in the past [4]. Groundwaters as well as natural colloids have been sampled from some of the boreholes with the ultimate intention to model rock/water interaction processes which may take place in the water-bearing fractures in the batholith. The second aim of this work has been to date some of the calcite-rich fracture infills derived from the drill cores at depth, especially at water-bearing horizons. (Author)

  12. Secondary and tertiary gas injection in fractured carbonate rock: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaie, H.; Torsaeter, O. [SPE, NTNU (Norway); Darvish, G.R. [SPE, STATOIL (Norway); Lindeberg, E. [SPE, SINTEF (Norway)

    2008-09-15

    The use of CO{sub 2} has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, as the number of CO{sub 2} injection projects increase, an alternative must be considered to meet the economic considerations. For this reason attention has been directed to nitrogen injection which may be a good substitute for CO{sub 2}. The purpose of the experiments described in this paper was to investigate the efficiency of oil recovery by CO{sub 2} and N{sub 2} in fractured carbonate rock. The combined effects of gravity drainage and component exchange between gas in fracture and oil in matrix on oil recovery in fractured reservoirs subjected to CO{sub 2} or nitrogen gas injection are experimentally studied. Laboratory experiments have been carried out on a low permeable outcrop chalk, as an analogue to a North Sea reservoir rock. This was surrounded by a fracture, established with a novel experimental set-up. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary CO{sub 2} and nitrogen gas injection at high pressure high temperature condition. The matrix block was saturated using recombined binary mixture live oil (C{sub 1}-C{sub 7}), while the fracture was filled with a sealing material to obtain a homogeneous saturation. The sealing material was then removed by increasing the temperature which in turn creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from secondary gas injection experiments indicate that CO{sub 2} injection at elevated pressure and temperature is more efficient than N{sub 2} injection. Results from tertiary gas injection experiments also show that injection of CO{sub 2} could significantly recover the oil, even after waterflooding, compared to N{sub 2} injection. (author)

  13. A multidisciplinary fractured rock characterization study at Raymond field site, Raymond, California

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Freifeld, Barry; Cohen, Andrew; Cook, Paul; Vasco, Don; Grossenbacher, Ken

    2001-01-01

    A dedicated field site was developed and a suite of experiments were conducted in the Sierra Nevada foothills, near the town of Raymond, California to develop and test a multi-disciplinary approach to the characterization of groundwater flow and transport in fractured rocks. A wealth of geologic, hydrologic and geophysical data was collected at the site using a variety of unique tools. A cluster of nine approximately 90 m deep boreholes were drilled at the site in a V-shaped pattern with an angle of 60 degrees. The boreholes are spaced 7.5, 15, 30, and 60 meters from the central borehole. Various geophysical and hydrologic tests were conducted in and between these boreholes. Integration of cross-hole radar and seismic tomography, borehole flow surveys and images from a new digital borehole scanner indicated that groundwater flow is mainly confined to a few sub-horizontal fracture zones. A unique suite of hydraulic tests were conducted, in which three to four intervals in each of the nine boreholes were isolated using pneumatic packers. Some 130 injection tests were conducted, and more than 4,100 cross-hole transient pressure measurements were obtained. A computer algorithm was developed to analyze such massive interference data systematically. As a result of the analysis, an image of the fracture connections emerged, which is consistent with the geophysical data. High precision tiltmeters were effective in remotely characterizing the preferential flow path. Several radial convergent tracer tests were conducted by injecting a mixture of several conservative tracers and one sorbing tracer: deuterium, fluorescein, lithium bromide and polystyrene micro-spheres. Some differences between the breakthrough curves are observed, which may be due to possible differences among so-called 'conservative' tracers. Some characterization tools were found to be more effective than others in locating flowing fractures. However, no single tool was almighty. Characterization of

  14. A study on the ground water flow and hydrogeochemical interaction in fractured rock masses

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Chun Soo; Yoon, Si Tae; Kim, Sun Joon; Chung, Chan Ho; Kim, Gye Nam

    1991-01-01

    A study site, the Precambrian gneiss complex in the vincinity of Chungyang has been investigated by geologic surface mapping, tunnel mapping and core drilling with chemical analysis and microscopic observation of rock samples and fracture filling materials. Four boreholes at depths between 50 and 200m were drilled. They are located in a potential fracture zone, which was selected based on the topographic characterisitcs and the fracture survey data. The hydraulic characteristics are described based on the results of constant pressure injection test and cross hole test. In the single hole test, the test sections varied between 1 and 5 m. The hydraulic conductivity of local fracture zones ranges from 1xlO -5 to lxlO -7 m/sec whereas that of the intact rock within the depth of 50 m is in the range of 7xlO -8 to 8xlO -9 m/sec. The field dispersivity values obtained from an injection phase range from 0.15 to 4.5 m at varying depths. The whole thickness dispersivity on the 18 m section obtained from a withdrawal phase is 0.4 m. The dispersion test in two well non-circulation mode was carried out along a single fracture set at depth between 11.5-14.5m. The longitudinal dispersivity obtained from the two well test is 8.14 m. The identified minerals of host rocks are quartz, K-feldspar,plagioclase, biotite, muscovite, sericite, chlorite, calcite, pyrite, zircon and opaque minerals. The primary minerals such as feldspar and biotite are highly altered into sericite and chlorite respectively. The fracture-filling materials from core samples identified by as calcite, kaolinite, smectite, chlorite, illitite, quartz, pyrite with fe- and Mn-oxides. (Author)

  15. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  16. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  17. Field assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    International Nuclear Information System (INIS)

    Forster, C.B.; Gale, J.E.

    1981-06-01

    A field experiment to evaluate the transient pressure pulse technique as a method of determining the in-situ hydraulic conductivity of low permeability fractured rock was made. The experiment attempted to define: the radius of influence of a pressure pulse-test in fractured rock and the correlation between pressure-pulse tests and steady-state flow tests performed in five boreholes drilled in fractured granite. Twenty-five test intervals, 2 to 3 m in length, were isolated in the boreholes, using air-inflated packers. During pressure pulse and steady-state tests, pressures were monitored in both the test and observation cavities. Rock-mass conductivities were calculated from steady-state test results and were found to range from less than 10 - 11 to 10 - 7 cm/sec. However, there was no consistent correlation between the steady-state conductivity and the pressure pulse decay characteristics of individual intervals. These conflicting test results can be attributed to the following factors: differences in volumes of rock affected by the test techniques; effects of equipment configuration and compliance; and complexity of the fracture network. Although the steady-state flow tests indicate that hydraulic connections exist between most of the test cavities, no pressure responses were noted in the observation cavities (located at least 0.3 m from the test cavities) during the pulse tests. This does not mean, however, that the pressure-pulse radius of influence is <0.3 m, because the observation cavities were too large (about 7 liters). The lack of correlation between steady-state conductivities and the corresponding pressure pulse decay times does not permit use of existing single-fracture type curves to analyze pulse tests performed in multiple-fracture intervals. Subsequent work should focus on the detailed interpretation of field results with particular reference to the effects of the fracture system at the test site

  18. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    International Nuclear Information System (INIS)

    Svensson, Urban

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock

  19. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  20. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    Mathis, J.; Stephansson, O.; Bjarnason, B.; Hakami, H.; Herdocia, A.; Mattila, U.; Singh, U.

    1986-01-01

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  1. Understanding large scale groundwater flow in fractured crystalline rocks to aid in repository siting

    International Nuclear Information System (INIS)

    Davison, C.; Brown, A.; Gascoyne, M.; Stevenson, D.; Ophori, D.

    2000-01-01

    Atomic Energy of Canada Limited (AECL) conducted a ten-year long groundwater flow study of a 1050 km 2 region of fractured crystalline rock in southeastern Manitoba to illustrate how an understanding of large scale groundwater flow can be used to assist in selecting a hydraulically favourable location for the deep geological disposal of nuclear fuel waste. The study involved extensive field investigations that included the drilling testing, sampling and monitoring of twenty deep boreholes distributed at detailed study areas across the region. The surface and borehole geotechnical investigations were used to construct a conceptual model of the main litho-structural features that controlled groundwater flow through the crystalline rocks of the region. Eighty-three large fracture zones and other spatial domains of moderately fractured and sparsely fractured rocks were represented in a finite element model of the area to simulate regional groundwater flow. The groundwater flow model was calibrated to match the observed groundwater recharge rate and the hydraulic heads measured in the network of deep boreholes. Particle tracking was used to determine the pathways and travel times from different depths in the velocity field of the calibrated groundwater flow model. The results were used to identify locations in the regional flow field that maximize the time it takes for groundwater to travel to surface discharge areas through long, slow groundwater pathways. One of these locations was chosen as a good hypothetical location for situating a nuclear fuel waste disposal vault at 750 m depth. (authors)

  2. Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock

    Science.gov (United States)

    2017-03-27

    Figure 1. This ESTCP demonstration was focused in the vicinity of Building 8595, adjacent to the location of a reported surface release of PCE ( Earth ...electron donor source, such as vegetable oil, is typically used in passive approaches. When treating a DNAPL source area in fractured rock, there are... vegetable oil) are used. Hydrogen The generation of hydrogen can be used to verify fermentation of electron donor. Metals (Fe, Mn, As) Increase

  3. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  4. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  5. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  6. An evaluation of fracture toughness of bituminous coal

    International Nuclear Information System (INIS)

    Pathan, A.G.

    2005-01-01

    The role of fracture mechanics in the design of rock structures is vitally important. However, because of the complexities of rock structures and lack of understanding of the fundamentals of the failure mechanism, it has become customary to use the engineering properties approach in the design of stable rock structures. Recently considerable attention has been given and attempts are being made to apply the fracture mechanics approach to the design of safe mining structures. In mining engineering the fracture mechanics may be applied to calculate the formation of fracture zones around mine opening, thus estimating support requirements and formulating guide lines for the selection of mine roadway support system. The research work presented here is concerned with the evaluation of fracture toughness of coal under laboratory conditions. Diametral compression test method is used to determine the fracture toughness parameter of coal in the opening model failure. The effect of crack length and dimensionless crack length on the fracture toughness was studied also. A laboratory investigation of fracture toughness of coal in tensile mode failure has led to the conclusion that fracture toughness could be treated as a material property. (author)

  7. The application of positron emission tomography to the study of mass transfer in fractured rock

    International Nuclear Information System (INIS)

    Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.

    1991-06-01

    In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)

  8. Effective media models for unsaturated fractured rock: A field experiment

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1995-01-01

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  9. The Impact of Temperatures on the Stability of Rocks Surrounding a Single Fracture

    Science.gov (United States)

    Zhang, Yan; Li, Ning; Dai, Jun

    2018-05-01

    Research on the influence of temperature and the accompanying stress on the stability of the rocks surrounding an underground tunnel has become ever more important. This paper constructs a geometric model of a single-fracture tunnel by combining a high-temperature underground tunnel as the object of study with an example that uses a high-temperature tunnel segment in the water diversion tunnel of a hydropower station in Xinjiang. Based on the relevant theoretical analysis, with the consideration of different working conditions, a numerical experimental analysis was conducted to determine the two-dimensional transient temperature field distribution of the tunnel rock mass by using a numerical analysis software. The experimental data was consistent with the measured data. The calculated results show the following: a. when the temperature difference is greater, the stress concentration is higher near the fracture of the surrounding rock; b. the degree of the stress concentration in the crack tip region is not positively correlated to the distance, and there is a sensitive region where the stress varies.

  10. Fractures on curved surfaces: A classic problem solved

    Science.gov (United States)

    Balcerak, Ernie

    2011-11-01

    Sheeting joints—large fractures parallel to a curved rock surface—are common in many locations on Earth, such as the iconic Half Dome in Yosemite National Park in California. Explaining how these fractures form has been a classic unsolved problem in geology. Martel solved the problem by reformulating the static equilibrium equations in a curvilinear reference frame. His analysis shows that compression along a curved surface can induce tension perpendicular to the surface, which can cause subsurface cracks to open. He found that the curvature of a rock surface plays a key role in the formation of fractures.

  11. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    Directory of Open Access Journals (Sweden)

    Xuguang Chen

    2014-01-01

    Full Text Available Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  12. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    Science.gov (United States)

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  13. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-01-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps

  14. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  15. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  16. Experimental study upon the effect of irradiation on callus formation of fracture

    International Nuclear Information System (INIS)

    Saigusa, Fujio

    1981-01-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone. (Ueda, J.)

  17. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    Sirat, M.

    1999-01-01

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  18. Innovations in the characterization of fractured rocks developed within the Stripa project

    International Nuclear Information System (INIS)

    Black, J.; Brightman, M.; Holmes, D.

    1994-01-01

    This text deals with the hydrogeological work that has been carried out at Stripa Mine. First of all, the philosophy applied evolved through the years, and has finally been focused on a fractured rock approach. Second, it has been necessary to develop hydraulic testing methods - such as focused packer testing - and equipment; the key of the success of the equipment that was built, was that it was fully computer controlled and able to regulate water pressures quickly, reliably and accurately. In the end, the aim of the hydrogeological testing was to characterize both the small scale fracture network and the large scale major fracture zone which composed the site. (TEC). 13 refs., 5 figs

  19. Modelling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock

    International Nuclear Information System (INIS)

    Herbert, A.; Gale, J.; MacLeod, R.; Lanyon, G.

    1991-12-01

    We present our approach to predicting flow through a fractured rock site; the site characterization and validation region in the Stripa mine. Our approach is based on discrete fracture network modelling using the NAPSAC computer code. We describe the conceptual models and assumptions that we have used to interpret the geometry and flow properties of the fracture networks, from measurements at the site. These are used to investigate large scale properties of the network and we show that for flows on scales larger than about 10 m, porous medium approximation should be used. The porous medium groundwater flow code CFEST is used to predict the large scale flows through the mine and the SCV region. This, in turn, is used to provide boundary conditions for more detailed models, which predict the details of flow, using a discrete fracture network model, on scales of less than 10 m. We conclude that a fracture network approach is feasible and that it provides a better understanding of details of flow than conventional porous medium approaches and a quantification of the uncertainty associated with predictive flow modelling characterised from field measurement in fractured rock. (au)

  20. Experimental and numerical study on the fracture of rocks during injection of CO2-saturated water

    Science.gov (United States)

    Li, Qi; Wu, Zhishen; Lei, Xing-Lin; Murakami, Yutaka; Satoh, Takashi

    2007-02-01

    Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.

  1. A study on the stochastic model for nuclide transport in the fractured porous rock using continuous time Markov process

    International Nuclear Information System (INIS)

    Lee, Youn Myoung

    1995-02-01

    As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured

  2. CRYSTAL: A model of a fractured rock geosphere for performance assessment within SKI Project-90

    International Nuclear Information System (INIS)

    Worgan, K.; Robinson, P.

    1992-02-01

    A one-dimensional model of a fractured rock geosphere (CRYSTAL) has been developed, which forms part of the toolkit for the Swedish Nuclear Power Inspectorates reference repository performance assessment programme (Project-90). CRYSTAL predicts the transport of arbitrary-length decay chains by advection, diffusion and surface sorption in the fractures and sideways diffusion into the rock matrix. The model equations are solved in Laplace transform space, and inverted numerically to the time domain. This approach avoids time-stepping and consequently is numerically very efficient. The interface of CRYSTAL with the time-series output from a near-field model, such as CALIBRE, is achieved using the method of convolution. The response of the geosphere to delta-function inputs from each nuclide is combined with the time series outputs from the near-field, to obtain the nuclide flux emerging from the far-field. The method is sufficiently flexible to allow for any general time-series input from CALIBRE or any other near-field model. Although CRYSTAL was developed to handle one-dimensional transport in a fractured rock, the equations solved are sufficiently general for it to be used in other applications, e.g. in a porous system. (au)

  3. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S

    2005-07-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  4. Development of the numerical model for reactive transport of radionuclide and bacteria in the single fractured rock

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Baik, Min Hoon

    2010-12-01

    On the aspects of safety case of HLW deep geological disposal system, recently, many researchers in the world have been actively studying about the bacterial effects on the radionuclide transport in the fractured rock. However, the domestic research level related on the area is still insufficient. Therefore, the objective of the research is to introduce the theory and development process of the numerical model, which was newly developed to examine the bacterial effects on the radionuclide transport in the single fractured rock, and to test the model by simulating in some imaginary conditions. From the verification by comparing the simulation results with analytical solution considering only solute transport and rock diffusion, the Pearson's correlation coefficient was greater than 0.99 which demonstrates the accuracy of the model. Since the simulation in the model domain of the single fractured core rock resulted in well-matched mass-balances for all solutes, the robustness and stability of the model could be proved again. Therefore, it is expected that the report can guide the potential model users and can be a referring material for a model developer who is trying to expand and/or update the model

  5. Determination of static moduli in fractured rocks by T-matrix model

    Czech Academy of Sciences Publication Activity Database

    Chalupa, F.; Vilhelm, J.; Petružálek, Matěj; Bukovská, Z.

    2017-01-01

    Roč. 22, č. 1 (2017), s. 22-31 ISSN 1335-1788 Institutional support: RVO:67985831 Keywords : fractured rocks * dynamic and static moduli * T-matrix model * elastic wave velocity * well logging Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.769, year: 2016 http://actamont.tuke.sk/pdf/2017/n1/3chalupa.pdf

  6. Role of large-scale permeability measurements in fractured rock and their application at Stripa

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Wilson, C.R.; Long, J.C.S.; DuBois, A.O.; Gale, J.E.; McPherson, M.

    1979-10-01

    Completion of the macropermeability experiment will provide: (i) a direct, in situ measurement of the permeability of 10 5 to 10 6 m 3 of rock; (ii) a potential method for confirming the analysis of a series of small scale permeability tests performed in surface and underground boreholes; (iii) a better understanding of the effect to open borehole zone length on pressure measurement; (iv) increased volume in fractured rock; (v) a basis for evaluating the ventilation technique for flow measurement in large scale testing of low permeability rocks

  7. Experimental study upon the effect of irradiation on callus formation of fracture. Observation of vascular alteration and callus formation

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, F [Nippon Dental Coll., Tokyo

    1981-02-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone.

  8. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  9. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    Science.gov (United States)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  10. Modelling of Fracture Initiation, Propagation and Creep of a KBS-3V and KBS-3H Repository in Sparsely Fractured Rock with Application to the Design at Forsmark Candidate Site

    International Nuclear Information System (INIS)

    Backers, Tobias; Stephansson, Ove

    2008-01-01

    The stability issues of deposition holes of a repository layout according to the KBS-3 concept in the sparsely fractured Forsmark granites are analysed with the emphasis on fracture mechanics. At the start of the project the rock mass is viewed as a continuum. In a second step explicit fracture networks are introduced and included in the numerical rock fracture models. The software Fracod2D was used for the rock fracture mechanics analysis. Assuming deposition holes located in a continuous, homogeneous elastic rock mass and The presented stress state of the rock mass the following results were obtained: For single KBS-3H deposition holes oriented in the direction of the minimum horizontal stress, Sh, bore hole breakouts are introduced for all depth levels. For KBS-3H holes which are oriented in direction of SH, no significant fracturing can be expected. In case of vertical deposition holes according to KBS-3V an increased risk of fracturing at greater depth levels (> 500m) is evident. At shallow depth levels ( 5MPa gives a favourable situation about spalling for the KBS-3H and KBS-3V layouts. To prevent spalling, it is important to build up a swelling pressure soon after excavation, so that the enhanced stresses in the surrounding of the deposition ii holes are reduced. This has a positive impact on other excavation activities and also on time-dependent fracturing. After excavation and filling of the deposition holes with subsequent increase of swelling pressure, the temperature will increase in the vicinity of the excavation. For the range of swelling pressures predicted for the KBS-3 concept, i.e. 5.5MPa to 7.2MPa, no significant fracturing for the KBS-3H concept with the axis parallel SH at depths below about 600m was discovered. The results from other layouts bare the risk of partly significant fracturing. About 60ka from closing the repository an ice cover of approximately 3km is expected over Forsmark. This dead load increases the in-situ stresses and

  11. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  12. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  13. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  14. Radionuclide migration in non-saline rock formations - status and perspectives

    International Nuclear Information System (INIS)

    Kienzler, B.; Geckeis, H.; Fanghaenel, T.

    2002-01-01

    The article is a condensed version of a paper presented at a workshop on 'Final Storage in Non-saline Rock Formations - Previous and Future German R and D Activities' at the Karlsruhe Research Center on April 8-9, 2002. The objectives, methods, and results of the research work performed at the Institute for Nuclear Waste Management (INE) of the Karlsruhe Research Center on the migration of radionuclides, in particular of the actinides, and the perspectives derived from these activities are described. The R and D work presented comprises laboratory studies of granite and clay as well as in situ experiments at the underground laboratories of Aespoe, Sweden, and Grimsel, Switzerland. An exemplary overview is presented of the findings about actinide migration in fractures, colloid migration in the shear zone of a granite formation, and the sorption of actinides and lanthanides onto clay and various argillaceous materials. Fundamental studies by INE of the problems outlined here include the elucidation of the structures and binding patterns of species sorbed onto surfaces, the stability and characteristics of colloids, the relevant basic thermodynamic features, and methodological developments. (orig.) [de

  15. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  16. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    Science.gov (United States)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  17. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  18. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  19. Folding and fracturing of rock adjacent to salt diapirs

    Science.gov (United States)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides

  20. Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland)

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Josep M., E-mail: josep.soler@idaea.csic.es [IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona (Spain); Vuorio, Marja; Hautojaervi, Aimo [POSIVA OY, Olkiluoto, FI-27160 Eurajoki (Finland)

    2011-07-15

    Highlights: > It is planned to seal conductive fractures near a repository with cementitious grout. > Modeling includes simultaneous hydration and leaching of the grout. > Modeling results show a very limited formation of the high-pH plume. > Results are in qualitative agreement with borehole monitoring data. - Abstract: Grouting of water-conducting fractures with low-alkali cement is foreseen for the potential future repository for spent nuclear fuel in Finland (ONKALO). A possible consequence of the interaction between groundwater and grout is the formation of high-pH solutions which will be able to react with the host rock (gneisses) and alter its mineralogy and porosity. A reactive transport modeling study of this possible alteration has been conducted. First, the hydration of the low-alkali cementitious grout has been modeled, using results from the literature as a guide. The hydrated cement is characterized by the absence of portlandite and the presence of a C-S-H gel with a Ca/Si ratio about 0.8 after tens of years (Ca/Si is about 1.7 in Ordinary Portland Cement). Second, calculations have simulated the interaction between flowing water and grout and the formation of an alkalinity plume, which flows beyond the grouted section of the fracture. The calculations include the hydration and simultaneous leaching of the grout through diffusive exchange between the porewater in the grout and the flowing water in the fracture. The formation of an alkaline plume is extremely limited when the low-pH grout is used. Even when using a grout with a lower silica fume content, the extent and magnitude of the alkaline plume is quite minor. These results are in qualitative agreement with monitoring at ONKALO.

  1. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  2. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    Science.gov (United States)

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  3. Fault rocks and veins formation in the crystalline Palaeozoic basement of the N margin of the Littoral Chain (Catalan Coastal Ranges, NE Spain)

    Science.gov (United States)

    Alías, Gemma; Belmonte, Alba; Cantarero, Irene; Inglés, Montserrat; Travé, Anna

    2013-04-01

    The Littoral Chain corresponds to a horst of NE-SW direction formed during the Neogene extension which in the studied area (Collserola-Montnegre massif) is mainly composed by Paleozoic materials. At the northern margin the horst limits with the Vallès basin which is infilled by Miocene detrital materials. In the Forques Hill, two km to the est of Martorell, an excellent outcrop of Ordovician phyllites summarise an spread tectonic evolution from Hercynian to Neogene deformation. This work evaluates the behaviour of phyllites during the Hercynian ductile deformation and later during the fragile Mesozoic and Neogene tectonics. The weakness of these rocks together with the situation very close to the Vallès Fault favour that this area concentrates many deformation structures related to extensional tectonics, such as veins, cataclasites and gouges. Phyllites present a pervasive regional hercynian foliation oriented WNW-ESE and dipping moderately to the NNE; a huge amount of quartz veins, up to 20% of the rock volume, were injected during and immediately after the main foliation development. Two groups of fractures cutting the phyllites can be distinguished in the field according to the fault rock products, the vein infilling, the orientation and the geometry. The first one corresponds to Mesozoic fractures that have a NE-SW trend and dip indistinctly to the NW or SE, in a conjugate system. They are characterized by the formation of a broad zone of 0,2 m up to 1,5 m formed either by cataclasites or en echelon veins that indicate a normal movement. The cataclasites are cohesive greenish rocks, with 50% of clasts of wall rock from mm to dm in size. Neoformed minerals in the matrix are chlorite - albite - barite ± titanite and rutile. Veins are white to pinkish in colour and two types of infill have been identified: albite - chlorite - iron oxides± rutile and dolomite - chlorite. The second group belongs to Neogene fractures which although similar orientation than those

  4. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available The tight gas reservoir in the fifth member of the Xujiahe formation contains heterogeneous interlayers of sandstone and shale that are low in both porosity and permeability. Elastic characteristics of sandstone and shale are analyzed in this study based on petrophysics tests. The tests indicate that sandstone and mudstone samples have different stress-strain relationships. The rock tends to exhibit elastic-plastic deformation. The compressive strength correlates with confinement pressure and elastic modulus. The results based on thin-bed log interpretation match dynamic Young’s modulus and Poisson’s ratio predicted by theory. The compressive strength is calculated from density, elastic impedance, and clay contents. The tensile strength is calibrated using compressive strength. Shear strength is calculated with an empirical formula. Finally, log interpretation of rock mechanical properties is performed on the fifth member of the Xujiahe formation. Natural fractures in downhole cores and rock microscopic failure in the samples in the cross section demonstrate that tensile fractures were primarily observed in sandstone, and shear fractures can be observed in both mudstone and sandstone. Based on different elasticity and plasticity of different rocks, as well as the characteristics of natural fractures, a fracture propagation model was built.

  5. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    Science.gov (United States)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  6. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  7. Proceedings of a technical session on rock mechanics ''Advance in laboratory sample testing''

    International Nuclear Information System (INIS)

    Come, B.

    1984-01-01

    This report brings together a series of papers about rock mechanics. The meeting was divided into three sessions, which dealt with the three main types of rock formation currently considered in the CEC Programme: granite, clay and salt. Safe disposal of high-level radioactive waste involves the proper design of deep underground repositories. This necessitates an in-depth knowledge of the mechanical properties of the rock mass. The behaviour of the rock mass must be known both for the construction and the operation (heating effects) of the repository. Usually, the dominant factor for designing an underground structure is the fracturing of the rock mass. In the present case, the rock is chosen with a very low fracturing. Therefore, the mechanical properties of the formation are mainly those of the rock matrix. These properties are obtained, at least in a first exploratory step, by laboratory testing of rock samples obtained by core-drilling from surface. This aspect of rock characterization was thought to deserve a special technical meeting, in order to bring together most of the results obtained in this field by contracting partners of the CEC for the years 1980-82

  8. Laboratory studies of groundwater degassing in replicas of natural fractured rock for linear flow geometry

    International Nuclear Information System (INIS)

    Geller, J.T.

    1998-02-01

    Laboratory experiments to simulate two-phase (gas and water) flow in fractured rock evolving from groundwater degassing were conducted in transparent replicas of natural rock fractures. These experiments extend the work by Geller et al. (1995) and Jarsjo and Geller (1996) that tests the hypothesis that groundwater degassing caused observed flow reductions in the Stripa Simulated Drift Experiment (SDE). Understanding degassing effects over a range of gas contents is needed due to the uncertainty in the gas contents of the water at the SDE. The main objectives of this study were to: (1) measure the effect of groundwater degassing on liquid flow rates for lower gas contents than the values used in Geller for linear flow geometry in the same fracture replicas of Geller; (2) provide a data set to develop a predictive model of two-phase flow in fractures for conditions of groundwater degassing; and (3) improve the certainty of experimental gas contents (this effort included modifications to the experimental system used by Geller et al. and separate gas-water equilibration tests). The Stripa site is being considered for a high-level radioactive waste repository

  9. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  10. Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures

    International Nuclear Information System (INIS)

    Doe, T.W.; McClain, W.C.

    1984-07-01

    The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described

  11. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  12. Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Usui, Tomoya; Paluszny, Adriana

    2017-01-01

    A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  13. Rockfall triggering by cyclic thermal stressing of exfoliation fractures

    Science.gov (United States)

    Collins, Brian D.; Stock, Greg M.

    2016-01-01

    Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

  14. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  15. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  16. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    Science.gov (United States)

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  17. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  18. Validation studies for assessing unsaturated flow and transport through fractured rock

    International Nuclear Information System (INIS)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F.

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed

  19. Validation studies for assessing unsaturated flow and transport through fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

  20. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  1. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  2. Coupled hydromechanical paleoclimate analyses of density-dependant groundwater flow in discretely fractured crystalline rock settings

    Science.gov (United States)

    Normani, S. D.; Sykes, J. F.; Jensen, M. R.

    2009-04-01

    A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In

  3. Hydro-thermo-mechanical response of a fractured rock block

    International Nuclear Information System (INIS)

    Kelkar, S.; Zyvoloski, G.

    1990-01-01

    Hydro-thermo-mechanical effects in fractured rocks are important in many engineering applications and geophysical processes. Modeling these effects is made difficult by the fact that the governing equations are nonlinear and coupled, and the problems to be solved are three dimensional. In this paper we describe a numerical code developed for this purpose. The code is finite element based to allow for complicated geometries, and the time differencing is implicit, allowing for large time steps. The use of state-of-the-art equation solvers has resulted in a practical code. The code is capable of fully three dimensional simulations, however, in this paper we consider only the case of two dimensional heat and mass flow coupled to one dimensional deformation. Partial verification of the code is obtained by comparison with published semianalytical results. Several examples are presented to demonstrate the effects of matrix expansion, due to pore pressure and heating, on fracture opening due to fluid injection. 16 refs., 11 figs

  4. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  5. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    International Nuclear Information System (INIS)

    Palmer, S.P.

    1982-11-01

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 x 0.9 x 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs

  6. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Koide, Kaoru; Takeichi, Atsushi

    1997-01-01

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10 -3 - 10 -4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  7. On the description of the properties of fractured rock using the concept of a porous medium

    International Nuclear Information System (INIS)

    Stokes, J.

    1980-05-01

    In order to describe the flow of groundwater through fractured rock, water is either assumed to flow through a pervious continuum of through descrete fractures between impervious blocks of rock. The latter approach being the one demanding more information on the rock, problems on groundwater flow are usually discussed using the porous medium approach. It is often a question of debate wether the continuum approach is applicable to the fractured rock under consideration. Therefore, it is essential that after assuming that a certain flow region acts as a porous medium, we use a procedure for measuring the properties that at the same time gives a test of this assumption. When giving a description of groundwater flow, the goal is often a presentation of pathlines and flowtimes between points of interest and the ground surface. Using a porous medium approach, this means that hydraulic conductivity and porosity must be known through the medium. In order to cope with transient flow, we must also know the time constant governing the development of the flow. The pathlines depend to a great extent on the variation of conductivity through space. A conductivity decreasing with depth will force the pathlines to the surface giving local flow. If instead the conductivity is constant, the flow is regional. It is therefore important to know the gradient of hydraulic conductivity. Finally, as we know that the flow takes place through a geological structure, the anisotropic behaviour of the rock must be known in order to describe the flow. In this report a procedure to measure the properties listed above is developed. (author)

  8. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil'kova, N.A.

    1996-01-01

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  9. The motion of a redox front in a system of bentonite and rock, incorporating fracture transport effects

    International Nuclear Information System (INIS)

    Shaw, W.; Robinson, P.

    1992-02-01

    This report presents new calculations of the motion of a redox front in a system of bentonite and fractured rock, incorporation advection and diffusion of oxidants in fracture water. The results reported here have been incorporated into preliminary base case calculations using the source term model CALIBRE. The model presented here differs mainly in its treatment of the effects of the fracture. Previously, a 'zero-concentration' boundary condition was applied, and this resulted in retardation of the front near the fracture. When a more detailed advection-diffusion model is applied, the front is advanced in a neighbourhood of the fracture. (25 refs.) (au)

  10. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    Science.gov (United States)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  11. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  12. A critical review of the data requirements for fluid flow models through fractured rock

    International Nuclear Information System (INIS)

    Priest, S.D.

    1986-01-01

    The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)

  13. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  14. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  15. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Science.gov (United States)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  16. Environmental consequences of shale gas exploitation and the crucial role of rock microfracturing

    Science.gov (United States)

    Renard, Francois

    2015-04-01

    The growing exploitation of unconventional gas and oil resources has dramatically changed the international market of hydrocarbons in the past ten years. However, several environmental concerns have also been identified such as the increased microseismicity, the leakage of gas into freshwater aquifers, and the enhanced water-rock interactions inducing the release of heavy metals and other toxic elements in the produced water. In all these processes, fluids are transported into a network of fracture, ranging from nanoscale microcracks at the interface between minerals and the kerogen of the source rock, to well-developed fractures at the meter scale. Characterizing the fracture network and the mechanisms of its formation remains a crucial goal. A major difficulty when analyzing fractures from core samples drilled at depth is that some of them are produced by the coring process, while some other are produced naturally at depth by the coupling between geochemical and mechanical forces. Here, I present new results of high resolution synchrotron 3D X-ray microtomography imaging of shale samples, at different resolutions, to characterize their microfractures and their mechanisms of formation. The heterogeneities of rock microstructure are also imaged, as they create local stress concentrations where cracks may nucleate or along which they propagate. The main results are that microcracks form preferentially along kerogen-mineral interfaces and propagate along initial heterogeneities according to the local stress direction, connecting to increase the total volume of fractured rock. Their lifetime is also an important parameter because they may seal by fluid circulation, fluid-rock interactions, and precipitation of a cement. Understanding the multi-scale processes of fracture network development in shales and the coupling with fluid circulation represents a key challenge for future research directions.

  17. Applications of stochastic models to solute transport in fractured rocks

    International Nuclear Information System (INIS)

    Gelhar, L.W.

    1987-01-01

    A stochastic theory for flow and solute transport in a single variable aperture fracture bounded by sorbing porous matrix into which solutes may diffuse, is developed using a perturbation approximation and spectral solution techniques which assume local statistical homogeneity. The theory predicts that the effective aperture of the fracture for mean solute displacement will be larger than the aperture required to calculate the large-scale flow resistance of the fracture. This ratio of apertures is a function of the variance of the logarithm of the apertures. The theory also predicts the macrodispersion coefficient for large-scale transport in the fracture. The resulting macrodispersivity is proportional to the variance of the logaperture and to its correlation scale. When variable surface sorption is included, it is found that the macrodispersivity is increased significantly, in some cases more than an order of magnitude. It is also shown that the effective retardation coefficient for the sorptively heterogeneous fracture is found by simply taking the arithmetic mean of the local surface sorption coefficient. Matrix diffusion is also shown to increase the fracture macrodispesivity at very large times. A reexamination of the results of four different field tracer tests in crystalline rock in Sweden and Canada shows aperture ratios and dispersivities that are consistent with the stochastic theory. The variance of the natural logarithm of the aperture is found to be in the range of 3 to 6 and the correlation scales for logaperture ranges from .2 to 1.2 meters. Detailed recommendations for additional field investigations at scales ranging from a few meters up to a kilometer are presented. (orig.)

  18. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  19. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  20. Non-Darcy Flow Experiments of Water Seepage through Rough-Walled Rock Fractures

    Directory of Open Access Journals (Sweden)

    Xiao-dong Ni

    2018-01-01

    Full Text Available The knowledge of flow phenomena in fractured rocks is very important for groundwater-resources management in hydrogeological engineering. The most commonly used tool to approximate the non-Darcy behavior of the flow velocity is the well-known Forchheimer equation, deploying the “inertial” coefficient β that can be estimated experimentally. Unfortunately, the factor of roughness is imperfectly considered in the literature. In order to do this, we designed and manufactured a seepage apparatus that can provide different roughness and aperture in the test; the rough fracture surface is established combining JRC and 3D printing technology. A series of hydraulic tests covering various flows were performed. Experimental data suggest that Forchheimer coefficients are to some extent affected by roughness and aperture. At last, favorable semiempirical Forchheimer equation which can consider fracture aperture and roughness was firstly derived. It is believed that such studies will be quite useful in identifying the limits of applicability of the well-known “cubic law,” in further improving theoretical/numerical models associated with fluid flow through a rough fracture.

  1. VSP in crystalline rocks - from downhole velocity profiling to 3-D fracture mapping

    International Nuclear Information System (INIS)

    Cosma, C.; Heikkinen, P.; Keskinen, J.; Enescu, N.

    1998-01-01

    VSP surveys have been carried out at several potential nuclear waste disposal sites in Finland since the mid 80s. To date, more than 200 three-component profiles have been measured. The main purpose of the surveys was to detect fracture zones in the crystalline bedrock and to determine their position. Most seismic events could be linked to zones of increased fracturing observed in the borehole logs. The more pronounced seismic reflectors could be correlated with hydrogeologically significant zones, which have been the main targets in the investigations. Processing and interpretation methods have been developed specifically for VSP surveys in crystalline rocks: Weak reflections from thin fracture zones are enhanced by multi-channel filtering techniques based on the Radon transform. The position and orientation of the fracture zones are determined by polarisation analysis and by combining data from several shot points. The compilation of the results from several boreholes gives a comprehensive image of the fracture zones at the scale of the whole site. The discussion of the methodology is based on examples from the Olkiluoto site, in SW Finland

  2. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  4. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  5. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  6. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  7. Mobilities of radionuclides in fresh and fractured crystalline rock

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Ittner, T.; Allard, B.; Andersson, K.; Olofsson, U.

    1982-12-01

    Sorption and migration of technetium, cesium and americium on fracture surfaces and fresh surfaces of granites taken from drilling cores from the Finnsjoen and Studsvik areas and the Stripa mine are reported. The three elements were used as reference elements with different chemistry and behaviour in water; under the conditions used in the experiments technetium exists as the heptavalent TcO -4 -ion, cesium as the non-complexed monovalent cation Cs + and americium as the strongly hydrolysed Am(OH)super (3-x) (x-1-4). The waters used were synthetic groundwaters representative of waters from the drilling holes. After the exposure of the fracture samples to spiked groundwater solutions for a period of three up to six months the penetration depths and concentration profiles were analysed and autoradiographs of cesium and americium distribution vs depth were taken. The sorption of technetium was found to be negligible. The transport of TcO -4 depends on accessibility to fractures and micro-fissures in the rock. Cesium is sorbed through an ion-exchange process. Migration of cesium depends not only on the transport in water into fractures and micro-fissures, but also on migration through mineral veins with a high CEC. Americium is strongly sorbed on most solid surfaces and did not migrate significantly during the contact time of three months. The diffusivity in granite was found to be around 10 - 13 m 2 /s for cesium; preliminary values for technetium and americium were 10 - 12 m 2 /s and less than 10 - 16 m 2 /s, respectively. (Authors)

  8. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  9. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  10. An Experimental Investigation into Failure and Localization Phenomena in the Extension to Shear Fracture Transition in Rock

    Science.gov (United States)

    Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.

    2014-12-01

    Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia

  11. Views on the calculation of flow and dispersion processes in fractured rock

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    In the report some basic aspects on model types, physical processes, determination of parameters are discussed in relation to a description of flow and dispersion processes in fractured rocks. As far as model types concern it is shown that Darcy's law and the dispersion equation are not especially applicable. These equations can only describe an average situation of flow and spreading while in reality very large deviations could exist between an average situation and the flow and concentration distribution for a certain fracture geometry. The reason for this is primarily the relation between the length scales for the repository and the near field and the fracture system respectively and the poor connectivity between fractures or expressed in another way - the geosphere can not be treated as a continuous medium. The statistical properties of the fractures and the fracture geometry cause large uncertainties in at least two respects: * boundary conditions as to groundwater flow at the repository and thus the mass flow of radioactive material * distribution of flows and concentrations in planes in the geosphere on different distances from the repository. A realistic evaluation of transport and spreading of radioactive material by the groundwater in the geosphere thus requires that the possible variation or uncertainty of the water conducting characteristics of the fracture system is considered. A possible approach is then to describe flow in the geosphere on the basic of the flow in single fractures which are hydraulically connected to each other so that a flow in a fracture system is obtained. The discussion on physical processes which might influence the flow description in single fractures is concentrated to three aspects - factors driving the flow besides the ordinary hydraulic gradient, the viscous properties of water in a very small space (such as a fracture), the influence on the flow of heat release from the repository. (42 figs., 28 refs.)

  12. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  13. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  14. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  15. Editorial: Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  16. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  17. A study on the characteristics of site-scale fracture system in granite and volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Chun Soo; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of conductive fractures in granite and volcanic rock mass. 10 refs., 32 figs., 13 tabs. (Author)

  18. Gas Transport through Fractured Rock near the U20az Borehole, Pahute Mesa, Nevada.

    Science.gov (United States)

    Rockhold, M.; Lowrey, J. D.; Kirkham, R.; Olsen, K.; Waichler, S.; White, M. D.; Wurstner White, S.

    2017-12-01

    Field experiments were performed in 2012-13 and 2016-17 at the U-20az testbed at the Nevada National Security Site to develop and evaluate capabilities for monitoring and modeling noble gas transport associated with underground nuclear explosions (UNE). Experiments were performed by injecting both chemical (CF2BR2, SF6) and radioactive (37Ar, 127Xe) gas species into the deep subsurface at this legacy UNE site and monitoring the breakthrough of the gases at different locations on or near the ground surface. Gas pressures were also monitored in both the chimney and at ground surface. Field experiments were modeled using the parallel, non-isothermal, two-phase flow and transport simulator, STOMP-GT. A site conceptual-numerical model was developed from a geologic framework model, and using a dual-porosity/permeability model for the constitutive relative permeability-saturation-capillary pressure relations of the fractured rock units. Comparisons of observed and simulated gas species concentrations show that diffusion is a highly effective transport mechanism under ambient conditions in the water-unsaturated fractured rock. Over-pressurization of the cavity during one of the field campaigns, and barometric pressure fluctuations are shown to result in enhanced gas transport by advection through fractures.

  19. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  20. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  1. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    Science.gov (United States)

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  2. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  3. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  4. Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks

    Science.gov (United States)

    Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.

    2016-12-01

    The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).

  5. Analysis of the behavior of radionuclides migration in fractured medium in different types of rocks matrices

    International Nuclear Information System (INIS)

    Sá, Ludimila Silva Salles de; Silveira, Cláudia Siqueira da; Lima, Zelmo Rodrigues de

    2017-01-01

    In management of radioactive wastes, the current trend is to dispose the radioactive waste for long life and high activity in permanent repositories of depth, geologically stable and low permeability. Thus, it is relevant to analyze the groundwater movement process, because the mechanism by which the radionuclides in a repository with fractures could return to the surface would be through the groundwater circulation system. A common problem encountered is the modeling of the migration of radionuclides in a fractured medium. The objective of this work is to evaluate the behavior of the migration of radionuclides in two types of rock matrix, considering the following properties: volumetric density, porosity, distribution coefficient and molecular diffusion coefficient. The physical system adopted consists of the matrix rock containing a discrete fracture in a porous medium saturated with water. The partial differential equations that describe the radionuclide movement were discretized by finite differences, and the Implicit Euler method was adopted. While for the convective term the numerical scheme of progressive differences was used

  6. Colloid facilitated transport in fractured rocks: parameter estimation and comparison with experimental data

    International Nuclear Information System (INIS)

    Viswanthan, H.S.; Wolfsberg, A.V.; Reimus, P.W.; Ware, D.; Lu, G.

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

  7. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    Science.gov (United States)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep

  8. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

    2004-01-01

    The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper

  9. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  10. Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

    International Nuclear Information System (INIS)

    Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

    1996-01-01

    Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution

  11. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  12. The Fate of Colloidal Swarms in Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  13. Hydrocarbon Source Rock Potential of the Sinamar Formation, Muara Bungo, Jambi

    Directory of Open Access Journals (Sweden)

    Moh. Heri Hermiyanto Zajuli

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.175The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and intercalation of coal seams. The objective of study was to identify the hydrocarbon source rock potential of the Sinamar Formation based on geochemichal characteristics. The analyses were focused on fine sediments of the Sinamar Formation comprising shale, claystone, and mudstone. Primary data collected from the Sinamar Formation well and outcrops were analyzed according to TOC, pyrolisis analysis, and gas chromatography - mass spectometry of normal alkanes that include isoprenoids and sterane. The TOC value indicates a very well category. Based on TOC versus Pyrolysis Yields (PY diagram, the shales of Sinamar Formation are included into oil prone source rock potential with good to excellent categories. Fine sediments of the Sinamar Formation tend to produce oil and gas originated from kerogen types I and III. The shales tend to generate oil than claystone and mudstone and therefore they are included into a potential source rock

  14. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  15. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  16. U.S. National Committee for Rock Mechanics and conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997 - July 27, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy's Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided

  17. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  18. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.

    2011-11-04

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  19. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.; Paluszny, A.; Blunt, M. J.; Matthai, S. K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  20. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  1. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  2. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    Science.gov (United States)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  3. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  4. Giving peeps to my props: Using 3D printing to shed new light on particle transport in fractured rock.

    Science.gov (United States)

    Walsh, S. D.; Du Frane, W. L.; Vericella, J. J.; Aines, R. D.

    2014-12-01

    Smart tracers and smart proppants promise new methods for sensing and manipulating rock fractures. However, the correct use and interpretation of these technologies relies on accurate models of their transport. Even for less exotic particles, the factors controlling particle transport through fractures are poorly understood. In this presentation, we will describe ongoing research at Lawrence Livermore National Laboratory into the transport properties of particles in natural rock fractures. Using three dimensional printing techniques, we create clear-plastic reproductions of real-world fracture surfaces, thereby enabling direct observation of the particle movement. We will also discuss how particle tracking of dense particle packs can be further enhanced by using such specially tailored flow cells in combination with micro-encapsulated tracer particles. Experimental results investigating the transport behavior of smart tracers and proppants close to the neutrally buoyant limit will be presented and we will describe how data from these experiments can be used to improve large-scale models of particle transport in fractures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  6. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  7. Whole-rock U-Pb dating of the Shuijingtuo formation sedimentary rocks in the Yangtze Gorge

    International Nuclear Information System (INIS)

    Zheng, Y.F.; Huang, B.

    1990-01-01

    Black shale and enclosed limestone lenticule from Lower Cambrian Shuijingtuo Formation in the Yangtze Gorge is successfully dated by whole-rock U-Pb method. The results yield a concordant age of about 573±14 Ma, in excellent agreement with both stratigraphic and palaeontologic evidence. The whole-rock U-Pb method can provide a reliable approach for age determination of sedimentary stratum. (orig.) [de

  8. Integrated system for investigating sub-surface features of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  9. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    Science.gov (United States)

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  10. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    Directory of Open Access Journals (Sweden)

    Yunpeng Nie

    2017-09-01

    Full Text Available For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a to what extent shallow soil-adapted species rely on exploring rock fractures and (b what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast

  11. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Evans, D.D.; Rasmussen, T.C.

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  12. Proceedings of workshop 5: Flow and transport through unsaturated fractured rock -- related to high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Evans, D.D.; Nicholson, T.J.

    1993-06-01

    The ''Workshop on Flow and Transport Through Unsaturated Fractured Rock Related to High-Level Radioactive Waste Disposal'' was cosponsored by the NRC, the Center for Nuclear Waste Regulatory Analyses, and the University of Arizona (UAZ) and was held in Tucson, Arizona, on January 7--10, 1991. The focus of this workshop, similar to the earlier four (the first being in 1982), related to hydrogeologic technical issues associated with possible disposal of commercial high-level nuclear waste (HLW) in a geologic repository within an unsaturated fractured rock system which coincides with the UAZ field studies on HLW disposal. The presentations and discussions centered on flow and transport processes and conditions, relevant parameters, as well as state-of-the-art measurement techniques, and modeling capabilities. The workshop consisted of: four half-day technical meetings, a one day field visit to the Apache Leap test site to review ongoing field studies that are examining site characterization techniques and developing data sets for model validation studies, and a final half-day session devoted to examining research needs related to modeling groundwater flow and radionuclide transport in unsaturated, fractured rock. These proceedings provide extended abstracts of the technical presentations and short summaries of the research group reports

  13. Steady-state flow in a rock mass intersected by permeable fracture zones

    International Nuclear Information System (INIS)

    Lindbom, B.

    1986-12-01

    Level 1 of HYDROCOIN consists of seven well-defined test problems. This paper is concerned with Case 2, which is formulated as a generic groundwater flow situation often found in crystalline rock with highly permeable fracture zones in a less permeable rock mass. The case is two-dimensional and modelled with 8-noded, isoparametric, rectangular elements. According to the case definition, calculations of hydraulic head and particle tracking are performed. The computations are carried out with varying degree of discretisation in order to analyse possible impact on the result with respect to nodal density. Further calculations have been performed mainly devoted to mass balance deviations and how these are affected by permeability contrasts, varying degree of spatial discretisation and distortion of finite elements. The distribution of hydraulic head in the domain is less sensitive to differences in nodal density than the trajectories. The hydraulic heads show similar behaviour for three meshes with varying degrees of discretisation. The particle tracking seems to be more sensitive to the level of discretisation. The results obtained with a coarse and medium mesh indicate completely different solutions for one of the pathlines. The coarse mesh is too sparsely discretised for the specified problem. The local mass balance is evaluated for seven runs. The mass balance deviation seems to be considerably more sensitive to the level of discretisation than to both permeability contrasts and deformation of elements. The permeability contrasts between the rock mass and fracture zones vary from a factor of 1000 to 1 (homogeneous properties) with increments of a factor of 10. These calculations in fact give better mass balance with increasing permeability contrasts, contrary to what could be expected. (orig./HP)

  14. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  15. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    Science.gov (United States)

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  16. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    OpenAIRE

    Otacílio Antunes Santana; José Marcelo Imaña Encinas; Flávio Luiz de Souza Silveira

    2017-01-01

    Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures) were compared to adjacent area...

  17. Characterization of the rock joint surface. A contribution to DECOVALEX II Task 3 'Constitutive relationships of rock joints'

    International Nuclear Information System (INIS)

    Vuopio, J.; Poellae, J.

    1997-12-01

    In order to understand the effects of spent fuel on the hydraulical behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulical properties of the fractures. The roughness of a fracture surface governs the dilatation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics

  18. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  19. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs

  20. Fracture hydrology relevant to radionuclide transport. Field work in a granite formation in Cornwall

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Durrance, E.M.; Heath, M.J.

    1985-01-01

    Separation, orientation, apertures and intersections of water-bearing fractures are the variables which control water flow and affect radionuclide transport through fractured rocks. The need is discussed for information on the distribution of these variables in statistical treatments of flow and transport, because of the inadequacy of permeability and porosity data in continuum treatments. Satisfactory methods of measuring distributions of separation, orientation and apetures have been developed and data for Cornish granite are presented. An estimate of the average distance between fracture intersections is made

  1. Fracturing of subterranean formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O.M.; Kidwell, A.L.

    1968-03-19

    This method of propping fractured formations results in high conductivities. In the method, certain naturally occurring crystals are used as propping agents. Suitable crystals include garnet, corundum, zircon, rutile, high-temperature quartz, and other minerals which have Moh's hardness values of about 6 or greater and weather out as individual crystals of about 40 mesh or larger. These are said to result in permeabilities significantly higher than those obtained with ordinary quartz sand, metallic shot, glass beads, plastic particles, walnut hulls, or similar materials. (10 claims)

  2. Folding and Fracturing of Rocks: the background

    Science.gov (United States)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of

  3. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Everitt, R A; Martin, C D; Davison, C C [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL`s Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics.

  4. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Brown, A.; Everitt, R.A.; Martin, C.D.; Davison, C.C.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL's Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics

  5. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  7. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  8. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  9. Hydrodynamic dispersion in a single fracture: final report on CRNL experiment

    International Nuclear Information System (INIS)

    Lever, D.A.; Evans, G.V.; Novakowski, K.S.; Raven, K.G.

    1988-01-01

    One of the options under consideration for the safe long-term disposal of radioactive waste is deep burial in stable fractured rock formations. The most probable way by which radionuclides from the waste could return to the biosphere is by leaching and dissolution of the waste-form, and then water-borne transport by the ground water. In-situ tracer experiments are an important element in developing an understanding of the physical processes that determine the migration of radionuclides through the rock. Unfortunately, there are few field studies presented in the literature to date, which corroborate existing laboratory studies and provide data for theoretical models of transport through fractured rock. The objective of this study was to design and conduct a tracer experiment in which a single fracture was isolated and tested under advective flow conditions with a conservative tracer. During the summer of 1983 a joint AECL-CEC field test was carried out at the Chalk River test site in Canada. Two experiments were conducted, using 82 Br as the conservative tracer, on a discrete fracture identified by hydraulic interference tests at approximately 100 m depth in moderately-fractured monzonitic gneiss. The selected fracture intersects two boreholes in a relatively horizontal attitude over a distance of about 10 m

  10. HRL Aespoe - two-phase flow experiment - gas and water flow in fractured crystalline rock

    International Nuclear Information System (INIS)

    Kull, H.; Liedtke, L.

    1998-01-01

    (The full text of the contribution follows:) Gas generated from radioactive waste may influence the hydraulic and mechanical properties of the man-made barriers and the immediate surroundings of the repository. Prediction of alteration in fractured crystalline rock is difficult. There is a lack of experimental data, and calibrated models are not yet available. Because of the general importance of this matter the German Federal Ministry for Education, Science, Research and Technology decided to conduct a two-phase flow study at HRL Aespoe within the scope of the co-operation agreement with SKB. Within the presentation an overview of field experiments and modelling studies scheduled until end of '99 are given. Conceptual models for one- and two-phase flow, methodologies and with respect to numerical calculations necessary parameter set-ups are discussed. Common objective of in-situ experiments is to calibrate flow models to improve the reliability of predictions for gas migration through fractured rock mass. Hence, in a defined dipole flow field in niche 2/715 at HRL Aespoe effective hydraulic parameters are evaluated. Numerical modelling of non-isothermal, two-phase, two-component processes is feasible only for two-dimensional representation of a porous medium. To overcome this restriction a computer program will be developed to model three-dimensional, fractured, porous media. Rational aspects of two-phase flow studies are for the designing of geotechnical barriers and for the long-term safety analysis of potential radionuclide transport in a future repository required for the licensing process

  11. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  12. Fracture Sealing in Shales: Geological and Geochemical Factors

    International Nuclear Information System (INIS)

    Cathelineau, Michel

    2001-01-01

    The so-called self-sealing processes can be re-examined at the light of geological and geochemical consideration about the past history of the rocks. The concept of 'self sealing' needs to consider the formation and the sealing of fractures, especially three main stages: (i) the initiation of the fracture (development of micro-cracks initiated from previous heterogeneities up to fracturing), ii) the fracturing processes which occur generally at depth in presence of a fluid phase, iii) the healing or sealing of the fractures which corresponds basically to two main processes: a restoration of the initial permeability of the rock block by reducing the transmissivity of the discontinuity down to values equivalent to that of the homogeneous medium before fracturing, or the sealing of the open discontinuity by precipitation of newly formed minerals. In the latter case, the evolution of the open fracture is driven by re-arrangement of particles or precipitation of newly formed material, either by dissolution/crystallisation processes or by crystallisation from the percolating fluids (advective processes). Such processes are governed by chemical processes, especially the rate of precipitation of minerals which depends of the degree of saturation with respect to the mineral, and the kinetics of precipitation. (author)

  13. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  14. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  15. Quantitative prediction of fractures using the finite element method: A case study of the lower Silurian Longmaxi Formation in northern Guizhou, South China

    Science.gov (United States)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Jiu, Kai; Wang, Zhe; Li, Ang

    2018-04-01

    Natural fractures have long been considered important factors in the production of gas from shale reservoirs because they can connect pore spaces and enlarge transport channels, thereby influencing the migration, accumulation and preservation of shale gas. Industrial-level shale gas production has been initiated in the lower Silurian Longmaxi Formation in northern Guizhou, South China. However, it is important to quantitatively predict the distribution of natural fractures in the lower Silurian shale reservoirs to locate additional 'sweet spots' in northern Guizhou. In this study, data obtained from outcrops, cores, thin sections, field-emission scanning electron microscope (FE-SEM) images and X-ray diffraction (XRD) were used to determine the developmental characteristics and controlling factors of these fractures. Correlation analysis indicated that the mechanical parameters of the Longmaxi shale are mainly related to the total organic carbon (TOC), quartz, clay, calcite and dolomite contents. The spatial variations in the mechanical parameters of the Longmaxi shale were determined based on the spatial variations in the TOC and mineral contents. Then, a heterogeneous geomechanical model of the study area was established based on interpretations of the fault systems derived from seismic data and acoustic emission (AE) experiments performed on samples of the relevant rocks. The paleotectonic stress fields during the Yanshanian period were obtained using the finite element method (FEM). Finally, a fracture density calculation model was established to analyze the quantitative development of fractures, and the effects of faults and mechanical parameters on the development of fractures were determined. The results suggest that the main developmental period of tectonic fractures in the Longmaxi Formation was the Early Yanshanian period. During this time, the horizontal principal stress conditions were dominated by a SE-NW-trending (135-315°) compressional stress field

  16. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  17. Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

    2012-07-31

    Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

  18. Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning

    Directory of Open Access Journals (Sweden)

    Zilong Zhou

    2018-01-01

    Full Text Available The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network (BPNN as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the classification performances of the new method, the classifying accuracies of support vector machine (SVM, naive Bayes classifier, and the new method are compared, and the receiver operating characteristic (ROC curves are also analyzed. The results show the new method obtains the best classification performances. In addition, the influence of different scale factor q and number of training samples n on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the highest value when q = 8–15 or 8–20 and n=140.

  19. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    Fracture zones with an interconnected network of open fractures can conduct significant groundwater flow and as in the case of the Pohjukansalo well field in Leppaevirta, can yield sufficiently for small-scale municipal water supply. Glaciofluvial deposits comprising major aquifers commonly overlay fracture zones that can contribute to the water balance directly or indirectly by providing hydraulic interconnections between different formations. Fracture zones and fractures can also transport contaminants in a poorly predictable way. Consequently, hydrogeological research of fracture zones is important for the management and protection of soil aquifers in Finland. Hydraulic properties of aquifers are estimated in situ by well test analyses based on analytical models. Most analytical models rely on the concepts of radial flow and horizontal slab aquifer. In Paper 1, pump test responses of fracture zones in the Pohjukansalo well field were characterised based on alternative analytical models developed for channelled flow cases. In Paper 2, the tests were analysed based on the generalised radial flow (GRF) model and a concept of a fracture network possessing fractional flow dimension due to limited connectivity compared to ideal 2- or 3- dimensional systems. The analysis provides estimates of hydraulic properties in terms of parameters that do not have concrete meaning when the flow dimension of the aquifer has fractional values. Concrete estimates of hydraulic parameters were produced by making simplified assumptions and by using the composite model developed in Paper 3. In addition to estimates of hydraulic parameters, analysis of hydraulic tests provides qualitative information that is useful when the hydraulic connections in the fracture system are not well known. However, attention should be paid to the frequency of drawdown measurements-particularly for the application of derivative curves. In groundwater studies, analytical models have been also used to estimate

  20. Modelling the formation of sheeting joints with FRACOD2D (FRActure propagation CODe)

    International Nuclear Information System (INIS)

    Lanaro, Flavio; Amemiya, Kiyoshi; Yamada, Atsuo

    2008-01-01

    This contribution shows an application of the newly developed gravity acceleration function in the BEM-DDM code FRACOD 2D . The influence of the model geometry, material parameters and boundary stresses on the initiation and propagation of sheeting joints due to rebound by removal of the overburden is studied. The models seem to capture the pattern of sheeting joints and the depth of their occurrence. The influence of the sheeting joints on the stress distributions in the rock mass also seem to be realistic and in agreement with field observations. The results indicate that the stresses measured in-situ at several sites in crystalline rock might exhibit the same features as the numerical results by FRACOD 2D . For example, the horizontal stress is found to be rather high at the surface of the models as it was observed in Forsmark, Sweden. Moreover, stresses where sheeting joints are developing are so severe to justify damage and fracturing of the intact rock observed in terms of fracture frequency and laboratory sample damage close to the surface at the Shobasama and MIU Construction Site, Mizunami, Japan. (author)

  1. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical

  2. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  3. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin

    International Nuclear Information System (INIS)

    Bastos, Rodrigo Oliveira

    2008-01-01

    This work is a study of the 40 K and the 238 U and 232 Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 ± 3.7 nGy.h -1 , and Cunhaporanga granite, 167 ± 37 nGy.h -1 ). The other highest values correspond to the shale rocks from the Irati Formation (109 ± 16 nGy.h -1 ) and the siltic shale rocks from the Ponta Grossa Formation (107.9 ± 0.7 nGy.h -1 ). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 ± 0.6 nGy.h -1 ). The average value for sedimentary rocks from seven other formations is equal to 59 ± 26 nGy.h -1 . The Rio Bonito Formation presented the highest dose value (334 ± 193 nGy.h -1 ) mainly due to the anomalous 226 Ra

  4. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  5. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  6. Core study of Rustler Formation over the WIPP [Waste Isolation Pilot Project] site

    International Nuclear Information System (INIS)

    Ferrall, C.C.; Gibbons, J.F.

    1979-01-01

    The core study was conducted to provide parameters for the thermomechanical modeling of the behavior of the Rustler Formation in response to heating. The study characterizes the various members and units of the Rustler Formation in terms of physical properties, distribution, internal discontinuities, and boundary effects. The principal features are results of the original deposition, diagenetic changes which the rocks have undergone, and the strain history of the rocks since deposition. Special attention has been paid to the extent to which the formation is fractured and the nature of fractures so that some estimate can be made of the potential for these discontinuities to be the locus of further strain. 39 refs., 13 figs., 4 tabs

  7. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  8. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal; Caracterisation des proprietes des argiles d'Opalinus (roche d'accueil potentielle pour un stockage de dechets radioactifs) relatives au transport des gaz

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, P. [Nagra - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Horseman, S. [British Geological Survey, Kingsley Dunham Centre, Keyworth (United Kingdom); Gimmi, T. [Bern Univ. (Switzerland); Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2005-07-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10{sup -20} to 10{sup -21} m{sup 2} and a moderate anisotropy ratio {<=} 10. Porosity depends on clay content and burial depth; values of {approx} 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30% of voids can be classed as macro-pores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drill-cores demonstrate that gas transport through the rock is accompanied by pore water displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macro-pores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gas-fractures). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance. (authors)

  9. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    Science.gov (United States)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  10. MIGFRAC - a code for modelling of radionuclide transport in fracture media

    International Nuclear Information System (INIS)

    Satyanarayana, S.V.M.; Mohankumar, N.; Sasidhar, P.

    2002-05-01

    Radionuclides migrate through diffusion process from radioactive waste disposal facilities into fractures present in the host rock. The transport phenomenon is aided by the circulating ground waters. To model the transport of radionuclides in the charnockite rock formations present at Kalpakkam, a numerical code - MIGFRAC has been developed at SHINE Group, IGCAR. The code has been subjected to rigorous tests and the results of the build up of radionuclide concentrations are validated with a test case up to a distance of 100 meter along the fracture. The report discusses the model, code features and the results obtained up to a distance of 400 meter are presented. (author)

  11. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  12. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  13. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  14. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    Science.gov (United States)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the

  15. DECOVALEX III/BENCHPAR PROJECTS. Evaluation of the Impact of Thermal-Hydro-Mechanical Couplings in Bentonite and Near-Field Rock Barriers on a Nuclear Waste Repository in a Sparsely Fractured Hard Rock. Report of BMT1C/WP2

    International Nuclear Information System (INIS)

    Jing, L.

    2005-02-01

    This report presents the works performed for the third, also the last, phase (BMT1C) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference Thermal (T), Hydrological (H) and Mechanical (M) experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication. The BMT1B uses the calibrated codes to perform scoping calculations, considering varying degrees of THM coupling and varying permeability values of the surrounding rock for a reference generic repository design without fractures. The aim is to identify the coupling mechanisms of importance for construction, performance and safety of the repository. BMT1C concerns with scoping calculations with different coupling combinations for the case where a horizontal fracture intersects the deposition hole and a vertical fracture zone divides two adjacent deposition tunnel/hole system. A hydrostatic condition is applied along the vertical fracture as a hydraulic boundary condition. In addition, the SKI/KTH team performed an additional calculation case of a highly fractured rock mass with two orthogonal sets of fractures with a spacing of 0.5 m. The chosen measures for evaluating the long term safety and performance of the repository are the maximal temperature created by the thermal loading from the emplaced wastes, the time for resaturation of the buffer, the maximal swelling stress developed in the buffer, the structural integrity of the rock mass and the permeability evolution in the rock mass. The analyses fro BMT1C were conducted by four research teams: SKI/KTH (Sweden), CNSC (Canada), IRSN/CEA(France) and JNC (Japan), using FEM approach with different computer codes. From the results, it is clear that the

  16. DECOVALEX III/BENCHPAR PROJECTS. Evaluation of the Impact of Thermal-Hydro-Mechanical Couplings in Bentonite and Near-Field Rock Barriers on a Nuclear Waste Repository in a Sparsely Fractured Hard Rock. Report of BMT1C/WP2

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Nguyen, T.S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)] (eds.)

    2005-02-15

    This report presents the works performed for the third, also the last, phase (BMT1C) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference Thermal (T), Hydrological (H) and Mechanical (M) experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication. The BMT1B uses the calibrated codes to perform scoping calculations, considering varying degrees of THM coupling and varying permeability values of the surrounding rock for a reference generic repository design without fractures. The aim is to identify the coupling mechanisms of importance for construction, performance and safety of the repository. BMT1C concerns with scoping calculations with different coupling combinations for the case where a horizontal fracture intersects the deposition hole and a vertical fracture zone divides two adjacent deposition tunnel/hole system. A hydrostatic condition is applied along the vertical fracture as a hydraulic boundary condition. In addition, the SKI/KTH team performed an additional calculation case of a highly fractured rock mass with two orthogonal sets of fractures with a spacing of 0.5 m. The chosen measures for evaluating the long term safety and performance of the repository are the maximal temperature created by the thermal loading from the emplaced wastes, the time for resaturation of the buffer, the maximal swelling stress developed in the buffer, the structural integrity of the rock mass and the permeability evolution in the rock mass. The analyses fro BMT1C were conducted by four research teams: SKI/KTH (Sweden), CNSC (Canada), IRSN/CEA(France) and JNC (Japan), using FEM approach with different computer codes. From the results, it is clear that the

  17. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    Science.gov (United States)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal

  18. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  19. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  20. State of the art of numerical modeling of thermohydrologic flow in fractured rock mass

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.

    1983-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model

  1. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  2. Formation fracturing by energy waves

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-11-28

    A method described for recovering oil from an oil strata penetrated by a well bore includes a step of applying fluid pressure to the interior of the well bore across the face of the stratum, and alternately varying the applied fluid pressure, first above and then below the reservoir pressure. This is in order to fracture and break up the face of the strata from internal pressure exerted on the strata. The pressure is affected using liquefied gas at low pressure across the formation.

  3. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Yan, Pengfei [Environmental; Luo, Langli [Environmental; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor for the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.

  4. Numerical simulation and fracture identification of dual laterolog in organic shale

    Science.gov (United States)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  5. Developing a Fracture Model of the Granite Rocks Around the Research Tunnel at the Mizunami Underground Research Laboratory in Central Japan

    Science.gov (United States)

    Kalinina, E.; Hadgu, T.; Wang, Y.

    2017-12-01

    The Mizunami Underground Research Laboratory (MIU) is located in Tono area in Central Japan. It is operated by the Japan Atomic Energy Agency (JAEA) with the main purpose of providing scientific basis for the research and development of technologies needed for deep geological disposal of radioactive waste in fractured crystalline rocks. The current work is focused on the research and experiments in the tunnel located at 500 m depth. The data collected in the tunnel and exploratory boreholes were shared with the participants of the DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), an international research and model comparison collaboration. This study describes the development of the fracture model representing granite rocks around the research tunnel. The model domain is 100x150x100m with the main experimental part of the tunnel, Closure Test Drift, located approximately in the center. The major input data were the fracture traces measured on the tunnel walls (total of 2,023 fractures), fractures observed in the horizontal borehole parallel to the tunnel, and the packer tests conducted in this borehole and one vertical borehole located within the modeling domain. 78 fractures (the ones with the inflow) in the tunnel were incorporated in the development of the fracture model. Fracture size was derived from the fracture trace analysis. It was shown that the fracture radius followed lognormal distributions. Fracture transmissivity was estimated from an analytical solution of inflow into the tunnel through an individual fracture and the total measured inflow into the tunnel. 16 fractures were incorporated in the model along the horizontal borehole. The packer test data in the different well intervals were used to estimate the range in fracture transmissivity. A relationship between the fracture transmissivity and fracture radius was developed. The fractures in the tunnel and borehole were used to derive fracture orientation and

  6. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1991-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  7. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M; Wuschke, D M; Brown, A; Hayles, J G; Kozak, E T; Lodha, G S; Thorne, G A [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1992-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  8. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    Science.gov (United States)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  9. Recent Developments in Multiscale and Multiphase Modelling of the Hydraulic Fracturing Process

    Directory of Open Access Journals (Sweden)

    Yong Sheng

    2015-01-01

    Full Text Available Recently hydraulic fracturing of rocks has received much attention not only for its economic importance but also for its potential environmental impact. The hydraulically fracturing technique has been widely used in the oil (EOR and gas (EGR industries, especially in the USA, to extract more oil/gas through the deep rock formations. Also there have been increasing interests in utilising the hydraulic fracturing technique in geological storage of CO2 in recent years. In all cases, the design and implementation of the hydraulic fracturing process play a central role, highlighting the significance of research and development of this technique. However, the uncertainty behind the fracking mechanism has triggered public debates regarding the possible effect of this technique on human health and the environment. This has presented new challenges in the study of the hydraulic fracturing process. This paper describes the hydraulic fracturing mechanism and provides an overview of past and recent developments of the research performed towards better understandings of the hydraulic fracturing and its potential impacts, with particular emphasis on the development of modelling techniques and their implementation on the hydraulic fracturing.

  10. Theoretical study of rock mass investigation efficiency

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Outters, Nils

    2002-05-01

    The study concerns a mathematical modelling of a fractured rock mass and its investigations by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency (precision) of such investigations and determine the amount of investigations necessary to obtain reliable estimations of the structural-geological parameters of the studied rock mass. The study is not about estimating suitable sample sizes to be used in site investigations.The purpose of the study is to analyse the amount of information necessary for deriving estimates of the geological parameters studied, within defined confidence intervals and confidence level In other words, how the confidence in models of the rock mass (considering a selected number of parameters) will change with amount of information collected form boreholes and surfaces. The study is limited to a selected number of geometrical structural-geological parameters: Fracture orientation: mean direction and dispersion (Fisher Kappa and SRI). Different measures of fracture density (P10, P21 and P32). Fracture trace-length and strike distributions as seen on horizontal windows. A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock mass. The DFN-model was primarily based on the properties of an actual fracture network investigated at the Aespoe Hard Rock Laboratory. The rock mass studied (DFN-model) contained three different fracture sets with different orientations and fracture densities. The rock unit studied was statistically homogeneous. The study includes a limited sensitivity analysis of the properties of the DFN-model. The study is a theoretical and computer-based comparison between samples of fracture properties of a theoretical rock unit and the known true properties of the same unit. The samples are derived from numerically generated boreholes and surfaces that intersect the DFN-network. Two different boreholes are analysed; a vertical borehole and a borehole that is

  11. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  12. The feasibility and prospect of uranium-gas in black rock series of joint exploration and development

    International Nuclear Information System (INIS)

    Xu Guochang; Zhang Dehua; Zhang Hongjian

    2014-01-01

    By the analysis and contrast of existing form of gas-uranium, correlation between gas-uranium and organic matter, distribution characteristics and control factors of mineralization (bosom) in the sedimentary formation of shale gas and black uranium bearing rock series, the authors come to the conclusion that: in the carbonate-siliceous-pelitic of black rock series the uranium and gas (oil) is essentially equipped coenosarc of the same homology, syngenetic, reservoir. They are ore source beds of carbonate-siliceous-pelitic rock uranium deposit, and also the hydrocarbon source beds in which the shale gas form. In black shales, uranium largely exist in the form of the ion adsorption (acetyl ion/uranyl ion). Under fracturing conditions, we can realize desorption mode of chemical solvents of adding acid or alkali, and extract uranium by concentrating liquid (the same as in-situ mimng technology). Therefore, the fracturing technology (clear water fracturing techniques, repeat fracturing techniques, synchronization fracturing techniques, multistage fracturing techniques, network fracturing techniques and so on) of shale gas exploitation lay a foundation for black shale uranium-gas joint development. The mature and corollary use of fracturing techniques and in-situ mining technology of low grade uranium will undoubtedly further increase the industrial resource extent of uranium and gas, improve guaranteeing degree of resource, reform of promote energy production structure and provide a large number of economical and effective clean energy. (authors)

  13. Geochemistry of the Oruatemanu Formation, Arrow Rocks, Northland, New Zealand

    International Nuclear Information System (INIS)

    Hori, R.S.; Higuchi, Y.; Fujiki, T.; Maeda, T.; Ikehara, M.

    2007-01-01

    We investigated the geochemical characteristics of sedimentary rocks from the Upper Permian - Middle Triassic Oruatemanu Formation on Arrow Rocks, Waipapa Terrane, New Zealand. The sedimentary rocks consist of limestone, tuffaceous shale, vari-coloured bedded chert, hemipelagic shale and green siliceous mudstone (= green argillite), in ascending order, a typical oceanic plate sequence. Shale and green argillite have higher Zr/Nb ratios than do chert and tuffaceous shales, and show similar REE patterns to PAAS (Post-Archean average Australian shale). In contrast, chert sequences from the basal part and intercalated tuff layers have high TiO 2 contents and Zr/Nb ratios similar to those of basaltic rocks from Arrow Rocks. These geochemical characteristics suggest that the sedimentary environment of the Oruatemanu Formation changed upward, from an open sea setting to the continental margin of Gondwanaland. Chemical compositions of bedded cherts from Arrow Rocks indicate a mixing of biogenic silica, detritus from continents and basaltic materials. In the interval from Upper Permian to Lower Middle Triassic this mixing shows remarkable secular variations. We detected geochemical signals of two Oceanic Anoxic Events (OAEs), one at the Permian/Triassic (P/T) boundary, and the other at the middle Upper Induan level. We name them the OAEα (P/T OAE) and OAEβ (Upper Induan OAE). These OAE horizons are enriched in S, U and other heavy metals (e.g. Mo and Cr), and also have high V/(V+Ni) ratios. Based on a comparison between enrichment factors of Cr and other redox-sensitive trace elements (e.g. Zn, Pb, Co, Cu), the Upper Induan OAEβ is considered to be more intense than the P/T boundary OAEα. This result is not in agreement with the superanoxia model previously proposed. In addition, OAEβ corresponds well with the radiolarian faunal turnover from Permian to Triassic forms documented from the Oruatemanu Formation in this volume. These results may suggest that peak time and

  14. Proterozoic to Quaternary events of fracture mineralisation and oxidation in SE Sweden

    International Nuclear Information System (INIS)

    Drake, Henrik

    2008-12-01

    Fracture minerals and altered wall rock have been analysed to reveal the low-temperature evolution, especially regarding redox conditions, of the Simpevarp area, SE Sweden. This area is one of the two areas in Sweden investigated by the Swedish Nuclear fuel and Waste Management Co. in order to find a potential geological repository for spent nuclear fuel. The 1.8 Ga granitic to dioritic rocks in the area are generally un-metamorphosed and structurally well-preserved, although low-grade ductile shear zones and repeatedly reactivated fractures exist. Investigations of cross-cutting fractures along with a wide variety of fracture mineral analyses, such as stable isotopes and 40Ar/39Ar geochronology, have been used to distinguish a sequence of fracture filling generations. The characteristics of these generations indicate the low-temperature evolution of the area, including information of e.g. fluid origin, formation temperature, paleo stresses and relation to known geological events. Knowledge of the fracture mineral evolution is important for the conceptual geological and hydrogeochemical understanding of the site and supports predictions of future scenarios in the safety assessment. The fracture mineral generations identified have been formed at widely varying conditions starting in the Proterozoic with formation from inorganic hydrothermal fluids, continuing in the Paleozoic with formation from lower temperature brine type fluids with organic influence, and ranging into minerals formed from waters of varying salinity and with significant organic influence at conditions similar to the present conditions. However, the amount of potentially recent precipitates is very small compared to Proterozoic and Paleozoic precipitates. The fracture mineral parageneses have been associated, with varying confidence, to far-field effects of at least four different orogenies; the Svecokarelian orogeny (>1.75 Ga), the Danapolonian orogeny (∼1.47-1.44 Ga), the Sveconorwegian orogeny

  15. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Peterman, Z.E.; Moscati, R.J.; Thivierge, R.H.

    2013-01-01

    Highlights: • AECL evaluates Chalk River Laboratories site as potential nuclear waste repository. • Isotope-geochemical data for rocks and fracture minerals at CRL site are reported. • Zircons from gneiss and granite yielded U–Pb ages of 1472 ± 14 and 1045 ± 6 Ma. • WR Rb–Sr and Pb–Pb systems do not show substantial large-scale isotopic mobility. • U-series and REE data do not support oxidizing conditions at depth in the past 1 Ma. - Abstract: As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks. Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate

  16. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  17. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  18. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    Science.gov (United States)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  19. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point

  20. Shape Memory Alloy Rock Splitters (SMARS) - A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals

    Science.gov (United States)

    Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.

    2015-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  1. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  2. Facies-related fracturing in turbidites: insights from the Marnoso-Arenacea Fm. (Northern Apennines, Italy)

    Science.gov (United States)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Bedogni, Enrico; Tinterri, Roberto; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2016-04-01

    Natural fractures deeply influence subsurface fluid flow, exerting a primary control on resources like aquifers, hydrocarbons and geothermal reservoirs, and on environmental issues like CO2 storage and nuclear waste disposal. In layered sedimentary rocks, depositional processes-imprinted rock rheology favours the development of both mechanical anisotropy and heterogeneity on a wide range of scales, and are thus expected to strongly influence location and frequency of fractures. To better constrain the contribution of stratigraphic, sedimentological and petrophysical attributes, we performed a high-resolution, multidisciplinary study on a selected stratigraphic interval of jointed foredeep turbidites in the Miocene Marnoso-arenacea Formation (Northern Apennines, Italy), which are characterised by a great lateral and vertical variability of grain-size and depositional structures. Statistical relationships among field and laboratory data significantly improve when the single facies scale is considered, and, for similar facies recording different evolutionary stages of the parent turbidity currents, we observed a direct correlation between the three-dimensional anisotropies of rock hardness tensors and the normalized fracture frequencies, testifying for the primary sedimentary flow-related control on fracture distributions.

  3. Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)

    Science.gov (United States)

    Zerboni, A.; Guglielmin, M.

    2017-12-01

    Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental

  4. Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography

    CSIR Research Space (South Africa)

    May, F

    2010-11-01

    Full Text Available , N Jovanovic2 and A Rozanov1 University of Stellenbosch1 and Council for Scientific and Industrial Research (CSIR)2 Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography Introduction... of slow and fast flowing pathways. Materials and Methods TABLE 1 DATE, TIME AND WEATHER CONDITIONS DURING RESISTIVITY TOMOGRAPHY SURVEY Survey No. Date Start time End time Precipitation (mm) Description KB001 8/27/2010 12H00 13H40 0.0 Sunny KB002 8...

  5. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    Science.gov (United States)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  6. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  7. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    Heath, M.J.; Durrance, E.M.

    1985-01-01

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10 -7 ms -1 has been obtained, 2.11x10 -8 ms -1 if the major hydraulic features are excluded

  8. Multiaxial loading of large-diameter, thin-walled tube rock specimens

    International Nuclear Information System (INIS)

    Hecker, S.S.; Petrovic, J.J.

    1981-01-01

    A large-scale mechanical testing facility permits previously impossible thin-walled tube multiaxial loading experiments on rock materials. Constraints are removed regarding tube wall thickness in relation to rock microstructural features and tube diameter as well as test machine load capacity. Thin-walled tube studies clarify the influence of intermediate principal stress sigma 2 on rock fracture and help define a realistic rock fracture criterion for all multiaxial stressing situations. By comparing results of thin-walled and thick-walled tube fracture investigations, effects of stress gradients can be established. Finally, influence of stress path on rock fracture, an area largely ignored in current rock failure criteria, can be examined in detail using controlled loading changes as well as specimen prestrains

  9. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Su, G. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996.

  10. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    International Nuclear Information System (INIS)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C.; Su, G.

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996

  11. A gas migration test in saturated, fractured rock - final report for the joint UKDOE/AECL project, phase 2

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A.

    1991-12-01

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model derived from Thunvik and Braester (1987). Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determined the hydraulic conductivity of individual gas flow paths in the fractured rock. (author). 23 refs., 5 tabs., 37 figs

  12. Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (Southern Italy) with an adjustable large ring infiltrometer

    Science.gov (United States)

    Caputo, Maria C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.

    2010-01-01

    Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.

  13. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  14. An evaluation of the active fracture concept with modeling unsaturated flow and transport in a fractured meter-sized block of rock

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-01-01

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network

  15. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  16. Geochemical modelling of grout-groundwater-rock interactions at the seal-rock interface

    International Nuclear Information System (INIS)

    Alcorn, S.; Christian-Frear, T.

    1992-02-01

    Theoretical investigations into the longevity of repository seals have dealt primarily with the development of a methodology to evaluate interactions between portland cement-based grout and groundwater. Evaluation of chemical thermodynamic equilibria among grout, groundwater, and granitic host rock phases using the geochemical codes EQ3NR/EQ6 suggests that a fracture filled with grout and saturated with groundwater will tend to fill and 'tighten' with time. These calculations predict that some grout and rock phases will dissolve, and that there will be precipitation of secondary phases which collectively have a larger overall volume than that of the material dissolved. Model assumptions include sealing of the fracture in a sluggish hydrologic regime (low gradient) characterized by a saline groundwater environment. The results of the calculations suggest that buffering of the fracture seals chemical system by the granitic rock may be important in determining the long-term fate of grout seals and the resulting phase assemblage in the fracture. The similarity of the predicted reaction product phases to those observed in naturally filled fractures suggests that with time equilibrium will be approached and grouted fractures subject to low hydrologic gradients will continue to seal. If grout injected into fractures materially reduces groundwater flux, the approach to chemical equilibrium will likely be accelerated. In light of this, even very thin or imperfectly grouted fractures would tighten in suitable hydrogeologic environments. In order to determine the period of time necessary to approach equilibrium, data on reaction rates are required. (au)

  17. Effect of Discrete Fracture Network Characteristics on the Sustainability of Heat Production in Enhanced Geothermal Reservoirs

    Science.gov (United States)

    Riahi, A.; Damjanac, B.

    2013-12-01

    Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid

  18. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  19. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  20. Deformation style of the Mesozoic sedimentary rocks in southern Thailand

    Science.gov (United States)

    Kanjanapayont, Pitsanupong

    2014-10-01

    Mesozoic sedimentary rocks in southern Thailand are widespread from NNE-SSW and N-S in Chumphon and Trang provinces. The Mesozoic stratigraphic units are the marine Triassic Sai Bon Formation and the non-marine Jurassic-Cretaceous Thung Yai Group, the latter subdivided into Khlong Min, Lam Thap, Sam Chom, and Phun Phin Formations. These units overlie Permian carbonate rocks with an angular unconformity, and are overlain unconformably by Cenozoic units and the Quaternary sediments. The Mesozoic rocks have been folded to form two huge first-ordered syncline or synclinoria, the Chumphon and Surat Thani-Krabi-Trang synclinoria. These synclinoria are elongated in NNE-SSW to N-S direction, and incorporate asymmetric lower-order parasitic folds. The folds have moderately to steeply dipping eastward limbs and more gently dipping westward limbs. These folds were transected by brittle fractures in four major directions. These geologic structures indicate WNW-ESE to E-W contraction with top-to-the-east simple shear at some time before the deposition of the Cenozoic sedimentary units. No major deformation has affected the rocks subsequently, apart from the formation of the fault-controlled Cenozoic basins.

  1. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  2. Liquid infiltration through the boiling-point isotherm in a desiccating fractured rock matrix

    International Nuclear Information System (INIS)

    Phillips, O.M.

    1994-01-01

    Over a long time interval, the integrity of the radioactive waste repository proposed at Yucca Mountain may be compromised by corrosion accelerated by intermittent wetting which could occur by episodic infiltration of meteoric water from above through the fracture network. A simple two-dimensional model is constructed for the infiltration of liquid water down a fracture in a permeable rock matrix, beyond the boiling-point isotherm. The water may derive from episodic infiltration or from the condensation of steam above a desiccating region. Boiling of the water in the fracture is maintained by heat transfer from a surrounding superheated matrix blocks. There are two intrinsic length scales in this situation, (1): l s = ρ l q o L/(k m β) which is such that the total heat flow over this lateral distance balances that needed for evaporation of the liquid water infiltration, and (2): The thermal diffusion distance l θ = (k m t) 1/2 which increases with time after the onset of infiltration. The primary results are: (a) for two-dimensional infiltration down an isolated fracture or fault, the depth of penetration below the (undisturbed) boiling point isotherm is given by 1/2 π 1/2 (l s l θ ) 1/2 , and so increases as t 1/4 . Immediately following the onset of infiltration, penetration is rapid, but quickly slows. This behavior continues until l θ (and D) become comparable with l s . (b) With continuing infiltration down an isolated fracture or cluster of fractures, when l θ >> l s the temperature distribution becomes steady and the penetration distance stabilizes at a value proportional to l s . (c) Effects such as three-dimensionality of the liquid flow paths and flow rates, matrix infiltration, etc., appear to reduce the penetration distance

  3. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Suzart, Joao Walter Pereira; Araujo, Paulo Fernando de

    2000-01-01

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  4. The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Sterbentz, R.A.; Tsang, C.F.

    1982-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground water hydrology, petroleum engineering, and other geologic fields. The general review is followed by individual summaries of each model and the main characteristics of its governing equations, numerical solutions, computer codes, validations, and applications

  5. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    Science.gov (United States)

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused

  6. Electrical potential changes and acoustic emissions generated by fracture and fluid flow during experimental triaxial rock deformation

    Science.gov (United States)

    Clint, Oswald Conan

    Natural electrical potential signals have been recorded from numerous seismically active areas around the world and therefore have been proposed as a potential earthquake prediction tool. The streaming potential is being used to locate sub-surface water reservoirs, to monitor steam fronts during enhanced oil recovery techniques, and to delineate the anisotropy of fractures in geothermal and oil reservoirs. The generating mechanism for these signals is still unclear although plausible theories include: - Piezoelectric fields produced through stress changes on piezoelectric materials, such as quartz, found in many rocks. - Electrokinetic currents induced through a pressure gradient and caused by electrical charge transport within a moving fluid. - Less well-established theories for instance involving current carrying mobile O' charges. To investigate the relative significance of these mechanisms, I have measured the direct current electrical potential and acoustic emissions during constant strain rate rock deformation under simulated crustal conditions of pressure and pore fluid pressure. Some sixty-one experiments were done on rock samples of quartz rich Darley Dale and Bentheim sandstone and quartz free basalt from Iceland. A computer and servo-controlled conventional triaxial cell was used to deform dry, water-saturated and brine-saturated rock samples at confining pressures between 20 and 200MPa, pore fluid pressures between 10 and 50MPa and strain rates from 10-4 s-1 to 10-6 s-1 I identify the primary sources of the electrical potential signals as being generated by (i) piezoelectricity in dry sandstone experiments and (ii) electrokinetic effect in saturated basalt experiments. I show that electrical potential signals from the other proposed methods are not detectable above the background noise level. It can therefore be argued that the electrokinetic effect is the main electrical potential generating mechanism within the upper crust.Both precursory and

  7. Conceptual characterization of the system of fractures of the rock mass known as Sierra del Medio (Chubut)

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1990-01-01

    This work characterizes conceptually the system of fractures of the rock mass known as Sierra del Medio and its surroundings. The purpose of this characterization is to define the spectra of flow regimes which must be covered in computational models to be used in the prediction of the thermohydraulic effects of the eventual emplacement of a high-level radioactive waste repository. The analysis of the available data from previous studies was performed in order to determine qualitative data to be used in the stage of feasibility studied. The flow of water roughly N-S is defined by two systems of vertical, almost orthogonal fractures and surrounded by large faults. A set of hypotheses were considered which allow, supposing a given distribution of surface fractures, to establish the variations according to depth. The usual ways of obtaining the permeability and the hydraulic conductivity in fractured porous media are summarized in an appendix. (Author) [es

  8. Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion

    Science.gov (United States)

    Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis

    2018-02-01

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  9. Geological data summary for a borehole drilled between 1991 September 16 and 1991 October 1 for the Transport Properties in Highly Fractured Rock Experiment at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, D. R.; Everitt, R. A.

    1992-08-01

    Borehole 101-013-HG4 was drilled between 1991 September 16 and October 1 from the 130 Level station, as part of the Transport Properties in Highly Fractured Rock Experiment, to explore the geological, hydrogeological and geochemical conditions of the rock mass in an area northwest of the Underground Research Laboratory (URL) shaft. The borehole was drilled to provide information at an intersection with Fracture Zone 2.0, 100 m to the west of boreholes collared from Room 211 of the 240 Level for future solute transport experiments within Fracture Zone 2.0, and to further our understanding of the rock mass in the area. Fracture Zones 2.5, 2.0, 1.9 and a subvertical joint zone in the footwall were all intersected in the borehole. Preliminary results from detailed core logging show that the lithostructural domains intersected in the borehole correlate with those previously identified in the URL shaft, and in nearby exploration boreholes drilled from the 130 Level. The domains are shallow-dipping toward the southeast and are parallel to the three main fracture zones intersected in the borehole.

  10. An interbubble fracture mechanism of blister formation on helium-irradiated metals

    International Nuclear Information System (INIS)

    Evans, J.H.

    1977-01-01

    This paper describes a new model of surface blister formation in which a blister is nucleated by the interbubble fracture of highly overpressurized helium bubbles. As in other gas-driven models, the internal release of helium then provides the driving force for blister lid deformation. The high pressures required for the suggested mode of fracture are a result of the difficulty, experienced by the bubbles in acquiring vacancies. By considering the bubble growth mechanisms, the critical conditions for interbubble fracture are shown to depend on the helium dose and energy, the bubble size, and their depth in the irradiated material. These parameters and other aspects of blister formation are discussed on the basis of the proposed model. One important result concerns the position of the fracture plane; because of the usual displacement of damage and helium peaks relative to depth, this plane can lie well beyond the helium peak. Thus, the disagreement inherent in previous gas models between helium range and measured blister lid thickness values can be resolved without recourse to lateral stress arguments. (Auth.)

  11. Venera 13 and venera 14: sedimentary rocks on venus?

    Science.gov (United States)

    Florensky, C P; Basilevsky, A T; Kryuchkov, V P; Kusmin, R O; Nikolaeva, O V; Pronin, A A; Chernaya, I M; Tyuflin, Y S; Selivanov, A S; Naraeva, M K; Ronca, L B

    1983-07-01

    Venera 13 and Venera 14 transmitted almost complete panoramic views of their landing sites. Analyses of the photographs show the presence of rock formations undergoing geomorphic degradation. The formations display ripple marks, thin layering, differential erosion, and curvilinear fracturings. Some of them are interpreted as lithified clastic sediments. The lithification could have taken place at depth or at the surface, resulting in a type of duricrust. The origin of the sediments is unknown but could be aeolian, volcanic, or related to impacts or to turbidity currents.

  12. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Directory of Open Access Journals (Sweden)

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  13. Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Himmelsbach, T. [Ruhr-Univ., Bochum (Germany). Dept. of Applied Geology; Hoetzl, H. [Univ. of Karlsruhe (Germany). Dept. of Applied Geology; Maloszewski, P. [GSF-Inst. for Hydrology, Munich-Neuherberg (Germany)

    1998-09-01

    The results of field tracer experiments performed in the Lindau fractured rock test site (southern Black Forest, Germany) and subsequent modeling are presented. A vertical, hydrothermally mineralized fault zone, with a permeability much greater than the surrounding granite mass, lies beneath a planned dam site. A dense network of boreholes and tunnels were used to investigate scaling effects of solute transport processes in fractured rock. A series of tracer experiments using deuterium and dye tracers were performed over varying distances and under different testing procedures, resulting in different flow field conditions. Large-scale tracer experiments were performed under natural flow field conditions, while small-scale tracer experiments were performed under artificially induced radial-convergent and injection-withdrawal flow fields. The tracer concentration curves observed in all experiments were strongly influenced by the matrix diffusion. The curves were evaluated with the one-dimensional single fissure dispersion model (SFDM) adjusted for the different flow field conditions. The fitting model parameters found determined the fracture aperture, and matrix and fissure porosities. The determined fracture aperture varied between the sections having different hydraulic conductivity. The determined values of matrix porosity seemed to be independent of the scale of the experiment. The modeled matrix porosities agreed well with values determined in independent laboratory investigations of drill cores using mercury porosimetry. In situ fissure porosity, determined only in small-scale experiments, was independent of the applied geometry of the artificially induced flow fields. The dispersivities were found to be independent of the scale of experiment but dependent on the flow conditions. The values found in forced gradient tests lie between 0.2 and 0.3 m, while values in experiments performed under natural flow conditions were one order of magnitude higher.

  14. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  15. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  16. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  17. Migration of Water Pulse Through Fractured Porous Media

    International Nuclear Information System (INIS)

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  18. Sorptivity of rocks and soils of the van Genuchten-Mualem type

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium. For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.

  19. Development and testing of radionuclide transport models for fractured crystalline rock. An overview of the Nagra/JNC radionuclide retardation programme

    International Nuclear Information System (INIS)

    Ota, Kunio; Alexander, W.R.

    2001-01-01

    The joint Nagra/JNC radionuclide Retardation Programme has now been ongoing for more thean 10 years with the main aim of direct testing of radionuclide transport models for fractured crystalline rocks in as realistic a manner as possible. A large programme of field, laboratory and natural analogue studies has been carried out at the Grimsel Test Site in the central Swiss Alps. The understanding and modelling of both the processes and the structures influencing radionuclide transport in fractured crystalline rocks have matured as has the experimental technology, which has contributed to develop confidence in the applicability of the underlying research models in a repository performance assessment. In this report, the successes and set-backs of this programme are discussed as is the general approach to the thorough testing of the process models and of model assumptions. (author)

  20. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    rate dependent behavior with strongly increasing strength and changing fracturing process has not been consequently considered in modeling of geo-hazards such as earthquakes, rock falls, landslides or even meteorite impacts [5]. Incorporation of dynamic material data therefore will contribute to improvements of forecast models and the understanding of fast geodynamic processes. References [1] Zhang, Q. B. & Zhao, J. (2013). A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng. DOI 10.1007/s00603-013-0463-y [2] Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the San Andreas fault. Nature Geosci., 2, 709-712. [3] Reches, Z. E., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet. Sci. Lett., 235, 361-374. [4] Fondriest, M., Aretusini, S., Di Toro, G., & Smith, S. A. (2015). Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophys.654, 56-74. [5] Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural Geology of impact craters. J. .Struct. Geol., 62, 156-182.