WorldWideScience

Sample records for fractured porous slope

  1. Physical Properties of Fractured Porous Media

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  2. Osmosis, filtration and fracture of porous media

    Suarez Antola, R.

    2001-01-01

    Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete

  3. a Fractal Network Model for Fractured Porous Media

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  4. Coupled processes in single fractures, double fractures and fractured porous media

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  5. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  6. Specification of matrix cleanup goals in fractured porous media.

    Rodríguez, David J; Kueper, Bernard H

    2013-01-01

    Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  7. Slug flow model for infiltration into fractured porous media

    Martinez, M.J.

    1999-01-01

    A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug being an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximately by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed

  8. The movement of groundwater flow in unsaturated fractured porous medium

    Li Jinxuan

    1995-01-01

    The author analyses the fundamental processes governing infiltration in fractured porous rock. Asymptotic solutions for the front movement are given for each flow period and comparisons with numerical solutions are made. The result of the study is relevant to nuclear waste storage, hazardous waste disposal and petroleum recovery

  9. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling

    Dalla Costa, C.

    2007-07-01

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  10. Transient diffusion from a waste solid into fractured porous rock

    Ahn, J.; Chambre, P.L.; Pigford, T.H.

    1988-01-01

    Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here the authors present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion

  11. Poroelastic Response of Orthotropic Fractured Porous Media

    Berryman, James G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2011-12-16

    In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s second coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio af ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes

  12. Computational models of the hydrodynamics of fractured-porous media

    Grandi, G.M.

    1989-01-01

    The prediction of the flow pattern in fractured-porous media has great importance in the assessment of the local thermohydrological effects of the siting of a nuclear waste repository, among many other technological applications. Computational models must be used due to the complexity of the different phenomena involved which restricts the use of analytical techniques. A new numerical method, based on the boundary-fitted finite-difference technique, is presented in this thesis. The boundaries are external (the boundary of the physical domain), and internal (which correspond to the fracture network). The inclusion of the discrete fracture representation in the volume that represents the porous medium is the difference between the usual approach and the present one. The numerical model has been used in the prediction of the flow pattern in several internationally recognized verification cases and to hypothetical problems of our interest. The results obtained proved that the numerical approach considered gives accurate and reliable predictions of the hydrodynamics of fractured-porous media, allowing its use for the above mentioned studies. (Author) [es

  13. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  14. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  15. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid

  16. Coupled models in porous media: reactive transport and fractures

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  17. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a constant inlet flux

    Chen, C.T.; Li, S.H.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A constant flux is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport along the fractures; (b) mechanical dispersion and molecular diffusion along the fractures; (c) molecular diffusion from a fracture to the porous matrix; (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis; (e) adsorption onto the fracture wall; (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of various important parameters, including: (a) fracture spacing; (b) fracture dispersion coefficient; (c) matrix diffusion coefficient; (d) fracture width; (e) groundwater velocity; (f) matrix retardation factor; and (g) matrix porosity

  18. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  19. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  20. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  1. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  2. Coupled Flow and Mechanics in Porous and Fractured Media*

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the

  3. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  4. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    Chen, Huangxin

    2016-09-21

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  5. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  6. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  7. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  8. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  9. A single continuum approximation of the solute transport in fractured porous media

    Jeong, J.T.; Lee, K.J.

    1992-01-01

    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)

  10. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  11. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  12. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  13. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  14. Continuous time random walk analysis of solute transport in fractured porous media

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  15. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  16. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  17. Modeling fractures as interfaces for flow and transport in porous media

    Serres, Ch.; Alboin, C.; Jaffre, J.; Roberts, J.

    2002-05-01

    We are concerned with flow and transport in a fractured porous medium at a scale where the fractures can be modelled individually. The fractures themselves are porous media with large permeability in comparison with that in the surrounding rock. Contrarily to many studies in which the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected, the purpose of this work is to consider the case where the exchange between the fractures and the surrounding rock is significant. Then it is necessary to take into account this interaction because it has a profound effect on the flow and the transport of a solute. The main idea for this work is to treat fractures as interfaces. Then it will not be necessary to use mesh refinements around the fractures, which is an important drawback of most models. Treating fractures as interfaces leads to non-overlapping domain decomposition methods, using the natural domain decomposition suggested by the fracture network. This paper is organized as follows. In Section 2, we present the model, and in Section 3, we show that the corresponding problem has a unique solution. In Section 4, we reduce the approximate problem to a problem with unknowns on the interface. Numerical results are given in Section 5 for the simple case of a domain divided into two sub-domains by one fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in Section 7 to that of a solute transport. (authors)

  18. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    Chen, Huangxin

    2016-06-01

    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  19. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  20. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  1. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  2. Unified pipe network method for simulation of water flow in fractured porous rock

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  3. Simulation of density-driven flow in heterogeneous and fractured porous media

    Grillo, A. [Politecnico di Torino (Italy). DISMA; Logashenko, D. [Steinbeis Research Center, Oelbronn (Germany); Stichel, S.; Wittum, G. [Frankfurt Univ., Frankfurt am Main (Germany). G-CSC

    2015-07-01

    The study of fractured porous media is an important and challenging problem in hydrogeology. One of the difficulties is that mathematical models have to account for heterogeneity introduced by fractures in hydrogeological media. Heterogeneity may strongly influence the physical processes taking place in these media. Moreover, the thickness of the fractures, which is usually negligible in comparison with the size of the whole domain, and the complicated geometry of fracture networks reduce essentially the efficiency of numerical methods. In order to overcome these difficulties, fractures are sometimes considered as objects of reduced dimensionality (surfaces in three dimensions), and the field equations are averaged along the fracture width. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d-1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using a finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other. We derive a criterion for the validity of the simplified representation. The criterion characterizes the transition of a mainly parallel flow to a rotational flow, which cannot be reasonably approximated using a d-1 dimensional representation. We further present a numerical algorithm using adaptive dimensional representation.

  4. Design and construction of an experiment for two-phase flow in fractured porous media

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  5. Reaction-Infiltration Instabilities in Fractured and Porous Rocks

    Ladd, Anthony [Univ. of Florida, Gainesville, FL (United States)

    2017-09-19

    In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.

  6. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  7. Migration of Water Pulse Through Fractured Porous Media

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  8. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  9. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  10. Modelling of fluid flow in fractured porous media by the singular integral equations method

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  11. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  12. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    Cai, Jianchao; Sun, Shuyu

    2013-01-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  13. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    Cai, Jianchao

    2013-08-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  14. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  15. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  16. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  17. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  18. An Efficient XFEM Approximation of Darcy Flows in Arbitrarily Fractured Porous Media

    Fumagalli Alessio

    2014-07-01

    Full Text Available Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures at the intersections and allows for jumps of pressure across the intersection. This latter property permits to describe more accurately the flow when fractures are characterised by different properties, than other models that impose pressure continuity. The main mathematical properties of the model, derived in the two-dimensional setting, are analysed. As concerns the numerical discretization we allow the grids of the fractures to be independent, thus in general non-matching at the intersection, by means of the Extended Finite Element Method (XFEM, to increase the flexibility of the method in the case of complex geometries characterized by a high number of fractures.

  19. Simulation of contaminant transport in fractured porous media on triangular meshes

    Dong, Chen

    2010-12-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  20. Simulation of contaminant transport in fractured porous media on triangular meshes

    Dong, Chen; Sun, Shuyu

    2010-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  1. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  2. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  3. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  4. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  5. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  6. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  7. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials

    Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.

    2015-01-01

    In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong

  8. Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium

    Shao-Yiu Hsu

    2017-01-01

    Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.

  9. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  10. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  11. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  12. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  13. A new approach to tracer transport analysis: From fracture systems to strongly heterogeneous porous media

    Tsang, Chin-Fu.

    1989-02-01

    Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional strongly heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs

  14. On the description of the properties of fractured rock using the concept of a porous medium

    Stokes, J.

    1980-05-01

    In order to describe the flow of groundwater through fractured rock, water is either assumed to flow through a pervious continuum of through descrete fractures between impervious blocks of rock. The latter approach being the one demanding more information on the rock, problems on groundwater flow are usually discussed using the porous medium approach. It is often a question of debate wether the continuum approach is applicable to the fractured rock under consideration. Therefore, it is essential that after assuming that a certain flow region acts as a porous medium, we use a procedure for measuring the properties that at the same time gives a test of this assumption. When giving a description of groundwater flow, the goal is often a presentation of pathlines and flowtimes between points of interest and the ground surface. Using a porous medium approach, this means that hydraulic conductivity and porosity must be known through the medium. In order to cope with transient flow, we must also know the time constant governing the development of the flow. The pathlines depend to a great extent on the variation of conductivity through space. A conductivity decreasing with depth will force the pathlines to the surface giving local flow. If instead the conductivity is constant, the flow is regional. It is therefore important to know the gradient of hydraulic conductivity. Finally, as we know that the flow takes place through a geological structure, the anisotropic behaviour of the rock must be known in order to describe the flow. In this report a procedure to measure the properties listed above is developed. (author)

  15. Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas

    S. Binet

    2009-12-01

    Full Text Available Water chemical analysis of 100 springs from the Orco and the Tinée valleys (Western Italy and Southern France and a 7 year groundwater chemistry monitoring of the 5 main springs were performed. All these springs drain from crystalline rock slopes. Some of these drain from currently active gravitational slope deformations.

    All groundwaters flowing through presently unstable slopes show anomalies in the sulfate concentrations compared to stable aquifers. Particularly, an increase of sulfate concentrations was observed repeatedly after each of five consecutive landslides on the La Clapière slope, thus attesting to the mechanical deformations are at the origin of this concentration change. Significant changes in the water chemistry are produced even from slow (mm/year and low magnitude deformations of the geological settings.

    Pyrite nuclei in open fractures were found to be coated by iron oxides. This suggests that the increase of dissolved sulfate relates to oxidative dissolution of Pyrite. Speciation calculations of Pyrite versus Gypsum confirmed that observed changes in the sulfate concentrations is predominantly provided from Pyrite. Calculated amounts of dissolved minerals in the springs water was obtained through inverse modelling of the major ion water analysis data. It is shown that the concentration ratio of calculated dissolved Pyrite versus calculated dissolved gneiss rock allows us to unambiguously distinguish water from stable and unstable areas. This result opens an interesting perspective for the follow-up of sliding or friction dynamic in landslides or in (a seismic faults.

  16. Dynamic seismic signatures of saturated porous rocks containing two orthogonal sets of fractures: theory versus numerical simulations

    Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris

    2018-05-01

    The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.

  17. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    El-Amin, Mohamed

    2017-11-23

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  18. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  19. MAGNUM-2D, Heat Transport and Groundwater Flow in Fractured Porous Media

    Langford, D.W.; Baca, R.G.

    2001-01-01

    1 - Description of program or function: MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water-rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and inter- connecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, non- isothermal Darcy flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER post-processor interpolates non-regularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH post-processor plots flow paths and computes the corresponding travel times. 2 - Method of solution: MAGNUM2

  20. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  1. Theoretical and experimental investigation of thermohydrologic processes in a partially saturated, fractured porous medium

    Green, R.T.; Manteufel, R.D.; Dodge, F.T.; Svedeman, S.J.

    1993-07-01

    The performance of a geologic repository for high-level nuclear waste will be influenced to a large degree by thermohydrologic phenomena created by the emplacement of heat-generating radioactive waste. The importance of these phenomena is manifest in that they can greatly affect the movement of moisture and the resulting transport of radionuclides from the repository. Thus, these phenomena must be well understood prior to a definitive assessment of a potential repository site. An investigation has been undertaken along three separate avenues of analysis: (i) laboratory experiments, (ii) mathematical models, and (iii) similitude analysis. A summary of accomplishments to date is as follows. (1) A review of the literature on the theory of heat and mass transfer in partially saturated porous medium. (2) A development of the governing conservation and constitutive equations. (3) A development of a dimensionless form of the governing equations. (4) A numerical study of the importance and sensitivity of flow to a set of dimensionless groups. (5) A survey and evaluation of experimental measurement techniques. (6) Execution of laboratory experiments of nonisothermal flow in a porous medium with a simulated fracture

  2. Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff

    Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D.

    1990-02-01

    Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs

  3. Understanding the evolution of channeling and fracturing in porous medium due to fluid flow.

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Langliné, Olivier; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2017-04-01

    Fluid induced brittle deformation of porous medium is a phenomenon commonly present in everyday life. From an espresso machine to volcanoes, from food industry to construction, it is possible to see traces of this phenomenon. In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that occur during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems - in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary - using two monitoring techniques: optical imaging using a high speed camera (1000 fps), high frequency resolution accelerometers and piezoelectrical sensors. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. These peaks on the spectrum are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an exponent p value around 0.5. An analytical model of overpressure diffusion predicting p = 0.5 and two other free parameters of the Omori Law (prefactor and origin time) is developed. The spatial density of the seismic events, and the time of end of formation of the channels can also be predicted using this developed model. Different

  4. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region

    Manna, Ferdinando; Walton, Kenneth M.; Cherry, John A.; Parker, Beth L.

    2017-12-01

    Eleven porewater profiles in rock core from an upland exposed sandstone vadose zone in southern California, with thickness varying between 10 and 62 m, were analyzed for chloride (Cl) concentration to examine recharge mechanisms, estimate travel times in the vadose zone, assess spatial and temporal variability of recharge, and determine effects of land use changes on recharge. As a function of their location and the local terrain, the profiles were classified into four groups reflecting the range of site characteristics. Century- to millennium-average recharge varied from 4 to 23 mm y-1, corresponding to different average Cl concentrations in the vadose zone and in groundwater, the contribution of diffuse flow (estimated at 80%) and preferential flow (20%) to the total recharge was quantified. This model of dual porosity recharge was tested by simulating transient Cl transport along a physically based narrow column using a discrete fracture-matrix numerical model. Using a new approach based on partitioning both water and Cl between matrix and fracture flow, porewater was dated and vertical displacement rates estimated to range in the sandstone matrix from 3 to 19 cm y-1. Moreover, the temporal variability of recharge was estimated and, along each profile, past recharge rates calculated based on the sequence of Cl concentrations in the vadose zone. Recharge rates increased at specific times coincident with historical changes in land use. The consistency between the timing of land use modifications and changes in Cl concentration and the match between observed and simulated Cl concentration values in the vadose zone provide confidence in porewater age estimates, travel times, recharge estimates, and reconstruction of recharge histories. This study represents an advancement of the application of the chloride mass balance method to simultaneously determine recharge mechanisms and reconstruct location-specific recharge histories in fractured porous rock aquifers. The

  5. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging

  6. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  7. Analytical Modeling of the Pseudo-Colloid Migration with the Band release Boundary Condition in the Fractured Porous Media

    Jeong, Miseon; Kang, Chulhyung; Hwang, Yongsoo

    2011-01-01

    Many papers have already dealt with the problem of the radionuclide transport in various fractured porous systems, but without discussing daughter products. However, natural radionuclides may decay to radioactive daughter muscled, which may travel farther than the the parent nuclides. It is considered the multi-member decay chain of the actinide nuclide with the band release inlet boundary condition in a fractured porous rock. In this paper, it is developed the pseudo-colloid migration with the band release inlet boundary conditions with multi-member decay chains in a fractured porous matrix. It is obtained a semi-analytical solution for the multi-member decay chains as a canonical form. As one can expected, the colloid has significantly important influence to the radionuclide transport in the geologic system and the decay chain also isn't neglecting. The concept of deep geological disposal of high-level radioactive waste has been widely accepted at many countries. The repositories aim mainly to prevent the radionuclides form migrating to the biosphere through any one of many pathways. Fractures can act as main pathways for radionuclide transport because of their relatively high permeabilities

  8. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.

  9. Coupling of a two phase gas liquid 3D Darcy flow in fractured porous media with a 1D free gas flow

    Brenner , Konstantin; Masson , Roland; Trenty , Laurent; Zhang , Yumeng

    2015-01-01

    A model coupling a three dimensional gas liquid compositional Darcy flow in a frac-tured porous medium, and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermody-namical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. The fractures are represented as interfaces of codimens...

  10. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  11. Effect of deformability on fluid flow through a fractured-porous medium

    Tsang, C.F.; Noorishad, J.; Witherspoon, P.A.

    1985-01-01

    A permeable geologic medium containing interstitial fluids generally undergoes deformation as the fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal to finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon which can basically be formulated in the generalized three-dimensional theory of consolidation. Dealing mainly with media of little deformability, traditional hydrogeology accounts for medium deformability as far as it affects the volume of pore spaces, through the introduction of a coefficient of specific storage in the fluid flow equation. This treatment can be justified on the basis of a one-dimensional effective stress law and the assumption of homogeneity of the total stress field throughout the medium. The present paper uses a numerical model called ROCMAS (Noorishad et al., 1982; Noorishad e al., 1984) which was developed to calculate fluid flow through a deformable fractured-porous medium. The code employs the Finite Element Method based on a variational approach. It has been verified against a number of simple analytic solutions. In this work, the code is used to address the role of medium deformability in continuous and pulse testing techniques. The errors that may result because of application of traditional fluid flow methods are discussed. It is found that low pressure continuous well testing or pulse testing procedures can reduce such errors. 16 references, 9 figures, 1 table

  12. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  13. Microbially Induced Calcite Precipitation (MICP) - A Technology for Managing Flow and Transport in Porous and Fractured Media

    Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.

    2014-12-01

    Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.

  14. Thermal analysis of fractures at Cerberus Fossae, Mars: Detection of air convection in the porous debris apron

    Antoine, R.; Lopez, T.; Baratoux, D.; Rabinowicz, M.; Kurita, K.

    2011-08-01

    This study investigates the cause of high nighttime temperatures within Cerberus Fossae, a system of fractures affecting the Central Elysium Planitia. The inner parts (walls and floor) of the fractures are up to 40 K warmer than the surrounding plains. However, several temperature profiles exhibit a local temperature minima occurring in the central part of the fractures. We examined first the influence of cooling efficiency at night in the case of a strong reduction of the sky proportion induced by the fracture's geometry. However, the lack of correlation between temperature and sky proportion, calculated from extracted Mars Orbiter Laser Altimeter (MOLA) profiles argues against this hypothesis. Albedo variations were considered but appear to be limited within the fractures, and are generally not correlated with the temperatures. Variations of the thermal properties of bedrocks exposures, debris aprons and sand dunes inferred from high-resolution images do not either correlate with temperature variations within the fractures. As none of these factors taken alone, or combined, can satisfactorily explain the temperature variations within and near the fracture, we suggest that geothermal heat transported by air convection within the porous debris aprons may contribute to explain high temperatures at night and the local minima on the fracture floor. The conditions for the occurrence of the suggested phenomenon and the consequences on the surface temperature are numerically explored. A conservative geothermal gradient of 20 mW/m 2 was used in the simulations, this value being consistent with either inferred lithosphere elastic thicknesses below the shield volcanoes of the Tharsis dome or values predicted from numerical simulations of the thermal evolution of Mars. The model results indicate that temperature differences of 10-20 K between the central and upper parts of the fracture are explained in the case of high Darcy velocities which require high permeability values

  15. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    Chen, Huangxin; Sun, Shuyu

    2016-01-01

    scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved

  16. Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks

    Leube, P.; Nowak, W.; Sanchez-Vila, X.

    2013-12-01

    High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of

  17. ogs6 - a new concept for porous-fractured media simulations

    Naumov, Dmitri; Bilke, Lars; Fischer, Thomas; Rink, Karsten; Wang, Wenqing; Watanabe, Norihiro; Kolditz, Olaf

    2015-04-01

    OpenGeoSys (OGS) is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured media, continuously developed since the mid-eighties. The basic concept is to provide a flexible numerical framework for solving coupled multi-field problems. OGS is targeting mainly on applications in environmental geoscience, e.g. in the fields of contaminant hydrology, water resources management, waste deposits, or geothermal energy systems, but it has also been successfully applied to new topics in energy storage recently. OGS is actively participating several international benchmarking initiatives, e.g. DECOVALEX (waste management), CO2BENCH (CO2 storage and sequestration), SeSBENCH (reactive transport processes) and HM-Intercomp (coupled hydrosystems). Despite the broad applicability of OGS in geo-, hydro- and energy-sciences, several shortcomings became obvious concerning the computational efficiency as well as the code structure became too sophisticated for further efficient development. OGS-5 was designed for object-oriented FEM applications. However, in many multi-field problems a certain flexibility of tailored numerical schemes is essential. Therefore, a new concept was designed to overcome existing bottlenecks. The paradigms for ogs6 are: - Flexibility of numerical schemes (FEM#FVM#FDM), - Computational efficiency (PetaScale ready), - Developer- and user-friendly. ogs6 has a module-oriented architecture based on thematic libraries (e.g. MeshLib, NumLib) on the large scale and uses object-oriented approach for the small scale interfaces. Usage of a linear algebra library (Eigen3) for the mathematical operations together with the ISO C++11 standard increases the expressiveness of the code and makes it more developer-friendly. The new C++ standard also makes the template meta-programming technique code used for compile-time optimizations more compact. We have transitioned the main code development to

  18. A study on the stochastic model for nuclide transport in the fractured porous rock using continuous time Markov process

    Lee, Youn Myoung

    1995-02-01

    As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured

  19. Capillary-driven flow in a fracture located in a porous medium

    Martinez, M.J.

    1988-09-01

    Capillary-driven immiscible displacement of air by water along an isolated fracture located in a permeable medium is induced by an abrupt change in water saturation at the fracture inlet. The fracture is idealized as either a smooth slot with permeable walls or a high-permeability later. The penetration distance of moisture in the fracture permeability ratio and length scales for the problem. The models are applied to materials representative of the Yucca Mountain region of the Nevada Test Site. Fracture moisture-penetration histories are predicted for several units in Yucca Mountain and for representative fracture apertures. 18 refs., 20 figs., 6 tabs

  20. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling; Transferts d'un traceur en milieu poreux consolide et en milieu poreux fissure: experimentations et modelisations

    Dalla Costa, C

    2007-07-15

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  1. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  2. Simulation of a field scale tritium tracer experiment in a fractured, weathered shale using discrete-fracture/matrix-diffusion and equivalent porous medium models

    Stafford, Paige L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    1996-05-01

    Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, αL, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, αT, of 0.8 to 0.08 meters was used indicating an αLT ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.

  3. Simulation of a field scale tritium tracer experiment in a fractured, weathered shale using discrete-fracture/matrix-diffusion and equivalent porous medium models

    Stafford, P.L.

    1996-05-01

    Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ''tail'' of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, α L , of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, α T , of 0.8 to 0.08 meters was used indicating an α L /α T ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations

  4. On the movement of a liquid front in an unsaturated, fractured porous medium, Part 1

    Nitao, J.J.; Buscheck, T.A.

    1989-06-01

    The primary aim of this paper is to present approximate analytical solutions of the fracture flow which gives the position of the liquid fracture front as a function of time. These solutions demonstrate that the liquid movement in the fracture can be classified into distinctive time periods, or flow regimes. It is also shown that when plotted versus time using a log-log scale, the liquid fracture front position asymptotically approaches a series of line segments. Two-dimensional numerical simulations were run utilizing input data applicable to the densely welded, fractured tuff found at Yucca Mountain in order to confirm these observations. 19 refs., 15 figs., 8 tabs

  5. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  6. Transient diffusion from a waste solid into water-saturated, fractured porous rock

    Ahn, J.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.-L.

    1989-09-01

    Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar fracture are shown based on Chambre's exact analytical solutions. The concentration at the cylinder surface is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix three-dimensional diffusion is assumed in the cylindrical coordinate. No advection is assumed. Radioactive decay and sorption equilibrium are included. Radioactive decay enhances the mass transfer from the cylinder. Due to the presence of the fracture, the mass flux from the cylinder to the rock matrix becomes smaller, but the fracture effect is limited in the vicinity of the fracture in early times. Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 8 refs., 4 figs

  7. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  8. In situ immobilization of uranium in structured porous media via biomineralization at the fracture/matrix interface (FRC Area 2 field project)

    Timothy D. Scheibe; Eric E. Roden; Scott C. Brooks; John M. Zachara

    2004-01-01

    The original hypothesis: 'Radionuclides in low-permeability porous matrix regions of fractured saprolite can be effectively isolated and immobilized by stimulating localized in-situ biological activity in highly-permeable fractured and microfractured zones within the saprolite'. The revised hypothesis: 'In heterogeneous porous media, microbial activity can be stimulated at interfaces between zones of high and low groundwater flow rates in such a manner as to create a local, distributed redox barrier. Such a barrier will inhibit the transfer of contaminants from the low-flow zones that serve as long-term contaminant sources into the high-flow zones that transport contaminants to receptors'.

  9. A three-dimensional multiphase flow model for assesing NAPL contamination in porous and fractured media, 1. Formulation

    Huyakorn, P. S.; Panday, S.; Wu, Y. S.

    1994-06-01

    A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.

  10. Fracture mapping in rock slope using geophysical instruments; Butsuri tansa ni yoru ganban shamennai no kiretsu bunpu hyoka

    Kurahashi, T; Inazaki, T [Public Works Research Institute, Tsukuba (Japan); Watanabe, S [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    An attempt was made to visualize distribution of cracks in a rock slope by applying geophysical survey onto a rock slope. Geophysical logging and seismic survey using the reflection method were used as the methods for the geophysical survey. The rock slope subjected to the survey is located in a gorge along the Yoshino river in Yamashiro Town, Tokushima Prefecture. The slope has a width of 25 m and a height of 30 m. Its overhang in a nose form may has a possibility of causing collapse due to sliding. Cracks developed by horizontal schistosity were detected by performing geophysical logging on VSP, calipers, natural gamma-ray spectra, temperature and borehole in a borehole drilled vertically from the top of the slope. The seismic survey using the reflection method detected the cracks by emphasizing joints in the perpendicular direction. A possibility was shown to visualize the crack distribution with high resolution by using the above geophysical survey on the rock slope. In order to detect the crack distribution with still higher resolution, development into a three-dimensional exploration in the future is desired, not to speak of improvement in signal receivers, and discussions on geometry. 1 ref., 6 figs.

  11. Semi-Analysis for the Pseudo-Colloid Migration of Multi-member Decay Chains in the Fractured Porous Medium with the Flux Boundary

    Jeong, Mi Seon; Hwang, Yong Soo; Kang, Chul Hyung

    2010-01-01

    Far-field modeling of radionuclide transport is an important component of general safety assessment studies carried out within the framework of storage of high-level radioactive waste in underground repositories. After a canister failure, radionuclides are leached from the backfilling and penetrate the surrounding bedrock, the final barrier between pollutant and Man's environment. Migration by pure diffusion through a hard tock or clay barrier is a rather slow process. In Fractured porous media, all of the groundwater flow occur within the fractures because fractures have permeabilities of several orders of magnitude larger than those of the rock matrix, if the geological layers are fully saturated with water. So radionuclides dissolved in groundwater will be transported along a fracture with molecular diffusion from the fracture to the rock matrix. Molecular diffusion from the fractures into the porous matrix constitutes an attenuation mechanism that can be highly order to prepare for extreme cases, it is assumed that the pollutants arrive rapidly in a fractured zone where transport takes place at much higher velocities. The specific problem of radionuclide transport through a fractured medium has been tackled by many scientists.According to the electromagnetic interaction between the solute and the colloid, solutes are absorbed by the colloid, and then we are called the pseudo-colloid. The natural colloid can exist inside a fracture with a density of 105 particles per one liter of a liquid. When the radionuclide migrates through a fractured rock, solutes sorb on natural colloids as well as the stationary fracture wall solid surface. Due to natural colloids, whose particle size is larger than that of solutes, colloids can migrate faster than solutes. Therefore, these pseudo-colloids, which are the sorbed solute molecules on the natural colloids, can also migrate faster than the solute. Both the solute and the pseudocolloid are sorbed onto and desorbed from

  12. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    Sun, S.; Fan, X.; Wei, W.; Kou, J.

    2011-01-01

    distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  13. Wetted-region structure in horizontal unsaturated fractures: Water entry through the surrounding porous matrix

    Glass, R.J.; Norton, D.L.

    1991-01-01

    Small-scale processes that influence wetted structure within the plane of a horizontal fracture as the fracture wets or drains through the matrix are investigated. Our approach integrates both aperture-scale modeling and physical experimentation. Several types of aperture-scale models have been defined and implemented. A series of physical experimental systems that allow us to measure wetted-region structure as a function of system parameters and water pressure head in analogue fractures also have been designed. In our preliminary proof-of-concept experiment, hysteresis is clearly evident in the measured saturation/pressure relation, as is the process of air entrapment, which causes a reduction in the connected areas between blocks and the wetted region available for flow in the plane of the fracture. A percolation threshold where the system is quickly spanned, allowing fluid conduction in the fracture plane, is observed which is analogous to that found in the aperture-scale models. A fractal wetted and entrapped-region structure is suggested by both experiment and modeling. This structure implies that flow tortuosity for both flow in the fracture and for inter-block fluid transfer is a scale-dependent function of pressure head

  14. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    Lehua Pan; G.S. Bodvarsson

    2001-01-01

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions

  15. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  16. Experimental and numerical analysis of two-phase flow in fractured porous media

    Lindgaard, H F; Hoeier, C

    1998-06-01

    The objective of the physical experiments was to investigate how isolated fractures embedded in the matrix influence the imbibition process and to study their impact on the effective properties of the matrix block with respect to relative permeability, absolute permeability and remaining saturations. These investigations would be carried out by constructing various types of laboratory models using an artificial material. To mimic a rising aquifer in a producing reservoir, water should be injected from below in an oil saturated laboratory model, and oil production should take place from the top of the model. In order to be able to generalise the results from the investigations in the laboratory to a producing reservoir, the model should be scaled to reservoir conditions. Because of several problems related to the generation of an appropriate matrix material, the construction of a model, which did not leak during the experiments and the establishment of the initial saturation condition of the matrix material (oil saturated at irreducible water saturation), the stated aims have not been fully achieved. Only the impact of a continuous fracture system has been investigated by laboratory experiments. The water saturation distribution in the matrix during imbibition was continuously measured by a resistivity technique. The oil phase was stained, and the propagation of the water level in the continuous fracture system was studied visually during the experiment. The impact of an internal fracture has been investigated by numerical simulations. (EG)

  17. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  18. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  19. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  20. On the infiltration of a liquid front in an unsaturated, fractured porous medium

    Nitao, J.; Buscheck, T.

    1989-08-01

    The unsaturated zone at Yucca Mountain, Nevada, is currently under scientific investigation as a proposed site for the permanent storage of high-level nuclear waste. A deeper understanding of fracture-matrix interaction needed for the prediction of water movement around an in the repository. We show that the liquid front movement can be classified into physically interpretable, distinctive flow regimes. Asymptotic solutions for the front movement are given for each flow period and comparisons with numerical solutions are made. In addition to applications in nuclear waste storage, the results of our study is relevant to hazardous waste disposal, petroleum recovery, and flow in soil macropores. 17 refs., 13 figs., 6 tabs

  1. Risk assessment in fractured porous media with particular reference to water catchments

    Enzenhoefer, R.; Helmig, R.; Nowak, W.; Binning, P. J.

    2009-04-01

    . As a consequence, the four vulnerability criteria are assessed stochastically. The stochastic approach increases computational costs. As a counter-measure, we approximate the transient contaminant transport process by a higher-order expansion in the temporal moments of breakthrough, which we simulate directly from steady-state moment-generating equations [Harvey and Gorelick, 1995]. The computational time saved by the approximation in transient behaviour is then available for stochastic modelling. For further computational savings, we adopt the reverse formulation of well contamination. With the help of a geostatistical fracture-matrix generator [here: Silberhorn-Hemminger, 2002] we generate artificial fractured-matrix systems, representing the mean characteristic karst properties (e.g. fracture density, etc.) within the study area or any artificial aquifer domain. In a Monte Carlo approach, an ensemble of 1000 fracture-matrix systems are randomly generated, and the flow and transport processes are calculated in DuMuX as a one phase two component model. With an inverse formulation of the steady-state transport problem, the capture zone of the well can be calculated for each realization. The mean arrival time at the well may be calculated directly from the first temporal moment equation. Peak contamination level, peak arrival time, threshold arrival time and exposure time require more information than merely the first temporal moment. In order to reconstruct dispersive contaminant dilution and the shape of the breakthrough curve, the second central temporal moment equation (and higher order moment equations) are applied. Then, by statistical analysis of the ensemble results, all four intrinsic well vulnerability measures can be calculated. The final protection area outlines are given by the maximum acceptable risk level for a water manager towards its water supply from the catchment perspective. To validate our approach for a real case scenario, the whole risk concept

  2. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  3. Slope movements

    Wagner, P.

    2009-01-01

    On this poster some reasons of slope movements on the territory of the Slovak Republic are presented. Slope movements induced deterioration of land and forests, endangering of towns villages, and communications as well as hydro-engineering structures. Methods of preventing and stabilisation of slope movements are presented.

  4. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  5. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  6. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    2013-09-01

    sandstone blocks in various configurations across 1000 μm, smooth-walled fractures. We hypothesize that a second mechanism for fracture cross flow is...content (as the sand is made of nearly pure quartz sandstone , it has been assumed that the organic carbon content is zero).The second column (C3) consisted...large diameter cylindrical sample of unsaturated fractured sandstone in the laboratory. The three-dimensional reconstructions of the high diffusivity

  7. Transport of a Two-Member Decay Chain of Radionuclides Through a Discrete Fracture in a Porous Rock Matrix in the Presence of Colloids

    Tien, N.-C.; Li Shihhai

    2002-01-01

    Many physical and chemical processes dominate the transport of radionuclides in groundwater. Among these processes, the decay chain process of radionuclides was frequently disregarded in previous research. However, the daughter products may travel much farther than their parents along the fracture. Therefore, some models neglecting the effect of the decay chain may underestimate the transport radionuclide concentration in geological media. The transport of radionuclides in groundwater is also controlled by colloidal particles. The radionuclides may be enhanced or retarded by the colloids, according to the mobility of these colloidal particles. This work describes a novel model of the transport of a two-member decay chain of radionuclides through a discrete fracture in a porous rock matrix in the presence of colloids. The model addresses the following processes: (a) advective transport in the fracture, (b) mechanical dispersion and molecular diffusion along the fracture, (c) molecular diffusion from the fracture to the rock matrix, (d) adsorption onto the fracture wall, (e) adsorption in the rock matrix, and (f) radioactive decay. Furthermore, colloids are assumed to be excluded from the matrix pores because of their size. A fully developed concentration profile system with nonreactive colloids is used to understand the effect of colloidal sizes by using hydrodynamic chromatography. The external forces acting on the colloid surface, such as the inertial, the van der Waals attractive force, the double layer force, and the gravitational force are accounted for. The parameters, the average velocity of the colloid, the dispersion coefficient of the colloid, and the distribution coefficient of radionuclides with colloids are modified according to the colloidal size. The transport equations for the parent radionuclides are solved analytically using the Laplace transformation and inversion method. However, for the transformed solution of the daughter products along the

  8. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  9. 3D hydro-mechanical homogenization and equivalent continuum properties of a fractured porous clay-stone around a gallery: application to the damaged and fractured zone at the Meuse/Haute-Marne underground research laboratory

    Ababou, Rachid; Canamon, Israel; Poutrel, Adrien

    2012-01-01

    Document available in extended abstract form only. The present work focuses on 3D homogenization, or 'up-scaling', of coupled Hydro-Mechanical (HM) equations and coefficients in a water-filled fractured and fissured porous clay rock. The parameters used in the up-scaling calculations correspond to the Meuse / Haute-Marne (MHM) Underground Research Laboratory (URL) located at Bure and operated by ANDRA (France). We focus on the fractured zone around a cylindrical excavation (gallery 'GMR') located in the Callovo-Oxfordian formation, a thick 130 m clay-stone layer between depths 400 m and 600 m. For up-scaling, we take into account two different sets of hydraulic and mechanical parameters: (i) the permeability and the stiffness coefficients of the intact porous matrix, and (ii) the crack properties, including their apertures, their hydraulic transmissivity (Darcy/Poiseuille), and their specific normal/shear stiffnesses. The geometry of cracks is summarized below. We consider two different types of 'cracks': (I) relatively small decimeter-scale 'dense fractures'; and (II) large distinct shear fractures organized in a 'chevron' pattern. A synthetic set comprising both the 'dense fractures' and the 'large fractures' is generated in 3D. Each subset is generated as follows: I. A statistical isotropic system of small fractures ('fissures'), consisting of isotropically oriented planar discs, with random diameters, apertures, and positions. All statistics are radially inhomogeneous, e.g., density decreases away from the wall. II. A periodic set of large curved fractures, organized along the axis of the gallery in a 'chevron' pattern. Each curved fracture is individually modelled as a parametric conoidal surface. Each surface is then discretized as a set of triangular patches. The local HM coefficients of the water-filled porous rock, with dense near-wall fractures and large distinct 'chevron' fractures, are homogenized using a quasi-linear superposition approach. This leads

  10. Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion

    Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis

    2018-02-01

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  11. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    Chen, Huangxin; Sun, Shuyu

    2016-01-01

    for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator

  12. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  13. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States)

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  14. Contribution de l'homogénéisation à l'étude de la filtration d'un fluide en milieu poreux fracturé Contribution of the Homogenization Process to the Seepage Through Fractured Porous Media

    Boutin C.

    2006-11-01

    Full Text Available Cet article est consacré à la modélisation de l'écoulement d'un fluide dans un massif poreux fracturé. Contrairement aux approches phénoménologiques, nous traitons le problème au moyen de la méthode d'homogénéisation par développements asymptotiques en milieux périodiques. Les comportements macroscopiques sont ainsi déduits de la physique à l'échelle microscopique, sans autre prérequis. Deux cas ont été examinés : l'écoulement d'un gaz dans un massif rigide et l'écoulement d'un fluide incompressible dans une matrice déformable. Dans ces deux situations, on met en évidence le rôle fondamental du rapport entre les deux séparations d'échelles (échelle macroscopique-échelle des fissures et échelle des fissures-échelle des pores. Les descriptions macroscopiques sont conditionnées par la relation entre les séparations d'échelles, le couplage interéchelle étant maximum lorsque les rapports d'échelles sont identiques. This paper deals with the seepage of a fluid through a fissured porous medium. Conversely to the phenomenological approaches we treat this problem by using the homogenization method of asymptotic developments for periodic structures. Thus the macroscopic behaviours are directly deduced from the physics at the microscopic scale, without any prerequisite. Two cases have been investigated : the flow of a gas through a rigid medium and the flow of an incompressible fluid through a deformable matrix. In both situations, it appears that the ratio between the two scale separations (macroscopic scale-fissure scale and fissure scale-pore scale plays an essential role. The macroscopic description depends on the scale separations, the interscale coupling being maximum when the scales are equally separated.

  15. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface - Subproject to Co-PI Eric E. Roden. Final report

    Roden, Eric E.

    2007-01-01

    Although the biogeochemical processes underlying in situ bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. The research described in this report was conducted in conjunction with a project entitled ''In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface'', which was funded through the Field Research element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Timothy Scheibe (Pacific Northwest National Laboratory) was the overall PI/PD for the project, which included Scott Brooks (Oak Ridge National Laboratory) and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The overall goal of the project was to evaluate strategies that target bioremediation at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability/high fluid flow zones. The research was conducted at the Area 2 site of the Field Research Center (FRC) at Oak Ridge National Laboratory (ORNL). Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. Hydrological tracer studies indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. We sought to test the hypothesis that injection of electron donor into this

  16. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface – Subproject to Co-PI Eric E. Roden

    Eric E. Roden

    2007-11-02

    Although the biogeochemical processes underlying in situ bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. The research described in this report was conducted in conjunction with a project entitled “In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface”, which was funded through the Field Research element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Timothy Scheibe (Pacific Northwest National Laboratory) was the overall PI/PD for the project, which included Scott Brooks (Oak Ridge National Laboratory) and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The overall goal of the project was to evaluate strategies that target bioremediation at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability/high fluid flow zones. The research was conducted at the Area 2 site of the Field Research Center (FRC) at Oak Ridge National Laboratory (ORNL). Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. Hydrological tracer studies indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. We sought to test the hypothesis that injection of electron donor into

  17. Characterisation of hydraulically-active fractures in a fractured ...

    2015-01-07

    Jan 7, 2015 ... injection and recovery tests were conducted for verification of the ... Keywords: self-potential method, hydraulically-conductive fractures, constant pressure injection and recovery ...... porous media 1: theory of the zeta potential.

  18. Hydrologic behavior of fracture networks

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  19. Hydrologic behavior of fracture networks

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  20. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  1. Investigations of slope stability

    Nonveiller, E.

    1979-01-01

    The dynamics of slope slides and parameters for calculating slope stability is discussed. Two types of slides are outlined: rotation slide and translation slide. Slide dynamics are analyzed according to A. Heim. A calculation example of a slide which occurred at Vajont, Yugoslavia is presented. Calculation results differ from those presented by Ciabatti. For investigation of slope stability the calculation methods of A.W. Bishop (1955), N. Morgenstern and M. Maksimovic are discussed. 12 references

  2. Macroscopic models for single-phase flows in fractured porous medium: application to well tests; Modeles macroscopiques pour les ecoulements monophasiques en milieu poreux fracture: application aux tests de puits

    Landereau, P.

    2000-12-01

    We consider pressure diffusion in fractured media, with application to well test interpretation. Using the volume averaging theory of Quintard and Whitaker, the local problem is replaced by a double-porosity large scale description. The parameters of the latter may be computed solving small scale closure problems on a representative volume. Using suitable numerical methods, we have performed a systematic study of these parameters as a function of the topology of the fracture network and matrix to fracture permeability contrast. We find that the matrix permeability plays a significant role near a percolation threshold. Next, we studied the exchange coefficient parameter, by unifying the different definitions of the literature in a single framework using a Fourier analysis. Finally, we applied our technique to well-test interpretation in fractured media by comparing large scale solutions to high resolution direct simulations. We find that at short time scale, very fine grid blocks are needed to get good accuracy. In that case, a good agreement is observed between large scale averaged results and reference simulations. (author)

  3. Slippery Slope Arguments

    van der Burg, W.; Chadwick, R.F.

    1998-01-01

    Slippery slope arguments hold that one should not take some action (which in itself may be innocuous or even laudable) in order to prevent one from being dragged down a slope towards some clearly undesirable situation. Their typical purpose is to prevent changes in the status quo and, therefore,

  4. Fracture Mechanics

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  5. Drop weight impact strengths of porous concretes investigated with a measurement technique using laser doppler velocimetry

    Ozbek, A.S.A.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete is used in many applications that require permeability, noise absorption or thermal insulation. However, its response under dynamic loading is generally not considered. Porous concrete has a characteristic of forming multiple cracks and subsequently fracturing into small fragments

  6. Drop weight impact strength of porous concretes investigated with a measurement technique using laser doppler velocimetry

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, H.E.J.G.; Van Breugel, K.

    2013-01-01

    Porous concrete is used in many applications that require permeability, noise absorption or thermal insulation. However, its response under dynamic loading is generally not considered. Porous concrete has a characteristic of forming multiple cracks and subsequently fracturing into small fragments

  7. Porous carbons

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  8. Preliminary Slope Stability Study Using Slope/ W

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  9. Unstable slope management program.

    2009-08-01

    This Rapid Response Project gathered information on existing unstable slope management programs, with a : focus on asset management practices in the United States and overseas. On the basis of this study, the research : team summarized and recommende...

  10. Rock slope design guide.

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  11. Rock Slope Design Criteria

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  12. Biogenic Cracks in Porous Rock

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  13. Runoff from armored slopes

    Codell, R.B.

    1986-01-01

    Models exist for calculating overland flow on hillsides but no models have been found which explicitly deal with runoff from armored slopes. Flow on armored slopes differs from overland flow, because substantial flow occurs beneath the surface of the rock layer at low runnoff, and both above and below the surface for high runoff. In addition to the lack of a suitable model, no estimates of the PMP exist for such small areas and for very short durations. This paper develops a model for calculating runoff from armored embankments. The model considers the effect of slope, drainage area and ''flow concentration'' caused by irregular grading or slumping. A rainfall-duration curve based on the PMP is presented which is suitable for very small drainage areas. The development of the runoff model and rainfall-duration curve is presented below, along with a demonstration of the model on the design of a hypothetical tailings embankment

  14. Gas transport in porous media

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  15. Western Slope Colorado

    Epis, R.C.; Callender, J.F.

    1981-01-01

    A conference on the geology and geologic resources of the Western Slope of western Colorado and eastern Utah is presented. Fourteen papers from the conference have been abstracted and indexed for the Department of Energy's Energy Data Base. These papers covered such topics as uranium resources, oil shale deposits, coal resources, oil and gas resources, and geothermal resources of the area

  16. Onset of density-driven instabilities in fractured aquifers

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  17. Fractured Petroleum Reservoirs

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  18. Investigating porous concrete with improved strength: Testing at different scales

    Agar-Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete incorporates a high percentage of meso-size air voids that makes its mechanical characteristics remarkably different from normal concrete. A research project was undertaken to design a special type of porous concrete, that fractures into small fragments when exposed to impact loading

  19. Arctic Submarine Slope Stability

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  20. Slope earthquake stability

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  1. The Q-Slope Method for Rock Slope Engineering

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  2. FRACTURED PETROLEUM RESERVOIRS

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  3. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy

    Kilburn, Christopher R. J.; Petley, David N.

    2003-08-01

    Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.

  4. Tiltmeter Indicates Sense of Slope

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  5. Submarine slope failures due to pipe structure formation.

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  6. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  7. Fracture toughness of irradiated beryllium

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  8. Tuning Fractures With Dynamic Data

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is

  9. FTRANS, Radionuclide Flow in Groundwater and Fractured Rock

    Huyakorn, P.; Golis, M.J.

    1987-01-01

    1 - Description of program or function: FTRANS (Fractured flow and Transport of Radionuclides) is a two-dimensional finite-element code designed to simulate ground-water flow and transport of radioactive nuclides in a fractured porous return medium. FTRANS takes into account fluid interactions between the fractures and porous matrix blocks, advective-dispersive transport in the fractures and diffusion in the porous matrix blocks, and chain reactions of radionuclide components. It has the capability to model the fractured system using either the dual-porosity or the discrete- fracture modeling approach or a combination of both. FTRANS can be used to perform two-dimensional near-field or far-field predictive analyses of ground-water flow and to perform risk assessments of radionuclide transport from nuclear waste repository subsystems to the biosphere. 2 - Restrictions on the complexity of the problem: Although FTRANS does cannot account for deformation processes which can affect the flow capacity and velocity field

  10. 16 determination of posterior tibia slope and slope deterioration

    normal slope and mechanical axis of the knee (7). The slope is reported to deepen in osteoarthritis; meaning increased articular surface contact and increased tibial translation (8). Total knee replacement aims to restore the mechanical axis of the natural knee joint. This axis will be changed by an altered PTS; yet after.

  11. Hip Fracture

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  12. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  13. Well test analysis in fractured media

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  14. Mechanical behavior of porous ceramic disks

    Pucheu, M.A; Sandoval, M.L; Tomba Martinez, A.G; Camerucci, M.A

    2008-01-01

    mechanical resistance (σ F ) was defined from the maximum load values of the load-displacement curves. Using these the apparent force (σ)-deformation (ε) relationship was obtained by calculus and from the slope of the lineal part of these curves the apparent Young module (E a ) was estimated. The results obtained were analyzed as a function of the microstructures that developed and in relation to the behavior of the starches in aqueous suspension at temperature. Except for the disks prepared with corn starch, the values of σF for the disks in green state were higher than in the disks prepared without starch, which shows the binding power of the other starches depending on the relative order: modified ≥manioc≥ potato. The apparent Young module presented a similar behavior, indicating greater rigidity of the structure of the compacts in green state with starch that could be related partly to the differences in the behavior of the grains in water at the temperature of consolidation. All the final porous materials showed a significant increase in mechanical resistance observing a correlation between the σF values of the disks in green and sintered state compared to the type of starch used. The stress-deformation curves showed a significant increase of the lineal region compared to that observed in the disks in green state, presenting a completely fragile fracture. Additionally, the apparent Young module increased in similar proportion for each type of starch. Based on the adjustment of the fractomechanical parameters of the exponential models proposed for the fracture resistance and the elasticity module, the significant incidence of the material's global porosity is revealed and the complexity of the pores' morphology must be taken into account as well as the size of the pores that were different for each starch used. Also, it cannot be ignored that the ceramic matrix displays characteristics (for example, microfissures) that depend on which starch is used in its

  15. Slope failure investigation management system.

    2013-03-01

    Highway slopes are exposed to a variety of environmental and climatic conditions, such as deforestation, cycles of : freezing and thawing weather, and heavy storms. Over time, these climatic conditions, in combination with other : factors such as geo...

  16. Performance characteristics of porous alumina ceramic structures

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  17. Rib Fractures

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  18. Root fractures

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  19. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    Song, Pu; Sun, Shuyu

    2012-01-01

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall

  20. Modeling failure in brittle porous ceramics

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  1. North Slope (Wahluke Slope) expedited response action cleanup plan

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  2. North Slope (Wahluke Slope) expedited response action cleanup plan

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi 2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  3. Amine Functionalized Porous Network

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  4. Amine Functionalized Porous Network

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  5. Stress Fractures

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  6. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  7. Slope instability in a historical and architectural interest site: the Agrigento hill (Sicily-Italy)

    Liguori, Vincenzo; Manno, Giorgio

    2014-05-01

    The impact of landslides are an issue for many urban cities and their cultural heritage, especially where both natural factors and human actions are join. Indeed in these cases, both the geological-geomorphological area predisposition and the continuous human actions increase the possibility occurrence of a landslide. In order to study these landslides and their natural hazard, a multi-disciplinary approach is necessary. Agrigento (37°19'18''N; 13°35'22''E), founded around 580 b.C. along the Sicilian southern coast, is an example of a possible impacts of landslides on cultural heritage. This work discusses the geological, geomorphological and hydrological data results, performed in order to study and the monitoring the landslide on the north side of the Agrigento hill (335 m a.s.l.), on which is localized the antique cathedral (sixteenth century) and the old city. The hill geology is a typical regressive Plio-Pleistocene succession and their lithology are clays (Monte Narbone formation) , calcarenites , sands and silts of the Agrigento formation. The landslide phenomena, current since 1315, involves a calcarenitic pack (Pleistocene), weakly cemented, highly porous, fractured and fissured (E-W). This phenomena from 1924, at different times, have produced various types of instability such as: falls, flows and complex movements. From 7 March 2005 have been reactivated fractures of the calcarenitic pack, already highlighted by studies in 1966. These fractures have triggered slope movements damaging the cathedral and the various historic buildings. In order to reduce the risk and thus safeguard the monuments and the activity in this area, carried out the several studies. Since 2005, the landslide is the subject both geological-geomorphological studies and a continuous monitoring, which have used different techniques of different disciplines: interferometric analysis, interpretation of aerial and satellite imagery, geophysical investigations, stratigraphic survey, etc

  8. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  9. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  10. Tailored Porous Materials

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  11. Porous organic cages

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  12. Acetabular Fracture

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  13. Well test analysis in fractured media

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  14. Mechanical transport in two-dimensional networks of fractures

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  15. Mandible Fractures.

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  16. Facial Fractures.

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  17. Fracture sacrum.

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  18. Fracture Mechanics

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  19. Radionuclide transport in fractured media

    Williams, M.M.R.

    1993-01-01

    Until recently, the classical advective-dispersive transport equation was considered to be an adequate model for describing the motion of a solute (e.g. radionuclides) in porous and fractured media. In this model, the dispersion coefficient is either obtained from a microscopic model of the porous medium or by carefully controlled experiments. As a result of such experiments, a large body of data has been accumulated on the dispersivity. Detailed examination of these data has resulted in a curious phenomenon being discovered; namely, that the longitudinal dispersion length is 'scale-dependent'. That is to say the value deduced depends on the 'size' of the experiment, i.e. on the distance over which measurements are made. Several interesting attempts have been made to develop theories which explain this phenomenon, all based on treating the velocity of the water in the porous medium as a spatially random variable, but retaining the advective-dispersive balance equation. In this work we present an entirely new approach to the problem of solute transport in fractured media based upon an analogy with neutron transport. The new method has several advantages over the previous theories and these will be explained below. Results from the new theory are in agreement with experimental trends and do not require any further adjustment to explain the scale-dependent effect

  20. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    2014-08-01

    increased risk of falls and fractures. 3 Moreover, muscle paralysis using agents such as botulinum toxin induces bone loss 4 and impairs fracture...caused by botulinum toxin -A local injection impairs fracture healing in the rat femur . J Orthop Res 2012 ; 30 : 574 – 580 . 6 . Elkasrawy MN...Techniques 5 kg load cell. Structural, or extrinsic, properties including ultimate force (Fu; height of curve) and stiffness (S; slope of curve) were

  1. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  2. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  3. Intravitreal properties of porous silicon photonic crystals

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  4. Hierarchical Porous Structures

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  5. Boiling in porous media

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  6. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  7. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  8. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  9. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  10. Fracture mechanics

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  11. Fracture analysis

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  12. Facial Fractures.

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  13. Radiological monitoring of northern slopes of Mogoltau

    Murtazaev, Kh.; Boboev, B.D.; Bolibekov, Sh.; Akhmedov, M.Z.

    2010-01-01

    Present article is devoted to radiological monitoring of northern slopes of Mogoltau. The physicochemical properties of water of northern slopes of Mogoltau were studied. The radiation monitoring of northern slopes of Mogoltau was carried out during several years under various weather conditions. The exposure rate of human settlements of northern part of Mogoltau was defined.

  14. Pisiform fractures

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  15. Stress fractures

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  16. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  17. Wave interaction with large roughness elements on an impermeable sloping bed

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2012-01-01

    The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus is on the......The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus...... is on the details in the porous core flow and the armour layer flow i.e. the interaction between the two flow domains and the effect on the armour layer stability. In order to isolate the processes involved with the flow in the porous core the investigations are first carried out with a completely impermeable bed...... and successively repeated with a porous bed. In this paper the focus is on the impermeable bed. Results are obtained experimentally for flow and turbulence between the roughness elements on the sloping bed. Numerical simulations have reproduced the experimental results with good agreements and can hereby add more...

  18. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  19. Scaphoid Fracture

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  20. Fabricating porous silicon carbide

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  1. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  2. Stochastic porous media equations

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  3. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  4. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  5. Trochanteric fractures

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  6. Fracture Blisters

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  7. Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang

    Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy

    2018-04-01

    Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.

  8. Influence of fracture networks on radionuclide transport from solidified waste forms

    Seetharam, S.C., E-mail: suresh.seetharam@sckcen.be [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Perko, J.; Jacques, D. [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Mallants, D. [CSIRO Land and Water, Waite Road – Gate 4, Glen Osmond, SA 5064 (Australia)

    2014-04-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  9. Influence of fracture networks on radionuclide transport from solidified waste forms

    Seetharam, S.C.; Perko, J.; Jacques, D.; Mallants, D.

    2014-01-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  10. The Hydromechanics of Vegetation for Slope Stabilization

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  11. A review on hydraulic fracturing of unconventional reservoir

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  12. Preparation of porous ceramics from nanocrystalline zirconia and its microstructure

    Nikitin, D.S.; Zhukov, V.A.; Kul'kov, S.N.; Perkov, V.V.; Buyakova, S.P.

    2004-01-01

    The behaviour of ZrO 2 (Y) nanocrystalline powder under pressing, the effect of forming pressure, the temperature and the time of sintering on the structure of the sintered porous ceramics are under study. It is shown that on pressing the fracturing of powder particles and their agglomerates takes place even at low pressures (≅50 MPa). The change of densification mechanisms is revealed - from quasi-liquid displacement of powder particles at the beginning of mechanical action to fracture of coarse structural elements. It is established that a strong skeleton responsible for needed porosity is formed even at the initial stage of sintering [ru

  13. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  14. Elbow Fractures

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  15. Wrist Fractures

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  16. Shoulder Fractures

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  17. Slope Estimation from ICESat/GLAS

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  18. Hydraulic fracture considerations in oil sand overburden dams

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  19. Invasion-Flowback Processes During Hydraulic Fracturing Well Interference

    Kenzhekhanov, Shaken; He, Kai; Xu, Liang; Lord, Paul; Lozano, Martin; Neeves, Keith; Yin, Xiaolong

    2017-11-01

    Drainage-imbibition cycles that simulate hydraulic fracturing fluid's invasion and flowback during well interference were investigated using NOA81 microfluidic micromodels. Well interference is quite common in unconventional oil and gas fields. It is not unusual for the fracturing fluid injected into a well to be discovered in a nearby well. Normally, the effect of such interference is considered to be negative, as fracturing fluid will be imbibed into the porous rock and block the flow path of hydrocarbons. However, field data show that some interferences are beneficial, and microfluidic experiments presented in this study show that surfactant in the fracturing fluid may be a reason for the observed positive interference. Two fluid drainage-imbibition cycles were conducted in micromodels. The first cycle simulates fracturing of the old well and the second cycle simulates fluid invasion from the new well into the old well's fracture network. The experimental data show that while most such interferences indeed can cause production loss, when the old well's fracturing fluid does not contain surfactant yet the new well's fracturing fluid does, interference can be positive, as the residual water saturation in the porous medium is effectively reduced by surfactants.

  20. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    Nick, H.M.; Paluszny, A.; Blunt, M.J.; Matthai, S.K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media.We study the impact of the fractures on mass transport and dispersion. To model flowand transport,

  1. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  2. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  3. Bimalleolar ankle fracture with proximal fibular fracture

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  4. A cellular automaton simulation of contaminant transport in porous media

    Freed, D.M.; Simonson, S.A.

    1995-01-01

    A simulation tool to investigate radionuclide transport in porous groundwater flow is described. The flow systems of interest are those important in determining the fate of radionuclides emplaced in an underground repository, such as saturated matrix flow, matrix and fracture flow in the unsaturated zone, and viscous fingering in porous fractures. The work discussed here is confined to consideration of saturated flow in porous media carrying a dilute, sorptive species. The simulation technique is based on a special class of cellular automata known as lattice gas automata (LGA) which are capable of predicting hydrodynamic behavior. The original two-dimensional scheme (that of Frisch et. al. known as the FHP model) used particles of unit mass traveling on a triangular lattice with unit velocity and undergoing simple collisions which conserve mass and momentum at each node. These microscopic rules go over to the incompressible Navier-Stokes equations in the macroscopic limit. One of the strengths of this technique is the natural way that heterogeneities, such as boundaries, are accommodated. Complex geometries such as those associated with porous microstructures can be modeled effectively. Several constructions based on the FHP model have been devised, including techniques to eliminate statistical noise, extension to three dimensions, and the addition of surface tension which leads to multiphase flow

  5. Assessment and mapping of slope stability based on slope units: A ...

    Shallow landslide; infinite slope stability equation; return period precipitation; assessment; slope unit. ... 2010), logistic regression ... model to assess the hazard of shallow landslides ..... grating a fuzzy k-means classification and a Bayesian.

  6. Foams in porous media

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  7. Porous material neutron detector

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  8. Porous Silicon Nanowires

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  9. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    Nick, H. M.

    2011-11-04

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  10. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    Nick, H. M.; Paluszny, A.; Blunt, M. J.; Matthai, S. K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  11. Eastern slopes grizzly bear project

    NONE

    2001-01-01

    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  12. Internal waves and temperature fronts on slopes

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  13. Slope Stability. CEGS Programs Publication Number 15.

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  14. Storm-Induced Slope Failure Susceptibility Mapping

    2018-01-01

    A pilot study was conducted to characterize and map the areas susceptible to slope failure using state-wide available data. The objective was to determine whether it would be possible to provide slope-failure susceptibility mapping that could be used...

  15. Air pocket removal from downward sloping pipes

    Pothof, I.W.M.; Clemens, F.H.L.R.

    2012-01-01

    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an

  16. Fracture mechanics

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  17. Approche probabiliste des milieux poreux hétérogènes ou fracturés en relation avec les écoulements diphasiques Probabilistic Approach to Heterogeneous Or Fractured Porous Media in Relation to Two-Phase Flows

    Jacquin C.

    2006-11-01

    Full Text Available La prise en compte des particularités structurales des gisements pétroliers fracturés ou hétérogènes est nécessaire à l'amélioration des prévisions de production. La description de ce type de gisements relève d'une approche probabiliste, qui conduit à une estimation des caractéristiques de la roche réservoir : distribution des dimensions des blocs d'un réservoir fissuré, échelles d'hétérogénéité. Ces caractéristiques sont introduites dans les modèles déterministes qui décrivent l'écoulement des fluides. On présente en particulier les problèmes que pose la transposition au gisement des résultats obtenus au laboratoire sur petits échantillons : changement d'échelle géométrique, estimation de la récupération finale et de l'évolution de la production en fonction du temps. The structural features of fractured or heterogenous oil fields must be taken into consideration to improve production forecasting. The description of such fields is based on a probabilistic approach leading to an estimate of the characteristics of the reservoir rock, i. e. distribution of the block sizes of a fissured reservoir, scales of heterogeneity. These characteristics are fed into deterministic models that describe fluid flows. Special attention is paid to problems raised by the transposition of laboratory results obtained on small samples to a field. Such problems include the change in geometric scale, the estimating of ultimate recovery and how production will evolve in time.

  18. Porous silicon gettering

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  19. Research on the stability evaluation of slope

    NONE

    2013-08-15

    In order to create the guideline corresponding to a new regulatory standard, such as criteria in the ground-slope stability evaluation method, we have conducted an analysis and discussion of the shaking table test results using a large slope model. As a result, it was found that in that phase of the vertical motion and the horizontal motion affects the amplification characteristics of the ground motion, need to be considered in assessing the safety of the slope and the influence of the phase difference amplification or local. We also conduct a study on countermeasure construction slope by shaking table test, the effect of the countermeasure construction of pile and anchors deterrence could be confirmed. Focusing on the new method can reproduce the behavior of large deformation and discontinuity, with respect to the advancement of slope analysis, we identify issues on the maintenance and code applicability of each analysis method. (author)

  20. Rock slopes and reservoirs - lessons learned

    Moore, D.P.

    1999-01-01

    Lessons learned about slope stability in the course of four decades of monitoring, and in some cases stabilizing, slopes along British Columbia's hydroelectric reservoirs are discussed. The lessons are illustrated by short case histories of some of the more important slopes such as Little Chief Slide, Dutchman's Ridge, Downie Slide, Checkerboard Creek and Wahleach. Information derived from the monitoring and other investigations are compared with early interpretations of geology and slope performance. The comparison serves as an indicator of progress in slope stability determination and as a measure of the value of accumulated experience in terms of the potential consequences to safety and cost savings over the long life-span of hydroelectric projects.14 refs., 2 tabs., 15 figs

  1. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  2. Slope-scale dynamic states of rockfalls

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  3. Porous metal for orthopedics implants

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  4. Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir

    Tester, J.W.; Potter, R.M.; Bivins, R.L.

    1979-01-01

    Field experiments using fluorescent dye and radioactive tracers (Br 82 and I 131 ) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data

  5. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  6. Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation

    R.B. Kaligatla; Manisha; T. Sahoo

    2017-01-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  7. Electrokinetics in porous media

    Luong, D.T.

    2014-01-01

    This thesis presents the PhD research on electrokinetics in porous media. Electrokinetic phenomena are induced by the relative motion between a fluid and a solid surface and are directly related to the existence of an electric double layer between the fluid and the solid grain surface.

  8. Factors affecting seismic response of submarine slopes

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  9. Wave run-up on sandbag slopes

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  10. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    R. Greco

    2013-10-01

    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  11. Fluid transport in reaction induced fractures

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    fractures. This provides new information on how much reaction induced fracturing might accelerate a volume expanding process. Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., ``Reaction induced fracturing during replacement processes,'' Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., ``Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage,'' Annu. Rev. Earth Planet. Sci. 2011. 39:545 - 76. Rudge, J. F., Kelemen, P. B., and Spiegelman, M., ``A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite,'' Earth Planet. Sc. Lett. 291, Issues 1-4, 2010, pp. 215 - 227. Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., ``Controls on rock weathering rates by reaction-induced hierarchial fracturing,'' Earth Planet. Sc. Lett. 275, 2008, pp. 364 - 369. Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. ``Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration'', Earth Planet. Sc. Lett. 389C, 2014, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. Ulven, O. I., Jamtveit, B., and Malthe-Sørenssen, A., ``Reaction-driven fracturing of porous rock'', J. Geophys. Res. Solid Earth 119, 2014, doi:10.1002/2014JB011102.

  12. Origins and nature of non-Fickian transport through fractures

    Wang, L.; Cardenas, M. B.

    2014-12-01

    Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.

  13. Multiphase flow models for hydraulic fracturing technology

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  14. Long-term flow/chemistry feedback in a porous medium with heterogenous permeability: Kinetic control of dissolution and precipitation

    Bolton, E.W.; Lasaga, A.C.; Rye, D.M.

    1999-01-01

    The kinetics of dissolution and precipitation is of central importance to understanding the long-term evolution of fluid flows in crustal environments, with implications for problems as diverse as nuclear waste disposal and crustal evolution. The authors examine the dynamics of such evolution for several geologically relevant permeability distributions (models for en-echelon cracks, an isolated sloping fractured zone, and two sloping high-permeability zones that are close enough together to interact). Although the focus is on a simple quartz matrix system, generic features emerge from this study that can aid in the broader goal of understanding the long-term feedback between flow and chemistry, where dissolution and precipitation is under kinetic control. Examples of thermal convection in a porous medium with spatially variable permeability reveal features of central importance to water-rock interaction. After a transient phase, an accelerated rate of change of porosity may be used with care to decrease computational time, as an alternative to the quasi-stationary state approximation (Lichtner, 1988). Kinetic effects produce features not expected by traditional assumptions made on the basis of equilibrium, for example, that cooling fluids are oversaturated and heating fluids are undersaturated with respect to silicic acid equilibrium. Indeed, the authors observe regions of downwelling oversaturated fluid experiencing heating and regions of upwelling, yet cooling, undersaturated fluid. When oscillatory convection is present, the amplitudes of oscillation generally increase with time in near-surface environments, whereas amplitudes tend to decrease over long times near the heated lower boundary. The authors examine the scaling behavior of characteristic length scales, of terms in the solute equation, and of the typical deviation from equilibrium, each as a function of the kinetic rate parameters

  15. Analytic solution of pseudocolloid migration in fractured rock

    Hwang, Y.; Pigford, T.H.; Lee, W.W.L.; Chambre, P.L.

    1989-06-01

    A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig

  16. Hip fracture - discharge

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  17. Green technologies for reducing slope erosion.

    2010-01-01

    As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...

  18. North Slope, Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  19. Rock Slope Design Criteria : Executive Summary Report

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  20. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  1. Slope activity in Gale crater, Mars

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  2. Slope failure investigation management system : [research summary].

    2013-03-01

    Highway slopes are exposed to a variety of environmental and climatic conditions, : such as deforestation, cycles of freezing and thawing weather, and heavy storms. : Over time, these climatic conditions, in combination with other factors such as : g...

  3. North Slope, Alaska ESI: FACILITY (Facility Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  4. Percent Agricultural Land Cover on Steep Slopes

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  5. 3D geodetic monitoring slope deformations

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  6. Proximal femoral fractures.

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  7. Comparison of tibial shaft ski fractures in children and adults.

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  8. Stability of Slopes Reinforced with Truncated Piles

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  9. Numerical computation of homogeneous slope stability.

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  10. Numerical Computation of Homogeneous Slope Stability

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  11. Slope Estimation in Noisy Piecewise Linear Functions.

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  12. Automatic approach to deriving fuzzy slope positions

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  13. Slope stability radar for monitoring mine walls

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  14. Approximate and analytical solutions for solute transport from an injection well into a single fracture

    Chen, C.S.; Yates, S.R.

    1989-01-01

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases

  15. Graded/Gradient Porous Biomaterials

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  16. Convection in Porous Media

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  17. Porous electrode preparation method

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  18. On the Antarctic Slope Front and Current crossing of the South Scotia Ridge

    Orsi, A. H.; Palmer, M.; Gomis, D.; Flexas, M. M.; Kim, Y.-S.; Jordà, G.; Wiederwohl, C.; Álvarez, M.

    2012-04-01

    To unveil the contorted path followed by the Antarctic Slope Current connecting the Weddell and Scotia Seas, hydrographic stations with unprecedented spatial resolution were occupied on a series of sections across the slope and multiple channels in the double-pronged western portion of the South Scotia Ridge. Fieldwork consisted of two cruises from the ESASSI (January 2008) and ACROSS (February 2009) programs, the Spanish and USA/Argentina components of the International Polar Year core project SASSI (Synoptic Antarctic Shelf-Slope Interaction study). In this region the Antarctic Slope Current can be located by the pronounced in-shore deepening of isopycnals over the continental slope, rendering the strong subsurface temperature and salinity gradients characteristic of the Antarctic Slope Front. Before reaching the gaps in the southern Ridge near 51°W and 50°W, the ASC carries about 3 Sv of upper layer waters, but it splits into shallow and deep branches upon turning north through these two gaps. The shallower branch enters the Hesperides Trough at 51°W, then shows a tight cyclonic loop back to that longitude roughly following the slope's 700-m isobath, and turns again westward through a similar gap in the northern Ridge. In the Scotia Sea the westward-flowing Antarctic Slope Current is found as far west as the Elephant Island along slightly deeper levels of slope (1100 m) before it is blocked by the Antarctic Circumpolar Current south of the Shackleton Fracture Zone (56°W). The deeper branch of the ASC in the Powell Basin crosses the southern Ridge near 50°W and roughly follows the 1600-m isobath before entering the Scotia Sea through the Hesperides Gap farther to the east (49°W). Thereafter the deeper waters carried westward by this branch become undistinguishable from those circulating farther offshore. Repeat cross-slope sections at both southern and northern flanks of the South Scotia Ridge showed significant temporal variability in the characteristics

  19. BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions

    Šístek, Jakub; Březina, J.; Sousedík, B.

    2015-01-01

    Roč. 22, č. 6 (2015), s. 903-929 ISSN 1070-5325 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : BDDC * fractured porous media * iterative substructuring Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/nla.1991

  20. Porous germanium multilayers

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. assessment of slope stability around gilgel gibe-ii hydroelectric

    preferred customer

    1 Gilgel-Gibe II Hydroelectric Project, Fofa Town, Ethiopia ... Key words/phrases: Factor of safety, plane failure, slope design, slope .... condition of potential unstable slopes along the road between Fofa town and Gilgel-Gibe Hydro- power II.

  2. Numerical studies of fluid and heat flow near high-level nuclear waste packages emplaced in partially saturated fractured tuff

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-11-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs

  3. Ambient vibration characterization and monitoring of a rock slope close to collapse

    Burjánek, Jan; Gischig, Valentin; Moore, Jeffrey R.; Fäh, Donat

    2018-01-01

    We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ˜210 000 m3), the remaining unstable rock mass (˜140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.

  4. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a

  5. Hydromechanical modeling of clay rock including fracture damage

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  6. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  7. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  8. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  9. Water infiltration into exposed fractured rock surfaces

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  10. Geometry, mechanics and transmissivity of rock fractures

    Lanaro, F.

    2001-04-01

    This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of

  11. Porous ceramics out of oxides

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  12. Selective formation of porous silicon

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  13. Traumatic thoracolumbar spine fractures

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  14. Fractures in multiple sclerosis

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  15. Role of slope on infiltration: A review

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  16. Decision Guide for Roof Slope Selection

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  17. Assessment of fracture risk

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  18. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  19. Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete

    Rouchier, Simon; Janssen, Hans; Rode, Carsten

    2012-01-01

    porous media. Digital Image Correlation was performed during the fracturing of concrete samples, in which moisture uptake was then monitored using X-ray radiography. Finite-element simulations were then performed based on the measurements of the fracture patterns, in order to recreate the measured......Several years after their installation, building materials such as concrete present signs of ageing in the form of fractures covering a wide range of sizes, from microscopic to macroscopic cracks. All sizes of fractures can have a strong influence on heat and moisture flow in the building envelope...

  20. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  1. Automated extraction of faults and porous reservoir bodies. Examples from the Vallhall Field

    Barkved, Olav Inge; Whitman, Doug; Kunz, Tim

    1998-12-31

    The Norwegian Vahall field is located 250 km South-West of Stavanger. The production is primarily from the highly porous and fractured chalk, the Tor formation. Fractures, evidently play a significant role in enhancing flow properties as well as production rates, are significantly higher than expected from matrix permeability alone. The fractures are primarily tectonically induced and related to faulting. Syn-depositional faulting is believed to be a controlling factor on reservoir thickness variations observed across the field. Due to the low acoustic contrast and weak appearance of the highly porous chalk, direct evidence of faulting in well bore logs is limited. The seismic data quality in the most central area of the field is very poor due to tertiary gas charging, but in the flank area of the field, the quality is excellent. 1 ref., 5 figs.

  2. The great slippery-slope argument.

    Burgess, J A

    1993-09-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social history and psychology required as a scholarly underpinning. As an antidote, an attempt is made both to identify some of the likely causes of genocide and to isolate some of the more modest but legitimate fears that lie behind slippery-slope arguments of this kind.

  3. On Front Slope Stability of Berm Breakwaters

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  4. The logarithmic slope in diffractive DIS

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  5. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  6. The great slippery-slope argument.

    Burgess, J A

    1993-01-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social hi...

  7. Reclamation of slopes left after surface mining

    Zmitko, J [Banske Projekty, Teplice (Czech Republic)

    1993-03-01

    Discusses land reclamation of abandoned slopes from brown coal surface mining in the North Bohemian brown coal basin in the Czech Republic. Problems associated with reclamation of landslide areas in two former coal mines are evaluated: the Otokar mine in Kostany (mining from 1956 to 1966) and the CSM mine in Pozorka (mining from 1955 to 1967). Land reclamation was introduced 25 years after damage occurred. The following aspects are analyzed: hydrogeologic conditions, range of landslides, types of rocks in landslide areas, water conditions, methods for stabilizing slopes, safety aspects.

  8. Studies of Tracer Dispersion and Fluid Flow in Porous Media

    Rage, T.

    1996-12-31

    This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table

  9. Optical performance of hybrid porous silicon-porous alumina multilayers

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  10. Paratrooper's ankle fracture: posterior malleolar fracture.

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  11. Interaction of random wave-current over uneven and porous bottoms

    Suo Yaohong; Zhang Zhonghua; Zhang Jiafan; Suo Xiaohong

    2009-01-01

    Starting from linear wave theory and applying Green's second identity and considering wave-current interaction for porous bottoms and variable water depth, the comprehensive mild-slope equation model theory of wave-current interaction is developed, then paying attention to the effect of random waves, by use of Kubo et al.'s method, a model theory of the interaction between random waves and current over uneven and porous bottoms is established. Finally the characteristics of the random waves are discussed numerically from both the geometric-optics approximation and the target spectrum.

  12. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  13. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  14. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  15. Reorienting with terrain slope and landmarks.

    Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F

    2013-02-01

    Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.

  16. Interrill soil erosion processes on steep slopes

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  17. Slope stability and erosion control: Ecotechnological solutions

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  18. A Novel Way To Practice Slope.

    Kennedy, Jane B.

    1997-01-01

    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  19. Advance in prediction of soil slope instabilities

    Sigarán-Loría, C.; Hack, R.; Nieuwenhuis, J. D.

    2012-04-01

    Six generic soils (clays and sands) were systematically modeled with plane-strain finite elements (FE) at varying heights and inclinations. A dataset was generated in order to develop predictive relations of soil slope instabilities, in terms of co-seismic displacements (u), under strong motions with a linear multiple regression. For simplicity, the seismic loads are monochromatic artificial sinusoidal functions at four frequencies: 1, 2, 4, and 6 Hz, and the slope failure criterion used corresponds to near 10% Cartesian shear strains along a continuous region comparable to a slip surface. The generated dataset comprises variables from the slope geometry and site conditions: height, H, inclination, i, shear wave velocity from the upper 30 m, vs30, site period, Ts; as well as the input strong motion: yield acceleration, ay (equal to peak ground acceleration, PGA in this research), frequency, f; and in some cases moment magnitude, M, and Arias intensity, Ia, assumed from empirical correlations. Different datasets or scenarios were created: "Magnitude-independent", "Magnitude-dependent", and "Soil-dependent", and the data was statistically explored and analyzed with varying mathematical forms. Qualitative relations show that the permanent deformations are highly related to the soil class for the clay slopes, but not for the sand slopes. Furthermore, the slope height does not constrain the variability in the co-seismic displacements. The input frequency decreases the variability of the co-seismic displacements for the "Magnitude-dependent" and "Soil-dependent" datasets. The empirical models were developed with two and three predictors. For the sands it was not possible because they could not satisfy the constrains from the statistical method. For the clays, the best models with the smallest errors coincided with the simple general form of multiple regression with three predictors (e.g. near 0.16 and 0.21 standard error, S.E. and 0.75 and 0.55 R2 for the "M

  20. Wet versus dry cement pastes and concretes: a mathematical approach to their strength and fracture properties

    Suarez Antola, R.

    2006-12-01

    The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads is considered. Taking into account the differences between the failure mechanisms of cement paste under tension and its failure mechanisms under compression, an analytical approach to the relation between water flow and fracture in saturated porous Portland cement pastes is developed. The well known differences in behaviour between the flexural and compressive strengths of wet and dry Portland cement pastes is explained. The extension of the obtained results to the flexural and compressive strength of normal concrete is briefly discussed, including suggestions for further experimental and digital simulation work

  1. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  2. Influence of microporosity on fracture stress of pyrocarbon coatings

    Krautwasser, P.; Nickel, H.; Taueber, K.

    1975-01-01

    In this paper recent investigations on fracture behaviour of integral PyC-coatings are presented. The fracture stresses of propene, acetylene, and methane-derived pyrocarbons are measured as a function of deposition temperature and deposition rate. The measured fracture stresses are interpreted in terms of microporosity values determined by X-ray small angle scattering (SAXS). It can be shown that the fracture stress is correlated unambigously with the concentration of micropores in the range of about 50 to 500A diameter. TEM inspection of the investigated materials revealed a component of disordered, tangled fibres with a high microporosity in agreement with SAXS results. This component increases with temperature in the range of 1250 to 1400 at the expense of of a high-density component. As a result, the coatings deposited in this temperature range show decreasing fracture stress with increasing amount of the porous glass wool like component. PyC coatings with a good irradiation behaviour had an initial pore size distribution typical for a relatively high content of tangled material. The assumption, that a relatively high amount of the disordered material is fafourable for a good behaviour i.e. integrity of coating up to high neutron doses, was confirmed besides other investigations by the relative low preirradiation fracture stresses of the well behaving coatings. This means, the integrity of pyrocarbon coatings after irradiation is favoured not so much by a high preirradiation fracture stress, but by the enhanced dimensional stability of the disordered porous material. In addition to this, the increase of the relatively low fractures stress due to the measured irradiation induced reduction of pores in the size range of 200 to 1000A diameter is in favour of coating integrity

  3. Eros: Shape, topography, and slope processes

    Thomas, P.C.; Joseph, J.; Carcich, B.; Veverka, J.; Clark, B.E.; Bell, J.F.; Byrd, A.W.; Chomko, R.; Robinson, M.; Murchie, S.; Prockter, L.; Cheng, A.; Izenberg, N.; Malin, M.; Chapman, C.; McFadden, L.A.; Kirk, R.; Gaffey, M.; Lucey, P.G.

    2002-01-01

    Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535 ?? 20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ???300 m are nearly all less than 35??, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25?? have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts. ?? 2002 Elsevier Science (USA).

  4. Fracture mechanical materials characterisation

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  5. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  6. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  7. Fracture flow due to hydrothermally induced quartz growth

    Kling, Tobias; Schwarz, Jens-Oliver; Wendler, Frank; Enzmann, Frieder; Blum, Philipp

    2017-09-01

    Mineral precipitations are a common feature and limitation of initially open, permeable rock fractures by forming sealing structures or secondary roughness in open voids. Hence, the objective of this numerical study is the evaluation of hydraulic properties of fractures sealed by hydrothermally induced needle and compact quartz growth. Phase-field models of progressive syntaxial and idiomorphic quartz growth are implemented into a fluid flow simulation solving the Navier-Stokes equation. Flow simulations for both quartz types indicate an obvious correlation between changes in permeability, fracture properties (e.g. aperture, relative roughness and porosity) and crystal growth behavior, which also forms distinct flow paths. Thus, at lower sealing stages initial fracture permeability significantly drops down for the 'needle fracture' forming highly tortuous flow paths, while the 'compact fracture' records a considerably smaller loss. Fluid flow in both sealing fractures most widely is governed by a ;parallel plate;-like cubic law behavior. However, the 'needle fracture' also reveals flow characteristics of a porous media. A semi-theoretical equation is introduced that links geometrical (am) with hydraulically effective apertures (ah) and the relative fracture roughness. For this purpose, a geometry factor α is introduced being α = 2.5 for needle quartz and α = 1.0 for compact quartz growth. In contrast to most common ah-am-relationships this novel formulation not only reveals more precise predictions for the needle (RMSE = 1.5) and the compact fractures (RMSE = 3.2), but also exhibit a larger range of validity concerning the roughness of the 'needle' (σ/am = 0-2.4) and the 'compact fractures' (σ/am = 0-1.8).

  8. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    Al-Hinai, Omar

    2017-04-09

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  9. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    Al-Hinai, Omar; Dong, Rencheng; Srinivasan, Sanjay; Wheeler, Mary F.

    2017-01-01

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  10. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  11. Modelling of 3D fractured geological systems - technique and application

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  12. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  13. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  14. Modeling contaminant plumes in fractured limestone aquifers

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  15. Uncertainty in hydraulic tests in fractured rock

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  16. Fractures (Broken Bones): First Aid

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  17. Convection in porous media

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  18. Optimized manufacturable porous materials

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  19. Filtration in Porous Media

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  20. Geological hazards investigation - relative slope stability map

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  1. Luminescence of porous silicon doped by erbium

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  2. Fracture toughness correlations

    Wallin, Kim

    1986-09-01

    In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented

  3. Rib fracture - aftercare

    ... this page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  4. Sprains, Strains and Fractures

    ... fractures. Many fractures and sprains occur during sports. Football players are particularly vulnerable to foot and ankle ... feet and ankles and take a complete medical history. He or she will also order tests, including ...

  5. Infant skull fracture (image)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  6. Ankle fracture - aftercare

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...

  7. Evaluating slope stability prior to road construction

    James L. Clayton

    1983-01-01

    The usefulness of seismic, resistivity, and vegetation surveys for predicting subsurface strength characteristics of granitic rock was evaluated in the Idaho batholith. Rock strength varies inversely with degree of weathering and fracture density. Rocks that have weathered or altered to the point where they contain lays (referred to here as highly weathered rock) are...

  8. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  9. Porous media geometry and transports

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  10. Atraumatic First Rib Fracture

    Koray Aydogdu

    2014-01-01

    Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  11. The Alaska North Slope spill analysis

    Pearson, Leslie; Robertson, Tim L.; DeCola, Elise; Rosen, Ira

    2011-01-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  12. Wildlife response on the Alaska North Slope

    Costanzo, D.; McKenzie, B.

    1992-01-01

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  13. Pipeline modeling and assessment in unstable slopes

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)

    2010-07-01

    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  14. A micromechanical study of porous composites under longitudinal shear and transverse normal loading

    Ashouri Vajari, Danial

    2015-01-01

    The mechanical response of porous unidirectional composites under transverse normal and longitudinal shear loading is studied using the finite element analysis. The 3D model includes discrete and random distribution of fibers and voids. The micromechanical failure mechanisms are taken into account....... Finally, the computational prediction of the porous composite in the transverse normal-longitudinal shear stress space is obtained and compared with Puck's model. The results show that both interfaces with low fracture toughness and microvoids with even small void volume fraction can significantly reduce...

  15. Metatarsal stress fractures - aftercare

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  16. Relationships between fractures

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  17. Obesity and fracture risk

    Gonnelli, Stefano; Caffarelli, Carla; Nuti, Ranuccio

    2014-01-01

    Obesity and osteoporosis are two common diseases with an increasing prevalence and a high impact on morbidity and mortality. Obese women have always been considered protected against osteoporosis and osteoporotic fractures. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures.

  18. Imaging of insufficiency fractures

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  19. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  20. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    Foltz, S.D.

    1992-01-01

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards' equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment

  1. Slope parameters of ππ-system

    Isaev, P.S.; Osipov, A.A.

    1984-01-01

    The slope parameters of the ππ-system are calculated in the framework of the superconductor-tupe quark model. The analogous calculations are made for πK-system. The amplitudes are obtained by using the box quark diagrams and tree diagrams with the intermediate scalar epsilon(700), Ssup(x)(975), K tilde (1350) mesons and vector rho(770), K* (892) mesons

  2. Radionuclide migration in crystalline rock fractures

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  3. Stability of sulfur slopes on Io

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  4. Stability of nuclear crater slopes in rock

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  5. Geosynthetic clay liners - slope stability field study

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-01-01

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  6. Stability of nuclear crater slopes in rock

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  7. Numerical Modelling of Seismic Slope Stability

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  8. High slope waste dumps – a proven possibility

    Igor Svrkota

    2013-11-01

    Full Text Available This paper is an overview of dumping operations on High Slope Waste Dump at Veliki Krivelj open pit copper mine, RTB Bor, Serbia. The High Slope Waste Dump in Bor is the highest single slope waste dump in the world with the slope height of 405 m. The paper gives the basics and limitations of the designed dumping technology, the redesigned technology, gives an overview of the 13 year long operation and gathered experiences and addresses the main issues of dumping operations in high slope conditions as well as the present condition of the High Slope Waste Dump.

  9. Slow sedimentary processes on-a-chip: experiments on porous flow effects on granular bed creep

    Houssais, M.; Maldarelli, C.; Shattuck, M.; Morris, J. F.

    2017-12-01

    Steep soils dynamics is hard to catch. they exhibit very slow granular creep most of the time, and sometimes, mostly under or after rain, turn into a landslide, a very fast avalanche flow.The conditions of transition from soil creep to avalanching remains a lot non-understood, and Safe Factor law (empirical criteria, function of rain intensity and duration). On another side, in marine fast deposition environments, compaction drives vertical porous flow, which makes bed shear resistance change, and form over time bed size patterns (pipes, dishes) or mechanical heterogeneities.Capturing how the slow creep dynamics depends on the porous flow would allow for much more accurate landscape evolution modeling.We present here preliminary results of an experimental investigation of one the major triggering condition for soils destabilization: rain infiltration, and more generally porous flow through a tilted granular bed. In a quasi-2D microfluidics channel, a flat sediment bed made of spherical particles is prepared, in fully submerged condition. It is thereafter tilted (at slope under critical slope of avalanching) and simultaneously put under vertical weak porous flow (well under the critical flow of liquefaction regarding positive pressure gradients). The two control parameters are varied, and local particles concentration and motion are measured. Interestingly, although staying in the sub-critical creeping regime, we observe an acceleration of the bed deformation downward, as the porous flow and the bed slope are increased, until the criteria for avalanching is reached. Those results appear to present similitudes with the case of tilted dry sediment bed under controlled vibrations. Consequently it opens the discussion about a potential universal model of landslides triggering due to frequent seismological and rainstorm events.

  10. Modelling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock

    Herbert, A.; Gale, J.; MacLeod, R.; Lanyon, G.

    1991-12-01

    We present our approach to predicting flow through a fractured rock site; the site characterization and validation region in the Stripa mine. Our approach is based on discrete fracture network modelling using the NAPSAC computer code. We describe the conceptual models and assumptions that we have used to interpret the geometry and flow properties of the fracture networks, from measurements at the site. These are used to investigate large scale properties of the network and we show that for flows on scales larger than about 10 m, porous medium approximation should be used. The porous medium groundwater flow code CFEST is used to predict the large scale flows through the mine and the SCV region. This, in turn, is used to provide boundary conditions for more detailed models, which predict the details of flow, using a discrete fracture network model, on scales of less than 10 m. We conclude that a fracture network approach is feasible and that it provides a better understanding of details of flow than conventional porous medium approaches and a quantification of the uncertainty associated with predictive flow modelling characterised from field measurement in fractured rock. (au)

  11. Hydrodynamic dispersion within porous biofilms

    Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate

  12. Vibrational modes of porous silicon

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  13. Transport phenomena in porous media

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  14. Positronium chemistry in porous materials

    Kobayashi, Y.; Ito, K.; Oka, T.; Hirata, K.

    2007-01-01

    Porous materials have fascinated positron and positronium chemists for over decades. In the early 1970s it was already known that ortho-positronium (o-Ps) exhibits characteristic long lifetimes in silica gels, porous glass and zeolites. Since then, our understanding of Ps formation, diffusion and annihilation has been drastically deepened. Ps is now well recognized as a powerful porosimetric and chemical probe to study the average pore size, pore size distribution, pore connectivity and surface properties of various porous materials including thin films. In this paper, developments of Ps chemistry in porous materials undertaken in the past some 40 yr are surveyed and problems to be addressed in future are briefly discussed

  15. Porous substrates filled with nanomaterials

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  16. A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level

    Kleinbrod, Ulrike; Burjánek, Jan; Hugentobler, Marc; Amann, Florian; Fäh, Donat

    2017-12-01

    In this study, the seismic response of two slope instabilities is investigated with seismic ambient vibration analysis. Two similar sites have been chosen: an active deep-seated slope instability at Cuolm da Vi and the geologically, structurally and morphologically similar, but presently not moving Alp Caschlè slope. Both slopes are located at the upper Vorderrheintal (Canton Graubünden, Switzerland). Ambient vibrations were recorded on both slopes and processed by time-frequency polarization and site-to-reference spectral ratio analysis. The data interpretation shows correlations between degree of disintegration of the rock mass and amplification. However, the ambient vibration analysis conducted, does not allow retrieving a resonance frequency that can be related to the total depth of the instability of Cuolm da Vi. Even though seismic waves can be hardly traced in rock instabilities containing open fractures, it was possible to retrieve a dispersion curve and a velocity profile from the array measurement at Cuolm da Vi due to the high level of disintegration of the rock material down to a depth of about 100 m. From the similar amplification pattern at the two sites, we expect a similar structure, indicating that also the slope at Alp Caschlè was active in the past in a similar manner as Cuolm da Vi. However, a smoother increase of amplification with frequency is observed at Alp Caschlè, which might indicate less disintegration of the rock mass in a particular depth range at this site, when comparing to Cuolm da Vi where a high level of disintegration is observed, resulting from the high activity at the slope. From the frequency-dependent amplification, we can distinguish between two parts within both instabilities, one part showing decreasing disintegration of the rock mass with increasing depth, for the other parts less-fractured blocks are observed. Since the block structures are found in the lower part of the instabilities, they might contribute to the

  17. Fracture-filling minerals as uranium sinks and sources, a natural analogue study at Palmottu, Finland

    Cui, D.; Eriksen, T.

    2000-01-01

    The nucleation of a mineral crystal and its growth in groundwater carrying fractures 300 m above the Palmottu uranium deposit provide an impressive example of geochemical selectivity of uranium. Fracture-filling material was collected from a 3 mm thick fracture at depth 74.8-75 m (drillcore R348). SEM and EDS analyses on a thin section of the original fracture-filling show that the fracture filling is heterogeneous, composing mineral crystal particles and very porous clay-rich aggregates. The results of INAA on millimetre-sized single mineral crystals and aggregates selected from grinded fracture-filling show that porous aggregates (composed of clays and micrometer sized mineral particles) contain up to 1000 ppm U, which is higher than the average of the whole fracture-filling (400 ppm) and host rock related millimetre sized mineral particles (18-100 ppm). 233 U/ 238 U isotope exchange proves that a large fraction of the uranium in the fracture-filling is not easily exchanged with uranium in the solution. The amount of 238 U released in the isotope exchange experiment is too high to be explained by reversible U(VI) sorption. Oxidation state analyses show that 30% of the uranium exists as U(IV). Laboratory batch experiment at anoxic conditions proved that pyrite can immobilise U(VI). (orig.)

  18. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  19. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  20. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  1. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  2. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  3. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  4. A Review of Periprosthetic Femoral Fractures Associated With Total Hip Arthroplasty

    Marsland, Daniel; Mears, Simon C.

    2012-01-01

    Periprosthetic fractures of the femur in association with total hip arthroplasty are increasingly common and often difficult to treat. Patients with periprosthetic fractures are typically elderly and frail and have osteoporosis. No clear consensus exists regarding the optimal management strategy because there is limited high-quality research. The Vancouver classification facilitates treatment decisions. In the presence of a stable prosthesis (type-B1 and -C fractures), most authors recommend surgical stabilization of the fracture with plates, strut grafts, or a combination thereof. In up to 20% of apparent Vancouver type-B1 fractures, the femoral stem is loose, which may explain the high failure rates associated with open reduction and internal fixation. Some authors recommend routine opening and dislocation of the hip to perform an intraoperative stem stability test to rule out a loose component. Advances in plating techniques and technology are improving the outcomes for these fractures. For fractures around a loose femoral prosthesis (types B2 and 3), revision using an extensively porous-coated uncemented long stem, with or without additional fracture fixation, appears to offer the most reliable outcome. Cement-in-cement revision using a long-stem prosthesis is feasible in elderly patients with a well-fixed cement mantle. It is essential to treat the osteoporosis to help fracture healing and to prevent further fractures. We provide an overview of the causes, classification, and management of periprosthetic femoral fractures around a total hip arthroplasty based on the current best available evidence. PMID:23569704

  5. Orbital fractures: a review

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  6. Mechanics of Hydraulic Fractures

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  7. Fracture in Soft Materials

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  8. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    Wang, Yi

    2017-09-12

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  9. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    Wang, Yi; Sun, Shuyu; Yu, Bo

    2017-01-01

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  10. Slope stabilization guide for Minnesota local government engineers.

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  11. Stability of the slopes around nuclear power plants in earthquake

    Ito, Hiroshi

    1983-01-01

    The evaluation of the stability of the slopes around the buildings of nuclear power plants is important especially with respect to earthquakes. In this connection, the behavior of a slope up to its destruction and the phenomena of the destruction have been examined in the case of an earthquake by both experiment and numerical analysis. The purpose is to obtain the data for the establishment of a method for evaluating the seismic stability of a slope and of the slope design standards. The following results are described: the behavior of a slope and its destruction characteristics in the slope destruction experiment simulating the seismic coefficient method; the vibration of a slope and its destruction characteristics in vibration destruction experiment; the validity of the method of numerical simulation analysis and of stability evaluation for the slope destruction and the vibration destruction experiments, and quantitative destruction mechanism; the comparison of the various stability evaluation methods and the evaluation of seismic forces. (Mori, K.)

  12. VT Lidar Slope (1.6 meter) - 2012 - Addison County

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  13. VT Lidar Slope (2 meter) - 2012 - Bennington County

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  14. VT Lidar Slope (1.6 meter) - 2010 - Missisquoi Upper

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  15. Stress Transmission and Failure in Disordered Porous Media

    Laubie, Hadrien; Radjai, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.

  16. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z.V.P., E-mail: zvpm2000@yahoo.com

    2015-03-01

    Graphical abstract: - Highlights: • Porous silicon (PSi) was fabricated by electrochemical etching process. • Micro- and nanoparticles were prepared by ultrasonic fracture of PSi films. • Acyclovir was loaded into native, oxidized, and hydrosilylated PSi particles. • Micro- and nanoparticles displays controlled release behaviour for several days. • Drug release behaviour and release kinetics from PSi particles were studied. - Abstract: In this work, micro- and nanoparticles of porous silicon (PSi) are demonstrated to act as effective carrier for the controlled delivery of acyclovir (ACV). PSi films prepared by electrochemical etching were fractured by ultrasonication to prepare micro- and nanoparticles. PSi native particles were thermally oxidized (TOPSi) and thermally hydrosilylated using undecylenic acid (UnPSi). PSi particles with three different surface chemistries were then loaded with ACV by physical adsorption and covalent attachment. Such particles were characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. In vitro ACV release experiments in phosphate buffered saline showed sustained release behaviour from both micro- and nanoparticles and order of release was found to be native PSi > TOPSi > UnPSi. Drug release kinetics study using Korsmeyer-Peppas model suggested a combination of both drug diffusion and Si scaffold erosion based drug release mechanisms.

  17. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z.V.P.

    2015-01-01

    Graphical abstract: - Highlights: • Porous silicon (PSi) was fabricated by electrochemical etching process. • Micro- and nanoparticles were prepared by ultrasonic fracture of PSi films. • Acyclovir was loaded into native, oxidized, and hydrosilylated PSi particles. • Micro- and nanoparticles displays controlled release behaviour for several days. • Drug release behaviour and release kinetics from PSi particles were studied. - Abstract: In this work, micro- and nanoparticles of porous silicon (PSi) are demonstrated to act as effective carrier for the controlled delivery of acyclovir (ACV). PSi films prepared by electrochemical etching were fractured by ultrasonication to prepare micro- and nanoparticles. PSi native particles were thermally oxidized (TOPSi) and thermally hydrosilylated using undecylenic acid (UnPSi). PSi particles with three different surface chemistries were then loaded with ACV by physical adsorption and covalent attachment. Such particles were characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. In vitro ACV release experiments in phosphate buffered saline showed sustained release behaviour from both micro- and nanoparticles and order of release was found to be native PSi > TOPSi > UnPSi. Drug release kinetics study using Korsmeyer-Peppas model suggested a combination of both drug diffusion and Si scaffold erosion based drug release mechanisms

  18. A POROUS, LAYERED HELIOPAUSE

    Swisdak, M.; Drake, J. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Opher, M., E-mail: swisdak@umd.edu, E-mail: drake@umd.edu, E-mail: mopher@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2013-09-01

    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  19. How hydrological factors initiate instability in a model sandy slope

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  20. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  1. Particle retention in porous media: Applications to water injectivity decline

    Wennberg, Kjell Erik

    1998-12-31

    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  2. 30 CFR 56.3130 - Wall, bank, and slope stability.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their assigned...

  3. Conceptualizations of Slope: A Review of State Standards

    Stanton, Michael; Moore-Russo, Deborah

    2012-01-01

    Since slope is a fundamental topic that is embedded throughout the U.S. secondary school curriculum, this study examined standards documents for all 50 states to determine how they address the concept of slope. The study used eleven conceptualizations of slope as categories to classify the material in the documents. The findings indicate that all…

  4. Intertidal beach slope predictions compared to field data

    Madsen, A.J.; Plant, N.G.

    2001-01-01

    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium

  5. Euthanasia, dying well and the slippery slope.

    Allmark, P

    1993-08-01

    Arguments in favour of voluntary euthanasia tend to be put in utilitarian terms. This paper suggests an alternative, neo-Aristotelian argument justifying certain individual acts of both suicide and voluntary euthanasia. It goes on to examine the slippery slope arguments against legalizing euthanasia. It is suggested that such arguments cut both ways. However, the suggestion that we ought therefore to permit a social experiment in voluntary euthanasia is set alongside the Dutch experience. The latter seems to imply that if such experiments are to take place then great caution needs to be applied.

  6. Western Ross Sea continental slope gravity currents

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real

  7. Seismic Stability of Reinforced Soil Slopes

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  8. Clustering Moving Objects Using Segments Slopes

    Mohamed E. El-Sharkawi; Hoda M. O. Mokhtar; Omnia Ossama

    2011-01-01

    Given a set of moving object trajectories, we show how to cluster them using k-meansclustering approach. Our proposed clustering algorithm is competitive with the k-means clusteringbecause it specifies the value of “k” based on the segment’s slope of the moving object trajectories. Theadvantage of this approach is that it overcomes the known drawbacks of the k-means algorithm, namely,the dependence on the number of clusters (k), and the dependence on the initial choice of the clusters’centroi...

  9. Ballistic fractures: indirect fracture to bone.

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  10. Effect of water uptake on the fracture behavior of low-k organosilicate glass

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet

    2014-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  11. Nanoparticle tracers in calcium carbonate porous media

    Li, Yan Vivian

    2014-07-15

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.

  12. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    Klavetter, E.A.; Peters, R.R.

    1986-07-01

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions

  13. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  14. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  15. Porous (Swiss-Cheese Graphite

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  16. Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii

    Osborn, G.; Sheardown, A.; Blay, C.

    2016-12-01

    The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and

  17. Large slope instabilities in Northern Chile and Southern Peru

    Crosta, Giovanni B.; Hermanns, Reginald L.; Valbuzzi, Elena; Frattini, Paolo; Valagussa, Andrea

    2014-05-01

    Deep canyon incision into Tertiary paleosurfaces and large slope instabilities along the canyon flanks characterize the landscape of western slope of the Andes of northern Chile and South Peru. This area belongs to the Coastal Escarpment and Precordillera and is formed by coarse-grained clastic and volcanoclastic formations. The area is characterized by intense seismicity and long-term hyperaridity (Atacama Desert). Landslides along the canyon flanks affect volumes generally up to 1 km3 and locally evolved in large rock avalanches. We prepared a landslide inventory covering an area of about 30,000 km2, extending from Iquique (Chile) to the South and Tacna (Peru) to the North. A total of 606 landslides have been mapped in the area by use of satellite images and direct field surveys, prevalently including large phenomena. The landslides range from 1 10-3 km2 to 464 km2 (Lluta landslide). The total landslide area, inclusive of the landslide scarp and of the deposit, amounts to about 2,130 km2 (about 7% of the area). The mega landslides can be classified as large block slides that can evolve in large rock avalanches (e.g. Minimini landslide). Their initiation seems to be strongly associated to the presence of secondary faults and large fractures transversal to the slope. These landslides show evidence suggesting a re-incision by the main canyon network. This seems particularly true for the Lluta collapse where the main 'landslide' mass is masked or deleted by the successive erosion. Other landslides have been mapped along the Coastal Escarpment and some of the major tectonic escarpments with an E-W trend. We examined area-frequency distributions of landslides by developing logarithmically binned, non-cumulative size frequency distributions that report frequency density as a function of landslide planar area A. The size frequency distribution presents a strong undersampling for smaller landslides, due to the extremely old age of the inventory. For landslides larger than

  18. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  19. Impact of ductility on hydraulic fracturing in shales

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  20. Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska

    Hall, D. K.; Roswell, C. (Principal Investigator)

    1980-01-01

    The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.

  1. Atraumatic First Rib Fracture

    Koray Aydogdu

    2014-12-01

    Full Text Available Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  2. Fracture mechanics safety approaches

    Roos, E.; Schuler, X.; Eisele, U.

    2004-01-01

    Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)

  3. Scaphoid fractures in children

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  4. Pathological fractures in children

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  5. Micromechanical analysis of porous SMA

    Sepe, V; Marfia, S; Sacco, E; Auricchio, F

    2015-01-01

    The present paper deals with computational micromechanical analyses of porous shape memory alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix including voids. A three-dimensional constitutive law is presented for the dense SMA able to reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for the different elastic properties of the austenite and martensite phases. Furthermore, a numerical procedure is developed and the overall behavior of the porous SMA is recovered studying a representative volume element. Comparisons between the numerical results, recovered using the proposed modeling, and experimental data available in the literature are presented. The case of closed and open porosity is investigated. Parametric studies have been conducted in order to investigate the influence of the porosity, the shape and orientation of the pores on the overall mechanical response and, mainly, on the energy absorption dissipation capability. (paper)

  6. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  7. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  8. Revegetation and survey of vegetation transition of repaired old shotcrete slope; Rokyukashita morutaru fukitsuke norimen no ryokka

    Yokota, H.; Deguchi, C. [Miyazaki Univ., Miyazaki (Japan). Faculty of Engineering; Yakabe, H. [Dia Consultants Co. Ltd., Tokyo (Japan); Matsuura, H.

    1996-06-01

    The National road No.220 run from Miyazaki city to Kagoshima city mostly along the seashore and has many slopes by the roadside composed of mudstone which is apt to weather. Although renewal of slopes which were shotcreted for reinforcement around 1970 are coming into question, repair works accompanied with vegetation transition have to be required from the viewpoint of natural environmental management. A part of a slope (9.6 {times} 15m) offered for experiment had been reinforced by RC frame and this time was reshotcreted. Each of eighty compartments surrounded by frames was made into a flower bed respectively having a porous board at the bottom which was 5,10 or 15cm in thickness. And also some vegetation boxes were prepared partially. At the time when just two years have passed from seeding (Dec.1993), in pastures, Bermuda grass and Jaguar the 2nd., in flowers, coreopsis and in the vegetation boxes bird`s-foot trefoil and vitex rotundifolia have grown well. On the other conventional slope, oenothera odorata, chrysanthemum japonense and pampas grass were grown spontaneously, which are considered as hopeful grasses in future. 4 refs., 2 figs., 4 tabs.

  9. Fracture of the styloid process associated with the mandible fracture

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  10. Cross-slope Movement Patterns in Landslides

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  11. Metrology of nanosize biopowders using porous silicon surface

    Zhuravel', L.V.; Latukhina, N.V.; Pisareva, E.V.; Vlasov, M.Yu.; Volkov, A.V.; Volodkin, B.O.

    2008-01-01

    Powders of hydroxyapatite deposited on porous silicon surface were investigated by TEM and STM methods. Thickness of porous lay was 1-100 micrometers; porous diameter was 0.01-10 micrometers. Images of porous silicon surface with deposited particles give possibility to estimate particles size and induce that only proportionate porous diameter particles have good adhesion to porous silicon surface.

  12. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  13. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    Silveira, Claudia S. da; Alvim, Antonio C.M., E-mail: csilveira@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear

    2011-07-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  14. Numerical modeling of radionuclide migration in water-saturated planar fracture: study of performance of bentonite in the far-field region

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2011-01-01

    The analysis of radionuclide migration in fractured porous media is an important part of the safety assessment of a deep geologic disposal for high level radioactive wastes. In this work, numerical solution for simple geometry was developed to study radionuclide migration, including decay chain from a hypothetical repository, whereas the initial region of fracture is filled with bentonite which expanded from EBS (Engineered Barrier System). The following cases were considered: convective transport with constant velocity along the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from fracture into rock matrix, sorption within rock matrix, sorption onto the surface of the fracture, radioactive decay, decay chain, and diffusion in bentonite extrusion region. For conservative analysis, the porous matrix adjacent to the fracture was subdivided into two different subdomains, each with different set of parameters and considering that the radionuclides were available for migration in the solubility limit, at fracture inlet, from the initial time. The partial differential equations that govern the physical system were discretized by finite differences, by using the Implicit Euler Method with forward scheme in the convective term. In this study, numerical simulation was performed for 100, 1000 and 10000 years, with and without bentonite extrusion, in order to compare the migration retardation obtained by bentonite located at the beginning of the fracture in saturated environment. The numerical simulation results showed the importance of extruded area in the far field region of the fractured host rock. (author)

  15. Engineering and Design: Characterization and Measurement of Discontinuities in Rock Slopes

    1983-01-01

    This ETL provides guidance for characterizing and measuring rock discontinuities on natural slopes or slopes constructed in rock above reservoirs, darn abutments, or other types of constructed slopes...

  16. Flow visualization and relative permeability measurements in rough-walled fractures

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  17. Topological representation of the porous structure and its evolution of reservoir sandstone under excavation-induced loads

    Ju Yang

    2017-01-01

    Full Text Available The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.

  18. Development of kenaf mat for slope stabilization

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  19. Alaskan North Slope Oil & Gas Transportation Support

    Lilly, Michael Russell [Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)

    2017-03-31

    North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations

  20. Methodologies for risk analysis in slope instability

    Bernabeu Garcia, M.; Diaz Torres, J. A.

    2014-01-01

    This paper is an approach to the different methodologies used in conducting landslide risk maps so that the reader can get a basic knowledge about how to proceed in its development. The landslide hazard maps are increasingly demanded by governments. This is because due to climate change, deforestation and the pressure exerted by the growth of urban centers, damage caused by natural phenomena is increasing each year, making this area of work a field of study with increasing importance. To explain the process of mapping a journey through each of the phases of which it is composed is made: from the study of the types of slope movements and the necessary management of geographic information systems (GIS) inventories and landslide susceptibility analysis, threat, vulnerability and risk. (Author)

  1. The Process of Hydraulic Fracturing

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  2. Characteristics of porous zirconia coated with hydroxyapatite

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  3. Process of preparing tritiated porous silicon

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  4. Porous silicon: X-rays sensitivity

    Gerstenmayer, J.L.; Vibert, Patrick; Mercier, Patrick; Rayer, Claude; Hyvernage, Michel; Herino, Roland; Bsiesy, Ahmad

    1994-01-01

    We demonstrate that high porosity anodically porous silicon is radioluminescent. Interests of this study are double. Firstly: is the construction of porous silicon X-rays detectors (imagers) possible? Secondly: is it necessary to protect silicon porous based optoelectronic systems from ionising radiations effects (spatial environment)? ((orig.))

  5. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  6. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.

    Kahl, G; Ingwersen, J; Totrakool, S; Pansombat, K; Thavornyutikarn, P; Streck, T

    2010-01-01

    Preferential flow from stream banks is an important component of pesticide transport in the mountainous areas of northern Thailand. Models can help evaluate and interpret field data and help identify the most important transport processes. We developed a simple model to simulate the loss of pesticides from a sloped litchi (Litchi chinensis Sonn.) orchard to an adjacent stream. The water regime was modeled with a two-domain reservoir model, which accounts for rapid preferential flow simultaneously with slow flow processes in the soil matrix. Preferential flow is triggered when the topsoil matrix is saturated or the infiltration capacity exceeded. In addition, close to matrix saturation, rainfall events induce water release to the fractures and lead to desorption of pesticides from fracture walls and outflow to the stream. Pesticides undergo first order degradation and equilibrium sorption to soil matrix and fracture walls. The model was able to reproduce the dynamics of the discharge reasonably well (model efficiency [EF] = 0.56). The cumulative pesticide mass (EF = 0.91) and the pesticide concentration in the stream were slightly underestimated, but the deviation from measurement data is acceptable. Shape and timing of the simulated concentration peaks occurred in the same pattern as observed data. While the effect of surface runoff and preferential interflow on pesticide mass transport could not be absolutely clarified, according to our simulations, most concentration peaks in the stream are caused by preferential interflow pointing to the important role of this flow path in the hilly areas of northern Thailand.

  7. [Trochanteric femoral fractures].

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  8. An alternative soil nailing system for slope stabilization: Akarpiles

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  9. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  10. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  11. Hand fracture - aftercare

    ... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...

  12. TIBIAL SHAFT FRACTURES.

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  13. Physeal Fractures in Foals.

    Levine, David G; Aitken, Maia R

    2017-08-01

    Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  15. Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses

    Stefano Morelli

    2018-01-01

    Full Text Available On 4 November 2010, a deep-seated gravitational slope deformation (North Italy reactivated with sudden ground movement. A 450,000 m2 mountainous area moved some metres downslope, but the undeniable signs were only connected to the triggering of a debris flow from the bulging area’s detrital cover and the presence of a continuous perimeter fracture near the crown area. Based on two detailed LiDAR surveys (2 m × 2 m performed just a few days before and after the event, a quantitative topographic analysis was performed in a GIS environment, integrating morphometric terrain parameters (slope, aspect, surface roughness, hill shade, and curvature. The DEMs analysis highlighted some morphological changes related to deeper as well as shallow movements. Both global and sectorial displacements were widely verified and discussed, finally inferring that the geometry, persistence, and layout of all movements properly justify each current morphostructure, which has the shape of a typical Sackung-type structure with impulsive kinematics. Moreover, a targeted field survey allowed specific clues to be found that confirmed the global deduced dynamics of the slope deformation. Finally, thanks to a ground-based interferometric radar system (GB-InSAR that was installed a few days after the reactivation, the residual deep-seated gravitational slope deformation (DSGSD movements were also monitored. In the landslide lower bulging area, a localized material progression of small entities was observed for some months after the parossistic event, indicating a slow dissipation of forces in sectors more distant from the crown area.

  16. Treatment of midfacial fractures

    Schubert, J.

    2007-01-01

    Fractures of the midface constitute half of all traumas involving facial bones. Computed tomography is very useful in primary diagnosis. Isolated fractures of the nasal bone and lateral midfacial structures may be diagnosed sufficiently by conventional X-rays. An exact description of the fracture lines along the midfacial buttresses is essential for treatment planning. For good aesthetics and function these have to be reconstructed accurately, which can be checked with X-rays. The treatment of midfacial fractures has been revolutionized over the last two decades. A stable three-dimensional reconstruction of the facial shape is now possible and the duration of treatment has shortened remarkably. The frequently occurring isolated fractures in the lateral part of the midface may be treated easily and effectively by semisurgical methods such as the Gillies procedure or hook-repositioning. (orig.)

  17. Dating fractures in infants

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N J; Somers, J M [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  18. Dating fractures in infants

    Halliday, K.E.; Broderick, N.J.; Somers, J.M.; Hawkes, R.

    2011-01-01

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  19. Tibial Plateau Fractures

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  20. Fracturing formations in wells

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  1. Is the permeability of naturally fractured rocks scale dependent?

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  2. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  3. Porous squeeze-film flow

    Knox, D. J.; Wilson, S. K.; Duffy, B. R.; McKee, S.

    2013-01-01

    surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch

  4. On strength of porous material

    Nielsen, Lauge Fuglsang

    1999-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...

  5. Porous Materials - Structure and Properties

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  6. Porous Concrete and Its Application

    V. V. Opekunov

    2005-01-01

    Full Text Available Some aspects of resource saving problem in the process of mass construction and operation of heated construction installations are considered in the paper. A special attention is paid to necessary application of porous concrete products in the process of the housing construction. The preference is given to the products made of autoclave cellular concrete and cement hydrophobisized cement perlite concrete.

  7. Constitutive model for porous materials

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments

  8. Additively manufactured porous tantalum implants

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of

  9. Using acoustic emissions to enhance fracture toughness calculations for CCNBD marble specimens

    K. Kaklis

    2017-04-01

    Full Text Available Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, mechanical fragmentation, rock slope analysis, geophysics, earthquake mechanics and many other science and technology fields. Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. In the present study, acoustic emission (AE measurements were carried out during cracked chevron notched Brazilian disc (CCNBD tests on Nestos marble specimens. The fracture toughness of different modes of loading (mode-I and –II is calculated and the results are discussed in conjunction with the AE parameters.

  10. Microstructure and Mechanical Properties of Porous Mullite

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  11. Physical processes that control droplet transport in rock fracture systems

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  12. Simulating the seismic behaviour of soil slopes and embankments

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  13. Effect of rainfall on the reliability of an infinite slope

    Yuan, J.; Papaioannou, I.; Mok, C. M.; Straub, D.

    2014-01-01

    Rainfall is one of the most common factors triggering landslides, since infiltration of water into the soil has a significant impact on pore water pressure buildup that affects slope stability. In this study, the influence of the wetting front development on the reliability of an infinite slope is analyzed. The failure condition of the slope is expressed in terms of the factor of safety. Rainfall infiltration is simulated by a time-dependent model, based on the Green and Ampt assumptions. The...

  14. Porous silicon carbide (SIC) semiconductor device

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  15. Enhanced Raman scattering in porous silicon grating.

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  16. Computed tomograms of blowout fracture

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  17. Computed tomograms of blowout fracture

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  18. Pneumatic fractures in Confined Granular Media

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  19. Modelling deformation and fracture in confectionery wafers

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John [Mechanical Engineering Department, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom and Nestec York Ltd., Nestlé Product Technology Centre, Haxby Road, PO Box 204, York YO91 1XY (United Kingdom)

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  20. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.