WorldWideScience

Sample records for fractured media comprehension

  1. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  2. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  3. Fluid transfers in fractured media: scale effects

    International Nuclear Information System (INIS)

    Bour, Olivier

    1996-01-01

    As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr

  4. a Fractal Network Model for Fractured Porous Media

    Science.gov (United States)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  5. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-01-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media

  6. The hydro-mechanical modeling of the fractured media; Modelisation hydromecanique des milieux fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kadiri, I

    2002-10-15

    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  7. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  8. The hydro-mechanical modeling of the fractured media

    International Nuclear Information System (INIS)

    Kadiri, I.

    2002-10-01

    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  9. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  10. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  11. Multi-pathway model of nuclide transport in fractured media and its application

    International Nuclear Information System (INIS)

    Li Xun; Yang Zeping; Li Jinxuan

    2010-01-01

    In order to know the law of nuclide transport in fracture system, the basic differential equations of nuclide transport in fracture and matrix were obtained based on the dual media theory, and the general analytic solutions of nuclide transport in single fractured media with exponential attenuation source in fracture were deduced by Laplace transform, and one-dimensional multi-pathway model of nuclide transport was proposed based on dual media theory and stochastic distribution of fracture parameters. The transport of Th-229, Cs-135 and Se-79 were simulated with this model, the relative concentration of these nuclides in fracture system were predicted. Further more, it was deduced that aperture and velocity can distinctly influence transport of nuclide by comparing with the results which were simulated by single fracture model. (authors)

  12. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  13. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-09-21

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  14. Comprehensive care improves health outcomes among elderly Taiwanese patients with hip fracture.

    Science.gov (United States)

    Shyu, Yea-Ing L; Liang, Jersey; Tseng, Ming-Yueh; Li, Hsiao-Juan; Wu, Chi-Chuan; Cheng, Huey-Shinn; Yang, Ching-Tzu; Chou, Shih-Wei; Chen, Ching-Yen

    2013-02-01

    Few studies have investigated the effects of care models that combine interdisciplinary care with nutrition consultation, depression management, and fall prevention in older persons with hip fracture. The purpose of this study was to compare the effects of a comprehensive care program with those of interdisciplinary care and usual care for elderly patients with hip fracture. A randomized experimental trial was used to explore outcomes for 299 elderly patients with hip fracture receiving three treatment care models: interdisciplinary care (n = 101), comprehensive care (n = 99), and usual care (n = 99). Interdisciplinary care included geriatric consultation, continuous rehabilitation, and discharge planning with post-hospital services. Comprehensive care consisted of interdisciplinary care plus nutrition consultation, depression management, and fall prevention. Usual care included only in-hospital rehabilitation without geriatric consultation, in-home rehabilitation, and home environmental assessment. Participants in the comprehensive care group had better self-care ability (odds ratio, OR = 3.19, p malnutrition (OR = 0.48, p hip fracture benefitted more from the comprehensive care program than from interdisciplinary care and usual care. Older persons with hip fracture benefitted more from comprehensive care including interdisciplinary care and nutrition consultation, depression management, and fall prevention than simply interdisciplinary care.

  15. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  16. Colloid migration in fractured media

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1989-01-01

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs

  17. Discrete Dual Porosity Modeling of Electrical Current Flow in Fractured Media

    Science.gov (United States)

    Roubinet, D.; Irving, J.

    2013-12-01

    The study of fractured rocks is highly important in a variety of research fields and applications such as hydrogeology, geothermal energy, hydrocarbon extraction, and the long-term storage of toxic waste. Fractured media are characterized by a large contrast in permeability between the fractures and the rock matrix. For hydrocarbon extraction, the presence of highly conductive fractures is an advantage as they allow for quick and easy access to the resource. For toxic waste storage, however, the fractures represent a significant drawback as there is an increased risk of leakage and migration of pollutants deep into the subsurface. In both cases, the identification of fracture network characteristics is a critical, challenging, and required step. A number of previous studies have indicated that the presence of fractures in geological materials can have a significant impact on geophysical electrical resistivity measurements. It thus appears that, in some cases, geoelectrical surveys might be used to obtain useful information regarding fracture network characteristics. However, existing geoelectrical modeling tools and inversion methods are not properly adapted to deal with the specific challenges of fractured media. This prevents us from fully exploring the potential of the method to characterize fracture network properties. We thus require, as a first step, the development of accurate and efficient numerical modeling tools specifically designed for fractured domains. Building on the discrete fracture network (DFN) approach that has been widely used for modeling groundwater flow in fractured rocks, we have developed a discrete dual-porosity model for electrical current flow in fractured media. Our novel approach combines an explicit representation of the fractures with fracture-matrix electrical flow exchange at the block-scale. Tests in two dimensions show the ability of our method to deal with highly heterogeneous fracture networks in a highly computationally

  18. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  19. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  20. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    KAUST Repository

    Chen, Huangxin

    2016-06-01

    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  1. Origin of Permeability and Structure of Flows in Fractured Media

    Science.gov (United States)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  2. Simulation of density-driven flow in heterogeneous and fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, A. [Politecnico di Torino (Italy). DISMA; Logashenko, D. [Steinbeis Research Center, Oelbronn (Germany); Stichel, S.; Wittum, G. [Frankfurt Univ., Frankfurt am Main (Germany). G-CSC

    2015-07-01

    The study of fractured porous media is an important and challenging problem in hydrogeology. One of the difficulties is that mathematical models have to account for heterogeneity introduced by fractures in hydrogeological media. Heterogeneity may strongly influence the physical processes taking place in these media. Moreover, the thickness of the fractures, which is usually negligible in comparison with the size of the whole domain, and the complicated geometry of fracture networks reduce essentially the efficiency of numerical methods. In order to overcome these difficulties, fractures are sometimes considered as objects of reduced dimensionality (surfaces in three dimensions), and the field equations are averaged along the fracture width. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d-1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using a finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other. We derive a criterion for the validity of the simplified representation. The criterion characterizes the transition of a mainly parallel flow to a rotational flow, which cannot be reasonably approximated using a d-1 dimensional representation. We further present a numerical algorithm using adaptive dimensional representation.

  3. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    Science.gov (United States)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  4. Monte Carlo simulation of radioactive contaminant transport in fractured geologic media: Disorder and long-range correlations

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Cushman, J.H.

    1997-01-01

    The geologic media near Yucca mountain site consist of fractured welded tuffs along with less fractured unwelded tuff. Numerical simulation of flow and transport in such media poses a number of challenging problems, due mainly to the heterogeneities and disorder in the media. In addition, because of different dominant transport mechanisms in different regions of the media, investigations need to be carried out at different time-scales. Time-marching will pose a considerable problem in analyzing such multi-scale transient problems. The authors develop a field-scale network model of fractures and study transport of radionuclides through geologic media as a function of disorder and correlated fracture-permeabilities

  5. Computational models of the hydrodynamics of fractured-porous media

    International Nuclear Information System (INIS)

    Grandi, G.M.

    1989-01-01

    The prediction of the flow pattern in fractured-porous media has great importance in the assessment of the local thermohydrological effects of the siting of a nuclear waste repository, among many other technological applications. Computational models must be used due to the complexity of the different phenomena involved which restricts the use of analytical techniques. A new numerical method, based on the boundary-fitted finite-difference technique, is presented in this thesis. The boundaries are external (the boundary of the physical domain), and internal (which correspond to the fracture network). The inclusion of the discrete fracture representation in the volume that represents the porous medium is the difference between the usual approach and the present one. The numerical model has been used in the prediction of the flow pattern in several internationally recognized verification cases and to hypothetical problems of our interest. The results obtained proved that the numerical approach considered gives accurate and reliable predictions of the hydrodynamics of fractured-porous media, allowing its use for the above mentioned studies. (Author) [es

  6. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    Science.gov (United States)

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid

  7. Dispersion analysis for waves propagated in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Lesniak, A; Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.

  8. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend

    2004-03-01

    The work on this thesis has been done as part of a collaborative and inter disciplinary effort to improve the understanding of oil recovery mechanisms in fractured reservoirs. This project has been organized as a Strategic University Program (SUP) at the University of Bergen, Norway. The complex geometries of fractured reservoirs combined with flow of several fluid phases lead to difficult mathematical and numerical problems. In an effort to try to decrease the gap between the geological description and numerical modeling capabilities, new techniques are required. Thus, the main objective has been to improve the ATHENA flow simulator and utilize it within a fault modeling context. Specifically, an implicit treatment of the advection dominated mass transport equations within a domain decomposition based local grid refinement framework has been implemented. Since large computational tasks may arise, the implicit formulation has also been included in a parallel version of the code. Within the current limits of the simulator, appropriate up scaling techniques has also been considered. Part I of this thesis includes background material covering the basic geology of fractured porous media, the mathematical model behind the in-house flow simulator ATHENA and the additions implemented to approach simulation of flow through fractured and faulted porous media. In Part II, a set of research papers stemming from Part I is presented. A brief outline of the thesis follows below. In Chapt. 1 important aspects of the geological description and physical parameters of fractured and faulted porous media is presented. Based on this the scope of this thesis is specified having numerical issues and consequences in mind. Then, in Chapt. 2, the mathematical model and discretizations in the flow simulator is given followed by the derivation of the implicit mass transport formulation. In order to be fairly self-contained, most of the papers in Part II also includes the mathematical model

  9. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend

    2004-03-01

    The work on this thesis has been done as part of a collaborative and inter disciplinary effort to improve the understanding of oil recovery mechanisms in fractured reservoirs. This project has been organized as a Strategic University Program (SUP) at the University of Bergen, Norway. The complex geometries of fractured reservoirs combined with flow of several fluid phases lead to difficult mathematical and numerical problems. In an effort to try to decrease the gap between the geological description and numerical modeling capabilities, new techniques are required. Thus, the main objective has been to improve the ATHENA flow simulator and utilize it within a fault modeling context. Specifically, an implicit treatment of the advection dominated mass transport equations within a domain decomposition based local grid refinement framework has been implemented. Since large computational tasks may arise, the implicit formulation has also been included in a parallel version of the code. Within the current limits of the simulator, appropriate up scaling techniques has also been considered. Part I of this thesis includes background material covering the basic geology of fractured porous media, the mathematical model behind the in-house flow simulator ATHENA and the additions implemented to approach simulation of flow through fractured and faulted porous media. In Part II, a set of research papers stemming from Part I is presented. A brief outline of the thesis follows below. In Chapt. 1 important aspects of the geological description and physical parameters of fractured and faulted porous media is presented. Based on this the scope of this thesis is specified having numerical issues and consequences in mind. Then, in Chapt. 2, the mathematical model and discretizations in the flow simulator is given followed by the derivation of the implicit mass transport formulation. In order to be fairly self-contained, most of the papers in Part II also includes the mathematical model

  10. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  11. Radionuclide transport in fractured media

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1993-01-01

    Until recently, the classical advective-dispersive transport equation was considered to be an adequate model for describing the motion of a solute (e.g. radionuclides) in porous and fractured media. In this model, the dispersion coefficient is either obtained from a microscopic model of the porous medium or by carefully controlled experiments. As a result of such experiments, a large body of data has been accumulated on the dispersivity. Detailed examination of these data has resulted in a curious phenomenon being discovered; namely, that the longitudinal dispersion length is 'scale-dependent'. That is to say the value deduced depends on the 'size' of the experiment, i.e. on the distance over which measurements are made. Several interesting attempts have been made to develop theories which explain this phenomenon, all based on treating the velocity of the water in the porous medium as a spatially random variable, but retaining the advective-dispersive balance equation. In this work we present an entirely new approach to the problem of solute transport in fractured media based upon an analogy with neutron transport. The new method has several advantages over the previous theories and these will be explained below. Results from the new theory are in agreement with experimental trends and do not require any further adjustment to explain the scale-dependent effect

  12. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Meyer, P D.; Parker, Kent E.; Lindberg, Michael J.

    2005-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  13. Physical Properties of Fractured Porous Media

    Science.gov (United States)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  14. A single continuum approximation of the solute transport in fractured porous media

    International Nuclear Information System (INIS)

    Jeong, J.T.; Lee, K.J.

    1992-01-01

    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)

  15. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  16. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  17. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed

    2017-11-23

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  18. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  19. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Science.gov (United States)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  20. Ionised media and fractures: application to cartilaginous tissues and oil industry

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Kraaijeveld, F.; Remmers, J.J.C.; Borst, de R.; Denier, J; Finn, M.D.; Mattner, T

    2008-01-01

    ionized media are ubiquitous in nature. Our body holds onto water through ionised macromolecules that bind water up to a 1000 times their own mass. Clays and shales do a similar trick in the geoworld. Localization of deformation and fractures are very common. Bore hole instability through fracture

  1. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  2. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.

    2016-05-18

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  3. Specification of matrix cleanup goals in fractured porous media.

    Science.gov (United States)

    Rodríguez, David J; Kueper, Bernard H

    2013-01-01

    Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  4. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  5. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  6. A Media Literacy Education Approach to Teaching Adolescents Comprehensive Sexual Health Education

    Science.gov (United States)

    Scull, Tracy Marie; Malik, Christina V.; Kupersmidt, Janis Beth

    2014-01-01

    As states are moving toward comprehensive sexual health education, educators require engaging and effective curricula. This pre-post study (N = 64) examined the feasibility of a comprehensive, media literacy education program for influencing adolescents' sexual health and media literacy outcomes. After the program, participants were more likely to…

  7. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  8. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen

    2010-12-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  9. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen; Sun, Shuyu

    2010-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  10. Comprehensive geriatric care for patients with hip fractures: a prospective, randomised, controlled trial.

    Science.gov (United States)

    Prestmo, Anders; Hagen, Gunhild; Sletvold, Olav; Helbostad, Jorunn L; Thingstad, Pernille; Taraldsen, Kristin; Lydersen, Stian; Halsteinli, Vidar; Saltnes, Turi; Lamb, Sarah E; Johnsen, Lars G; Saltvedt, Ingvild

    2015-04-25

    Most patients with hip fractures are characterised by older age (>70 years), frailty, and functional deterioration, and their long-term outcomes are poor with increased costs. We compared the effectiveness and cost-effectiveness of giving these patients comprehensive geriatric care in a dedicated geriatric ward versus the usual orthopaedic care. We did a prospective, single-centre, randomised, parallel-group, controlled trial. Between April 18, 2008, and Dec 30, 2010, we randomly assigned home-dwelling patients with hip-fractures aged 70 years or older who were able to walk 10 m before their fracture, to either comprehensive geriatric care or orthopaedic care in the emergency department, to achieve the required sample of 400 patients. Randomisation was achieved via a web-based, computer-generated, block method with unknown block sizes. The primary outcome, analysed by intention to treat, was mobility measured with the Short Physical Performance Battery (SPPB) 4 months after surgery for the fracture. The type of treatment was not concealed from the patients or staff delivering the care, and assessors were only partly masked to the treatment during follow-up. This trial is registered with ClinicalTrials.gov, number NCT00667914. We assessed 1077 patients for eligibility, and excluded 680, mainly for not meeting the inclusion criteria such as living in a nursing home or being aged less than 70 years. Of the remaining patients, we randomly assigned 198 to comprehensive geriatric care and 199 to orthopaedic care. At 4 months, 174 patients remained in the comprehensive geriatric care group and 170 in the orthopaedic care group; the main reason for dropout was death. Mean SPPB scores at 4 months were 5·12 (SE 0·20) for comprehensive geriatric care and 4·38 (SE 0·20) for orthopaedic care (between-group difference 0·74, 95% CI 0·18-1·30, p=0·010). Immediate admission of patients aged 70 years or more with a hip fracture to comprehensive geriatric care in a dedicated

  11. Design and construction of an experiment for two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  12. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  13. A risk assessment tool for contaminated sites in low-permeability fractured media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Binning, Philip John; Jørgensen, Peter R.

    2011-01-01

    A risk assessment tool for contaminated sites in low-permeability fractured media is developed, based on simple transient and steady-state analytical solutions. The discrete fracture (DF) tool, which explicitly accounts for the transport along fractures, covers different source geometries...... and history (including secondary sources) and can be applied to a wide range of compounds. The tool successfully simulates published data from short duration column and field experiments. The use for risk assessment is illustrated by three typical risk assessment case studies, involving pesticides...

  14. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  15. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  16. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function.

    Science.gov (United States)

    Resnick, Barbara; Gruber-Baldini, Ann L; Hicks, Gregory; Ostir, Glen; Klinedinst, N Jennifer; Orwig, Denise; Magaziner, Jay

    2016-07-01

    Measurement of physical function post hip fracture has been conceptualized using multiple different measures. This study tested a comprehensive measurement model of physical function. This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living, and performance was tested for fit at 2 and 12 months post hip fracture, and among male and female participants. Validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise, and social activities post hip fracture. The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participants. The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. © 2015 Association of Rehabilitation Nurses.

  17. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  18. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  19. Efficient and robust compositional two-phase reservoir simulation in fractured media

    Science.gov (United States)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  20. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    International Nuclear Information System (INIS)

    George J. Moridis

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity

  1. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  2. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.; Kou, J.; Yu, B.

    2011-01-01

    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  3. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  4. Packetized Media Streaming with Comprehensive Exploitation of Feedback Information

    OpenAIRE

    De Vleeschouwer, C.; Frossard, P.

    2005-01-01

    This paper addresses the problem of streaming packetized media over a lossy packet network, with sender-driven (re)transmission using acknowledgement feedback. The different transmission scenarios associated to a group of interdependent media data units are abstracted in terms of a finite alphabet of policies, for each single data unit. A rate-distortion optimized markovian framework is proposed, which supports the use of comprehensive feedback information. Contrarily to previous works in rat...

  5. Pneumatic fractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  6. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  7. Effect of in-hospital comprehensive geriatric assessment (CGA in older people with hip fracture. The protocol of the Trondheim Hip Fracture Trial

    Directory of Open Access Journals (Sweden)

    Taraldsen Kristin

    2011-04-01

    Full Text Available Abstract Background Hip fractures in older people are associated with high morbidity, mortality, disability and reduction in quality of life. Traditionally people with hip fracture are cared for in orthopaedic departments without additional geriatric assessment. However, studies of postoperative rehabilitation indicate improved efficiency of multidisciplinary geriatric rehabilitation as compared to traditional care. This randomized controlled trial (RCT aims to investigate whether an additional comprehensive geriatric assessment of hip fracture patients in a special orthogeriatric unit during the acute in-hospital phase may improve outcomes as compared to treatment as usual in an orthopaedic unit. Methods/design The intervention of interest, a comprehensive geriatric assessment is compared with traditional care in an orthopaedic ward. The study includes 401 home-dwelling older persons >70 years of age, previously able to walk 10 meters and now treated for hip fracture at St. Olav Hospital, Trondheim, Norway. The participants are enrolled and randomised during the stay in the Emergency Department. Primary outcome measure is mobility measured by the Short Physical Performance Battery (SPPB at 4 months after surgery. Secondary outcomes measured at 1, 4 and 12 months postoperatively are place of residence, activities of daily living, balance and gait, falls and fear of falling, quality of life and depressive symptoms, as well as use of health care resources and survival. Discussion We believe that the design of the study, the randomisation procedure and outcome measurements will be of sufficient strength and quality to evaluate the impact of comprehensive geriatric assessment on mobility and other relevant outcomes in hip fracture patients. Trials registration ClinicalTrials.gov, NCT00667914

  8. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  9. Study of phenomena of tracer transport and dispersion in fractured media

    International Nuclear Information System (INIS)

    Ippolito, Irene

    1993-01-01

    The objective of this research thesis is to present some transport phenomena according to two different approaches: firstly, the study of flows and tracing in a natural crack within a granitic site, and secondly, the study of flows of different geometries in model cracks, mainly by using techniques of tracer dispersion. The author first presents some properties of fractured media and elements of the theory of the phenomenon of dispersion. She notably discusses the reversibility of the Taylor dispersion which is the prevailing mechanism for simply connected geometries such as in the case of a flow between two continuous solid surfaces limiting a fracture. In the next chapters, the author reports the analysis of characteristics of local structures (mouths, roughnesses) of a single fracture by using echo dispersion. She reports experiments as well as Monte Carlo simulations performed on well defined geometries. In a parallel way, some characteristics measurements (rate-pressure, distribution of flows and tracing in transmission) and mechanical measurements of fracture deformation have been performed on a natural fracture in a granitic site [fr

  10. Modeling fractures as interfaces for flow and transport in porous media

    International Nuclear Information System (INIS)

    Serres, Ch.; Alboin, C.; Jaffre, J.; Roberts, J.

    2002-05-01

    We are concerned with flow and transport in a fractured porous medium at a scale where the fractures can be modelled individually. The fractures themselves are porous media with large permeability in comparison with that in the surrounding rock. Contrarily to many studies in which the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected, the purpose of this work is to consider the case where the exchange between the fractures and the surrounding rock is significant. Then it is necessary to take into account this interaction because it has a profound effect on the flow and the transport of a solute. The main idea for this work is to treat fractures as interfaces. Then it will not be necessary to use mesh refinements around the fractures, which is an important drawback of most models. Treating fractures as interfaces leads to non-overlapping domain decomposition methods, using the natural domain decomposition suggested by the fracture network. This paper is organized as follows. In Section 2, we present the model, and in Section 3, we show that the corresponding problem has a unique solution. In Section 4, we reduce the approximate problem to a problem with unknowns on the interface. Numerical results are given in Section 5 for the simple case of a domain divided into two sub-domains by one fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in Section 7 to that of a solute transport. (authors)

  11. Measuring New Media Literacies: Towards the Development of a Comprehensive Assessment Tool

    Science.gov (United States)

    Literat, Ioana

    2014-01-01

    This study assesses the psychometric properties of a newly tested self-report assessment tool for media literacy, based on the twelve new media literacy skills (NMLs) developed by Jenkins et al. (2006). The sample (N = 327) consisted of normal volunteers who completed a comprehensive online survey that measured their NML skills, media exposure,…

  12. (Context comprehension in digital social media

    Directory of Open Access Journals (Sweden)

    Alana Kercia Barros Demétrio

    2016-10-01

    Full Text Available In this article, we address the reading issue from the point of view of complexity. Understanding, according to Beaugrande (1997, that the text is a communicative event whose configuration involves elements of different nature, including the participants of interaction, we think that traditional approaches to reading, even those which are focused on interaction, do not satisfactorily bolster comprehension of this phenomenon. In order to analyze how aspects that characterize reading as a complex activity show at (context comprehension in digital social media, we leaned on the articles by Pellanda (2005 and by Franco (2011 and we were supported by the autopoietic theory by Maturana and Varela (1995, as well as by the concepts of emergency and incorporation by Hanks (2008. Through the analysis of two examples of interaction conveyed in virtual environment, we observed that reading triggers readers’ autopoiesis as living systems.

  13. Effective media models for unsaturated fractured rock: A field experiment

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1995-01-01

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  14. Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods

    KAUST Repository

    Hoteit, Hussein; Firoozabadi, Abbas

    2017-01-01

    Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.

  15. Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods

    KAUST Repository

    Hoteit, Hussein

    2017-12-29

    Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.

  16. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  17. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  18. Modelisation of transport in fractured media with a smeared fractures modeling approach: special focus on matrix diffusion process.

    Science.gov (United States)

    Fourno, A.; Grenier, C.; Benabderrahmane, H.

    2003-04-01

    Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to

  19. Structural and geochemical techniques for the hydrogeological characterisation and stochastic modelling of fractured media

    International Nuclear Information System (INIS)

    Vela, A.; Elorza, F.J.; Florez, F.; Paredes, C.; Mazadiego, L.; Llamas, J.F.; Perez, E.; Vives, L.; Carrera, J.; Munoz, A.; De Vicente, G.; Casquet, C.

    1999-01-01

    Safety analysis of radioactive waste storage systems require fractured rock studies. The performance assessment studies of this type of problems include the development of radionuclide flow and transport models to predict the evolution of possible contaminants released from the repository to the biosphere. The methodology developed in the HIDROBAP project and some results obtained with its application in El Berrocal granite batholith are presented. It integrates modern tools belonging to different disciplines. A Discrete Fracture Network model (DFT) was selected to simulate the fractured medium and a 3D finite element flow and transport model that includes the inverse problem techniques has been coupled to the DFT model to simulate the water movement trough the fracture network system. Preliminary results show that this integrated methodology can be very useful for the hydrogeological characterisation of rock fractured media. (author)

  20. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  1. Comprehensive care of elderly patients with hip fracture: the orthogeriatric model

    OpenAIRE

    Carlo Frondini; Maria L. Lunardelli

    2013-01-01

    Introduction: Hip fractures in the elderly are a major source of morbidity and mortality. Interdisciplinary hospital care models proposed for the treatment of these patients include consultant teams, integrated orthopedic-geriatric care, and comprehensive geriatric-led care settings. A prospective interventional cohort study was conducted in 4 public hospitals in the Emilia-Romagna Region of Italy to compare the outcomes of these different care models. This report presents the preliminary res...

  2. Comprehensive care improves physical recovery of hip-fractured elderly Taiwanese patients with poor nutritional status.

    Science.gov (United States)

    Liu, Hsin-Yun; Tseng, Ming-Yueh; Li, Hsiao-Juan; Wu, Chi-Chuan; Cheng, Huey-Shinn; Yang, Ching-Tzu; Chou, Shih-Wei; Chen, Ching-Yen; Shyu, Yea-Ing L

    2014-06-01

    The effects of nutritional management among other intervention components have not been examined for hip-fractured elderly persons with poor nutritional status. Accordingly, this study explored the intervention effects of an in-home program using a comprehensive care model that included a nutrition-management component on recovery of hip-fractured older persons with poor nutritional status at hospital discharge. A secondary analysis of data from a randomized controlled trial with 24-month follow-up. A 3000-bed medical center in northern Taiwan. Subjects were included only if they had "poor nutritional status" at hospital discharge, including those at risk for malnutrition or malnourished. The subsample included 80 subjects with poor nutritional status in the comprehensive care group, 87 in the interdisciplinary care group, and 85 in the usual care group. The 3 care models were usual care, interdisciplinary care, and comprehensive care. Usual care provided no in-home care, interdisciplinary care provided 4 months of in-home rehabilitation, and comprehensive care included management of depressive symptoms, falls, and nutrition as well as 1 year of in-home rehabilitation. Data were collected on nutritional status and physical functions, including range of motion, muscle power, proprioception, balance and functional independence, and analyzed using a generalized estimating equation approach. We also compared patients' baseline characteristics: demographic characteristics, type of surgery, comorbidities, length of hospital stay, cognitive function, and depression. Patients with poor nutritional status who received comprehensive care were 1.67 times (95% confidence interval 1.06-2.61) more likely to recover their nutritional status than those who received interdisciplinary and usual care. Furthermore, the comprehensive care model improved the functional independence and balance of patients who recovered their nutritional status over the first year following discharge

  3. IMPROVING STUDENTS’ READING COMPREHENSION BY USING MEDIA AT THE GRADE X3 OF SMA NEGERI I TAMBANG-KAMPAR

    Directory of Open Access Journals (Sweden)

    Kurniawan Kurniawan

    2017-07-01

    Full Text Available At the grade X3 of SMAN I Tambang, the researcher found that the students havelow reading comprehension. One of the factors was the students’ lack of vocabulary. Theaimed of this research was to identify whether media can better improve students’ readingcomprehension and to find out what factors can influence the improvement of students’reading comprehension at the tenth grade students of SMAN 1 Tambang. This research wasClassroom Action Research (CAR. It had been carried out since May to June 2011. It hadtwo cycles and consisted of four meetings in each cycles. The participants of this researchwere the students at class X3 of SMAN I Tambang. They consisted of 39 students. Theresearcher found that media can better improve students’ reading comprehension at the gradeX3 of SMA Negeri I Tambang-Kampar. In conclusion, media can help the students toimprove their reading comprehension. The finding of this research implies that the use ofmedia can be used to enhance the students’ reading comprehension in English reading class.Key Words: Improve, Reading Comprehension, Media, Pictures, and Video

  4. N-REL: A comprehensive framework of social media marketing strategic actions for marketing organizations

    OpenAIRE

    Ananda, Artha Sejati; Hernández-García, Ángel; Lamberti, Lucio

    2016-01-01

    Despite the increasing and ubiquitous use of social media for business activities, scholar research on social media marketing strategy is scant and companies deploy their social media marketing strategies guided by intuition or trial and error. This study proposes a comprehensive framework that identifies and classifies social media marketing strategic actions. The conceptual framework covers actions that support both transactional and relationship marketing. The study also positions social m...

  5. Reading while Watching Video: The Effect of Video Content on Reading Comprehension and Media Multitasking Ability

    Science.gov (United States)

    Lin, Lin; Lee, Jennifer; Robertson, Tip

    2011-01-01

    Media multitasking, or engaging in multiple media and tasks simultaneously, is becoming an increasingly popular phenomenon with the development and engagement in social media. This study examines to what extent video content affects students' reading comprehension in media multitasking environments. One hundred and thirty university students were…

  6. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  7. Modelling of fluid flow in fractured porous media by the singular integral equations method

    International Nuclear Information System (INIS)

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  8. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  9. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  10. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  11. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  12. Continuous time random walk analysis of solute transport in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  13. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  14. Comprehension of digital media

    International Nuclear Information System (INIS)

    Kim, Ju Hwan

    2008-11-01

    This book is divided four parts. The first part describes media and mark on sign and media, what is the sign?, interpretation of sign and semiotics. The second part is for production sign theory and origin of digital revolution such as the problem of origin of digital revolution, homogeneity of producing goods and sign : triple triangle model for production sign theory, triple triangle model for producing goods, triple triangle model of producing sign and triple triangle model of art works. The third parts deals with development of the media and meaning of digital revolution with four changes : invention of letter, appearance of printed media and establishment modernity, appearance electronic media and mess media and appearance of digital media. The last part mentions ontology of world wide web.

  15. Comprehension of digital media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Hwan

    2008-11-15

    This book is divided four parts. The first part describes media and mark on sign and media, what is the sign?, interpretation of sign and semiotics. The second part is for production sign theory and origin of digital revolution such as the problem of origin of digital revolution, homogeneity of producing goods and sign : triple triangle model for production sign theory, triple triangle model for producing goods, triple triangle model of producing sign and triple triangle model of art works. The third parts deals with development of the media and meaning of digital revolution with four changes : invention of letter, appearance of printed media and establishment modernity, appearance electronic media and mess media and appearance of digital media. The last part mentions ontology of world wide web.

  16. Comprehensive care program for elderly patients over 65 years with hip fracture.

    Science.gov (United States)

    Fernández-Moyano, A; Fernández-Ojeda, R; Ruiz-Romero, V; García-Benítez, B; Palmero-Palmero, C; Aparicio-Santos, R

    2014-01-01

    To report the health outcomes of a multidisciplinary care program for patients over 65 years with hip fracture. We have developed a care coordination model for the comprehensive care of hip fracture patients. It establishes what, who, when, how and where orthopedists, internists, family physicians, emergency, intensive care, physiotherapists, anesthetists, nurses and workers social intervene. All elderly patients over 65 years admitted with the diagnosis of hip fracture (years 2006 to 2010) were retrospectively evaluated. One thousand episodes of hip fracture, corresponding to 956 patients, were included. Mean age was 82 years and mean stay 6.7 days. This was reduced by 1.14 days during the 5 years of the program. A total of 85.1% were operated on before 72 yours, and 91.2% during the program. Incidence of surgical site infection was 1.5%. In-hospital mortality was 4.5%, (24.2% at 12 months). Readmissions at one years was 14.9%. Independence for basic activity of daily living was achieved by 40% of the patients. This multidisciplinary care program for hip fracture patients is associated with positive health outcomes, with a high percentage of patients treated early (more than 90%), reduced mean stay (less than 7 days), incidence of surgical site infections, readmissions and inpatient mortality and at one year, as well as adequate functional recovery. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  17. A Comprehensive Multi-Media Program to Prevent Smoking among Black Students.

    Science.gov (United States)

    Kaufman, Joy S.; And Others

    1994-01-01

    Implemented program to decrease incidence of new smokers among black adolescents. Program combined school-based curriculum with comprehensive media intervention. There were two experimental conditions: one group participated in school-based intervention and was prompted to participate in multimedia intervention; other group had access to…

  18. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  19. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Science.gov (United States)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  20. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  1. Media Presentation Mode, English Listening Comprehension and Cognitive Load in Ubiquitous Learning Environments: Modality Effect or Redundancy Effect?

    Science.gov (United States)

    Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih

    2011-01-01

    Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media presentation modes produce the best results for English listening comprehension. The present study examined the effect of media presentation mode (sound and text versus sound) on English listening comprehension and cognitive load.…

  2. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  3. N-REL: A comprehensive framework of social media marketing strategic actions for marketing organizations

    Directory of Open Access Journals (Sweden)

    Artha Sejati Ananda

    2016-09-01

    Full Text Available Despite the increasing and ubiquitous use of social media for business activities, scholar research on social media marketing strategy is scant and companies deploy their social media marketing strategies guided by intuition or trial and error. This study proposes a comprehensive framework that identifies and classifies social media marketing strategic actions. The conceptual framework covers actions that support both transactional and relationship marketing. This research also positions social media marketing strategy and strategic actions in the context of the marketing organization theory, and discusses the impact of the incorporation of social media on the concept of marketing organization. The study offers valuable theoretical insight on social media marketing actions and the deployment of social media marketing strategies in companies. The investigation also provides hints about how to maximize the benefits from social media marketing for customer-oriented, market-driven organizations.

  4. Comprehensive and subacute care interventions improve health-related quality of life for older patients after surgery for hip fracture: a randomised controlled trial.

    Science.gov (United States)

    Shyu, Yea-Ing L; Liang, Jersey; Tseng, Ming-Yueh; Li, Hsiao-Juan; Wu, Chi-Chuan; Cheng, Huey-Shinn; Chou, Shih-Wei; Chen, Ching-Yen; Yang, Ching-Tzu

    2013-08-01

    Elderly patients with hip fracture have been found to benefit from subacute care interventions that usually comprise usual care with added geriatric intervention, early rehabilitation, and supported discharge. However, no studies were found on the effects of combining subacute care and health-maintenance interventions on health outcomes for elders with hip fracture. To compare the effects of an interdisciplinary comprehensive care programme with those of subacute care and usual care programmes on health-related quality of life (HRQoL) for elderly patients with hip fracture. Randomised controlled trial. A 3000-bed medical centre in northern Taiwan. Patients with hip fracture (N=299) were randomised into three groups: subacute care (n=101), comprehensive care (n=99), and usual care (n=99). Subacute care included geriatric consultation, continuous rehabilitation, and discharge planning. Comprehensive care consisted of subacute care plus health-maintenance interventions to manage depressive symptoms, manage malnutrition, and prevent falls. Usual care included only 1-2 in-hospital rehabilitation sessions, discharge planning without environmental assessment, no geriatric consultation, and no in-home rehabilitation. HRQoL was measured using the Medical Outcomes Study Short-Form 36 Taiwan version at 1, 3, 6, and 12 months after discharge. Participants in the comprehensive care group improved more in physical function, role physical, general health and mental health than those in the usual care group. The subacute care group had greater improvement in physical function, role physical, vitality, and social function than the usual care group. The intervention effects for both comprehensive and subacute care increased over time, specifically from 6 months after hip fracture onward, and reached a maximum at 12 months following discharge. Both comprehensive care and subacute care programmes may improve health outcomes of elders with hip fracture. Our results may provide a

  5. Comprehensive evaluation of fracture critical bridges.

    Science.gov (United States)

    2014-02-01

    Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...

  6. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  7. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  8. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  9. Unified fluid flow model for pressure transient analysis in naturally fractured media

    International Nuclear Information System (INIS)

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  10. Flow and contaminant transport in fractured rocks

    International Nuclear Information System (INIS)

    Bear, J.; Tsang, C.F.; Marsily, G. de

    1993-01-01

    This book is a compilation of nine articles dealing with various aspect of flow in fractured media. Articles range from radionuclide waste to multiphase flow in petroleum reservoirs to practical field test methods. Each chapter contains copious figures to aid the reader, but is also a detailed in-depth analysis of some major flow problem. The subjects covered are as follows: an introduction to flow and transport models; solute transport in fractured rock with application to radioactive waste repositories; solute transport models through fractured networks; theoretical view of stochastic models of fracture systems; numerical models of tracers; multiphase flow models in fractured systems and petroleum reservoirs; unsaturated flow modeling; comparative analysis of various flow modeling techniques in fractured media; and, a summary of field methods for measuring transfers of mass, heat, contaminant, momentum, and electrical charge in fractured media

  11. The Reliability of Classifications of Proximal Femoral Fractures with 3-Dimensional Computed Tomography: The New Concept of Comprehensive Classification

    Directory of Open Access Journals (Sweden)

    Hiroaki Kijima

    2014-01-01

    Full Text Available The reliability of proximal femoral fracture classifications using 3DCT was evaluated, and a comprehensive “area classification” was developed. Eleven orthopedists (5–26 years from graduation classified 27 proximal femoral fractures at one hospital from June 2013 to July 2014 based on preoperative images. Various classifications were compared to “area classification.” In “area classification,” the proximal femur is divided into 4 areas with 3 boundary lines: Line-1 is the center of the neck, Line-2 is the border between the neck and the trochanteric zone, and Line-3 links the inferior borders of the greater and lesser trochanters. A fracture only in the first area was classified as a pure first area fracture; one in the first and second area was classified as a 1-2 type fracture. In the same way, fractures were classified as pure 2, 3-4, 1-2-3, and so on. “Area classification” reliability was highest when orthopedists with varying experience classified proximal femoral fractures using 3DCT. Other classifications cannot classify proximal femoral fractures if they exceed each classification’s particular zones. However, fractures that exceed the target zones are “dangerous” fractures. “Area classification” can classify such fractures, and it is therefore useful for selecting osteosynthesis methods.

  12. A comprehensive fracture prevention strategy in older adults

    DEFF Research Database (Denmark)

    Blain, H.; Masud, T.; Dargent-Molina, P.

    2016-01-01

    Prevention of fragility fractures in older people has become a public health priority, although the most appropriate and cost-effective strategy remains unclear. In the present statement, the Interest group on falls and fracture prevention of the European union geriatric medicine society (EUGMS...... of osteoporosis and osteoarthritis (ECCEO), outlines its views on the main points in the current debate in relation to the primary and secondary prevention of falls, the diagnosis and treatment of bone fragility, and the place of combined falls and fracture liaison services for fracture prevention in older people....

  13. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  14. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  15. Coupled Flow and Mechanics in Porous and Fractured Media*

    Science.gov (United States)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the

  16. Poroelastic Response of Orthotropic Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2011-12-16

    In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s second coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio af ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes

  17. A Comprehensive Fracture Prevention Strategy in Older Adults

    DEFF Research Database (Denmark)

    Blain, H; Masud, T; Dargent-Molina, P

    2016-01-01

    Prevention of fragility fractures in older people has become a public health priority, although the most appropriate and cost-effective strategy remains unclear. In the present statement, the Interest Group on Falls and Fracture Prevention of the European Union Geriatric Medicine Society (EUGMS...

  18. A permeability model for coal and other fractured, sorptive-elastic media

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.P.; Christiansen, R.L. [Marathon Oil Co., Houston, TX (United States). Research & Development Facility

    2008-09-15

    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic medium, such as coal, under variable stress conditions. The equation is applicable to confinement pressure schemes commonly used during the collection of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is designed to handle changes in permeability caused by adsorption and desorption of gases onto and from the matrix blocks in fractured media. The model equations can be used to calculate permeability changes caused by the production of methane (CH{sub 4}) from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure, thus, accurate input data are essential. The permeability model also can be used as a tool to determine input parameters for field simulations by curve fitting laboratory-generated permeability data. The new model is compared to two other widely used coal-permeability models using a hypothetical coal with average properties.

  19. Migration of Water Pulse Through Fractured Porous Media

    International Nuclear Information System (INIS)

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  20. Microbially Induced Calcite Precipitation (MICP) - A Technology for Managing Flow and Transport in Porous and Fractured Media

    Science.gov (United States)

    Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.

    2014-12-01

    Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.

  1. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  2. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  3. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... injection and recovery tests were conducted for verification of the ... Keywords: self-potential method, hydraulically-conductive fractures, constant pressure injection and recovery ...... porous media 1: theory of the zeta potential.

  4. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  5. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  6. A three-dimensional multiphase flow model for assesing NAPL contamination in porous and fractured media, 1. Formulation

    Science.gov (United States)

    Huyakorn, P. S.; Panday, S.; Wu, Y. S.

    1994-06-01

    A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.

  7. Comprehensive care of elderly patients with hip fracture: the orthogeriatric model

    Directory of Open Access Journals (Sweden)

    Carlo Frondini

    2013-04-01

    Full Text Available Introduction: Hip fractures in the elderly are a major source of morbidity and mortality. Interdisciplinary hospital care models proposed for the treatment of these patients include consultant teams, integrated orthopedic-geriatric care, and comprehensive geriatric-led care settings. A prospective interventional cohort study was conducted in 4 public hospitals in the Emilia-Romagna Region of Italy to compare the outcomes of these different care models. This report presents the preliminary results obtained with an orthogeriatric model in one of these centers, a large teaching hospital in Bologna. Materials and methods: Beginning in February 2008, all patients older than 75 years admitted to the University of Bologna’s Sant’Orsola-Malpighi Hospital for hip fractures were cared for in an orthogeriatric unit. The unit consisted of 10 beds in the orthopedic ward that were managed by a geriatric specialist and a multidisciplinary team, which met daily and included an orthopedic surgeon, a physiatrist, a nurse case-manager, staff nurses, a physical therapist, and a social worker. The management protocol included a thorough geriatric work-up to identify comorbidities and risk factors, systematic assessment and prevention of pain and acute disorientation, early verticalization and moblization, postacute rehabilitation therapy, family support, and regular follow-up after discharge. Preliminary results were compared with those achieved in the same orthopedic ward prior to the creation of the Orthogeriatric Unit. Results: During 2008, 226 elderly patients (mean age 86.2 + 5.5 years, 73.4% of whom were women, were admitted to the Orthogeriatric Unit for hip fractures. The mean Charlson comorbidity index of this cohort was 3.0 + 1.8. Half the patients had Activity of Daily Living scores < 4, and cognitive impairment was common (mean score on Short Portable Mental Status Questionnaire: 5.9 + 3.2. Compared with figures obtained in the hospital

  8. Mechanical transport in two-dimensional networks of fractures

    International Nuclear Information System (INIS)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  9. [Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service].

    Science.gov (United States)

    Kim, Minji; Choi, Mona; Youm, Yoosik

    2017-12-01

    As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science

  10. The development of a comprehensive multidisciplinary care pathway for patients with a hip fracture: design and results of a clinical trial.

    Science.gov (United States)

    Flikweert, Elvira R; Izaks, Gerbrand J; Knobben, Bas A S; Stevens, Martin; Wendt, Klaus

    2014-05-30

    Hip fractures frequently occur in older persons and severely decrease life expectancy and independence. Several care pathways have been developed to lower the risk of negative outcomes but most pathways are limited to only one aspect of care. The aim of this study was therefore to develop a comprehensive care pathway for older persons with a hip fracture and to conduct a preliminary analysis of its effect. A comprehensive multidisciplinary care pathway for patients aged 60 years or older with a hip fracture was developed by a multidisciplinary team. The new care pathway was evaluated in a clinical trial with historical controls. The data of the intervention group were collected prospectively. The intervention group included all patients with a hip fracture who were admitted to University Medical Center Groningen between 1 July 2009 and 1 July 2011. The data of the control group were collected retrospectively. The control group comprised all patients with a hip fracture who were admitted between 1 January 2006 and 1 January 2008. The groups were compared with the independent sample t-test, the Mann-Whitney U-test or the Chi-squared test (Phi test). The effect of the intervention on fasting time and length of stay was adjusted by linear regression analysis for differences between the intervention and control group. The intervention group included 256 persons (women, 68%; mean age (SD), 78 (9) years) and the control group 145 persons (women, 72%; mean age (SD), 80 (10) years). Median preoperative fasting time and median length of hospital stay were significantly lower in the intervention group: 9 vs. 17 hours (p < 0.001), and 7 vs. 11 days (p < 0.001), respectively. A similar result was found after adjustment for age, gender, living condition and American Society of Anesthesiologists (ASA) classification. In-hospital mortality was also lower in the intervention group: 2% vs. 6% (p < 0.05). There were no statistically significant differences in other

  11. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  12. Rapid Geriatric Assessment of Hip Fracture.

    Science.gov (United States)

    Zanker, Jesse; Duque, Gustavo

    2017-08-01

    A comprehensive geriatric assessment, combined with a battery of imaging and blood tests, should be able to identify those hip fracture patients who are at higher risk of short- and long-term complications. This comprehensive assessment should be followed by the implementation of a comprehensive multidimensional care plan aimed to prevent negative outcomes in the postoperative period (short and long term), thus assuring a safe and prompt functional recovery while also preventing future falls and fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method

    Science.gov (United States)

    E Santos, J.; Prodanovic, M.; Landry, C. J.

    2017-12-01

    Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.

  14. Connectivity, flow and transport in network models of fractured media

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1984-10-01

    In order to evaluate the safety of radioactive waste disposal underground it is important to understand the way in which radioactive material is transported through the rock to the surface. If the rock is fractured the usual models may not be applicable. In this work we look at three aspects of fracture networks: connectivity, flow and transport. These are studied numerically by generating fracture networks in a computer and modelling the processes which occur. Connectivity relates to percolation theory, and critical densities for fracture systems are found in two and three dimensions. The permeability of two-dimensional networks is studied. The way that permeability depends on fracture density, network size and spread of fracture length can be predicted using a cut lattice model. Transport through the fracture network by convection through the fractures and mixing at the intersections is studied. The Fickian dispersion equation does not describe the resulting hydrodynamic dispersion. Extensions to the techniques to three dimensions and to include other processes are discussed. (author)

  15. A cost-utility analysis of a comprehensive orthogeriatric care for hip fracture patients, compared with standard of care treatment.

    Science.gov (United States)

    Ginsberg, Gary; Adunsky, Abraham; Rasooly, Iris

    2013-01-01

    The economic burden associated with hip fractures calls for the investigation of innovative new cost-utility forms of organisation and integration of services for these patients. To carry out a cost-utility analysis integrating epidemiological and economic aspects for hip fracture patients treated within a comprehensive orthogeriatric model (COGM) of care, as compared with standard of care model (SOCM). A demonstration study conducted in a major tertiary medical centre, operating both a COGM ward and standard orthopaedic and rehabilitation wards. Data was collected on the clinical outcomes and health care costs of the two different treatment modalities, in order to calculate the absolute cost and disability-adjusted life years (DALY) ratio. The COGM model used 23% fewer resources per patient ($14,919 vs. $19,363) than the SOCM model and to avert 0.226 additional DALY per patient, mainly as a result of lower 1-year mortality rates among COGM patients (14.8% vs. 17.3%). A comprehensive ortho-geriatric care modality is more cost-effective, providing additional quality-adjusted life years (QALY) while using fewer resources compared with standard of care approach. The results should assist health policy-makers in optimising healthcare use and healthcare planning.

  16. In situ immobilization of uranium in structured porous media via biomineralization at the fracture/matrix interface (FRC Area 2 field project)

    International Nuclear Information System (INIS)

    Timothy D. Scheibe; Eric E. Roden; Scott C. Brooks; John M. Zachara

    2004-01-01

    The original hypothesis: 'Radionuclides in low-permeability porous matrix regions of fractured saprolite can be effectively isolated and immobilized by stimulating localized in-situ biological activity in highly-permeable fractured and microfractured zones within the saprolite'. The revised hypothesis: 'In heterogeneous porous media, microbial activity can be stimulated at interfaces between zones of high and low groundwater flow rates in such a manner as to create a local, distributed redox barrier. Such a barrier will inhibit the transfer of contaminants from the low-flow zones that serve as long-term contaminant sources into the high-flow zones that transport contaminants to receptors'.

  17. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  18. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  19. Tuning Fractures With Dynamic Data

    Science.gov (United States)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is

  20. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    International Nuclear Information System (INIS)

    Lehua Pan; G.S. Bodvarsson

    2001-01-01

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions

  1. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  2. Slug flow model for infiltration into fractured porous media

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1999-01-01

    A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug being an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximately by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed

  3. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  4. Poromechanical response of naturally fractured sorbing media

    Science.gov (United States)

    Kumar, Hemant

    The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).

  5. Influence of fracture networks on radionuclide transport from solidified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, S.C., E-mail: suresh.seetharam@sckcen.be [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Perko, J.; Jacques, D. [Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Mallants, D. [CSIRO Land and Water, Waite Road – Gate 4, Glen Osmond, SA 5064 (Australia)

    2014-04-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  6. Influence of fracture networks on radionuclide transport from solidified waste forms

    International Nuclear Information System (INIS)

    Seetharam, S.C.; Perko, J.; Jacques, D.; Mallants, D.

    2014-01-01

    Highlights: • Magnitude of peak radionuclide fluxes is less sensitive to the fracture network geometry. • Time of peak radionuclide fluxes is sensitive to the fracture networks. • Uniform flow model mimics a limiting case of a porous medium with large number of fine fractures. • Effect of fracture width on radionuclide flux depends on the ratio of fracture to matrix conductivity. • Effect of increased dispersivity in fractured media does not always result in a lower peak flux for specific fracture networks due to higher concentrations adjacent to the fracture plane. - Abstract: Analysis of the effect of fractures in porous media on fluid flow and mass transport is of great interest in many fields including geotechnical, petroleum, hydrogeology and waste management. This paper presents sensitivity analyses examining the effect of various hypothetical fracture networks on the performance of a planned near surface disposal facility in terms of radionuclide transport behaviour. As it is impossible to predict the initiation and evolution of fracture networks and their characteristics in concrete structures over time scales of interest, several fracture networks have been postulated to test the sensitivity of radionuclide release from a disposal facility. Fluid flow through concrete matrix and fracture networks are modelled via Darcy's law. A single species radionuclide transport equation is employed for both matrix and fracture networks, which include the processes advection, diffusion, dispersion, sorption/desorption and radioactive decay. The sensitivity study evaluates variations in fracture network configuration and fracture width together with different sorption/desorption characteristics of radionuclides in a cement matrix, radioactive decay constants and matrix dispersivity. The effect of the fractures is illustrated via radionuclide breakthrough curves, magnitude and time of peak mass flux, cumulative mass flux and concentration profiles. For the

  7. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  8. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    Science.gov (United States)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution

  9. A new computer code for discrete fracture network modelling

    Science.gov (United States)

    Xu, Chaoshui; Dowd, Peter

    2010-03-01

    The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.

  10. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a constant inlet flux

    International Nuclear Information System (INIS)

    Chen, C.T.; Li, S.H.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A constant flux is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport along the fractures; (b) mechanical dispersion and molecular diffusion along the fractures; (c) molecular diffusion from a fracture to the porous matrix; (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis; (e) adsorption onto the fracture wall; (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of various important parameters, including: (a) fracture spacing; (b) fracture dispersion coefficient; (c) matrix diffusion coefficient; (d) fracture width; (e) groundwater velocity; (f) matrix retardation factor; and (g) matrix porosity

  11. On the development and benchmarking of an approach to model gas transport in fractured media with immobile water storage

    Science.gov (United States)

    Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.

    2017-12-01

    In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.

  12. Fractured Petroleum Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  13. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  14. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  15. Classical fracture mechanics methods

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Landes, J.D.

    2007-01-01

    Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals

  16. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    KAUST Repository

    Chen, Huangxin; Sun, Shuyu

    2016-01-01

    scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved

  17. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  18. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    International Nuclear Information System (INIS)

    Foltz, S.D.

    1992-01-01

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards' equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment

  19. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  20. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  1. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media

    International Nuclear Information System (INIS)

    Chomat, L.

    2008-04-01

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH≥11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  2. Youth media lifestyles

    NARCIS (Netherlands)

    van Kruistum, Claudia; Leseman, Paul Pm; de Haan, Mariëtte

    2014-01-01

    In this article, the concept of "media lifestyles" is adopted in order to develop a comprehensive approach toward youth engagement in communication media. We explore how 503 Dutch eighth grade students with full access to new technology combine a broad range of media by focusing on their engagement

  3. An Efficient XFEM Approximation of Darcy Flows in Arbitrarily Fractured Porous Media

    Directory of Open Access Journals (Sweden)

    Fumagalli Alessio

    2014-07-01

    Full Text Available Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures at the intersections and allows for jumps of pressure across the intersection. This latter property permits to describe more accurately the flow when fractures are characterised by different properties, than other models that impose pressure continuity. The main mathematical properties of the model, derived in the two-dimensional setting, are analysed. As concerns the numerical discretization we allow the grids of the fractures to be independent, thus in general non-matching at the intersection, by means of the Extended Finite Element Method (XFEM, to increase the flexibility of the method in the case of complex geometries characterized by a high number of fractures.

  4. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.

    2011-11-04

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  5. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.; Paluszny, A.; Blunt, M. J.; Matthai, S. K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  6. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    Science.gov (United States)

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging

  7. Media Entrepreneurship

    DEFF Research Database (Denmark)

    Khajeheian, Datis

    2017-01-01

    Media Entrepreneurship has been an ambiguous, unclear and controversial concept and despite of growing academic efforts in the last decade, it is still a poorly defined subject. This paper is an effort to fill this gap by providing a comprehensive definition of media entrepreneurship. Firstly......, a literature review conducted and entrepreneurship, media, opportunity and innovation as building blocks of media entrepreneurship explained. Then by using of a mixed of bibliographic method and a Delphi method with multi-stage analysis process, a consensual definition of media entrepreneurship proposed...... entrepreneurship....

  8. A review on hydraulic fracturing of unconventional reservoir

    Directory of Open Access Journals (Sweden)

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  9. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Science.gov (United States)

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  10. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  11. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  12. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    Science.gov (United States)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow

  13. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  14. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    Science.gov (United States)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  15. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  16. Analysis of radionuclide migration through fractures using the stream tube approach

    International Nuclear Information System (INIS)

    Jong Soon Song; Kun Jai Lee

    1988-01-01

    An analytical solution for the radionuclide migration in the heterogeneous geologic media is developed by using the Green's function techniques. To take into account the non-homogeneous geologic formation and non-uniform groundwater flow field effectively, a combined fracture/porous media model (in series network) is introduced. The stream tube approach is suggested as an efficient method to analyze groundwater hydrology occurring primarily along the fractures. With this approach, three-dimensional heterogeneous media may be approximated as a network of one-dimensional flow paths (fractures) and the corresponding subsurface transport equations can be solved more easily and efficiently by using the Green's function technique within each unit stream tubes. Also a method of combining the corresponding separate Green's functions to derive an overall Green's function for the flow path network is developed. Analytical solutions with various time-dependent radionuclide release modes for heterogeneous geologic media are obtained and sample calculations are performed for the parametric studies. Comparison with other model shows the validity of the present model. 22 refs.; 11 figs.; 5 tabs

  17. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    International Nuclear Information System (INIS)

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  18. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Science.gov (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  19. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media

  20. Progress in reconstruction of orbital wall after fracture

    Directory of Open Access Journals (Sweden)

    Lu-Lu Xu

    2018-04-01

    Full Text Available At present, the orbital wall fracture is a very common facial trauma. The orbital contents are often incarcerated in the fracture cracks resulting in changes in the orbital eye position, then can bring a lifetime of diplopia and enophthalmos, which greatly affects the visual acuity and facial appearance. The purpose of repairing of orbital fracture is reconstructing orbital wall, repairing defect to correct eye position, avoiding enophthalmos and recovering visual function. The review will provide a comprehensive overview of orbital fracture reconstruction.

  1. ogs6 - a new concept for porous-fractured media simulations

    Science.gov (United States)

    Naumov, Dmitri; Bilke, Lars; Fischer, Thomas; Rink, Karsten; Wang, Wenqing; Watanabe, Norihiro; Kolditz, Olaf

    2015-04-01

    OpenGeoSys (OGS) is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured media, continuously developed since the mid-eighties. The basic concept is to provide a flexible numerical framework for solving coupled multi-field problems. OGS is targeting mainly on applications in environmental geoscience, e.g. in the fields of contaminant hydrology, water resources management, waste deposits, or geothermal energy systems, but it has also been successfully applied to new topics in energy storage recently. OGS is actively participating several international benchmarking initiatives, e.g. DECOVALEX (waste management), CO2BENCH (CO2 storage and sequestration), SeSBENCH (reactive transport processes) and HM-Intercomp (coupled hydrosystems). Despite the broad applicability of OGS in geo-, hydro- and energy-sciences, several shortcomings became obvious concerning the computational efficiency as well as the code structure became too sophisticated for further efficient development. OGS-5 was designed for object-oriented FEM applications. However, in many multi-field problems a certain flexibility of tailored numerical schemes is essential. Therefore, a new concept was designed to overcome existing bottlenecks. The paradigms for ogs6 are: - Flexibility of numerical schemes (FEM#FVM#FDM), - Computational efficiency (PetaScale ready), - Developer- and user-friendly. ogs6 has a module-oriented architecture based on thematic libraries (e.g. MeshLib, NumLib) on the large scale and uses object-oriented approach for the small scale interfaces. Usage of a linear algebra library (Eigen3) for the mathematical operations together with the ISO C++11 standard increases the expressiveness of the code and makes it more developer-friendly. The new C++ standard also makes the template meta-programming technique code used for compile-time optimizations more compact. We have transitioned the main code development to

  2. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Science.gov (United States)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  3. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao; Sun, Shuyu

    2013-01-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  4. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao

    2013-08-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  5. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  6. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  7. Locative media

    CERN Document Server

    Wilken, Rowan

    2014-01-01

    Not only is locative media one of the fastest growing areas in digital technology, but questions of location and location-awareness are increasingly central to our contemporary engagements with online and mobile media, and indeed media and culture generally. This volume is a comprehensive account of the various location-based technologies, services, applications, and cultures, as media, with an aim to identify, inventory, explore, and critique their cultural, economic, political, social, and policy dimensions internationally. In particular, the collection is organized around the perception that the growth of locative media gives rise to a number of crucial questions concerning the areas of culture, economy, and policy.

  8. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  9. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  10. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  11. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    Science.gov (United States)

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused

  12. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  13. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  14. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  15. On the accuracy of Rüger's approximation for reflection coefficients in HTI media: implications for the determination of fracture density and orientation from seismic AVAZ data

    International Nuclear Information System (INIS)

    Ali, Aamir; Jakobsen, Morten

    2011-01-01

    We have investigated the accuracy of Rüger's approximation for PP reflection coefficients in HTI media (relative to an exact generalization of Zoeppritz to anisotropy derived by Schoenberg and Protazio) within the context of seismic fracture characterization. We consider the inverse problem of seismic amplitude-versus-angle and azimuth (AVAZ) inversion with respect to fracture density and azimuthal fracture orientation, as well as the forward problem of calculating PP reflection coefficients for different contrasts and anisotropy levels. The T-matrix approach was used to relate the contrast and anisotropy level to the parameters of the fractures (in the case of a single set of vertical fractures). We have found that Rüger's approximation can be used to recover the true fracture density with small uncertainty if, and only if, the fracture density and contrast are significantly smaller than the values that are believed to occur in many practically interesting cases of fractured (carbonate) reservoirs. In one example involving a minimal contrast and a fracture density in the range 0.05–0.1, Rüger's approximation performed satisfactorily for inversion, although the forward modelling results were not very accurate at high incident angles. But for fracture densities larger than 0.1 (which we believe may well occur in real cases), Rüger's approximation did not perform satisfactorily for forward or inverse modelling. However, it appears that Rüger's approximation can always be used to obtain estimates of the azimuthal fracture orientation with small uncertainty, even when the contrast and anisotropy levels are extremely large. In order to illustrate the significance of our findings within the context of seismic fracture characterization, we analysed a set of synthetic seismic AVAZ data associated with a fault facies model where the fracture density decreases exponentially with distance from the fault core, and a set of real seismic AVAZ data involving offset

  16. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  17. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    Science.gov (United States)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  18. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  19. Multiple Sclerosis Increases Fracture Risk: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Guixian Dong

    2015-01-01

    Full Text Available Purpose. The association between multiple sclerosis (MS and fracture risk has been reported, but results of previous studies remain controversial and ambiguous. To assess the association between MS and fracture risk, a meta-analysis was performed. Method. Based on comprehensive searches of the PubMed, Embase, and Web of Science, we identified outcome data from all articles estimating the association between MS and fracture risk. The pooled risk ratios (RRs with 95% confidence intervals (CIs were calculated. Results. A significant association between MS and fracture risk was found. This result remained statistically significant when the adjusted RRs were combined. Subgroup analysis stratified by the site of fracture suggested significant associations between MS and tibia fracture risk, femur fracture risk, hip fracture risk, pelvis fracture risk, vertebrae fracture risk, and humerus fracture risk. In the subgroup analysis by gender, female MS patients had increased fracture risk. When stratified by history of drug use, use of antidepressants, hypnotics/anxiolytics, anticonvulsants, and glucocorticoids increased the risk of fracture risk in MS patients. Conclusions. This meta-analysis demonstrated that MS was significantly associated with fracture risk.

  20. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  1. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  2. Analysis of Flow Behavior for Acid Fracturing Wells in Fractured-Vuggy Carbonate Reservoirs

    Directory of Open Access Journals (Sweden)

    Mingxian Wang

    2018-01-01

    Full Text Available This study develops a mathematical model for transient flow analysis of acid fracturing wells in fractured-vuggy carbonate reservoirs. This model considers a composite system with the inner region containing finite number of artificial fractures and wormholes and the outer region showing a triple-porosity medium. Both analytical and numerical solutions are derived in this work, and the comparison between two solutions verifies the model accurately. Flow behavior is analyzed thoroughly by examining the standard log-log type curves. Flow in this composite system can be divided into six or eight main flow regimes comprehensively. Three or two characteristic V-shaped segments can be observed on pressure derivative curves. Each V-shaped segment corresponds to a specific flow regime. One or two of the V-shaped segments may be absent in particular cases. Effects of interregional diffusivity ratio and interregional conductivity ratio on transient responses are strong in the early-flow period. The shape and position of type curves are also influenced by interporosity coefficients, storativity ratios, and reservoir radius significantly. Finally, we show the differences between our model and the similar model with single fracture or without acid fracturing and further investigate the pseudo-skin factor caused by acid fracturing.

  3. The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zuyang Ye

    2018-01-01

    Full Text Available Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures.

  4. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  5. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    NARCIS (Netherlands)

    Nick, H.M.; Paluszny, A.; Blunt, M.J.; Matthai, S.K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media.We study the impact of the fractures on mass transport and dispersion. To model flowand transport,

  6. The social media manifesto: a comprehensive review of the impact of social media on emergency management.

    Science.gov (United States)

    Crowe, Adam

    2011-02-01

    Over the past five years, social media have impacted emergency management and disaster response in numerous ways. The emergency management professional must begin to accept this impact not as an arbitrary consequence of an uncontrolled disaster, but rather as a tool to help coordinate, manage and facilitate a safe and expected response during emergencies and disasters. This paper will explain the power and purpose of social media as well as how social media systems have equalised capabilities for all levels and sizes of government. Moreover, this paper will also highlight the social media systems that are being used as operational tools as well as what the future holds. Lastly, common implementation challenges will be discussed through a look at systematic approaches to applying social media in emergency management as a positive and valuable tool.

  7. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  8. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  9. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  10. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  11. Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation

    International Nuclear Information System (INIS)

    Devooght, J.; Smidts, O.F.

    1996-01-01

    A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)

  12. [Dynamic magnetotherapy use in comprehensive treatment phlegmons of maxillofacial region and mandible fractures].

    Science.gov (United States)

    Lepilin, A V; Raĭgorodckiĭ, Iu M; Nozdrachev, V G; Erokina, N L

    2007-01-01

    145 patients (60 with phlegmons of submandibular and submental regions, 85--with fractures of mandible) were observed and treated with the use of moving pulse magnetic field (MPMF) produced by special apparatus (AMO-ATOS-E, , Saratov-city), 60 patients with the same pathology were treated by traditional physical methods and served as control. Use of MPMF led to quicker patient recovery: quicker reduction (if compared with traditional physical methods of treatment) of oedema and soft tissue inflammatory infiltration, quicker relief from inflammatory reaction (according to data of cytokinin profile), improvement of tissue blood supply in the region of fractures in patients with mandible fractures. As the result--we had shortening treatment terms of such patients and complication number reduction.

  13. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    International Nuclear Information System (INIS)

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  14. Characterizing Government Social Media Research

    DEFF Research Database (Denmark)

    Medaglia, Rony; Zheng, Lei

    2016-01-01

    As research on government social media continues to grow in quantity and scope, this area calls for mapping and systematization, in order to stimulate better-informed studies in the future. This paper draws on a comprehensive review of government social media literature in the e...... a four-point research agenda for future government social media research....

  15. A comprehensive hip fracture program reduces complication rates and mortality

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Moltke, Finn Borgbjerg; Schousboe, B.

    2008-01-01

    community dwellers before the fracture and 159 (29.7%) were admitted from nursing homes. INTERVENTION: The fast-track treatment and care program included a switch from systemic opiates to a local femoral nerve catheter block; an earlier assessment by the anesthesiologist; and more-systematic approach...

  16. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  17. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  18. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Directory of Open Access Journals (Sweden)

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  19. Corporeal-Locomotive Media

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft

    and experiences such as reading or listening to a story and watching a movie or theatre play and other traditional or new media forms. These circumstances make the article question whether digital games can be understood as (new) media form at all and, thus, it points towards a possible new vocabulary...... for and comprehension of digital games, gameplay and gameplayers....

  20. Transport of synthetic colloids through single saturated fractures: A literature review

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1995-07-01

    Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as open-quotes worst-caseclose quotes tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations

  1. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  2. An optimization procedure for borehole emplacement in fractured media

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.

    1998-01-01

    Specifying the position and orientation of the 'next borehole(s)' in a fractured medium, from prior incomplete knowledge of the fracture field and depending on the objectives assigned to this new borehole(s), is a crucial point in the iterative process of site characterization. The work described here explicitly includes site knowledge and specific objectives in a tractable procedure that checks possible borehole characteristics, and rates all trial boreholes according to their compliance with objectives. The procedure is based on the following ideas : Firstly, the optimization problem is strongly constrained, since feasible borehole head locations and borehole dips are generally limited. Secondly, a borehole is an 'access point' to the fracture network. Finally, when performing a flow or tracer test, the information obtained through the monitoring system will be best if this system detects the largest possible share of the flow induced by the test, and if it cuts the most 'interesting' flow paths. The optimization is carried out in four steps. 1) All possible borehole configurations are defined and stored. Typically, several hundred possible boreholes are created. Existing boreholes are also specified. 2) Stochastic fracture networks reproducing known site characteristics are generated. 3) A purely geometrical rating of all boreholes is used to select the 'geometrically best' boreholes or groups of boreholes. 4) Among the boreholes selected by the geometrical rating, the best one(s) is chosen by simulating the experiment for which it will be used and checking flowrates through possible boreholes. This method is applied to study the emplacement of a set of five monitoring boreholes prior to the sinking of a shaft for a planned underground laboratory in a granite massif in France (Vienne site). Twelve geometrical parameters are considered for each possible borehole. A detailed statistical study helps decide on the shape of a minimization function. This is then used

  3. Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Hossain, M.M.; Crosby, D.G.; Rahman, M.K.; Rahman, S.S. [School of Petroleum Engineering, The University of New South Wales, 2052 Sydney (Australia)

    2002-08-01

    This paper presents results of a comprehensive study involving analytical, numerical and experimental investigations into transverse fracture propagation from horizontal wells. The propagation of transverse hydraulic fractures from horizontal wells is simulated and investigated in the laboratory using carefully designed experimental setups. Closed-form analytical theories for Mode I (opening) stress intensity factors for idealized fracture geometries are reviewed, and a boundary element-based model is used herein to investigate non-planar propagation of fractures. Using the mixed mode fracture propagation criterion of the model, a reasonable agreement is found with respect to fracture geometry, net fracture pressures and fracture propagation paths between the modeled fractures and the laboratory tested fractures. These results suggest that the propagation of multiple fractures requires higher net pressures than a single fracture, the underlying reason of which is theoretically justified on the basis of local stress distribution.

  4. Biomechanical rationale and evaluation of an implant system for rib fracture fixation

    OpenAIRE

    Bottlang, M.; Walleser, S.; Noll, M.; Honold, S.; Madey, S. M.; Fitzpatrick, D.; Long, W. B.

    2010-01-01

    Background Biomechanical research directed at developing customized implant solutions for rib fracture fixation is essential to reduce the complexity and to increase the reliability of rib osteosynthesis. Without a simple and reliable implant solution, surgical stabilization of rib fractures will remain underutilized despite proven benefits for select indications. This article summarizes the research, development, and testing of a specialized and comprehensive implant solution for rib fractur...

  5. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  6. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.

    1984-04-01

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  7. Comprehensive Geriatric Assessment for Prevention of Delirium After Hip Fracture: A Systematic Review of Randomized Controlled Trials.

    Science.gov (United States)

    Shields, Lynn; Henderson, Victoria; Caslake, Robert

    2017-07-01

    To assess the efficacy of comprehensive geriatric assessment (CGA) in prevention of delirium after hip fracture. Systematic review and metaanalysis. Ward based models on geriatrics wards and visiting team based models on orthopaedics wards were included. Four trials (three European, one U.S.; 973 participants) were identified. Two assessed ward-based, and two assessed team-based interventions. MEDLINE, EMBASE, CINAHL and PsycINFO databases; Clinicaltrials.gov; and the Central Register of Controlled Trials were searched. Reference lists from full-text articles were reviewed. Incidence of delirium was the primary outcome. Length of stay, delirium severity, institutionalization, long-term cognition and mortality were predefined secondary outcomes. Duration of delirium was included as a post hoc outcome. There was a significant reduction in delirium overall (relative risk (RR) = 0.81, 95% confidence interval (CI) = 0.69-0.94) in the intervention group. Post hoc subgroup analysis found this effect to be preserved in the team-based intervention group (RR = 0.77, 95% CI = 0.61-0.98) but not the ward-based group. No significant effect was observed on any secondary outcome. There was a reduction in the incidence of delirium after hip fracture with CGA. This is in keeping with results of non-randomized controlled trials and trials in other populations. Team-based interventions appeared superior in contrast to the Ellis CGA paper, but it is likely that heterogeneity in interventions and population studied affected this. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. The Impact of Disease and Drugs on Hip Fracture Risk

    OpenAIRE

    Leavy, Breiffni; Michaëlsson, Karl; Åberg, Anna Cristina; Melhus, Håkan; Byberg, Liisa

    2017-01-01

    We report the risks of a comprehensive range of disease and drug categories on hip fracture occurrence using a strict population-based cohort design. Participants included the source population of a Swedish county, aged ?50?years (n?=?117,494) including all incident hip fractures during 1?year (n?=?477). The outcome was hospitalization for hip fracture (ICD-10 codes S72.0?S72.2) during 1?year (2009?2010). Exposures included: prevalence of (1) inpatient diseases [International Classification o...

  9. Macroscopic models for single-phase flows in fractured porous medium: application to well tests; Modeles macroscopiques pour les ecoulements monophasiques en milieu poreux fracture: application aux tests de puits

    Energy Technology Data Exchange (ETDEWEB)

    Landereau, P.

    2000-12-01

    We consider pressure diffusion in fractured media, with application to well test interpretation. Using the volume averaging theory of Quintard and Whitaker, the local problem is replaced by a double-porosity large scale description. The parameters of the latter may be computed solving small scale closure problems on a representative volume. Using suitable numerical methods, we have performed a systematic study of these parameters as a function of the topology of the fracture network and matrix to fracture permeability contrast. We find that the matrix permeability plays a significant role near a percolation threshold. Next, we studied the exchange coefficient parameter, by unifying the different definitions of the literature in a single framework using a Fourier analysis. Finally, we applied our technique to well-test interpretation in fractured media by comparing large scale solutions to high resolution direct simulations. We find that at short time scale, very fine grid blocks are needed to get good accuracy. In that case, a good agreement is observed between large scale averaged results and reference simulations. (author)

  10. The New Digital Media Value Network: Proposing an Interactive Model of Digital Media Value Activities

    Directory of Open Access Journals (Sweden)

    Sylvia Chan-Olmsted

    2016-07-01

    Full Text Available This study models the dynamic nature of today’s media markets using the framework of value-adding activities in the provision and consumption of media products. The proposed user-centric approach introduces the notion that the actions of external users, social media, and interfaces affect the internal value activities of media firms via a feedback loop, and therefore should themselves be considered value activities. The model also suggests a more comprehensive list of indicators for value assessment.

  11. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  12. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  13. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  14. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    Science.gov (United States)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  15. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  16. A new system for severity scoring of facial fractures: development and validation.

    Science.gov (United States)

    Catapano, Joseph; Fialkov, Jeffrey A; Binhammer, Paul A; McMillan, Catherine; Antonyshyn, Oleh M

    2010-07-01

    Facial fractures are often the result of high-velocity trauma, causing skeletal disruption affecting multiple anatomic sites to varying degrees. Although several widely accepted classification systems exist, these are mostly region-specific and differ in the classification criteria used, making it impossible to uniformly and comprehensively document facial fracture patterns. Furthermore, a widely accepted system that is able to provide a final summary measure of fracture severity does not exist, making it difficult to investigate the epidemiologic data surrounding facial fracture severity. In this study, a comprehensive method for panfacial fracture documentation and severity measurement is proposed and validated through a retrospective analysis of 63 patients operated on for acute facial fracture. The severity scale was validated through statistical analysis of correlation with surrogate markers of severity (operating room procedure time and number of implants). Spearman correlation coefficients were calculated, and a statistically significant correlation was found between severity score and both number of implants and operating room procedure time (R = 0.92790 and R = 0.68157, respectively). Intraclass correlation coefficients were calculated to assess intrarater and interrater reliabilities of the severity scale and were found to be high (0.97 and 0.99, respectively). This severity scale provides a valuable, validated research tool for the investigation of facial fracture severity across patient populations, allowing for systematic evaluation of facial fracture outcomes, cost-benefit analysis, and objective analysis of the effect of specific interventions.

  17. Properties of conventional contrast media

    International Nuclear Information System (INIS)

    Muetzel, W.

    1981-01-01

    A comprehensive overview is given of the properties of contrast media currently used in computed tomography (CT). The chemical structure of the compounds and the physicochemical properties derived therefrom are described. Emphasis is placed on the importance of the physicochemical properties of contrast media for tolerance and the pharmacokinetic behavior of compounds in the body. An outline is given of the basic ideas governing rational use of contrast media in CT, which result from complex, time-dependent distribution of contrast media in different tissue spaces. (Auth.)

  18. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    Science.gov (United States)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  19. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.; Efendiev, Yalchin R.; Vasilyeva, Maria

    2016-01-01

    fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents

  20. Data input guide for SWIFT II. The Sandia waste-isolation flow and transport model for fractured media, Release 4.84

    International Nuclear Information System (INIS)

    Reeves, M.; Ward, D.S.; Johns, N.D.; Cranwell, R.M.

    1986-04-01

    This report is one of three which describes the SWIFT II computer code. The code simulates flow and transport processes in geologic media which may be fractured. SWIFT II was developed for use in the analysis of deep geologic facilities for nuclear-waste disposal. This user's manual should permit the analyst to use the code effectively by facilitating the preparation of input data. A second companion document discusses the theory and implementation of the models employed by the SWIFT II code. A third document provides illustrative problems for instructional purposes. This report contains detailed descriptions of the input data along with an appendix of the input diagnostics. The use of auxiliary files, unit conversions, and program variable descriptors also are included in this document

  1. Transient diffusion from a waste solid into fractured porous rock

    International Nuclear Information System (INIS)

    Ahn, J.; Chambre, P.L.; Pigford, T.H.

    1988-01-01

    Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here the authors present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion

  2. The social media revolution.

    Science.gov (United States)

    Dubose, Cheryl

    2011-01-01

    The growing popularity and use of social media tools such as Facebook, YouTube, Twitter, blogging, and wikis have led to a social media revolution. Given this widespread influence, it is important for educators, administrators, and technologists to understand the risks of using social media in the classroom and workplace. To investigate popular social media sites and their effect on radiologic technology education and business practices. A comprehensive search of literature was performed to examine social media and its applications in education, health care, and business. Social media use is on the rise, affecting all aspects of mainstream society. Leaders in the radiologic sciences should be familiar with social media and cognizant of its risks. Future studies regarding social media use in the radiologic sciences are necessary to determine its effect on the radiologic science community. ©2011 by the American Society of Radiologic Technologists.

  3. Comparison of pressure transient response in intensely and sparsely fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johns, R.T.

    1989-04-01

    A comprehensive analytical model is presented to study the pressure transient behavior of a naturally fractured reservoir with a continuous matrix block size distribution. Geologically realistic probability density functions of matrix block size are used to represent reservoirs of varying fracture intensity and uniformity. Transient interporosity flow is assumed and interporosity skin is incorporated. Drawdown and interference pressure transient tests are investigated. The results show distinctions in the pressure response from intensely and sparsely fractured reservoirs in the absence of interporosity skin. Also, uniformly and nonuniformly fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture intensity. The pressure response in a nonuniformly fractured reservoir with large block size variability, approaches a nonfractured (homogeneous) reservoir response. Type curves are developed to estimate matrix block size variability and the degree of fracture intensity from drawdown and interference well tests.

  4. Osmosis, filtration and fracture of porous media

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete

  5. Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete

    DEFF Research Database (Denmark)

    Rouchier, Simon; Janssen, Hans; Rode, Carsten

    2012-01-01

    porous media. Digital Image Correlation was performed during the fracturing of concrete samples, in which moisture uptake was then monitored using X-ray radiography. Finite-element simulations were then performed based on the measurements of the fracture patterns, in order to recreate the measured......Several years after their installation, building materials such as concrete present signs of ageing in the form of fractures covering a wide range of sizes, from microscopic to macroscopic cracks. All sizes of fractures can have a strong influence on heat and moisture flow in the building envelope...

  6. Finnie's notes on fracture mechanics fundamental and practical lessons

    CERN Document Server

    Dharan, C K H; Finnie, Iain

    2016-01-01

    This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical. This book also: Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of f...

  7. MIGFRAC - a code for modelling of radionuclide transport in fracture media

    International Nuclear Information System (INIS)

    Satyanarayana, S.V.M.; Mohankumar, N.; Sasidhar, P.

    2002-05-01

    Radionuclides migrate through diffusion process from radioactive waste disposal facilities into fractures present in the host rock. The transport phenomenon is aided by the circulating ground waters. To model the transport of radionuclides in the charnockite rock formations present at Kalpakkam, a numerical code - MIGFRAC has been developed at SHINE Group, IGCAR. The code has been subjected to rigorous tests and the results of the build up of radionuclide concentrations are validated with a test case up to a distance of 100 meter along the fracture. The report discusses the model, code features and the results obtained up to a distance of 400 meter are presented. (author)

  8. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    Science.gov (United States)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation

  9. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Science.gov (United States)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  10. History matching of large scale fractures to production data; Calage de la geometrie des reseaux de fractures aux donnees hydrodynamiques de production d'un champ petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Jenni, S.

    2005-01-01

    Object based models are very helpful to represent complex geological media such as fractured reservoirs. For building realistic fracture networks, these models have to be constrained to both static (seismic, geomechanics, geology) and dynamic data (well tests and production history). In this report we present a procedure for the calibration of large-scale fracture networks to production history. The history matching procedure includes a realistic geological modeling, a parameterization method coherent with the geological model and allowing an efficient optimization. Fluid flow modeling is based on a double medium approach. The calibration procedure was applied to a semi-synthetic case based on a real fractured reservoir. The calibration to water-cut data was performed. (author)

  11. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  12. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  13. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This report aims at developing a systematic theory of the role of fractures in the transport of radionuclides by groundwater, through fractured rocks from a deep-lying nuclear waste repository to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and the physical characteristics which influence radionuclide transport are expressed in mathematical terms. The question of radioactivity retention is then studied for various fracture types, using idealized geometries to model natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein. (author)

  14. Modelling of 3D fractured geological systems - technique and application

    Science.gov (United States)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  15. Social Media Communication and Consumer Brand Perceptions

    OpenAIRE

    Rizwan Ali Khadim; Bilal Zafar; Muhammad Younis

    2014-01-01

    Social media has changed the shape of communication strategies in the corporate world. Corporations are using social media to reach their maximum stakeholders in minimum time at different social media forums. Consumers being an important corporate stakeholder hold significant importance in corporate communication strategy. The current study examines the role of social media communication on consumer brand perceptions and their buying behavior. A comprehensive survey is conducted through vario...

  16. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    Science.gov (United States)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  17. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This paper aims at developing a systematic theory of the role of fractures in the transport of radionuclides in the fractured rocks by groundwater, from the nuclear waste repository to be built in the deep geological formations, to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and their physical characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention is then carefully studied for various fracture types, using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  18. Representative elements: A step to large-scale fracture system simulation

    International Nuclear Information System (INIS)

    Clemo, T.M.

    1987-01-01

    Large-scale simulation of flow and transport in fractured media requires the development of a technique to represent the effect of a large number of fractures. Representative elements are used as a tool to model a subset of a fracture system as a single distributed entity. Representative elements are part of a modeling concept called dual permeability. Dual permeability modeling combines discrete fracture simulation of the most important fractures with the distributed modeling of the less important fracture of a fracture system. This study investigates the use of stochastic analysis to determine properties of representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. Simple fracture systems are treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. Explicit formulation of the hydraulic conductivity and transport dispersion reveals the dependence of these important characteristics on the parameters used to describe the fracture system. Understanding these dependencies will help to focus efforts to identify the characteristics of fracture systems. Simulations of stochastically generated fracture sets do not provide this explicit functional dependence on the fracture system parameters. 12 refs., 6 figs

  19. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications

    National Research Council Canada - National Science Library

    ...--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations...

  20. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    Science.gov (United States)

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  1. Primary drainage in geological fractures: Effects of aperture variability and wettability

    Science.gov (United States)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability

  2. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  3. U.S. National Committee for Rock Mechanics and conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997 - July 27, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy's Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided

  4. Social Media Strategies for School Principals

    Science.gov (United States)

    Cox, Dan; McLeod, Scott

    2014-01-01

    The purpose of this qualitative study was to describe, analyze, and interpret the experiences of school principals who use multiple social media tools with stakeholders as part of their comprehensive communications practices. Additionally, it examined why school principals have chosen to communicate with their stakeholders through social media.…

  5. Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium

    Directory of Open Access Journals (Sweden)

    Shao-Yiu Hsu

    2017-01-01

    Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.

  6. Experimental and numerical analysis of two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lindgaard, H F; Hoeier, C

    1998-06-01

    The objective of the physical experiments was to investigate how isolated fractures embedded in the matrix influence the imbibition process and to study their impact on the effective properties of the matrix block with respect to relative permeability, absolute permeability and remaining saturations. These investigations would be carried out by constructing various types of laboratory models using an artificial material. To mimic a rising aquifer in a producing reservoir, water should be injected from below in an oil saturated laboratory model, and oil production should take place from the top of the model. In order to be able to generalise the results from the investigations in the laboratory to a producing reservoir, the model should be scaled to reservoir conditions. Because of several problems related to the generation of an appropriate matrix material, the construction of a model, which did not leak during the experiments and the establishment of the initial saturation condition of the matrix material (oil saturated at irreducible water saturation), the stated aims have not been fully achieved. Only the impact of a continuous fracture system has been investigated by laboratory experiments. The water saturation distribution in the matrix during imbibition was continuously measured by a resistivity technique. The oil phase was stained, and the propagation of the water level in the continuous fracture system was studied visually during the experiment. The impact of an internal fracture has been investigated by numerical simulations. (EG)

  7. Comprehensive approach to the management of the patient with multiple rib fractures: a review and introduction of a bundled rib fracture management protocol.

    Science.gov (United States)

    Witt, Cordelie E; Bulger, Eileen M

    2017-01-01

    Rib fractures are common among patients sustaining blunt trauma, and are markers of severe bodily and solid organ injury. They are associated with high morbidity and mortality, including multiple pulmonary complications, and can lead to chronic pain and disability. Clinical and radiographic scoring systems have been developed at several institutions to predict risk of complications. Clinical strategies to reduce morbidity have been studied, including multimodal pain management, catheter-based analgesia, pulmonary hygiene, and operative stabilization. In this article, we review risk factors for morbidity and complications, intervention strategies, and discuss experience with bundled clinical pathways for rib fractures. In addition, we introduce the multidisciplinary rib fracture management protocol used at our level I trauma center.

  8. Origins and nature of non-Fickian transport through fractures

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2014-12-01

    Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.

  9. A multi-scale experimental and simulation approach for fractured subsurface systems

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  10. Detection and migration of gases in geological media: Experiments and numerical simulations at the Roselend Natural Laboratory

    International Nuclear Information System (INIS)

    Guillon, S.

    2013-01-01

    Gas migration in rocks results from natural and artificial processes. Understanding gas migration matters for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), to improve the detection of underground nuclear explosions by their radioactive gases. This work concerns many other fields in Earth Sciences, for fundamental as well as applied science. Issues in improving the detection and the understanding of gas migration in geological media are the following. What are the driving forces of gas migration from depth to the surface? How much of the gases produced at depth do arrive at the surface? Does this migration lead to temporal delays and dilution between production and breakthrough at the surface? To answer these questions, this thesis is dedicated to the identification of gas transport mechanisms in fractured rocks, from both field experiments and numerical simulations. The Roselend Natural Laboratory (French Alps) is a unique facility for studying gas transport in the unsaturated zone at the field scale, representative of natural processes. Parameters and external forcings have been determined. A tunnel and an isolated chamber, at 55 m depth, as well as boreholes at depth and at the surface, allow to monitor gases that are present in the rocks. Pneumatic properties of the rocks, permeability and porosity, were determined at scales ranging from 1 to 55 m, from both pneumatic injection tests and pressure monitoring as well as from computational studies of fluid flow and transport in porous media. Inverse modeling was used to quantify the associated uncertainties. The results underline the strong spatial heterogeneity of fractured media. The natural dynamics of three gases, CO 2 , SF 6 and 222 Rn, was monitored continuously for more than one year. The results, interpreted with numerical simulations, determined that the processes controlling the natural dynamics, or baseline, of gases are atmospheric pressure fluctuations and water movements. Such water movements also

  11. Fracture flow due to hydrothermally induced quartz growth

    Science.gov (United States)

    Kling, Tobias; Schwarz, Jens-Oliver; Wendler, Frank; Enzmann, Frieder; Blum, Philipp

    2017-09-01

    Mineral precipitations are a common feature and limitation of initially open, permeable rock fractures by forming sealing structures or secondary roughness in open voids. Hence, the objective of this numerical study is the evaluation of hydraulic properties of fractures sealed by hydrothermally induced needle and compact quartz growth. Phase-field models of progressive syntaxial and idiomorphic quartz growth are implemented into a fluid flow simulation solving the Navier-Stokes equation. Flow simulations for both quartz types indicate an obvious correlation between changes in permeability, fracture properties (e.g. aperture, relative roughness and porosity) and crystal growth behavior, which also forms distinct flow paths. Thus, at lower sealing stages initial fracture permeability significantly drops down for the 'needle fracture' forming highly tortuous flow paths, while the 'compact fracture' records a considerably smaller loss. Fluid flow in both sealing fractures most widely is governed by a ;parallel plate;-like cubic law behavior. However, the 'needle fracture' also reveals flow characteristics of a porous media. A semi-theoretical equation is introduced that links geometrical (am) with hydraulically effective apertures (ah) and the relative fracture roughness. For this purpose, a geometry factor α is introduced being α = 2.5 for needle quartz and α = 1.0 for compact quartz growth. In contrast to most common ah-am-relationships this novel formulation not only reveals more precise predictions for the needle (RMSE = 1.5) and the compact fractures (RMSE = 3.2), but also exhibit a larger range of validity concerning the roughness of the 'needle' (σ/am = 0-2.4) and the 'compact fractures' (σ/am = 0-1.8).

  12. Response to 'Word choice as political speech': Hydraulic fracturing is a partisan issue.

    Science.gov (United States)

    Hopke, Jill E; Simis, Molly

    2016-04-28

    In 2015, Hopke & Simis published an analysis of social media discourse around hydraulic fracturing. Grubert (2016) offered a commentary on the research, highlighting the politicization of terminology used in the discourse on this topic. The present article is a response to Grubert (2016)'s commentary, in which we elaborate on the distinctions between terminology used in social media discourse around hydraulic fracturing (namely, 'frack,' 'fracking,' 'frac,' and 'fracing'). Additionally preliminary analysis supports the claim that industry-preferred terminology is severely limited in its reach. When industry actors opt-out of the discourse, the conversation followed by the majority of lay audiences is dominated by activists. exacerbating the political schism on the issue. © The Author(s) 2016.

  13. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  14. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    cracked media. Cracking: The main aim of this topic is the numerical simulation of multiple cracking of strongly heterogeneous media from their sound state to their fractured state. A method called 'Non Smooth Fracture Dynamics' is proposed. It is based on a cohesive-volume finite element model and on a non-regular dynamic multi-body management (implicit scheme). The main theoretical and practical difficulties of the cohesive-volume method are discussed in detail: non-uniqueness of solutions, instabilities, dependence on the mesh system, local diversity, and experimental identification of the cohesive properties. By combining this method with analytical and numerical homogenization techniques, a two-scale volume and surface approach is developed for the cracking of media with a property gradient: the effect of the spatial distribution of weakening inclusions on the macroscopic fracture criteria and on the tortuosity of crack paths is revealed. An intermediate result of this work is the statistical characterization of the representative elementary volumes in cracking and fracture. Granular media: This more recent topic includes the numerical and stochastic analysis of discrete media in the presence or absence of a fluid phase. For the numerical analysis, the non-regular dynamic multi-body method is used. In the case of an interstitial or surrounding fluid, this method is coupled with two other classes of method according to the inertial regime and the size of the system considered: porous medium methods (homogeneous fluid equivalent) or fictitious domain type (direct numerical simulation). These methods are confirmed on fluidization and sedimentation tests. For the analysis, some results are obtained for gravity flows: blocking statistic in silo configuration, compaction effects during undersea avalanches. (author)

  15. Multiscale Modeling of Fracture Processes in Cementitious Materials

    NARCIS (Netherlands)

    Qian, Z.

    2012-01-01

    Concrete is a composite construction material, which is composed primarily of coarse aggregates, sands and cement paste. The fracture processes in concrete are complicated, because of the multiscale and multiphase nature of the material. In the past decades, comprehensive effort has been put to

  16. Anisotropy, reversibility and scale dependence of transport properties in single fracture and fractured zone - Non-sorbing tracer experiment at the Kamaishi mine

    International Nuclear Information System (INIS)

    Sawada, Atushi; Uchida, Masahiro; Shimo, Michito; Yamamoto, Hajime; Takahara, Hiroyuki; Doe, T.W.

    2001-01-01

    A comprehensive set of the non-sorbing tracer experiments were run in the granodiorite of the Kamaishi mine located in the northern part of the main island of Japan-Honshu. A detailed geo-hydraulic investigation was carried out prior to performing the tracer migration experiments. The authors conducted a detailed but simple investigation in order to understand the spatial distribution of conductive fractures and the pressure field. Seven boreholes were drilled in the test area of which dimension is approximately 80 meters by 60 meters, revealing hydraulic compartmentalization and a heterogeneous distribution of conductive features. Central three boreholes which are approx. 2 to 4 meters apart form a triangle array. After identifying two hydraulically isolated fractures and one fractured zone, a comprehensive non-sorbing tracer experiments were conducted. Four different dipole fields were used to study the heterogeneity within a fracture. Firstly, anisotropy was studied using the central borehole array of three boreholes and changing injection/withdrawal wells. Secondly, dipole ratio was varied to study how prume spread could affect the result. Thirdly, reversibility was studied by switching injection/withdrawal wells. Lastly, scale dependency was studied by using outer boreholes. The tracer breakthrough curves were analyzed by using a streamline, analytical solution and numerical analysis of mass transport. Best-fit calculations of the experimental breakthrough curves were obtained by assigning apertures within the range of 1-10 times the square root of transmissivity and a dispersion length equal to 1/10 of the migration length. Different apertures and dispersion lengths were also interpreted in anisotropy case, reversibility case and scale dependency case. Fractured zone indicated an increased aperture and increased dispersivity

  17. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 3. Appendices

    International Nuclear Information System (INIS)

    1978-05-01

    Ten appendices are included: log data, elastic constants for transversely isotropic elastic media by ultrasonic velocity measurement, fracture toughness anisotropy of West Valley shale, in-situ stress measurement techniques, stress measurement data, hydraulic fracturing measurements, enhancement of horizontal crack initiation by jetting, finite element programs for analysis of crack propagation and for groundwater flow analysis, and well data

  18. Selection and Evaluation of Media for Behavioral Health Interventions Employing Critical Media Analysis.

    Science.gov (United States)

    Wilson, Patrick A; Cherenack, Emily M; Jadwin-Cakmak, Laura; Harper, Gary W

    2018-01-01

    Although a growing number of psychosocial health promotion interventions use the critical analysis of media to facilitate behavior change, no specific guidelines exist to assist researchers and practitioners in the selection and evaluation of culturally relevant media stimuli for intervention development. Mobilizing Our Voices for Empowerment is a critical consciousness-based health enhancement intervention for HIV-positive Black young gay/bisexual men that employs the critical analysis of popular media. In the process of developing and testing this intervention, feedback on media stimuli was collected from youth advisory board members (n = 8), focus group participants (n = 19), intervention participants (n = 40), and intervention facilitators (n = 6). A thematic analysis of qualitative data resulted in the identification of four key attributes of media stimuli and participants' responses to media stimuli that are important to consider when selecting and evaluating media stimuli for use in behavioral health interventions employing the critical analysis of media: comprehension, relevance, emotionality, and action. These four attributes are defined and presented as a framework for evaluating media, and adaptable tools are provided based on this framework to guide researchers and practitioners in the selection and evaluation of media for similar interventions.

  19. 老年骨质疏松性骨折的康复治疗%Rehabilitative treatment of senile osteoporosis fracture

    Institute of Scientific and Technical Information of China (English)

    王兵

    2003-01-01

    @@ When the senile patients with osteoporosis fracture are hospitalized,fracture is cured by surgical department of orthopedics and osteoporosis is cured by internal department of orthopedics,which is timely and appropriate.Even after union of fracture,the comprehensive treatment is essential for such patients.

  20. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    Science.gov (United States)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the

  1. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory - Part II: Results of Numerical and Experimental Tests

    Science.gov (United States)

    Wang, Ding; Ding, Pin-bo; Ba, Jing

    2018-03-01

    In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.

  2. A new approach to tracer transport analysis: From fracture systems to strongly heterogeneous porous media

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu.

    1989-02-01

    Many current development and utilization of groundwater resources include a study of their flow and transport properties. These properties are needed in evaluating possible changes in groundwater quality and potential transport of hazardous solutes through the groundwater system. Investigation of transport properties of fractured rocks is an active area of research. Most of the current approaches to the study of flow and transport in fractured rocks cannot be easily used for analysis of tracer transport field data. A new approach is proposed based on a detailed study of transport through a fracture of variable aperture. This is a two-dimensional strongly heterogeneous permeable system. It is suggested that tracer breakthrough curves can be analyzed based on an aperture or permeability probability distribution function that characterizes the tracer flow through the fracture. The results are extended to a multi-fracture system and can be equally applied to a strongly heterogeneous porous medium. Finally, the need for multi-point or line and areal tracer injection and observation tests is indicated as a way to avoid the sensitive dependence of point measurements on local permeability variability. 30 refs., 15 figs

  3. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    Science.gov (United States)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  4. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  5. [Clinical pathway for hip fracture patients].

    Science.gov (United States)

    Sáez López, Pilar; Sánchez Hernández, Natalia; Paniagua Tejo, Sonsoles; Valverde García, José Antonio; Montero Díaz, Margarita; Alonso García, Noelia; Freites Esteve, Alfonso

    2015-01-01

    Hip fracture in the elderly often occurs in patients with high co-morbidity. Effective management requires a comprehensive and multidisciplinary approach. To evaluate the effect of a quality improvement intervention in the detection and treatment of complications in elderly patients admitted for hip fracture. A comparative study was conducted between two groups of patients admitted for hip fracture prior to 2010, and after a quality improvement intervention in 2013. The intervention consisted of implementing improved multidisciplinary measures in accordance with recent scientific evidence. The degree of compliance of the implemented measures was quantified. Patients admitted due to hip fracture in 2010 (216 patients) and 2013 (196 patients) were similar in age, sex, Barthel Index, and a reduced Charlson Index, although there were more comorbidities in 2013. After implementation of the protocols, the detection of delirium, malnutrition, anemia, and electrolyte disturbances increased. A larger number of patients in 2013 were precribed intravenous iron (24% more) and osteoporosis treatment (61.3% more). The average stay was reduced by 45.3% and surgical delay by 29.4%, achieving better functional efficiency. The implementation of a clinical pathway in geriatric patients with hip fracture is useful to detect and treat complications at an early stage, and to reduce pre-operative and overall stay, all without a negative clinical or functional impact. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  6. Seismic wave propagation in fractured media: A discontinuous Galerkin approach

    KAUST Repository

    De Basabe, Jonás D.

    2011-01-01

    We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.

  7. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    International Nuclear Information System (INIS)

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  8. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  9. Self-healing of Fractures in Argillaceous Media from the Geomechanical Point of View

    International Nuclear Information System (INIS)

    Horseman, Steve

    2001-01-01

    Presently, there is no established theory describing fracture self-healing and self-sealing processes in mud-rocks (clays, mud-stones and shales) and no methodology to assess the conditions under which these processes might be important. The author suggests that the modified Cam-Clay approach provides a useful conceptual and theoretical framework for the analysis of the largely hydro-mechanical process of self-sealing. Three basic hypotheses are proposed and applied to the problem of fracture self-sealing in the repository EDZ and to the more general question of fault sealing. (author)

  10. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  11. Primer: Fracture mechanics in the nuclear power industry

    International Nuclear Information System (INIS)

    Wessel, E.T.; Server, W.L.; Kennedy, E.L.

    1990-01-01

    This Primer is intended to familiarize utility engineers with the fracture mechanics technology and to provide the basis for a working knowledge of the subject. It is directed towards all the engineering disciplines that are involved either directly or indirectly with the structural reliability of electrical power generation equipment and systems. These engineering disciplines include such areas as: design and stress analysis, metallurgy and materials, nondestructive inspection and quality control, structural analysis and reliability engineering, chemical engineering and water chemistry control, and architectural engineering. This Primer does not provide a comprehensive, in-depth treatment of all the detailed aspects involved in fracture mechanics. It does, however, provide sufficient information and a common vocabulary that should enable engineers to: read and converse intelligently about the subject, understand and utilize ASME Codes and Regulatory Guides involving fracture mechanics, absorb technical information presented and discussed at various technical meetings, and begin to apply this technology towards actual engineering problems encountered in the course of their work. Example problems are provided to further enhance an understanding of fracture mechanics. Also, Appendix A describes fracture mechanics computer codes available through EPRI to analyze rotors, reactor pressure vessels and piping

  12. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  13. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  14. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  15. A statistical approach to the prediction of pressure tube fracture toughness

    International Nuclear Information System (INIS)

    Pandey, M.D.; Radford, D.D.

    2008-01-01

    The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in a nuclear reactor. Fracture toughness data have been generated by performing rising pressure burst tests on sections of pressure tubes removed from operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which is used in defining the operational limits of pressure tubes. The paper presents a comprehensive statistical analysis of burst test data and develops a multivariate statistical model to relate toughness with material chemistry, mechanical properties, and operational history. The proposed model can be useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing conservatism associated with a generic lower-bound approach

  16. Fatigue and Fracture Characterization of Aircraft Aluminum Alloys Damaged by Prior Corrosion

    National Research Council Canada - National Science Library

    Baldwin, J

    2002-01-01

    At the time of the initiation of this project, there was no comprehensive data describing corrosion's effect on the fatigue and fracture behavior of aluminum alloys typically found in aging aircraft...

  17. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  18. Advances in equine computed tomography and use of contrast media.

    Science.gov (United States)

    Puchalski, Sarah M

    2012-12-01

    Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  20. Media: A Pocket Guide.

    Science.gov (United States)

    Arrasjid, Harun; Arrasjid, Dorine Audrey

    An attempt has been made to provide a concise but comprehensive guide to instructional media for instructors, students, and teachers. Topics covered include audio learning systems, overhead projection, opaque projection, slide and filmstrip projection, projection surfaces, chalkboards and markboards, graphics, models, duplicating, motion pictures,…

  1. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    KAUST Repository

    Al-Hinai, Omar

    2017-04-09

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  2. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    KAUST Repository

    Al-Hinai, Omar; Dong, Rencheng; Srinivasan, Sanjay; Wheeler, Mary F.

    2017-01-01

    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  3. Fracture risk in perimenopausal women treated with beta-blockers

    DEFF Research Database (Denmark)

    Rejnmark, Lars; Vestergaard, Peter; Kassem, M.

    2004-01-01

    beta2-Adrenergic receptors have been identified on human osteoblastic and osteoclastic cells, raising the question of a sympathetic regulation of bone metabolism. We investigated effects of treatment with beta-adrenergic receptor antagonists (beta-blockers) on bone turnover, bone mineral density...... (BMD), and fracture risk. Within the Danish Osteoporosis Prevention Study (DOPS) a population based, comprehensive cohort study of 2016 perimenopausal women, associations between treatment with beta-blockers and bone turnover and BMD were assessed in a cross-sectional design at the start of study....... Moreover, in a nested case-control design, fracture risk during the subsequent 5 years was assessed in relation to treatment with beta-blockers at baseline. Multiple regression- and logistic regression-analyses were performed. Treatment with beta-blockers was associated with a threefold increased fracture...

  4. Xenon adsorption on geological media and implications for radionuclide signatures.

    Science.gov (United States)

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms

    International Nuclear Information System (INIS)

    Marchetti-Sillans, L.

    2007-11-01

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale (∼ 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr 2 O 3 nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr 2 O 3 nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary media and to tackle some

  6. VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Myer, L.R.; Karasaki, K.; Daley, T.M.; Long, J.C.S.

    1989-09-01

    For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs

  7. A Comprehensive Model of Cancer-Related Information Seeking Applied to Magazines.

    Science.gov (United States)

    Johnson, J. David; Meischke, Hendrika

    1993-01-01

    Examines a comprehensive model of information seeking resulting from the synthesis of three theoretical research streams: the health belief model, uses and gratifications research, and a model of media exposure. Suggests that models of information seeking from mass media should focus on purely communicative factors. (RS)

  8. Multidisciplinary treatment of a fractured maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Neela

    2017-01-01

    Full Text Available Subgingivally fractured incisors are still a challenge to treat. Restoration of severely damaged teeth requires careful attention and comprehensive preplanned treatment. Here, a patient who had traumatic injury to the upper left central incisor which led to an oblique fracture involving enamel, dental and extending into the root below the gingival margin was saved from extraction by accelerated forced eruption of a root portion, allowing placement of crown, and eliminating the need for a fixed partial denture. A tooth otherwise would have gone for extraction routinely was thus saved and restored through a multidisciplinary approach by a combined orthodontic, periodontal and endodontic treatment.

  9. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  10. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  11. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  12. Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks

    Science.gov (United States)

    Leube, P.; Nowak, W.; Sanchez-Vila, X.

    2013-12-01

    High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of

  13. Social media and disasters: a functional framework for social media use in disaster planning, response, and research.

    Science.gov (United States)

    Houston, J Brian; Hawthorne, Joshua; Perreault, Mildred F; Park, Eun Hae; Goldstein Hode, Marlo; Halliwell, Michael R; Turner McGowen, Sarah E; Davis, Rachel; Vaid, Shivani; McElderry, Jonathan A; Griffith, Stanford A

    2015-01-01

    A comprehensive review of online, official, and scientific literature was carried out in 2012-13 to develop a framework of disaster social media. This framework can be used to facilitate the creation of disaster social media tools, the formulation of disaster social media implementation processes, and the scientific study of disaster social media effects. Disaster social media users in the framework include communities, government, individuals, organisations, and media outlets. Fifteen distinct disaster social media uses were identified, ranging from preparing and receiving disaster preparedness information and warnings and signalling and detecting disasters prior to an event to (re)connecting community members following a disaster. The framework illustrates that a variety of entities may utilise and produce disaster social media content. Consequently, disaster social media use can be conceptualised as occurring at a number of levels, even within the same disaster. Suggestions are provided on how the proposed framework can inform future disaster social media development and research. © 2014 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  14. Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

    International Nuclear Information System (INIS)

    Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

    1996-01-01

    Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution

  15. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  16. Fatigue failure of dental implants in simulated intraoral media.

    Science.gov (United States)

    Shemtov-Yona, K; Rittel, D

    2016-09-01

    Metallic dental implants are exposed to various intraoral environments and repetitive loads during service. Relatively few studies have systematically addressed the potential influence of the environment on the mechanical integrity of the implants, which is therefore the subject of this study. Four media (groups) were selected for room temperature testing, namely dry air, saliva substitute, same with 250ppm of fluoride, and saline solution (0.9%). Monolithic Ti-6Al-4V implants were loaded until fracture, using random spectrum loading. The study reveals that the only aggressive medium of all is the saline solution, as it shortens significantly the spectrum fatigue life of the implants. The quantitative scanning electron fractographic analysis indicates that all the tested implants grew fatigue cracks of similar lengths prior to catastrophic fracture. However, the average crack growth rate in the saline medium was found to largely exceed that in other media, suggesting a decreased fracture toughness. The notion of a characteristic timescale for environmental degradation was proposed to explain the results of our spectrum tests that blend randomly low and high cycle fatigue. Random spectrum fatigue testing is powerful technique to assess and compare the mechanical performance of dental implants for various designs and/or environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  18. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    Science.gov (United States)

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    . Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Media analysis of radioactive wastes

    International Nuclear Information System (INIS)

    Janowski, M.J.

    1989-01-01

    The radioactive waste cleanup community has not effectively utilized its most powerful communications tool to inform the general public; the print and broadcast media. Environmental interest groups have known of the value of accessing the media for their message for years and have used it effectively. The radioactive waste cleanup community's efforts to date have not been focused on education of the media so that they in turn can inform the public of our cleanup mission. Their focus must be to learn of the importance of the media, develop training programs that train technical people in how to know and respond to the media's needs for information, and then incorporate that training into a comprehensive program of public information in which access to the media is a key communications tool. This paper discusses how media education and access is a cost-effective means of accomplishing community relations goals of public information and public participation in radioactive waste cleanup and has been effectively utilized at the Weldon Spring Site Remedial Action Project

  20. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  1. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Directory of Open Access Journals (Sweden)

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  2. Limit Theorems and Their Relation to Solute Transport in Simulated Fractured Media

    Science.gov (United States)

    Reeves, D. M.; Benson, D. A.; Meerschaert, M. M.

    2003-12-01

    Solute particles that travel through fracture networks are subject to wide velocity variations along a restricted set of directions. This may result in super-Fickian dispersion along a few primary scaling directions. The fractional advection-dispersion equation (FADE), a modification of the original advection-dispersion equation in which a fractional derivative replaces the integer-order dispersion term, has the ability to model rapid, non-Gaussian solute transport. The FADE assumes that solute particle motions converge to either α -stable or operator stable densities, which are modeled by spatial fractional derivatives. In multiple dimensions, the multi-fractional dispersion derivative dictates the order and weight of differentiation in all directions, which correspond to the statistics of large particle motions in all directions. This study numerically investigates the presence of super- Fickian solute transport through simulated two-dimensional fracture networks. An ensemble of networks is gen

  3. Femoral neck fractures after removal of hardware in healed trochanteric fractures.

    Science.gov (United States)

    Barquet, Antonio; Giannoudis, Peter V; Gelink, Andrés

    2017-12-01

    Hardware removal in healed trochanteric fractures (TF) in the absence of infection or significant mechanical complications is rarely indicated. However, in patients with persistent pain, prominent material and discomfort in the activities of daily living, the implant is eventually removed. Publications of ipsilateral femoral neck fracture after removal of implants from healed trochanteric fractures (FNFARIHTF) just because of pain or discomfort are rare. The purpose of this systematic review of the literature is to report on the eventual risk factors, the mechanisms, the clinical presentation, and frequency, and to pay special emphasis in their prevention. A comprehensive review of the literature was undertaken using the PRISMA guidelines with no language restriction. Case reports of FNFARIHTF and series of TF with cases of FNFARIHTF due to pain or discomfort published between inception of journals to December 2016 were eligible for inclusion. Relevant information was divided in two parts. Part I included the analysis of cases of FNFARIHTF, with the objective of establishing the eventual risk factors, mechanisms and pathoanatomy, clinical presentation and diagnosis, treatment and prevention. Part II analyzed series of TF which included cases of FNFARIHTF for assessing the incidence of femoral neck fractures in this condition. Overall 24 publications with 45 cases of FNFARIHTF met the inclusion criteria. We found that the only prevalent factors for FNFARIHTF were: 1) preexisisting systemic osteoporosis, as most patients were older and elder females, with lower bone mineral density and bone mass; 2) local osteoporosis as a result of preloading by the fixation device in the femoral neck, leading to stress protection, reducing the strain at the neck, and increasing bone loss and weakness; and 3) the removal of hardware from the femoral neck, with reduction of the failure strength of the neck. The femoral neck fractures were spontaneous, i.e. not related to trauma or

  4. Comprehension of texts in Digital Format versus Printed Texts and Self-Regulated Learning in University Students

    Directory of Open Access Journals (Sweden)

    Paula Gabriela Flores-Carrasco

    2016-12-01

    Full Text Available This article aims (1 to describe the levels of self-regulation and reading comprehension of scientific expository texts; (2 to establish the relationship between self-regulation and reading comprehension; and (3 to compare the performance in comprehension when the printed media (paper or digital media (computer is used. A quasi-experimental, quantitative, descriptive and correlative design was implemented. The sample was composed of 55 university students from four careers of Education; they were in 1st and 3rd year of study at a regional university of the Council of Rectors of Chilean Universities. Three measuring instruments were used: a questionnaire of self-regulated learning and two comprehension tests based on the understanding of Parodi’s (2005 assessment model. The implementation was made in two consecutive moments; first, the self-questionnaire; then, the tests for reading comprehension in both media. With the data obtained, statistical tests of variance, one-way ANOVA, Pearson’s correlation, and means comparison with Bruner and Munzel and U-Mann Whitney’s tests were calculated. In conclusion, and different from the initial statement, it was obtained that university students have an adequate level of self-regulation and low reading comprehension in both data, even the scores are relatively lower in digital data. In both data the output is inverse to the complexity of the questions. Between 1st and 3rd year, there is no increase either in the self-regulation or in reading comprehension; but, exceptionally, the career of Primary General Education specialist on Language and History did. There is a strong relationship between reading comprehension in printed media and self-regulation (ARATEX. The support does not affect reading comprehension, but individual reading skills of the subjects do. A competent reader will have similar performance in both reading supports.

  5. [Forensic Analysis of the Characteristics of Pelvic Fracture in 65 Road Traffic Accident Death Cases].

    Science.gov (United States)

    Zhang, W

    2016-12-01

    To analyze the characteristics and mechanisms of pelvic fractures in the cases of road traffic accident deaths. Total 65 cases of road traffic accident deaths with pelvic fracture were collected, and the sites, characteristics and injury mechanisms of pelvic fracture were statistically analyzed. Among the 65 cases of pelvic fracture, 38 cases of dislocation of sacroiliac joint were found, and most combined with pubis symphysis separation or fracture of pubis. In the fractures of pubis, ischium and acetabulum, linear fractures were most common, while comminuted fractures were most common in sacrum and coccyx fractures. There were 54 cases combined with pelvic soft tissue injury, and 8 cases with pelvic organ injury and 44 cases with abdominal organ injury. In the types of pelvic ring injury, 32 cases were separation, 49.32%, followed by compression, 26.15% and only one case was verticality, 1.54%. Detailed and comprehensive examination of the body and determination of the pelvic fracture type contribute to analyze the mechanisms of injury. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas Beckmann

    2015-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case.

  7. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  8. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  9. Fracture network created by 3D printer and its validation using CT images

    Science.gov (United States)

    Suzuki, A.; Watanabe, N.; Li, K.; Horne, R. N.

    2017-12-01

    Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the post-treatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3D printed fracture networks can help validate existing flow modeling and numerical methods.

  10. Fracture network created by 3-D printer and its validation using CT images

    Science.gov (United States)

    Suzuki, Anna; Watanabe, Noriaki; Li, Kewen; Horne, Roland N.

    2017-07-01

    Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3-D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3-D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3-D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the posttreatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3-D printed fracture networks can help validate existing flow modeling and numerical methods.

  11. Surveillance for work-related skull fractures in Michigan.

    Science.gov (United States)

    Kica, Joanna; Rosenman, Kenneth D

    2014-12-01

    The objective was to develop a multisource surveillance system for work-related skull fractures. Records on work-related skull fractures were obtained from Michigan's 134 hospitals, Michigan's Workers' Compensation Agency and death certificates. Cases from the three sources were matched to eliminate duplicates from more than one source. Workplaces where the most severe injuries occurred were referred to OSHA for an enforcement inspection. There were 318 work related skull fractures, not including facial fractures, between 2010 and 2012. In 2012, after the inclusion of facial fractures, 316 fractures were identified of which 218 (69%) were facial fractures. The Bureau of Labor Statistic's (BLS) 2012 estimate of skull fractures in Michigan, which includes facial fractures, was 170, which was 53.8% of those identified from our review of medical records. The inclusion of facial fractures in the surveillance system increased the percentage of women identified from 15.4% to 31.2%, decreased severity (hospitalization went from 48.7% to 10.6% and loss of consciousness went from 56.5% to 17.8%), decreased falls from 48.2% to 27.6%, and increased assaults from 5.0% to 20.2%, shifted the most common industry from construction (13.3%) to health care and social assistance (15.0%) and the highest incidence rate from males 65+ (6.8 per 100,000) to young men, 20-24 years (9.6 per 100,000). Workplace inspections resulted in 45 violations and $62,750 in penalties. The Michigan multisource surveillance system of workplace injuries had two major advantages over the existing national system: (a) workplace investigations were initiated hazards identified and safety changes implemented at the facilities where the injuries occurred; and (b) a more accurate count was derived, with 86% more work-related skull fractures identified than BLS's employer based estimate. A more comprehensive system to identify and target interventions for workplace injuries was implemented using hospital and

  12. The current situation and related problems of percutaneous vertebroplasty in clinical treatment of osteoporosis vertebral compression fracture

    International Nuclear Information System (INIS)

    Wang Luchang; Wu Chungen; Cheng Yongde

    2011-01-01

    As an effective, safe and less-invasive technique in interventional radiology, percutaneous vertebroplasty has satisfactory therapeutic results with fewer complications in treating osteoporosis vertebral compression fracture. This paper aims to make a comprehensive review of the current situation and related problems of percutaneous vertebroplasty in clinical treatment of osteoporosis vertebral compression fracture. (authors)

  13. What controls diffuse fractures in platform carbonates? Insights from Provence (France) and Apulia (Italy)

    Science.gov (United States)

    Lavenu, Arthur P. C.; Lamarche, Juliette

    2018-03-01

    Fractures are widespread in rocks and regional opening-mode arrays are commonly ascribed to major tectonic events. However, fractures occur in otherwise undeformed rocks. Some of these are early-developed features independent of tectonics and forming a background network at regional scale. To overcome this lack of understanding, two hydrocarbon reservoir analogues from platform carbonates have been targeted: the Provence (SE France), and the Apulian platform (SE Italy). In both areas, an early fracturing stage has been observed, made of high-angle-to-bedding opening-mode fractures, and bed-parallel stylolites. These features developed synchronously during the first burial stages and prior to major tectonic events. The fracture sets are not genetically related to the present-day layering. Contrarily, fractures developed in a brittle media where facies transitions were not sharp and did not act as mechanical discontinuities. Carbonate facies distribution and early diagenetic imprint constrained the mechanical stratigraphy when fractures occurred. In addition, we observed that fractures related to late tectonic inversion were partly inhibited. Indeed, rock mechanical properties change through time. Characterizing the temporal evolution of carbonate rocks has revealed that diagenesis and sedimentary facies are the prime actors for brittleness and mechanical layering in carbonates.

  14. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Science.gov (United States)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  15. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  16. Pneumatic fractures in confined granular media.

    Science.gov (United States)

    Eriksen, Fredrik K; Toussaint, Renaud; Turquet, Antoine L; Måløy, Knut J; Flekkøy, Eirik G

    2017-06-01

    We perform experiments where air is injected at a constant overpressure P_{in}, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for P_{in} below 10 kPa, to large thick channels formed by erosion and fingers merging for high P_{in} around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w(d)∝d^{β}, where β=0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d^{2}d/dw^{2}∼κ∼d^{1-2β}, but not of the slope dw/dd∼d^{β-1}, i.e., more rounded tips rather than pointy cusps, as they would be for the case β>1. For increasing P_{in}, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v_{0} is found to scale with injection pressure as v_{0}∝P_{in}^{3/2}, while at a critical time t_{c} there is a cross-over to the behavior v(t)∝t^{-α}, where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully

  17. New media, old media: The technologies of international development

    Science.gov (United States)

    Ingle, Henry T.

    1986-09-01

    The research, theory and practice of educational technology over the past 75 years provide convincing evidence that this process offers a comprehensive and integrated approach to solving educational and social problems. The use of media and technology in development has shifted from an emphasis on mass media to personal media. A variety of electronic delivery systems are being used and are usually coordinated by centralized governmental agencies. There are no patterns of use since the problems vary and the medium used is responsive to the problem. Computers are used most frequently and satellite telecommunication networks follow. The effective use of these and other technologies requires a long-term commitment to financial support and training of personnel. The extension model of face-to-face contact still prevails in developing nations whether in agriculture, education or rural development. Low-cost technologies are being used in local projects while major regional and national companies use radio, film and related video technologies. The use of all available and cost-effective media and technologies make possible appropriate communications for specific goals with specific audiences. There appears to be no conflict among proponents of various media formats. Development in education and other sectors has much to gain from old and new communication technologies and has hardly been tapped. Several new educational technology developments are discussed as potential contributors to formal and nonformal education.

  18. Comparison of Ultrasonography and Radiography in Detection of Thoracic Bone Fractures; a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Yousefifard, Mahmoud; Baikpour, Masoud; Ghelichkhani, Parisa; Asady, Hadi; Darafarin, Abolfazl; Amini Esfahani, Mohammad Reza; Hosseini, Mostafa; Yaseri, Mehdi; Safari, Saeed

    2016-01-01

    The potential benefit of ultrasonography for detection of thoracic bone fractures has been proven in various surveys but no comprehensive conclusion has been drawn yet; therefore, the present study aimed to conduct a thorough meta-analytic systematic review on this subject. Two reviewers independently carried out a comprehensive systematic search in Medline, EMBASE, ISI Web of Knowledge, Scopus, Cochrane Library, and ProQuest databases. Data were summarized as true positive, false positive, true negative and false negative and were analyzed via STATA 11.0 software using a mixed-effects binary regression model. Sources of heterogeneity were further assessed through subgroup analysis. Data on 1667 patients (807 subjects with and 860 cases without thoracic fractures), whose age ranged from 0 to 92 years, were extracted from 17 surveys. Pooled sensitivity and specificity of ultrasonography in detection of thoracic bone fractures were 0.97 (95% CI: 0.90-0.99; I2= 88.88, prib fractures, compared to fractures of sternum or clavicle (97% vs. 91%). Moreover, the sensitivity was found to be higher when the procedure was carried out by a radiologist in comparison to an emergency medicine specialist (96% vs. 90%). Base on the findings of the present meta-analysis, screening performance characteristic of ultrasonography in detection of thoracic bone fractures was found to be higher than radiography. However, these characteristics were more prominent in detection of rib fractures and in cases where was performed by a radiologist.

  19. News Media Framing of Negative Campaigning

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Tue

    2014-01-01

    that news coverage of negative campaigning does apply the strategic game frame to a significantly larger degree than articles covering positive campaigning. This finding has significant implications for campaigning politicians and for scholars studying campaign and media effects.......News media coverage of election campaigns is often characterized by use of the strategic game frame and a focus on politicians’ use of negative campaigning. However, the exact relationship between these two characteristics of news coverage is largely unexplored. This article theorizes that consumer...... demand and norms of journalistic independence might induce the news media outlets to cover negative campaigning with a strategic game frame. A comprehensive content analysis based on several newspaper types, several election campaigns, and several different measurements of media framing confirms...

  20. Global Social Media Directory. A Resource Guide

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Christine F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piatt, Andrew W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    Social media platforms are internet-based applications focused on broadcasting user-generated content. While primarily web-based, these services are increasingly available on mobile platforms. Communities and individuals share information, photos, music, videos, provide commentary and ratings/reviews, and more. In essence, social media is about sharing information, consuming information, and repurposing content. Social media technologies identified in this report are centered on social networking services, media sharing, blogging and microblogging. The purpose of this Resource Guide is to provide baseline information about use and application of social media platforms around the globe. It is not intended to be comprehensive as social media evolves on an almost daily basis. The long-term goal of this work is to identify social media information about all geographic regions and nations. The primary objective is that of understanding the evolution and spread of social networking and user-generated content technologies internationally.

  1. Theoretical aspects of fracture mechanics

    Science.gov (United States)

    Atkinson, C.; Craster, R. V.

    1995-03-01

    In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber

  2. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  3. Do English Listening Outcome and Cognitive Load Change for Different Media Delivery Modes in U-Learning?

    Science.gov (United States)

    Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih

    2014-01-01

    Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media delivery modes produce the best results for English listening comprehension. The present study examined the effect of media delivery mode (sound and text vs. sound) on English listening comprehension and cognitive load. Participants…

  4. Fracture modes in human teeth.

    Science.gov (United States)

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  5. Field theory approaches to new media practices

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen

    2015-01-01

    In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps...... to develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communication and media research. This introduction article concludes by encouraging media scholars to embark...... on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....

  6. Otitis Media: Beyond the Examining Room.

    Science.gov (United States)

    Welling, Deborah R; Ukstins, Carol A

    2018-02-01

    The management of hearing loss associated with otitis media is multifaceted. Clinical practice guidelines set the collaborative prescriptive standards for the medical management of otitis media in children. Treatment of this condition does not end with the medical practitioner. There are far-reaching effects of otitis media and its sequelae that permeate every aspect of patients' lives including physiological, educational, and psychosocial. Therefore, a comprehensive interprofessional treatment plan must be designed taking into consideration best practices from a range of professions to maximize clinical outcomes, including the treating physician, speech-language pathologist, clinical audiologist, educational audiologist, and professionals in the educational setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A comparison between two global optimization algorithms (genetic and differential evolution) to calculate the reflection coefficients in fractured media; Uma comparacao entre dois algoritmos de otimizacao global (algoritmo genetico e evolucao diferencial) para inversao de coeficientes de reflexao em meios fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Vanzeler, Francisco Joclean Alves

    1999-06-01

    In this work, we extract the elastic stiffness and mass density from an multi azimuthal qP-wave reflection coefficients at an interface separating two anisotropic media with monoclinic symmetry with at least one of its planes of symmetry parallel to the interface. This objective was reach by forward and inverse modeling. We calculate the q-P-wave reflection for three models (I, II, III) of anisotropic equivalent medium: isotropic medium above a TIH medium; TIV medium above a TIH medium; and orthorhombic medium above a TIH medium. The TIH medium is equivalent an isotropic fractured medium with equivalent elastic stiffness and mass density calculated by the Hudson formulation. The reflection coefficients used was on its exact form and was generated for models I, II and III in multi-azimuthal/incidence angles and contaminated by gaussian noise. In the inverse modeling we work with GA and with DE algorithms to calculate the inversion parameter (5 elastic stiffness and mass density for bottom media and Vs of upper isotropic media) by minimization of 12 norm of difference between the true and synthetic reflection coefficient. We assume that we know the parameter of the upper media of the three models, except Vs for model one in especial case of inversion of upper media.The parameter to be determined by inverse modeling are parametrized in model space for values that is in according with the value of the observed velocity of propagation of elastic waves in the earth crust, and the resolution of measure, and constraints of elastic stability of the solid media. The GA and DE algorithms reached good inversion to the models with at least three azimuthal angles, (0 deg C, 45 deg C and 90 deg C) and incidence angles of 34 deg C for model I, and 50 deg C inverted only by GA for models II and III; and the especial case take by DE that need at least 44 deg C to invert the model I with the Vs of the upper media. From this results we can see the potential to determine from q

  8. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  9. SLOWNESS SURFACE CALCULATION FOR DIFFERENT MEDIA USING THE SYMBOLIC MATHEMATICS LANGUAGE MAPLE®

    Directory of Open Access Journals (Sweden)

    Piedrahita Carlos

    2004-06-01

    Full Text Available Starting from the equation in different media, we obtain the different type of waves that can exists in such media. The evaluation of the eigenvalues and eigenvectors let us construct the slowness surfaces. In general complex calculations case have to be made. In this work, routines were implemented in the symbolic language MAPLE® and the slowness surfaces were plotted. This work is relevant for the modelling of equivalent media that simulates natural fractured reservoirs, like those common in the Colombian foothills. It is important to understand the seismic response of this reservoirs for exploration of this areas.

  10. Results of Non-operative and Operative Management Of Apophyseal Avulsion Fractures of the Hip and Pelvis in Adolescent Athletes

    OpenAIRE

    Heyworth, Benton E.; Bonner, Bryant; Suppan, Catherine A.; Kocher, Mininder S.; Yen, Yi-Meng; Micheli, Lyle J.

    2014-01-01

    Objectives: Apophyseal avulsion fractures of the hip and pelvis occur almost exclusively in the adolescent population, with greater numbers being seen recently as the popularity and intensity of youth sports increases. Limited evidence exists detailing the demographics or distribution of these fractures by injury site. The goal of the current study was to present a comprehensive perspective on 437 of these fractures, including the indications and clinical course of 25 cases that underwent sur...

  11. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  12. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  13. Bone scintigraphy in the diagnosis of fracture and infection of the temporal bone

    International Nuclear Information System (INIS)

    Djupesland, G.; Nakken, K.F.; Mueller, C.; Skjoerten, F.; Roehrt, T.; Eldevik, P.

    1983-01-01

    The sensivit of Tc99m-MDP-bone-scintiscanning in the diagnosis of temporal bone fracture was found to that of conventional radiography if the patients were examined 10 days after the trauma. Temporal bone osteomyelitis with concomitant moderate osteosclerosis was demonstrated by bone scintigraphy in 5 cases of mastoiditis with atypical symptoms. A case of apicitis was for the first time demonstrated by scintigraphy. A low sensivity of 67 Ga-scintigraphy was demonstrated by positive Tc99m-bone-scintigraphy and negative 67 Ga-scintigraphy in a patient with atypical mastoiditis. Tc99m-scintigraphy was negative in 5 cases of otitis media suppurative and in 3 cases of otitis media chronica cum cholesteatoma, all with slight degree of osteosclerosis in the mastoid. The sensitivity of Tc99m-bone-scintigraphy in fracture and osteomyelitis of the temporal bone seems to be a function of the amount of reactive new bone formed. (Authors)

  14. Contrast media. Safety issues and ESUR guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H.S. (ed.) [Copenhagen Univ. Hospital, Herlev (Denmark). Dept. of Diagnostic Radiology 54E2

    2006-07-01

    In 1994 the European Society of Urogenital Radiology (ESUR) set up a committee to consider the safety of the contrast media used in radiology departments. Since then, the committee has questioned members, reviewed the literature, proposed guidelines, and discussed these proposals with participants at the annual symposia on urogenital radiology. This book represents the end result of this hard work. It contains all of the agreed guidelines, updated when necessary, and thereby comprehensively covers the many different safety issues relating to the diverse contrast media: barium contrast media, iodinated contrast media, MR contrast media (both gadolinium-based extracellular and organ-specific) and ultrasound contrast media. The prevention and treatment of both acute and delayed non-renal adverse reactions as well as the renal adverse reactions are covered in detail. The inclusion of all the ESUR guidelines within one book will offer an invaluable, unique and unparalleled resource. (orig.)

  15. Contrast media. Safety issues and ESUR guidelines

    International Nuclear Information System (INIS)

    Thomsen, H.S.

    2006-01-01

    In 1994 the European Society of Urogenital Radiology (ESUR) set up a committee to consider the safety of the contrast media used in radiology departments. Since then, the committee has questioned members, reviewed the literature, proposed guidelines, and discussed these proposals with participants at the annual symposia on urogenital radiology. This book represents the end result of this hard work. It contains all of the agreed guidelines, updated when necessary, and thereby comprehensively covers the many different safety issues relating to the diverse contrast media: barium contrast media, iodinated contrast media, MR contrast media (both gadolinium-based extracellular and organ-specific) and ultrasound contrast media. The prevention and treatment of both acute and delayed non-renal adverse reactions as well as the renal adverse reactions are covered in detail. The inclusion of all the ESUR guidelines within one book will offer an invaluable, unique and unparalleled resource. (orig.)

  16. The sharing of radiological images by professional mixed martial arts fighters on social media.

    Science.gov (United States)

    Rahmani, George; Joyce, Cormac W; McCarthy, Peter

    2017-06-01

    Mixed martial arts is a sport that has recently enjoyed a significant increase in popularity. This rise in popularity has catapulted many of these "cage fighters" into stardom and many regularly use social media to reach out to their fans. An interesting result of this interaction on social media is that athletes are sharing images of their radiological examinations when they sustain an injury. To review instances where mixed martial arts fighters shared images of their radiological examinations on social media and in what context they were shared. An Internet search was performed using the Google search engine. Search terms included "MMA," "mixed martial arts," "injury," "scan," "X-ray," "fracture," and "break." Articles which discussed injuries to MMA fighters were examined and those in which the fighter themselves shared a radiological image of their injury on social media were identified. During our search, we identified 20 MMA fighters that had shared radiological images of their injuries on social media. There were 15 different types of injury, with a fracture of the mid-shaft of the ulna being the most common. The most popular social media platform was Twitter. The most common imaging modality X-ray (71%). The majority of injuries were sustained during competition (81%) and 35% of these fights resulted in a win for the fighter. Professional mixed martial artists are sharing radiological images of their injuries on social media. This may be in an attempt to connect with fans and raise their profile among other fighters.

  17. Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea

    Science.gov (United States)

    Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming

    2018-02-01

    There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.

  18. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  19. Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip fractured patients

    Directory of Open Access Journals (Sweden)

    Riccardo eCalvani

    2014-11-01

    Full Text Available Background. Failure to meet an adequate dietary intake is involved in the pathogenesis of sarcopenia and osteoporosis, which in turn increase the risk for falls and fractures, respectively. Older people with hip fracture are often protein-malnourished at hospitalization. Whether low protein-energy intake is associated with muscle atrophy in hip fractured patients is presently unknown. This information is necessary for the development of novel strategies to manage this especially vulnerable patient population. The aim of this study was therefore to explore the relationship between dietary intake and muscle mass in older hip fractured patients.Methods. Analyses were conducted in hip fractured elderly admitted to an orthopedic and trauma surgery ward (University Hospital. Muscle mass was estimated by bioelectrical impedance analysis within 24 h from admission. Dietary information was collected via 24-h dietary recall and nutrient intakes calculated by a nutrition software.Results. Among 62 hip fractured patients (mean age 84.6±7.6 years, 84% women, the average energy intake was 929.2±170.3 Kcal/day, with higher values reported by men (1.046.8±231.4 Kcal/day relative to women (906.5±148.3 Kcal/day; p=0.01. Absolute and normalized protein intake was 50.0±13.5 g/day and 0.88±0.27 g/kg (body weight/day, respectively, with no gender differences. A positive correlation was determined between total energy intake and muscle mass (r=0.384; p=0.003. Similarly, protein and leucine consumption was positively correlated with muscle mass (r=0.367 and 0.311, respectively; p=0.005 for both.Conclusions. A low intake of calories, protein and leucine is associated with reduced muscle mass in hip fractured elderly. Given the relevance of sarcopenia as a risk factor for adverse outcomes in this patient population, our findings highlight the importance of a comprehensive dietary assessment for the detection of nutritional deficits predisposing to or aggravating

  20. Field theory approaches to new media practices

    DEFF Research Database (Denmark)

    Willig, Ida; Waltorp, Karen; Hartley, Jannie Møller

    2015-01-01

    could benefit particularly from Pierre Bourdieu’s research on cultural production. We introduce some of the literature that concerns digital media use and has been significant for field theory’s development in this context. We then present the four thematic articles in this issue and the articles......This special issue of MedieKultur specifically addresses new media practices and asks how field theory approaches can help us understand how culture is (prod)used via various digital platforms. In this article introducing the theme of the special issue, we argue that studies of new media practices...... outside the theme, which include two translations of classic texts within communications and media research. This introductory article concludes by encouraging media scholars to embark on additional studies within a field theory framework: This framework’s comprehensive theoretical basis and ideal...

  1. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  2. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  3. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  4. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  5. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  6. Association between change in BMD and fragility fracture in women and men.

    Science.gov (United States)

    Berger, Claudie; Langsetmo, Lisa; Joseph, Lawrence; Hanley, David A; Davison, K Shawn; Josse, Robert G; Prior, Jerilynn C; Kreiger, Nancy; Tenenhouse, Alan; Goltzman, David

    2009-02-01

    Our objective was to estimate the relationship between longitudinal change in BMD and fragility fractures. We studied 3635 women and 1417 men 50-85 yr of age in the Canadian Multicentre Osteoporosis Study who had at least two BMD measurements (lumbar spine, femoral neck, total hip, and trochanter) within the first 5 yr of the study and fragility fractures (any, main, forearm/wrist, ribs, hip) within the first 7 yr. Multiple logistic regression was used to model the relationship between baseline BMD, BMD change, and fragility fractures. We found that, among nonusers of antiresorptives, independent of baseline BMD, a decrease of 0.01 g/cm(2)/yr in total hip BMD was associated with an increased risk of fragility fracture with ORs of 1.15 (95% CI: 1.01; 1.32) in women and 1.34 (95% CI: 1.02; 1.78) in men. The risk of fragility fractures in subgroups such as fast losers and those with osteopenia was better estimated by models that included BMD change than by models that included baseline BMD but excluded BMD change. Although the association between baseline BMD and fragility fractures was similar in users and nonusers of antiresorptives, the association was stronger in nonusers compared with users. These results show that BMD change in both men and women is an independent risk factor for fragility fractures and also predicts fracture risk in those with osteopenia. The results suggest that BMD change should be included with other variables in a comprehensive fracture prediction model to capture its contribution to osteoporotic fracture risk.

  7. Clinico-radiologic considerations of middle ear fractures and its complications, about eight cases

    International Nuclear Information System (INIS)

    Mauricio, J.C.; Medina, E.; Goulao, A.; Monteiro, S.

    1985-01-01

    Eight cases of middle ear fractures are studied. The fracture deslocation of the ossicula, the lesions of facial canal and the meningocerebral complications associated with continuity solution of the 'tegmens' were characterized by computed tomography (CT - 'target program'). The CT with cisternography using contrast media hydrosoluble is also a method to determinate the place of the otoliquorrhea. The conclusion is that the CT image reconstruction by algorithms that has high powers of resolution and contrast are today indispensable to diagnosis and surgical planement of the deafness, facial palsy and tympanic hernia of the brain and arachnoidea cisterns. (Author) [pt

  8. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  9. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  10. MAGNUM-2D, Heat Transport and Groundwater Flow in Fractured Porous Media

    International Nuclear Information System (INIS)

    Langford, D.W.; Baca, R.G.

    2001-01-01

    1 - Description of program or function: MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water-rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and inter- connecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, non- isothermal Darcy flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER post-processor interpolates non-regularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH post-processor plots flow paths and computes the corresponding travel times. 2 - Method of solution: MAGNUM2

  11. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  12. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  13. Media Literacy: Smart In Educating Society In Information Technology Era

    Directory of Open Access Journals (Sweden)

    Darwadi MS

    2017-08-01

    Full Text Available Communication Media has been developed in the form of printed Media and electronic Media.   This development is not only easy to communicate and receive information fast wherever and whenever we go but also cheap. Besides positive impacts, it has negative influence to children and teenagers growth and adults. In other word it brings great influence to people. That is why Media literacy is needed so people will be able to know what Media is. Media presents through a long process. What we see is not 100% true.  There are politics, economics, culture etc in it. People have to know and understand Media. So, media literacy is so important to educate society when they access information in mass media. The program must be doing together, comprehensive from all element in society in structural and cultural way.

  14. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  15. Industrial science and technology research and development institutions in fiscal 1999. Report on achievements in research and development of human media; 1999 nendo sangyo kagaku gijutsu kenkyu kaihatsu seido. Human media no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to give the society with the full picture of human media at an early time, actual problems in industries were taken up. This paper summarizes the sensitivity agent to support sensitivity of individuals, the human media database, the urban environment human media aiming at symbiosis of nature with artificial environment, and the achievements of comprehensive investigations and researches in fiscals 1999 and 2000. Activities were taken in the following four areas: 1) research and development of the sensitivity agent and human media database, 2) research and development of the urban environment human media, 3) comprehensive investigations and researches, and 4) investigations on technological trends in foreign countries. In Item 1), discussions were given on the technology to present full-color images at high accuracy, the image sensitivity retrieval technology, and the multi-dimensional interface technology for the human media database. In studying the basic human media technology, discussions were given on the basic sensitivity modeling technology, and the sensitivity agent mechanism. (NEDO)

  16. Mandible Fracture Complications and Infection: The Influence of Demographics and Modifiable Factors.

    Science.gov (United States)

    Odom, Elizabeth B; Snyder-Warwick, Alison K

    2016-08-01

    Mandible fractures account for 36 to 70 percent of all facial fractures. Despite their high prevalence, the literature lacks a comprehensive review of demographics, fracture patterns, timing of management, antibiotic selection, and outcomes, particularly when evaluating pediatric versus adult patients. The authors aim to determine the complication and infection rates after surgical treatment of mandibular fractures and the bacterial isolates and antibiotic sensitivities from mandible infections after open reduction and internal fixation at their institution. Data were collected retrospectively for all mandible fractures treated at the authors' institution between 2003 and 2013. Patients were divided into pediatric (younger than 16 years) and adult (16 years or older) subgroups. Demographics, fracture location, fracture cause, comorbidities, antibiotic choice, and subsequent complications and infections were analyzed. Data were evaluated using appropriate statistical tests for each variable. Three hundred ninety-five patients were evaluated. Demographics and fracture cause were similar to those reported in current literature. Of the 56 pediatric patients, complications occurred in 5.6 percent. Time from injury to operative intervention did not affect outcome. The complication rate was 17.5 percent and the infection rate was 9.4 percent in the adult subgroup. Time from injury to operative intervention, sex, and edentulism were not significant predictors of complication or infection. Tobacco use, number of fractures, number of fractures fixated, and surgical approach were predictors of complication and infection. Perioperative ampicillin-sulbactam had a significantly lower risk of infection. Certain demographic and operative factors lead to significantly higher risks of complications after surgical management of mandibular fractures. Ampicillin-sulbactam provides effective antibiotic prophylaxis. Risk factor modification may improve outcomes. Risk, IV.

  17. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    Science.gov (United States)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  19. Prevalence of malnutrition in a cohort of 509 patients with acute hip fracture: the importance of a comprehensive assessment.

    Science.gov (United States)

    Díaz de Bustamante, M; Alarcón, T; Menéndez-Colino, R; Ramírez-Martín, R; Otero, Á; González-Montalvo, J I

    2018-01-01

    Backgrounds/objectives:Malnutrition is very common in acute hip fracture (HF) patients. Studies differ widely in their findings, with reported prevalences between 31 and 88% mainly because of small sample sizes and the use of different criteria. The aim of this study was to learn the prevalence of malnutrition in a large cohort of HF patients in an comprehensive way that includes the frequency of protein-energy malnutrition, vitamin D deficiency and sarcopenia. A 1-year consecutive sample of patients admitted with fragility HF in a 1300-bed public University Hospital, who were assessed within the first 72 h of admission. Clinical, functional, cognitive and laboratory variables were included. Energy malnutrition (body mass index (BMI) malnutrition (serum total protein patients were included. The mean age was 85.6±6.9 years and 79.2% were women. Ninety-nine (20.1%) patients had a BMI patients (81.2%) had protein malnutrition. Eighty-seven (17.1%) patients had both energy and protein malnutrition. Serum vitamin D was patients. The prevalence of sarcopenia was 17.1%. Protein malnutrition and vitamin D deficiency are the rule in acute HF patients. Energy malnutrition and sarcopenia are also common. A nutritional assessment in these patients should include these aspects together.

  20. The Efficiency of Different Online Learning Media--An Empirical Study

    Science.gov (United States)

    Köbler, Franziska J.; Nitzschner, Marco M.

    2014-01-01

    In the current study, it was examined whether successful learning is related to using different types of media. We compared the comprehension of an economic concept in novices (N = 82) under three conditions: a Wikipedia article, a funny, and a serious YouTube video. The media were presented in English which is a foreign language to most of the…

  1. Differing approaches to falls and fracture prevention between Australia and Colombia

    Science.gov (United States)

    Gomez, Fernando; Curcio, Carmen Lucia; Suriyaarachchi, Pushpa; Demontiero, Oddom; Duque, Gustavo

    2013-01-01

    Falls and fractures are major causes of morbidity and mortality in older people. More importantly, previous falls and/or fractures are the most important predictors of further events. Therefore, secondary prevention programs for falls and fractures are highly needed. However, the question is whether a secondary prevention model should focus on falls prevention alone or should be implemented in combination with fracture prevention. By comparing a falls prevention clinic in Manizales (Colombia) versus a falls and fracture prevention clinic in Sydney (Australia), the objective was to identify similarities and differences between these two programs and to propose an integrated model of care for secondary prevention of fall and fractures. A comparative study of services was performed using an internationally agreed taxonomy. Service provision was compared against benchmarks set by the National Institute for Health and Clinical Excellence (NICE) and previous reports in the literature. Comparison included organization, administration, client characteristics, and interventions. Several similarities and a number of differences that could be easily unified into a single model are reported here. Similarities included population, a multidisciplinary team, and a multifactorial assessment and intervention. Differences were eligibility criteria, a bone health assessment component, and the therapeutic interventions most commonly used at each site. In Australia, bone health assessment is reinforced whereas in Colombia dizziness assessment and management is pivotal. The authors propose that falls clinic services should be operationally linked to osteoporosis services such as a “falls and fracture prevention clinic,” which would facilitate a comprehensive intervention to prevent falls and fractures in older persons. PMID:23378748

  2. Surgical treatment of neglected hip fracture in children with cerebral palsy: case report and review of the literature.

    Science.gov (United States)

    Toro, Giuseppe; Moretti, Antimo; Toro, Gabriella; Tirelli, Assunta; Calabrò, Giampiero; Toro, Antonio; Iolascon, Giovanni

    2017-01-01

    A clinical case of a 15-year-old cerebral palsy child with a Sandhu type 2 neglected femoral neck fracture is presented. The patient was treated using cannulated screws and cancellous bone graft augmented with mesenchymal stem cells. At 6 months after the surgery complete fracture healing was observed. To early diagnose this fractures, it is mandatory to perform a comprehensive clinical and radiological evaluation including also a second level imaging. The use of cannulated screws with cancellous bone graft and MSCs is a viable treatment option in these patients.

  3. VSP in crystalline rocks - from downhole velocity profiling to 3-D fracture mapping

    International Nuclear Information System (INIS)

    Cosma, C.; Heikkinen, P.; Keskinen, J.; Enescu, N.

    1998-01-01

    VSP surveys have been carried out at several potential nuclear waste disposal sites in Finland since the mid 80s. To date, more than 200 three-component profiles have been measured. The main purpose of the surveys was to detect fracture zones in the crystalline bedrock and to determine their position. Most seismic events could be linked to zones of increased fracturing observed in the borehole logs. The more pronounced seismic reflectors could be correlated with hydrogeologically significant zones, which have been the main targets in the investigations. Processing and interpretation methods have been developed specifically for VSP surveys in crystalline rocks: Weak reflections from thin fracture zones are enhanced by multi-channel filtering techniques based on the Radon transform. The position and orientation of the fracture zones are determined by polarisation analysis and by combining data from several shot points. The compilation of the results from several boreholes gives a comprehensive image of the fracture zones at the scale of the whole site. The discussion of the methodology is based on examples from the Olkiluoto site, in SW Finland

  4. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  5. Contrast media in diagnostic radiology. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Elke, M.; Gueckel, C.; Schmitt, H.E.; Felder, E.; Froehlich, J.M.; Radue, E.W.; Scheidegger, D.; Speck, U.

    1992-01-01

    With the 3rd edition of this book a comprehensive description is provided of all the properties and side-effects of contrast media as well as of the available remedies in mishaps caused by these agents. The individual chapters are headed as follows: (s. table of contents). 1. Introduction. 2. Contrast media for X-ray radiography, MRT, and ultrasonic scanning. 3. Kinetics of X-ray contrast media. 4. Pharamcodynamics of X-ray contrast media. 5. Side-effects of X-ray contrast media and complications encountered in practical radiology. 6. The mobile reanimation unit and the emergency kit. 7. Treatment of reactions to contrast media. 8. Appendix. 9. Bibliography, subject index. (orig./MG) With 25 figs., 5 text tabs., 39 tabs [de

  6. Large-scale simulation of ductile fracture process of microstructured materials

    International Nuclear Information System (INIS)

    Tian Rong; Wang Chaowei

    2011-01-01

    The promise of computational science in the extreme-scale computing era is to reduce and decompose macroscopic complexities into microscopic simplicities with the expense of high spatial and temporal resolution of computing. In materials science and engineering, the direct combination of 3D microstructure data sets and 3D large-scale simulations provides unique opportunity for the development of a comprehensive understanding of nano/microstructure-property relationships in order to systematically design materials with specific desired properties. In the paper, we present a framework simulating the ductile fracture process zone in microstructural detail. The experimentally reconstructed microstructural data set is directly embedded into a FE mesh model to improve the simulation fidelity of microstructure effects on fracture toughness. To the best of our knowledge, it is for the first time that the linking of fracture toughness to multiscale microstructures in a realistic 3D numerical model in a direct manner is accomplished. (author)

  7. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media

    International Nuclear Information System (INIS)

    Canamon Valera, I.

    2006-11-01

    This doctoral research was conducted as part of a joint France-Spain co-tutelage PhD thesis in the framework of a bilateral agreement between two universities, the Institut National Polytechnique de Toulouse (INPT) and the Universidad Politecnica de Madrid (UPM). It concerns a problem of common interest at the national and international levels, namely, the disposal of radioactive waste in deep geological repositories. The present work is devoted, more precisely, to near-field hydrogeological aspects involving mass and heat transport phenomena. The first part of the work is devoted to a specific data interpretation problem (pressures, relative humidities, temperatures) in a multi-barrier experimental system at the scale of a few meters - the 'Mock-Up Test' of the FEBEX project, conducted in Spain. Over 500 time series are characterized in terms of spatial, temporal, and/or frequency/scale-based statistical analysis techniques. The time evolution and coupling of physical phenomena during the experiment are analyzed, and conclusions are drawn concerning the behavior and reliability of the sensors. The second part of the thesis develops in more detail the 3-Dimensional (3D) modeling of coupled Thermo-Hydro-Mechanical phenomena in a fractured porous rock, this time at the scale of a hundred meters, based on the data of the 'In-Situ Test' of the FEBEX project conducted at the Grimsel Test Site in the Swiss Alps. As a first step, a reconstruction of the 3D fracture network is obtained by Monte Carlo simulation, taking into account through optimization the geomorphological data collected around the FEBEX gallery. The heterogeneous distribution of traces observed on the cylindrical wall of the tunnel is fairly well reproduced in the simulated network. In a second step, we develop a method to estimate the equivalent permeability of a many-fractured block by extending the superposition method of Ababou et al. [1994] to the case where the permeability of the rock matrix is not

  8. An inconvenient truth: treatment of displaced paediatric supracondylar humeral fractures.

    LENUS (Irish Health Repository)

    Donnelly, M

    2012-06-01

    The need for emergent management of displaced paediatric supracondylar humeral fractures is being questioned in the literature. Open reduction rates of up to 46% have been reported in the non-emergent management of these injuries. At our institution these fractures are managed as operative emergencies by senior personnel. To examine the ongoing need for this policy we reviewed our results. All patients managed over a five year period with Gartland type IIB or III paeditric supracondylar humeral fractures were identified and a comprehensive chart and radiographic review undertaken. The mean time from injury to fracture reduction and stabilization was 6.6 h. Consultants performed or supervised 90% of cases. Open reduction was necessary in 5% of cases. Complications included a perioperative nerve injury rate of 6% and a superficial pin site infection rate of 3%. This study suggests that, despite the challenge to trauma on-call rostering, the emergency management of these injuries is advantageous to patients in units of our size. Based on the data presented here we continue our practice of emergent management. We suggest that units of a similar size to our own would show a benefit from an analogous policy albeit an inconvenient truth.

  9. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  10. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    Science.gov (United States)

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  11. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  12. Strategies of moving image comprehension of students in primary and secondary education

    Directory of Open Access Journals (Sweden)

    Imre Szíjártó

    2015-06-01

    Full Text Available The research was based on a survey method of enquiry. We were looking for answers to the following questions: What strategies of moving image comprehension do participants use? Are there differences in social status in the level of comprehension of moving images? Are there differences between students whose education consists of the ‘moving image culture and media literacy’ module, and those whose does not? What typical levels of media literacy can be located amongst students? What tasks of development can we identify? According to the literature and our research findings, students’ strategies of moving image comprehension are formed by three components: the socio-cultural environment, the school, and those online social networks, which students frequently access – in classical terms this refers to the influence of peer groups. We have come up with logical connections at the intersection of the three areas, which posed as a vantage point in the development of our survey.

  13. Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009

    Directory of Open Access Journals (Sweden)

    Ray Marks

    2009-12-01

    Full Text Available Ray MarksCity University of New York and Columbia University, New York, NY, USAAbstract: Hip fractures – which commonly lead to premature death, high rates of morbidity, or reduced life quality – have been the target of a voluminous amount of research for many years. But has the lifetime risk of incurring a hip fracture decreased sufficiently over the last decade or are high numbers of incident cases continuing to prevail, despite a large body of knowledge and a variety of contemporary preventive and refined surgical approaches? This review examines the extensive hip fracture literature published in the English language between 1980 and 2009 concerning hip fracture prevalence trends, and injury mechanisms. It also highlights the contemporary data concerning the personal and economic impact of the injury, plus potentially remediable risk factors underpinning the injury and ensuing disability. The goal was to examine if there is a continuing need to elucidate upon intervention points that might minimize the risk of incurring a hip fracture and its attendant consequences. Based on this information, it appears hip fractures remain a serious global health issue, despite some declines in the incidence rate of hip fractures among some women. Research also shows widespread regional, ethnic and diagnostic variations in hip fracture incidence trends. Key determinants of hip fractures include age, osteoporosis, and falls, but some determinants such as socioeconomic status, have not been well explored. It is concluded that while more research is needed, well-designed primary, secondary, and tertiary preventive efforts applied in both affluent as well as developing countries are desirable to reduce the present and future burden associated with hip fracture injuries. In this context, and in recognition of the considerable variation in manifestation and distribution, as well as risk factors underpinning hip fractures, well-crafted comprehensive, rather

  14. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  15. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    Science.gov (United States)

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.

  16. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Science.gov (United States)

    Hou, Fang

    . In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  17. The Impact of Disease and Drugs on Hip Fracture Risk.

    Science.gov (United States)

    Leavy, Breiffni; Michaëlsson, Karl; Åberg, Anna Cristina; Melhus, Håkan; Byberg, Liisa

    2017-01-01

    We report the risks of a comprehensive range of disease and drug categories on hip fracture occurrence using a strict population-based cohort design. Participants included the source population of a Swedish county, aged ≥50 years (n = 117,494) including all incident hip fractures during 1 year (n = 477). The outcome was hospitalization for hip fracture (ICD-10 codes S72.0-S72.2) during 1 year (2009-2010). Exposures included: prevalence of (1) inpatient diseases [International Classification of Diseases (ICD) codes A00-T98 in the National Patient Register 1987-2010] and (2) prescribed drugs dispensed in 2010 or the year prior to fracture. We present age- and sex-standardized risk ratios (RRs), risk differences (RDs) and population attributable risks (PARs) of disease and drug categories in relation to hip fracture risk. All disease categories were associated with increased risk of hip fracture. Largest risk ratios and differences were for mental and behavioral disorders, diseases of the blood and previous fracture (RRs between 2.44 and 3.00; RDs (per 1000 person-years) between 5.0 and 6.9). For specific drugs, strongest associations were seen for antiparkinson (RR 2.32 [95 % CI 1.48-1.65]; RD 5.2 [1.1-9.4]) and antidepressive drugs (RR 1.90 [1.55-2.32]; RD 3.1 [2.0-4.3]). Being prescribed ≥10 drugs during 1 year incurred an increased risk of hip fracture, whereas prescription of cardiovascular drugs or ≤5 drugs did not appear to increase risk. Diseases inferring the greatest PARs included: cardiovascular diseases PAR 22 % (95 % CI 14-29) and previous injuries (PAR 21 % [95 % CI 16-25]; for specific drugs, antidepressants posed the greatest risk (PAR 16 % [95 % CI 12.0-19.3]).

  18. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  19. Long-term functional outcome after type A3 spinal fractures : operative versus non-operative treatment

    NARCIS (Netherlands)

    Post, Richard B.; van der Sluis, Corry K.; Leferink, Vincent J. M.; ten Duis, Henk-Jan

    The authors retrospectively studied, by questionnaires, the long-term (5 years) functional outcome after operative (posterior instrumentation : 38 cases) and non-operative treatment (25 cases) for type A3 spinal fractures (Comprehensive Classification) without neurological deficit. A possible bias

  20. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  1. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  2. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    International Nuclear Information System (INIS)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs

  3. Modeling flow in fractured medium. Uncertainty analysis with stochastic continuum approach

    International Nuclear Information System (INIS)

    Niemi, A.

    1994-01-01

    For modeling groundwater flow in formation-scale fractured media, no general method exists for scaling the highly heterogeneous hydraulic conductivity data to model parameters. The deterministic approach is limited in representing the heterogeneity of a medium and the application of fracture network models has both conceptual and practical limitations as far as site-scale studies are concerned. The study investigates the applicability of stochastic continuum modeling at the scale of data support. No scaling of the field data is involved, and the original variability is preserved throughout the modeling. Contributions of various aspects to the total uncertainty in the modeling prediction can also be determined with this approach. Data from five crystalline rock sites in Finland are analyzed. (107 refs., 63 figs., 7 tabs.)

  4. Merancang Media Hiburan Buku Cergam Menjadi Media Belajar untuk Alat Bantu Komunikasi

    Directory of Open Access Journals (Sweden)

    Ida Nurhaida

    2007-06-01

    Full Text Available For the sake of reinforcing the local knowledge (that seems to be abandoned by local community of West Lampung themselves and to make corrections against agroforestry malpractices as well as of accommodating to the poor performance of extension programs on recharge area of West Lampung (including of media lacking of extension, we have developed the entertainment media of pictorial story books of coffee agroforestry. The media were designed especially for the low literate community (Nurhaida et al., 2004 to affirm the tao of knowledge of the four tribes dwell in the recharge area: Lampungese, Semendonese, Sundanese and Sundanese of villages of Way Mengaku, Sukananti, Sidomakmur and Gunung Terang respectively (see Nurhaida et al., (2005. There are four languages edition in accordance with the locally mother tongues of the four tribes plus Indonesian to accommodate the other tribes exist in West Lampung. Desk activities were conducted at the Laboratory of Multimedia, Departmentof Communication Science, The University of Lampung Indonesia. Media pretesting were conducted twice in August-September 2005 to measure the variables of attraction, self involvement, acceptability and comprehension of the media in accordance with Bertrand’s suggestion (1978. Between the two and the second of the media pretesting, there had been conducted the media improvements. The research showed that the entertainment media have been used up to be a learning media for the propose of extension program in the recharge area successfully. This claim is supported by the high effectiveness of the five editions: (Lampungese, Semendonese, Javanese, Sundanese and Indonesian of 85, 89, 88, 89, and 86% repectively that brookthrough aggaints the severely heavied barrier of low litteracy : 27, 44, 39, 77, dan 88 words per second respectively. It is strongly recommended that: (1 reproduce the media and disseminate into community dwell on the recharge of West Lampung to reinforce the

  5. Perilaku Pengguna Media Sosial beserta Implikasinya Ditinjau dari Perspektif Psikologi Sosial Terapan

    Directory of Open Access Journals (Sweden)

    Mulawarman Mulawarman

    2017-10-01

    Full Text Available Social media becomes a new tool for many areas to perform functions and works, such as political campaign media, advertising, and teaching. However, the use of social media nowadays also raises excessive effects which could be serious problems if it was not overcame as soon as possible. There are some social media usage behaviors that should be observed, such as selfie, cyber bullying, online shopping, user-personalization, and shared- culture. Through the study of social psychology, it is expected that readers have more comprehensive perspective in looking at the phenomenon of social media hegemony as part of contemporary social reality.

  6. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  7. Social media interventions to prevent HIV: A review of interventions and methodological considerations.

    Science.gov (United States)

    Tso, Lai Sze; Tang, Weiming; Li, Haochu; Yan, H Yanna; Tucker, Joseph D

    2016-06-01

    Persistent new HIV infections and risky behaviors underscore the need for enhanced HIV prevention. Social media interventions may promote safe sexual behaviors, increase HIV testing uptake, and promote safe injection behaviors. This review discusses how social media interventions tap into the wisdom of crowds through crowdsourcing, build peer-mentored communities, and deliver interventions through social networks. Social media HIV prevention interventions are constrained by ethical issues, low social media usage among some key populations, and implementation issues. Comprehensive measurement of social media interventions to prevent HIV is necessary, but requires further development of metrics.

  8. 3D printing application and numerical simulations in a fracture system

    Science.gov (United States)

    Yoon, H.; Martinez, M. J.

    2017-12-01

    The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  9. Importance of Strategic Social Media Marketing

    Directory of Open Access Journals (Sweden)

    Simona VINEREAN

    2017-08-01

    Full Text Available Technological innovation has grown at an unprecedented rate over the past couple of decades, creating multiple opportunities for marketing in online settings. The proliferation of social media helps customers become more empowered and engaged in their brand interactions, while also providing them with new tools in their search, evaluation, choice and purchases of marketing offerings. Consequently, these developments are influencing marketing practices, both strategically, and tactically. Nowadays, social media has developed in an essential part of marketing strategy for its ability to generate co-created value, to interactively connect brands to consumers, to monitor brand-related discussions and sentiments, to guide consumers in the decision-making process, to instigate customer-to-customer interactions, and transform consumers into brand advocates. The purpose of this paper is to examine the strategic opportunities of social media marketing for organizations. By providing a comprehensive conceptualization and definition of social media marketing, this research outlines its role in advertising, Customer Relationship Management, and e-Word-of-Mouth.

  10. Mapping Government Social Media Research and Moving it Forward

    DEFF Research Database (Denmark)

    Medaglia, Rony; Zheng, Lei

    2017-01-01

    ), and the public administration (PA) research fields, we mapped government social media research into the six focus categories of context, user characteristics, user behavior, platform properties, management, and effects. Findings show that 1) research focuses on government, rather than on users; 2) studies......The growing phenomenon of government social media requires better informed and more complex studies, but all beginning with a clearer understanding of the current research. Drawing on a comprehensive review of government social media literature in the e-government, the Information Systems (IS...... focusing on context, management, and users mostly focus on quantitative aspects; 3) the properties of social media platforms are under-investigated; and 4) research on the relationship between constructs of the government social media phenomenon is under-investigated. Based on our analysis, we propose...

  11. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    Science.gov (United States)

    2006-12-01

    MRI confirmed a large coexisting haemangioma which may have confounded perception of stress fracture symptoms. Table 1 is a comprehensive subject...Johnson JR, Light KI, Yuan HA: A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24...Simmons JW, Jr., Mooney V, Thacker I: Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J

  12. Comprehensive multiplatform collaboration

    Science.gov (United States)

    Singh, Kundan; Wu, Xiaotao; Lennox, Jonathan; Schulzrinne, Henning G.

    2003-12-01

    We describe the architecture and implementation of our comprehensive multi-platform collaboration framework known as Columbia InterNet Extensible Multimedia Architecture (CINEMA). It provides a distributed architecture for collaboration using synchronous communications like multimedia conferencing, instant messaging, shared web-browsing, and asynchronous communications like discussion forums, shared files, voice and video mails. It allows seamless integration with various communication means like telephones, IP phones, web and electronic mail. In addition, it provides value-added services such as call handling based on location information and presence status. The paper discusses the media services needed for collaborative environment, the components provided by CINEMA and the interaction among those components.

  13. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  14. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  15. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  16. Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

    Directory of Open Access Journals (Sweden)

    Yongbin Zhang

    2015-06-01

    Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

  17. The scheme and research of TV series multidimensional comprehensive evaluation on cross-platform

    Science.gov (United States)

    Chai, Jianping; Bai, Xuesong; Zhou, Hongjun; Yin, Fulian

    2016-10-01

    As for shortcomings of the comprehensive evaluation system on traditional TV programs such as single data source, ignorance of new media as well as the high time cost and difficulty of making surveys, a new evaluation of TV series is proposed in this paper, which has a perspective in cross-platform multidimensional evaluation after broadcasting. This scheme considers the data directly collected from cable television and the Internet as research objects. It's based on TOPSIS principle, after preprocessing and calculation of the data, they become primary indicators that reflect different profiles of the viewing of TV series. Then after the process of reasonable empowerment and summation by the six methods(PCA, AHP, etc.), the primary indicators form the composite indices on different channels or websites. The scheme avoids the inefficiency and difficulty of survey and marking; At the same time, it not only reflects different dimensions of viewing, but also combines TV media and new media, completing the multidimensional comprehensive evaluation of TV series on cross-platform.

  18. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  19. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  20. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  1. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    Science.gov (United States)

    2013-09-01

    sandstone blocks in various configurations across 1000 μm, smooth-walled fractures. We hypothesize that a second mechanism for fracture cross flow is...content (as the sand is made of nearly pure quartz sandstone , it has been assumed that the organic carbon content is zero).The second column (C3) consisted...large diameter cylindrical sample of unsaturated fractured sandstone in the laboratory. The three-dimensional reconstructions of the high diffusivity

  2. Teenagers and the Fragmenting Media Environment in Asia: An Australian Pilot Study.

    Science.gov (United States)

    Sternberg, Jason; George, Christina; Green, Joshua

    2000-01-01

    Presents preliminary results from a survey of 15- to 17-year-old Australians, exploring television's place within a rapidly expanding multimedia environment. Finds strong evidence for arguing that Australian youth's media use is currently in a state of flux. Lays foundations for more comprehensive studies of youth media use in Australia that might…

  3. Computed tomography in the evaluation of thoracic and lumbar spinal fracture

    International Nuclear Information System (INIS)

    Kim, Byung Tae; Cho, Chi Ja; Lee, Jeung Sik

    1983-01-01

    The accurate diagnosis of spine trauma is essential to its proper management, since therapeutic decisions depend on radiography and clinical data. Failure to recognize significant injury to the spine can lead to severe neurological deficit in the previously neulogically intact patient. The development of CT has open a new dimension in evaluation of spinal column. In our experience CT not only offer the accurate and thorough evaluation of spinal injury, but does so in a rapid and more efficient manner when compared with conventional radiography. CT has become the diagnostic procedure of choice when screening plain film and clinical examination indicate that a comprehensive radiographic evaluation is necessary. Eighteen patients with thoracic and lumber spinal fracture were studied with CT. Four had multiple level injuries. The results are summarized as follow; 1. Among the 18 patients, 4 had multiple level injuries and other 14 patients had single spinal injury. 2. 8 patients (11 spines) had simple compression fracture and 12 patients (13 spines) had burst fracture of vertebral body. 3. 15 spines among the 24 involved spines are located at T12 and L1 level. 4. Spinal canal narrowing and bony fragment in the canal are defined only 7 of 13 spines (53.8%) of burst fracture in conventional radiography. However CT showed in all spines of burst fracture. 5. Spinal posterior element involvement is suggested only one of 12 spines of burst fracture, but correctly interpretated by CT in 7 spines (11 anatomical position)

  4. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  5. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  6. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  7. Determining Effect of Digital And Media Activities On Media And Science Literacy Of Middle-School Students And Parents

    Directory of Open Access Journals (Sweden)

    Bilge CAN

    2018-01-01

    Full Text Available This research aims determining effect of digital and media activities on media and science literacy of middle-school students and parents and identifying the relationship between them. Quasi- experimental model has been used by which pretest-posttest studies have been held on one group by using quantitative data during research. The sample of the research consists of 60 students and 119 parents who attend a school in the province of Bursa in the academic year of 2013-2014. According to data analysis obtained in the research, there is a significant relation between pretests and posttests about scientific literacy of middle-school students and parents relating to Digital and Media Activities. There is a relation between media and scientific literacy of students and mothers as parents. There is a difference between the applied PISA and TIMSS exams and the students' science literacy. In the light of these results, some suggestion has been offered with regard to focusing on the importance of 21st century skills and literacy, developing scientific and media literacy level and obtaining more comprehensive results.

  8. Leadership Lessons: Helping Students Develop Essential Leadership and Communication Competencies through Social Media

    Science.gov (United States)

    Remund, David L.

    2015-01-01

    Instructors often use social media as an extra platform for sharing information and therefore extend the classroom beyond classroom walls. However, when more thoughtfully integrated in pedagogy and tied to specific desired learning outcomes, social media may help accomplish more: strong engagement and self-reported comprehension, aided by the…

  9. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  10. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  11. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    Science.gov (United States)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  12. Television in a New Media Environment

    Directory of Open Access Journals (Sweden)

    Viktorija Car

    2010-12-01

    Full Text Available The first decade of the 21st century has brought about comprehensive changes for media and communications in general. The new multimedia landscape has broken traditional boarders between telecommunications, the audiovisual industry, and information technology. Still, the border between traditional and new media is quite defined, yet there exists a tendency to mitigate it. Changes in media content production will play the dominant role in that process, as well the fact that the three-step flows of communication encompass new configurations of one-to-one, one-to-many, and many-to-many communication across the online/offline divide. In such processes of development and transformation, video content, once reserved exclusively for film and television using the one-way channel of communication (from content provider to viewers, now plays an increasingly important role. New media provides opportunities for video content to use three-step flows of communication, which subsequently enables space for new video genres and formats. This article presents the results of the study entitled, ”Media Accountability”, and compares them with the author’s own research on television news and with Forrester’s research on youth as a media audience. Finally, this article provides insights on the future of television as a medium and its existence as a traditional medium.

  13. Selecting appropriate gastroenteric contrast media for diagnostic fluoroscopic imaging in infants and children: a practical approach.

    Science.gov (United States)

    Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert D; Kleinman, Patricia L; Taylor, George A; Buonomo, Carlo

    2017-04-01

    In our experience, questions about the appropriate use of enteric contrast media for pediatric fluoroscopic studies are common. The purpose of this article is to provide a comprehensive review of enteric contrast media used for pediatric fluoroscopy, highlighting the routine use of these media at a large tertiary care pediatric teaching hospital.

  14. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  15. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  16. Analytical Modeling of the Pseudo-Colloid Migration with the Band release Boundary Condition in the Fractured Porous Media

    International Nuclear Information System (INIS)

    Jeong, Miseon; Kang, Chulhyung; Hwang, Yongsoo

    2011-01-01

    Many papers have already dealt with the problem of the radionuclide transport in various fractured porous systems, but without discussing daughter products. However, natural radionuclides may decay to radioactive daughter muscled, which may travel farther than the the parent nuclides. It is considered the multi-member decay chain of the actinide nuclide with the band release inlet boundary condition in a fractured porous rock. In this paper, it is developed the pseudo-colloid migration with the band release inlet boundary conditions with multi-member decay chains in a fractured porous matrix. It is obtained a semi-analytical solution for the multi-member decay chains as a canonical form. As one can expected, the colloid has significantly important influence to the radionuclide transport in the geologic system and the decay chain also isn't neglecting. The concept of deep geological disposal of high-level radioactive waste has been widely accepted at many countries. The repositories aim mainly to prevent the radionuclides form migrating to the biosphere through any one of many pathways. Fractures can act as main pathways for radionuclide transport because of their relatively high permeabilities

  17. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  18. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis.

    Science.gov (United States)

    Dyrlund, Thomas F; Kirkegaard, Kirstine; Poulsen, Ebbe Toftgaard; Sanggaard, Kristian W; Hindkjær, Johnny J; Kjems, Jørgen; Enghild, Jan J; Ingerslev, Hans Jakob

    2014-11-01

    Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. Using advanced mass spectrometry and high confidence criteria for accepting proteins (P defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. For six of the commercial embryo culture media only one

  19. Partnership for fragility bone fracture care provision and prevention program (P4Bones: study protocol for a secondary fracture prevention pragmatic controlled trial

    Directory of Open Access Journals (Sweden)

    Gaboury Isabelle

    2013-01-01

    Full Text Available Abstract Background Fractures associated with bone fragility in older adults signal the potential for secondary fracture. Fragility fractures often precipitate further decline in health and loss of mobility, with high associated costs for patients, families, society and the healthcare system. Promptly initiating a coordinated, comprehensive pharmacological bone health and falls prevention program post-fracture may improve osteoporosis treatment compliance; and reduce rates of falls and secondary fractures, and associated morbidity, mortality and costs. Methods/design This pragmatic, controlled trial at 11 hospital sites in eight regions in Quebec, Canada, will recruit community-dwelling patients over age 50 who have sustained a fragility fracture to an intervention coordinated program or to standard care, according to the site. Site study coordinators will identify and recruit 1,596 participants for each study arm. Coordinators at intervention sites will facilitate continuity of care for bone health, and arrange fall prevention programs including physical exercise. The intervention teams include medical bone specialists, primary care physicians, pharmacists, nurses, rehabilitation clinicians, and community program organizers. The primary outcome of this study is the incidence of secondary fragility fractures within an 18-month follow-up period. Secondary outcomes include initiation and compliance with bone health medication; time to first fall and number of clinically significant falls; fall-related hospitalization and mortality; physical activity; quality of life; fragility fracture-related costs; admission to a long term care facility; participants’ perceptions of care integration, expectations and satisfaction with the program; and participants’ compliance with the fall prevention program. Finally, professionals at intervention sites will participate in focus groups to identify barriers and facilitating factors for the integrated

  20. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  1. Determination of Geometrical REVs Based on Volumetric Fracture Intensity and Statistical Tests

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-05-01

    Full Text Available This paper presents a method to estimate a representative element volume (REV of a fractured rock mass based on the volumetric fracture intensity P32 and statistical tests. A 150 m × 80 m × 50 m 3D fracture network model was generated based on field data collected at the Maji dam site by using the rectangular window sampling method. The volumetric fracture intensity P32 of each cube was calculated by varying the cube location in the generated 3D fracture network model and varying the cube side length from 1 to 20 m, and the distribution of the P32 values was described. The size effect and spatial effect of the fractured rock mass were studied; the P32 values from the same cube sizes and different locations were significantly different, and the fluctuation in P32 values clearly decreases as the cube side length increases. In this paper, a new method that comprehensively considers the anisotropy of rock masses, simplicity of calculation and differences between different methods was proposed to estimate the geometrical REV size. The geometrical REV size of the fractured rock mass was determined based on the volumetric fracture intensity P32 and two statistical test methods, namely, the likelihood ratio test and the Wald–Wolfowitz runs test. The results of the two statistical tests were substantially different; critical cube sizes of 13 m and 12 m were estimated by the Wald–Wolfowitz runs test and the likelihood ratio test, respectively. Because the different test methods emphasize different considerations and impact factors, considering a result that these two tests accept, the larger cube size, 13 m, was selected as the geometrical REV size of the fractured rock mass at the Maji dam site in China.

  2. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    OpenAIRE

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare en...

  3. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures.

    Science.gov (United States)

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  4. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  5. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  6. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  7. Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Kim, Geon Young; Koh, Yong Kwon; Kim, Hyoung Soo

    2012-01-01

    The equation of the step-drawdown test 's w = BQ+CQ p ' written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated C (well head loss coefficient) and P (well head loss exponent) value of well head losses (CQ p ) ranged 3.689 x 10 -19 - 5.825 x 10 -7 and 3.459 - 8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The C and P value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of C and P value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between C and P value turned out very useful to interpret hydraulic properties of the fractured rocks.

  8. Hormonal replacement therapy reduces forearm fracture incidence in recent postmenopausal women - results of the Danish Osteoporosis Prevention Study

    DEFF Research Database (Denmark)

    Mosekilde, Leif; Beck-Nielsen, H.; Sørensen, O.H.

    2000-01-01

    -to-treat analysis (n=2016), overall fracture risk was borderline statistically significantly reduced (RR=0.73, 95% CI: 0.50-1.05), and forearm fracture risk was significantly reduced (RR=0.45, 95% CI: 0.22-0.90) with HRT. Restricting the analysis to women who had adhered to their initial allocation of either HRT (n......OBJECTIVES: To study the fracture reducing potential of hormonal replacement therapy (HRT) in recent postmenopausal women in a primary preventive scenario. METHODS: Prospective controlled comprehensive cohort trial: 2016 healthy women aged 45-58 years, from three to 24 months past last menstrual...... by own choice). First line HRT was oral sequential oestradiol/norethisterone in women with intact uterus and oral continuous oestradiol in hysterectomised women. RESULTS: After five years, a total of 156 fractures were sustained by 140 women. There were 51 forearm fractures in 51 women. By intention...

  9. Discourse over a contested technology on Twitter: A case study of hydraulic fracturing.

    Science.gov (United States)

    Hopke, Jill E; Simis, Molly

    2015-10-04

    High-volume hydraulic fracturing, a drilling simulation technique commonly referred to as "fracking," is a contested technology. In this article, we explore discourse over hydraulic fracturing and the shale industry on the social media platform Twitter during a period of heightened public contention regarding the application of the technology. We study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). We analyze the top actors tweeting using the #fracking hashtag and receiving @mentions with the hashtag. Results show statistically significant differences in the sentiment about hydraulic fracturing and shale development across the five hashtags. In addition, results show that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations. The highest proportion of tweeters, those posting messages using the hashtag #fracking, were individual activists, while the highest proportion of @mention references went to activist organizations. © The Author(s) 2015.

  10. Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing

    Science.gov (United States)

    Viswanathan, H. S.

    2016-12-01

    Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  11. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  12. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  13. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  14. Dynamic seismic signatures of saturated porous rocks containing two orthogonal sets of fractures: theory versus numerical simulations

    Science.gov (United States)

    Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris

    2018-05-01

    The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.

  15. THE EFFECTS OF SOCIAL MEDIA USE ON COLLABORATIVE LEARNING: A CASE OF TURKEY

    OpenAIRE

    Aysun BOZANTA; Sona MARDIKYAN

    2017-01-01

    The social media usage has penetrated to the many areas in daily lives of today's students. Therefore, social media can be effective tool to support their educational communications and collaborations with their friends and also faculty members. This study aims to determine the effects of social media on collaborative learning. For this purpose, a theoretical model is proposed based on comprehensive literature review. Using an online questionnaire, data are collected from the students of...

  16. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Efficacy of comprehensive treatment on amblyopia in 255 children

    Directory of Open Access Journals (Sweden)

    Xing-Hui Xu

    2015-11-01

    Full Text Available AIM: To study the efficacy of comprehensive treatment on amblyopia in children.METHODS: A total of 255 cases 386 eyes diagnosed as amblyopia were given refractive errors correction, multi-media training system, coveting treatment, CAM treatment and red light stimulation. The relationship of therapeutic effect with age, type and degree of amblyopia was analyzed. RESULTS: The total effective rate was 94%, and total cure rate was 71%. Mild amblyopia, 3~6 years group, ametropia amblyopia had the highest cure rate. CONCLUSION: Efficacy of comprehensive treatment on amblyopia is certain, which is relation with age, type and degree of amblyopia.

  18. Fast Physically Accurate Rendering of Multimodal Signatures of Distributed Fracture in Heterogeneous Materials.

    Science.gov (United States)

    Visell, Yon

    2015-04-01

    This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.

  19. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    Science.gov (United States)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  20. Effects of Audiovisual Media on L2 Listening Comprehension: A Preliminary Study in French

    Science.gov (United States)

    Becker, Shannon R.; Sturm, Jessica L.

    2017-01-01

    The purpose of the present study was to determine whether integrating online audiovisual materials into the listening instruction of L2 French learners would have a measurable impact on their listening comprehension development. Students from two intact sections of second-semester French were tested on their listening comprehension before and…

  1. Homophobia as a barrier to comprehensive media coverage of the Ugandan anti-homosexual bill.

    Science.gov (United States)

    Strand, Cecilia

    2012-01-01

    The Ugandan Anti-Homosexuality Bill of October 2009 caused an international outcry and sparked intense debate in the local media. This article explores to what degree a discriminatory social environment manifests itself in the Ugandan print media and discusses the potential implications for media's coverage of contentious policy options such as the Anti-Homosexuality Bill. A content analysis of 115 items from two daily newspapers (the government-owned New Vision and the privately owned the Daily Monitor, between October and December 2009) indicates the existence of two separate house styles; this is in spite of the fact that both newspapers reproduce the surrounding society's homophobia, albeit with different frequency. Unlike the New Vision, the Daily Monitor includes coverage on homophobia and discrimination, as well as provides space for criticism of the Bill. By acknowledging discrimination and its negative impact, the newspaper de-legitimizes homophobia and problematizes the proposed Anti-homosexuality Bill for their readers.

  2. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici

    DEFF Research Database (Denmark)

    Yang, Fen; Yin, Qi

    2016-01-01

    Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation...

  3. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  4. Chapter 8: Youth, Technology, and Media Cultures

    Science.gov (United States)

    Sefton-Green, Julian

    2006-01-01

    This chapter begins with a scenario contrasting two seemingly different images of child and media from before and after the "digital revolution." The author argues that there is much greater continuity in how this relationship has been conceptualized over the period than is commonly imagined. While not offering a comprehensive study of recent…

  5. Traveltime approximations for inhomogeneous HTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.

  6. 119 ANGLICAN VIA-MEDIA: AN INSTRUMENT FOR THEOLOGICAL ...

    African Journals Online (AJOL)

    historically meaning of this concept, Anglican via-media and has clarified that the ... doctrine of comprehensiveness in fundamentals and relativism in .... as colonial churches influenced by British culture and values, evolved into national ones ... pastoral care, moral direction of the Church, and God's transforming power for ...

  7. Characterization of ductile fracture properties of quench-hardenable boron steel: Influence of microstructure and processing conditions

    International Nuclear Information System (INIS)

    Golling, Stefan; Östlund, Rickard; Oldenburg, Mats

    2016-01-01

    Developments of the hot stamping technology have enabled the production of components with differential microstructure composition and mechanical properties. These can increase the performance of certain crash-relevant automotive structures by combining high intrusion protection and energy absorption. This paper presents a comprehensive experimental investigation on the flow and ductile fracture properties of boron-alloyed steel with a wide range of different microstructure compositions. Three types of dual phase microstructures at three different volume fractions, and one triple phase grade, were generated by thermal treatment. Flow curves extending beyond necking and the equivalent plastic strain to fracture for each grade was determined by tensile testing using full-field measurements. The influence of phase composition and microstructural parameters were further investigated by means of a multi-scale modeling approach based on mean-field homogenization in combination with local fracture criteria. Inter-phase and intra-phase fracture mechanisms were considered by adopting two separate fracture criteria formulated in terms of the local average stress field. The micromechanical model captures with useful accuracy the strong influence of microstructure and processing conditions on the flow and fracture properties, implying promising prospects of mean-field homogenization for the constitutive modeling of hot stamped components.

  8. Characterization of ductile fracture properties of quench-hardenable boron steel: Influence of microstructure and processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Stefan, E-mail: stefan.golling@ltu.se [Luleå University of Technology, SE 971 87 Luleå (Sweden); Östlund, Rickard [Gestamp HardTech, Ektjärnsvägen 5, SE 973 45 Luleå (Sweden); Oldenburg, Mats [Luleå University of Technology, SE 971 87 Luleå (Sweden)

    2016-03-21

    Developments of the hot stamping technology have enabled the production of components with differential microstructure composition and mechanical properties. These can increase the performance of certain crash-relevant automotive structures by combining high intrusion protection and energy absorption. This paper presents a comprehensive experimental investigation on the flow and ductile fracture properties of boron-alloyed steel with a wide range of different microstructure compositions. Three types of dual phase microstructures at three different volume fractions, and one triple phase grade, were generated by thermal treatment. Flow curves extending beyond necking and the equivalent plastic strain to fracture for each grade was determined by tensile testing using full-field measurements. The influence of phase composition and microstructural parameters were further investigated by means of a multi-scale modeling approach based on mean-field homogenization in combination with local fracture criteria. Inter-phase and intra-phase fracture mechanisms were considered by adopting two separate fracture criteria formulated in terms of the local average stress field. The micromechanical model captures with useful accuracy the strong influence of microstructure and processing conditions on the flow and fracture properties, implying promising prospects of mean-field homogenization for the constitutive modeling of hot stamped components.

  9. 14 The Mass Media and the Problem of Understanding Legal ...

    African Journals Online (AJOL)

    User

    legal terminologies even though some are archaic or old fashioned in some ways as to .... BBC, VOA, and VON); documentary films, electronic information media, and other ..... and regulations for easy comprehension by the reading public.

  10. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  11. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  12. Conceptual characterization of the system of fractures of the rock mass known as Sierra del Medio (Chubut)

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1990-01-01

    This work characterizes conceptually the system of fractures of the rock mass known as Sierra del Medio and its surroundings. The purpose of this characterization is to define the spectra of flow regimes which must be covered in computational models to be used in the prediction of the thermohydraulic effects of the eventual emplacement of a high-level radioactive waste repository. The analysis of the available data from previous studies was performed in order to determine qualitative data to be used in the stage of feasibility studied. The flow of water roughly N-S is defined by two systems of vertical, almost orthogonal fractures and surrounded by large faults. A set of hypotheses were considered which allow, supposing a given distribution of surface fractures, to establish the variations according to depth. The usual ways of obtaining the permeability and the hydraulic conductivity in fractured porous media are summarized in an appendix. (Author) [es

  13. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  14. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Energy Technology Data Exchange (ETDEWEB)

    Henn, N.

    2000-12-13

    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  15. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  16. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  17. Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale

    Directory of Open Access Journals (Sweden)

    C. Cherubini

    2013-07-01

    Full Text Available During a risk assessment procedure as well as when dealing with cleanup and monitoring strategies, accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study, laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped shape (0.60 × 0.40 × 0.08 m. The convolution theory has been applied in order to remove the effect of the acquisition apparatus on tracer experiments. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. Furthermore, in the flow experiments both inertial and viscous flow terms are not negligible. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for the advection–dispersion equation (ADE and the single rate mobile–immobile model (MIM. The former model does not properly fit the first arrival and the tail while the latter, which recognizes the existence of mobile and immobile domains for transport, provides a very decent fit. The carried out experiments show that there exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a non-equilibrium behavior of solute transport. The existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives rise to a delay in solute migration with respect to the predicted value assuming linear flow. Furthermore, the

  18. Media Matter

    Directory of Open Access Journals (Sweden)

    Holger Pötzsch

    2017-02-01

    Full Text Available The present contribution maps materialist advances in media studies. Based on the assumption that matter and materiality constitute significant aspects of communication processes and practices, I introduce four fields of inquiry - technology, political economy, ecology, and the body - and argue that these perspectives enable a more comprehensive understanding of the implications of contemporary technologically afforded forms of interaction. The article shows how each perspective can balance apologetic and apocalyptic approaches to the impact of in particular digital technologies, before it demonstrates the applicability of an integrated framework with reference to the techno-politics of NSA surveillance and the counter-practices of WikiLeaks.

  19. Simulation of petroleum recovery in naturally fractured reservoirs: physical process representation

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Hernani P.; Miranda Filho, Daniel N. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    The naturally fractured reservoir recovery normally involves risk especially in intermediate to oil wet systems because of the simulations poor efficiency results under waterflood displacement. Double-porosity models are generally used in fractured reservoir simulation and have been implemented in the major commercial reservoir simulators. The physical processes acting in petroleum recovery are represented in double-porosity models by matrix-fracture transfer functions, therefore commercial simulators have their own implementations, and as a result different kinetics and final recoveries are attained. In this work, a double porosity simulator was built with Kazemi et al. (1976), Sabathier et al. (1998) and Lu et al. (2008) transfer function implementations and their recovery results have been compared using waterflood displacement in oil-wet or intermediate-wet systems. The results of transfer function comparisons have showed recovery improvements in oil-wet or intermediate-wet systems under different physical processes combination, particularly in fully discontinuous porous medium when concurrent imbibition takes place, coherent with Firoozabadi (2000) experimental results. Furthermore, the implemented transfer functions, related to a double-porosity model, have been compared to double-porosity commercial simulator model, as well a discrete fracture model with refined grid, showing differences between them. Waterflood can be an effective recovery method even in fully discontinuous media for oil-wet or intermediate-wet systems where concurrent imbibition takes place with high enough pressure gradients across the matrix blocks. (author)

  20. Risk of hip fracture after osteoporosis fractures. 451 women with fracture of lumbar spine, olecranon, knee or ankle

    DEFF Research Database (Denmark)

    Lauritzen, J B; Lund, B

    1993-01-01

    In a follow-up study during 1976-1984, the risk of a subsequent hip fracture was investigated in women aged 60-99 years, hospitalized for the following fractures: lumbar spine (n 70), olecranon (n 52), knee (n 129) and ankle (n 200). Follow-up ranged from 0 to 9 years. Observation time of the 4...... different fractures were 241, 180, 469, and 779, person-years, respectively. In women aged 60-79 years with one of the following fractures the relative risk of a subsequent hip fracture was increased by 4.8 (lumbar spine), 4.1 (olecranon), 3.5 (knee) and 1.5 (ankle). The relative risk of hip fracture showed...... a tendency to level off 3 years after the primary fracture....

  1. Simulation of non-isothermal gas-water processes in complex fracture-matrix systems

    International Nuclear Information System (INIS)

    Jakobs, H.

    2004-01-01

    Degassing effects may occur in fractures in the vicinity of deep radioactive-waste-disposal sites as a result of a pressure drop. These effects play an important role in the investigation of the hydraulic conditions in the near field of the disposal sites. The assumption of single-phase conditions may lead to the misinterpretation of experimental data as degassing leads to two-phase conditions and to a reduction of the effective permeability. The aim of this work is to contribute to the simulation of non-isothermal behaviour of water-gas systems in the near field of atomic waste disposal sites in fractured porous media. We distinguish between sub-REV effects within single fractures and effects due to super-REV heterogeneities which result from the fracture matrix system. We assume to have undisturbed physical conditions as report from the AespoeHard Rock Laboratory in Sweden, i.e.: - a fully water saturated system - a hydrostatic pressure of 5 million Pa. For the simulation on the laboratory scale we use a percolation model. To transfer the information from the laboratory scale to the field scale we use a renormalisation scheme. On the field scale we use a numerical simulator which solves the multiphase flow equations based on the extended form of Darcy's law. In order to investigate the limits of our models we analyse the importance of the forces taken into account, i.e., capillary forces, gravity forces, and viscous forces. This method allows us to quantify the constraints of our models. Furthermore, we investigate the influence of strong parameter heterogeneities caused by the fracture-matrix system on the flow behaviour of gas and water. We consider in particular the influence of the large difference between the entry pressures of matrix and fracture on the migration of the gas phase from the fracture system into the matrix system. (orig.)

  2. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms; Corrosion generalisee des alliages a base nickel en milieu aqueux a haute temperature: apport a la comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti-Sillans, L

    2007-11-15

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale ({approx} 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr{sub 2}O{sub 3} nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr{sub 2}O{sub 3} nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary

  3. Non-metallic implant for patellar fracture fixation: A systematic review.

    Science.gov (United States)

    Camarda, Lawrence; Morello, Salvatore; Balistreri, Francesco; D'Arienzo, Antonio; D'Arienzo, Michele

    2016-08-01

    Despite good clinical outcome proposals, there has been relatively little published regarding the use of non-metallic implant for patellar fracture fixation. The purpose of the study was to perform a systematic literature review to summarize and evaluate the clinical studies that described techniques for treating patella fractures using non-metallic implants. A comprehensive literature search was systematically performed to evaluate all studies included in the literature until November 2015. The following search terms were used: patellar fracture, patella suture, patella absorbable, patella screw, patella cerclage. Two investigators independently reviewed all abstracts and the selection of these abstracts was then performed based on inclusion and/or exclusion criteria. A total of 9 studies involving 123 patients were included. Patients had a mean age of 33.7 years and were followed up for a mean of 18.9 months. The most common method for fracture fixations included the use of suture material. Good clinical outcomes were reported among all studies. Thirteen patients (10.5%) presented complications, while 4 patients (3.2%) required additional surgery for implant removal. There is a paucity of literature focused on the use of non-metallic implant for patellar fracture fixation. However, this systematic review showed that non-metallic implants are able to deliver good clinical outcomes reducing the rate of surgical complications and re-operation. These results may assist surgeons in choosing to use alternative material such as sutures to incorporate into their routine practice or to consider it, in order to reduce the rate of re-operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  5. Media space of the modern school

    Directory of Open Access Journals (Sweden)

    Anna A. Vakneeva

    2017-01-01

    Full Text Available What should be the media of a modern education institution? How is the educational organization supposed to be represented in social media? What methods of increasing the level of media literacy of teachers and students should optimally use?As the purpose of this study the authors can see in the development and presentation of an optimal model of media space for modern educational institutions which will take into account not only the changes in the education process, but also the needs of the modern audience – teachers, students, parents, and educational partners. The resources of “Moscow e-school” become part of the educational media sphere of modern educational organizations.Resources and methods: resources of an educational institution, namely, social media, blogs and microblogs, users’ accounts, channels, educational platforms, which present the work of educators. The importance of analyzing media of the modern educational institution is that media-education serves as a pedagogical system, allowing the use of modern techniques and technologies through the development of critical thinking, which occurs under the influence of information flows. In this regard, there is a need for the comprehensive approach to the media organization in the modern school. An integral element of the complex approach is the creation of conditions for the development of media literacy for teachers and learners.The result of this research is the optimal model of media space for the modern school, which includes social networking profiles, microblogging, blogs, users’ accounts, and web resources, each of which has its own purpose and functional features.As a conclusion we can note that one of the core values of the media model is the development of creative and critical thinking, the acquisition of experience and tools of media, independent search, the ability to use information flows for the effective communication, solving educational and cognitive

  6. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    Science.gov (United States)

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  7. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  8. Effects of interventions on trajectories of health-related quality of life among older patients with hip fracture: a prospective randomized controlled trial.

    Science.gov (United States)

    Tseng, Ming-Yueh; Liang, Jersey; Shyu, Yea-Ing L; Wu, Chi-Chuan; Cheng, Huey-Shinn; Chen, Ching-Yen; Yang, Shu-Fang

    2016-03-03

    Health-related quality of life (HRQoL) has been used to assess subjects' prognosis and recovery following hip fracture. However, evidence is mixed regarding the effectiveness of interventions to improve HRQoL of elders with hip fracture. The purposes of this study were to identify distinct HRQoL trajectories and to evaluate the effects of two care models on these trajectories over 12 months following hip-fracture surgery. For this secondary analysis, data came from a randomized controlled trial of subjects with hip fracture receiving three treatment care models: interdisciplinary care (n = 97), comprehensive care (n = 91), and usual care (n = 93). Interdisciplinary care consisted of geriatric consultation, discharge planning, and 4 months of in-home rehabilitation. Comprehensive care consisted of interdisciplinary care plus management of malnutrition and depressive symptoms, fall prevention, and 12 months of in-home rehabilitation. Usual care included only in-hospital rehabilitation and occasional discharge planning, without geriatric consultation and in-home rehabilitation. Mental and physical HRQoL were measured at 1, 3, 6, and 12 months after discharge by the physical component summary scale (PCS) and mental component summary scale (MCS), respectively, of the Medical Outcomes Study Short Form 36, Taiwan version. Latent class growth modeling was used to identify PCS and MCS trajectories and to evaluate how they were affected by the interdisciplinary and comprehensive care models. We identified three quadratic PCS trajectories: poor PCS (n = 103, 36.6 %), moderate PCS (n = 96, 34.2 %), and good PCS (n = 82, 29.2 %). In contrast, we found three linear MCS trajectories: poor MCS (n = 39, 13.9 %), moderate MCS (n = 84, 29.9 %), and good MCS (n = 158, 56.2 %). Subjects in the comprehensive care and interdisciplinary care groups were more likely to experience a good PCS trajectory (b = 0.99, odds ratio [OR] = 2

  9. BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions

    Czech Academy of Sciences Publication Activity Database

    Šístek, Jakub; Březina, J.; Sousedík, B.

    2015-01-01

    Roč. 22, č. 6 (2015), s. 903-929 ISSN 1070-5325 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : BDDC * fractured porous media * iterative substructuring Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/nla.1991

  10. Fracture Incidence and Characteristics in Young Adults Aged 18 to 49 Years: A Population-Based Study.

    Science.gov (United States)

    Farr, Joshua N; Melton, L Joseph; Achenbach, Sara J; Atkinson, Elizabeth J; Khosla, Sundeep; Amin, Shreyasee

    2017-12-01

    Although fractures in both the pediatric and, especially, the elderly populations have been extensively investigated, comparatively little attention has been given to the age group in between. Thus, we used the comprehensive (inpatient and outpatient) data resources of the Rochester Epidemiology Project to determine incidence rates for all fractures among young adult (age range, 18 to 49 years) residents of Olmsted County, Minnesota, in 2009 to 2011, and compared the distribution of fracture sites and causes in this young adult cohort with those for older residents aged 50 years or older. During the 3-year study period, 2482 Olmsted County residents aged 18 to 49 years experienced 1 or more fractures. There were 1730 fractures among 1447 men compared with 1164 among 1035 women, and the age-adjusted incidence of all fractures was 66% greater among the men (1882 [95% confidence interval 1793-1971] versus 1135 [95% CI 1069-1201] per 100,000 person-years; p age ≥50 years who sustained a fracture in 2009 to 2011. Younger residents (aged 18 to 49 years), when compared with older residents (aged ≥50 years), had a greater proportion of fractures of the hands and feet (40% versus 18%) with relatively few fractures observed at traditional osteoporotic fracture sites (14% versus 43%). Vertebral fractures were still more likely to be the result of moderate trauma than at other sites, especially in younger women. In conclusion, whereas pediatric and elderly populations often fracture from no more than moderate trauma, young adults, and more commonly men, suffer fractures primarily at non-osteoporotic sites due to more significant trauma. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  11. Application of zipper-fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2015-03-01

    Full Text Available After several years of exploration practices in the Changning-Weiyuan national shale gas pilot zone, the industrial production has been achieved in a number of vertical and horizontal wells completed by SRV fracturing, and a series of independent shale gas reservoir stimulation technologies have come into being. Next, it is necessary to consider how to enhance the efficiency of fracturing by a factory-mode operation. This paper presents the deployment of Changning Well Pad A, the first cluster horizontal shale gas well group, and proposes the optimal design for the factory operation mode of this Pad according to the requirements of wellpad fracturing stimulation technologies and the mountainous landform in the Sichuan Basin. Accordingly, a zipper-fracturing mode was firstly adopted in the factory fracturing on wellpad. With the application of standardized field process, zipper operation, assembly line work, staggered placement of downhole fractures, and microseismic monitoring in real time, the speed of fracturing reached 3.16 stages a day on average, and the stimulated reservoir volume was maximized, which has fully revealed how the factory operation mode contributes to the large-scale SRV fracturing of horizontal shale gas cluster wells on wellpads in the aspect of speed and efficiency. Moreover, the fracturing process, operation mode, surface facilities and post-fracturing preliminary evaluation of the zipper-fracturing in the well group were examined comprehensively. It is concluded from the practice that the zipper-fracturing in the two wells enhanced the efficiency by 78% and stimulated reservoir volume by 50% compared with the single-well fracturing at the preliminary stage in this area.

  12. High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.

    Science.gov (United States)

    Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk

    2017-02-01

    The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-08-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  14. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2014-01-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  15. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  16. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  17. Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.

    Science.gov (United States)

    Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y

    2010-08-01

    This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.

  18. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    KAUST Repository

    Wang, Yi

    2017-09-12

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  19. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    KAUST Repository

    Wang, Yi; Sun, Shuyu; Yu, Bo

    2017-01-01

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  20. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.