WorldWideScience

Sample records for fractured granite cores

  1. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  2. Critical look at studies of radionuclide migration in fractured granite cores

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Failor, R.

    1983-05-01

    A series of laboratory experiments studying radionuclide migration were conducted on eleven fractured granite cores from the Climax Stock at the Nevada Test Site. Failor et al (1982) discuss the equipment used, the preparation of the core, the experimental procedure, the data reduction, and the experimental results. They give estimates of the average fracture apertures, retardation values of /sup 85/Sr, /sup 95m/Tc, and /sup 137/Cs relative to /sup 3/H, and the percentage of each radionuclide retained in the core after each run. To determine the effect of fracture fill material and solution composition on radionuclide migration, they studied both natural and artificial fractures using either natural Climax ground water or distilled water. The results are summarized below along with a discussion of the problems inherent in the experiments and suggestions to minimize these problems.

  3. Critical look at studies of radionuclide migration in fractured granite cores

    International Nuclear Information System (INIS)

    Isherwood, D.; Failor, R.

    1983-05-01

    A series of laboratory experiments studying radionuclide migration were conducted on eleven fractured granite cores from the Climax Stock at the Nevada Test Site. Failor et al (1982) discuss the equipment used, the preparation of the core, the experimental procedure, the data reduction, and the experimental results. They give estimates of the average fracture apertures, retardation values of 85 Sr, /sup 95m/Tc, and 137 Cs relative to 3 H, and the percentage of each radionuclide retained in the core after each run. To determine the effect of fracture fill material and solution composition on radionuclide migration, they studied both natural and artificial fractures using either natural Climax ground water or distilled water. The results are summarized below along with a discussion of the problems inherent in the experiments and suggestions to minimize these problems

  4. Laboratory studies of radionuclide transport in fractured Climax granite

    International Nuclear Information System (INIS)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, 85 Sr and /sup 95m/Tc showed little or no retardation, whereas 137 Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less 137 Cs than most natural fractures. Estimated fracture apertures from 18 to 60 μm and hydraulic conductivities from 1.7 to 26 x 10 -3 m/s were calculated from the core measurements

  5. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  6. Retention of uranium(VI) by laumontite, a fracture-filling material of granite

    International Nuclear Information System (INIS)

    Baik, M.H.; Lee, S.Y.; Shon, W.J.

    2009-01-01

    Retention of U(VI) by laumontite, a fracture-filling material of granite as investigated by conducting dynamic and batch sorption experiments in a love-box using a granite core with a natural fracture. The hydrodynamic properties of the granite core were obtained from the elution curve of a on-sorbing tracer, Br - . The elution curve of U(VI) showed a similar behavior to Br - . This reveals that the retention of U(VI) by the fracture-filling material was not significant when migrating through the fracture at a given condition. From the dynamic sorption experiment, the retardation factor R a and the distribution coefficient K a of U(VI) were obtained as about 2.9 and 0.16 cm, respectively. The distribution coefficient K d ) of U(VI) onto laumontite obtained by conducting a batch sorption experiment resulted in a small value of 2.3±0.5 mL/g. This low K d value greed with the result of the dynamic sorption experiment. For the distribution of uranium on the granite surface investigated by an X-ray image mapping, the fracture region filled with laumontite showed a relatively lower content of uranium compared to the surrounding granite surface. Thus, the low retention of U(VI) by the fracture-filling material can be explained by following two mechanisms. One is that U(VI) exists as anionic uranyl hydroxides or uranyl carbonates at a given groundwater condition and the other is the remarkably low sorption capacity of the laumontite for U(VI). author)

  7. Fracture patterns and stresses in granite

    International Nuclear Information System (INIS)

    Price, N.J.

    1979-01-01

    If granite bodies are to be used as receptacles for toxic waste materials, the presence or absence of barren fractures and the virgin stresses in the granite are of fundamental importance. Unfortunately, very little is known regarding the incidence of fractures, or stresses, which exist at depths (of about 1 km) in granite bodies. A simple analysis is presented of a hypothetical intrusion which indicates the magnitudes of stresses and the possible fracture development which may be expected in such bodies. (auth)

  8. Migration of THO and Np in a fractured granite core at deep underground laboratory

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Zin; Hahn, Pil Soo; Kienzler, B.

    2005-01-01

    Migration experiments of THO and 237Np have performed through a sampled granite core in Chemlab2 probe at the Aspo hard Rock laboratory. The elution curves of THO were analysed to determine hydraulic properties such as the extent of dispersion effect according to flow rates. The retardation phenomena of the solutes were observed and described with elution curves and migration plumes. After migration test, the rock core was opened, and the remaining radioactivities on the rock fracture surfaces were measured. The transport process was simulated with a two-dimensional channel model. The mass transport process was described with three types of basic processes: advection, sorption and matrix diffusion. By the combination of these processes, effects of each process on transport were described in terms of elution curves and migration plumes. By comparing the simulation results to the experimental one, it was possible to analyse the retardation effect quantitatively

  9. Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation

    Science.gov (United States)

    Nishimoto, Shoji; Yoshida, Hidekazu

    2010-03-01

    This paper investigates the mineralogical effects of hydrothermal alteration at depth in fractures in granite. A fracture accompanied by an alteration halo and filled with clay was found at a depth of 200 m in a drill core through Toki granite, Gifu, central Japan. Microscopic observation, XRD, XRF, EPMA and SXAM investigations revealed that the microcrystalline clays consist of illite, quartz and pyrite and that the halo round the fracture can be subdivided into a phyllic zone adjacent to the fracture, surrounded by a propylitic zone in which Fe-phyllosilicates are present, and a distinctive outer alteration front characterized by plagioclase breakdown. The processes that result in these changes took place in three successive stages: 1) partial dissolution of plagioclase with partial chloritization of biotite; 2) biotite dissolution and precipitation of Fe-phyllosilicate in the dissolution pores; 3) dissolution of K-feldspar and Fe-phyllosilicate, and illite precipitation associated with development of microcracks. These hydrothermal alterations of the granite proceed mainly by a dissolution-precipitation process resulting from the infiltration of hydrothermal fluid along microcracks. Such infiltration causes locally high mobility of Al and increases the ratio of fluid to rock in the alteration halo. These results contribute to an understanding of how granitic rock becomes altered in orogenic fields such as the Japanese island arc.

  10. Sorption of Np (Ⅴ) on Beishan granite fracture filling materials

    International Nuclear Information System (INIS)

    Jiang Tao; Wang Bo; Bao Liangjin; Zhou Duo; Long Haoqi; Song Zhixin; Chen Xi

    2012-01-01

    The sorption behaviors of Np (Ⅴ) on the granite fracture filling materials were studied by batch experiments under anaerobic in Beishan groundwater. The impact of pH of groundwater, CO 3 2- , humic acid and different components of granite fracture filling materials on sorption of Np (Ⅴ) was investigated. The results show that the granite fracture filling materials have strong capacity of Np (Ⅴ) adsorption. The value of K d , for Np (Ⅴ) sorption on the granite fracture filling materials is 843 mL/g. With the increase of pH, the value of K d increases at first and then decreases. K d of Np sorption on granite fracture filling materials in the presence of CO 3 2- and humic acid decreases. The chlorite and feldspar are major contributors to the sorption of Np (Ⅴ) on Beishan granite fracture filling materials. (authors)

  11. Strength and permeability tests on ultra-large Stripa granite core

    International Nuclear Information System (INIS)

    Thorpe, R.; Watkins, D.J.; Ralph, W.E.; Hsu, R.; Flexser, S.

    1980-09-01

    This report presents the results of laboratory tests on a 1 meter diameter by 2 meters high sample of granitic (quartz monzonite) rock from the Stripa mine in Sweden. The tests were designed to study the mechanical and hydraulic properties of the rock. Injection and withdrawal permeability tests were performed at several levels of axial stress using a borehole through the long axis of the core. The sample was pervasively fractured and its behavior under uniaxial compressive stress was very complicated. Its stress-strain behavior at low stresses was generally similar to that of small cores containing single healed fractures. However, this large core failed at a peak stress of 7.55 MPa, much less than the typical strength measured in small cores. The complex failure mechanism included a significant creep component. The sample was highly permeable, with flows-per-unit head ranging from 0.11 to 1.55 cm 2 /sec. Initial application of axial load caused a decrease in permeability, but this was followed by rapid increase in conductivity coincident with the failure of the core. The hydraulic regime in the fracture system was too intricate to be satisfactorily modeled by simple analogs based on the observed closure of the principal fractures. The test results contribute to the data base being compiled for the rock mass at the Stripa site, but their proper application will require synthesis of results from several laboratory and in situ test programs

  12. Permeability of Granite Including Macro-Fracture Naturally Filled with Fine-Grained Minerals

    Science.gov (United States)

    Nara, Yoshitaka; Kato, Masaji; Niri, Ryuhei; Kohno, Masanori; Sato, Toshinori; Fukuda, Daisuke; Sato, Tsutomu; Takahashi, Manabu

    2018-03-01

    Information on the permeability of rock is essential for various geoengineering projects, such as geological disposal of radioactive wastes, hydrocarbon extraction, and natural hazard risk mitigation. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.

  13. Paleo-redox boundaries in fractured granite

    DEFF Research Database (Denmark)

    Dideriksen, K.; Christiansen, B. C.; Frandsen, Cathrine

    2010-01-01

    dissolved iron to the groundwater. During such cycling, the Fe isotopes fractionate to an extent that is expected to depend on temperature. In this study, we report on the use of Fe-oxides as paleoredox indicators, using their structure, morphology and Fe-composition as a clue for formation conditions....... In samples taken from similar to 120 m drill cores in granite from SE Sweden, X-ray amorphous, superparamagnetic, nanometre-sized Fe-oxides are confined to fractures of the upper,-,50 m, whereas well-crystalline Fe-oxides, with particle sizes typical for soils, occur down to similar to 110 m. We also...... identified hematite with a particle size of 100 nm, similar to hematite of hydrothermal origin. The Fe isotope composition of the fine-grained Fe-oxides (-1 parts per thousand

  14. Geometrical properties of tension-induced fractures in granite

    International Nuclear Information System (INIS)

    Sato, Hisashi; Sawada, Atsushi; Yasuhara, Hideaki

    2011-03-01

    Considering a safe, long-term sequestration of energy byproducts such as high level radioactive wastes, it is of significant importance to well-constrain the hydraulic and transport behavior of targeted permeants within fractured rocks. Specifically, fluid flow within low-permeability crystalline rock masses (e.g., granite) is often dominated by transport in through-cutting fractures, and thus careful considerations are needed on the behavior. There are three planes along that granites fail most easily under tension, and those may be identified as the rift, grain, and hardway planes. This anisotropic fabric may be attributed to preferentially oriented microcrack sets contained within intact rock. In this research, geometrical properties of tension-induced fractures are evaluated as listed below; (1) Creation of tension-induced fractures considering the anisotropy clarified by elastic wave measurements. (2) Evaluation of geometrical properties in those fractures characterized by the anisotropy. In the item (1), the three planes of rift, grain and hardway were identified by measuring elastic wave. In the item (2), JRC, variogram, fractal dimension and distributions of elevations in the fracture surfaces were evaluated using digitized data of the fracture surfaces measured via a laser profilometry. Results show that rift planes are less rougher than the other planes of grain and hardway, and grain planes are generically rougher than the other planes of rift and hardway. It was also confirmed that the fracture shape anisotropy was correlated with the direction of the slit which constructed during tensile tests. On the other hand, the tendency peculiar to the direction of slit and granites fail about the estimated aperture distribution from fracture shape was not seen. (author)

  15. Deep fracturing of granite bodies. Literature survey, geostructural and geostatistic investigations

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.

    1986-01-01

    This report deals with investigations about deep fracturing of granite bodies, which were performed within two cost-sharing contracts between the Commission of the European Communities, the Commissariat a l'Energie Atomique and the Bureau de Recherches Geologiques et Minieres. The aim of this work was to study the evolution of fracturing in granite from the surface to larger depths, so that guidelines can be identified in order to extrapolate, at depth, the data obtained from surface investigations. These guidelines could eventually be used for feasibility studies about radioactive waste disposal. The results of structural and geostatistic investigations about the St. Sylvestre granite, as well as the literature survey about fractures encountered in two long Alpine galleries (Mont-Blanc tunnel and Arc-Isere water gallery), in the 1000 m deep borehole at Auriat, and in the Bassies granite body (Pyrenees) are presented. These results show that, for radioactive waste disposal feasibility studies: 1. The deep state of fracturing in a granite body can be estimated from results obtained at the surface; 2. Studying only the large fault network would be insufficient, both for surface investigations and for studies in deep boreholes and/or in underground galleries; 3. It is necessary to study orientations and frequencies of small fractures, so that structural mapping and statistical/geostatistical methods can be used in order to identify zones of higher and lower fracturing

  16. Deep fracturation of granitic rock mass

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.; Bonijoly, D.; Dutartre, P.; Feybesse, J.L.; Gros, Y.; Landry, J.; Martin, P.

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater [fr

  17. The Effects of Fracture Anisotropy on the Damage Pattern and Seismic Radiation from a Chemical Explosion in a Granite Quarry

    Science.gov (United States)

    Rogers-Martinez, M. A.; Sammis, C. G.; Ezzedine, S. M.

    2017-12-01

    As part of the New England Damage Experiment (NEDE) a 122.7 kg Heavy ANFO charge was detonated at a depth of 13 m in a granite quarry in Barre Vt. Subsequent drill cores from the source region revealed that most of the resultant fracturing was concentrated in the rift plane of the highly anisotropic Barre granite. We simulated this explosion using a dynamic damage mechanics model embedded in the ABAQUS 3D finite element code. The damage mechanics was made anisotropic by taking the critical stress intensity factor to be a function of azimuth in concert with the physics of interacting parallel fractures and laboratory studies of anisotropic granite. In order to identify the effects of anisotropy, the explosion was also simulated assuming 1) no initial damage (pure elasticity) and 2) isotropic initial damage. For the anisotropic case, the calculated fracture pattern simulated that observed in NEDE. The simulated seismic radiation looked very much like that from a tensile fracture oriented in the rift plane, and similar to the crack-like moment tensor observed in the far field of many nuclear explosions.

  18. Example of fracture characterization in granitic rock

    International Nuclear Information System (INIS)

    Thorpe, R.K.

    1981-03-01

    A detailed study of geologic discontinuities for an underground heater test in highly fractured granitic rock is reported. Several prominent shear fractures were delineated within a 6 x 30 x 15 m rock mass by correlating surface mapping and borehole fracture logs. Oblique-reverse faulting is suspected on at least one of the surfaces, and its inferred borehole intercepts appear to be collinear in the direction of slickensiding observed in the field. Four distinct joint sets were identified, one of which coincides with the shear fractures. Another lies nearly horizontal, and two others are steeply inclined and orthogonal. Fracture lengths and spacings for the four joint sets are represented by lognormal probability distributions

  19. Deep fracturation of granitic rock mass. Fracturation profonde des massifs rocheux granitiques

    Energy Technology Data Exchange (ETDEWEB)

    Bles, J L; Blanchin, R; Bonijoly, D; Dutartre, P; Feybesse, J L; Gros, Y; Landry, J; Martin, P

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater.

  20. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  1. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  2. Measuring the initial earth pressure of granite using hydraulic fracturing test; Goseong and Yuseong areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Won, Kyung Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report provides the initial earth pressure of granitic rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are obtained by hydraulic fracturing test in three boreholes drilled up to 350{approx}500 m depth at the Yuseong and Goseong sites. These sites were selected based on the result of preliminary site evaluation study. The boreholes are NX-size (76 mm) and vertical. The procedure of hydraulic fracturing test is as follows: - Selecting the testing positions by preliminary investigation using BHTV logging. - Performing the hydraulic fracturing test at each selected position with depth.- Estimating the shut-in pressure by the bilinear pressure-decay-rate method. - Estimating the fracture reopening pressure from the pressure-time curves.- Estimating the horizontal principal stresses and the direction of principal stresses. 65 refs., 39 figs., 12 tabs. (Author)

  3. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  4. Mineralogy, geochemistry and petrophysics of red coloured granite adjacent to fractures

    International Nuclear Information System (INIS)

    Eliasson, T.

    1993-03-01

    Mineralogical, geochemical and petrophysical investigations were conducted of red-coloured alteration rims and of the neighbouring unaltered equivalents along fractures within granite from Aespoe. An investigation was made also of a weak to rather strong, red-coloured granite from the Stripa mine, as well as a weak brownish-red colouration, definitely no hydrothermal in origin, of weathered rinds at a glacial polished rock surface in the Bohus granite. When approaching the fracture planes in the Aespoe granite, the most diagnostic alteration features are * the saussuritisation and Fe-oxyhydroxide staining of plagioclase, * the crystallisation chlorite pseudomorphs after biotite and * the hematisation of magnetite. The porosity within the alteration zones increases generally 2 to 3 times compared with the protolith rock, whereas the densities decrease by some 5 to 10%. The oxidation of magnetite gives as much as a tenfold lowering of the magnetic susceptibility. The red colouration of the Stripa granite is caused by hematite ± Fe-oxyhydroxide formation along microfractures, grain boundaries and, subordinately, the main minerals. Oxidation and re-precipitation of iron liberated during a retrograde muscovitisation of principally chlorite is interpreted to be the cause of the formation of the ferric oxides. The rather homogeneous density and porosity values of the grey and of the red-coloured granites reflect the minor change in the mineralogy when going from fresh into altered granite. Weathering and whitening of plagioclase in the bleached, outer zone and precipitation of small quantities of Fe-oxyhydroxides/hydroxides in the brownish-red zone cause the macroscopic colouration of the weathering rind below the glacial polished rock surface of Bohus granite. There is a marked increase in porosity from the interior fresh (c. 0.4-0.5%) towards the exterior bleached zone (c.1.5-2%) of the subaerialy, weathered Bohus granite surface. The incipient decomposition of

  5. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  6. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  7. Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir

    International Nuclear Information System (INIS)

    Tester, J.W.; Potter, R.M.; Bivins, R.L.

    1979-01-01

    Field experiments using fluorescent dye and radioactive tracers (Br 82 and I 131 ) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data

  8. A study of uranium series disequilibrium in core profiles and mineral separates from the samples of Lac du Bonnet granite from the URL site, Pinawa, Manitoba, Canada

    International Nuclear Information System (INIS)

    Ivanovich, M.; Longworth, G.; Wilkins, M.A.; Hasler, S.E.

    1987-12-01

    Uranium series disequilibrium measurements of actinide activities and activity ratios have been used to study the geochemical history of Lac du Bonnet granite, from the URL site, Pinawa, Canada. Measurements on core profiles between fractured surfaces and the parent rock show that the granite underwent high temperature events several million years ago, followed by more recent low temperature events within the last million years. The main locations for the rock/water interaction and exchange of actinides are the fracture surfaces. The results of similar measurements on separated mineral phases show that the 'soft' minerals such as biotite and feldspar are more vulnerable to weathering than the 'hard' accessory minerals such as zircon. (author)

  9. Retardation of radionuclide transport by fracture flow in granite and argillaceous rocks

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Green, A.

    1985-11-01

    Laboratory techniques have been developed for the measurement of diffusion rates and permeabilities through highly consolidated rock samples. The work has predominantly concentrated on the generation of diffusion data for slates and granites in particular. Rock properties fundamental to mass transfer processes have been obtained. Diffusion rates have been measured through weathered granite fissure surfaces and as a function of distance from such surfaces on core samples obtained from Troon, Cornwall. Pore connectivity over metre distances in granite cores has been shown to exist and diffusion coefficients were measured as a function of confining pressure in a specially designed rig. The Dsub(i) (intrinsic diffusion coefficient) values determined at ambient pressure were approximately a factor of 2 greater than those measured at pressures equivalent to 500 m of rock overburden. Some initial experiments on the accessibility of the pore space in granites to colloids based on a permeability technique indicated that such particles neither blocked pores nor penetrated through 15 mm thick samples over times of the order 2 to 3 thousand hours. Diffusion rates through samples of Canadian granites, some of which contained weathered fissure surfaces, were measured. (author)

  10. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  11. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  12. Permeability testing of fractures in climax stock granite at the Nevada Test Site

    International Nuclear Information System (INIS)

    Murray, W.A.

    1980-01-01

    Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10 -4 to 10 -1 darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10 -9 darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock

  13. Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Yamamoto, Koshi; Yoshida, Hidekazu; Akagawa, Fuminori; Nishimoto, Shoji; Metcalfe, Richard

    2013-01-01

    Highlights: • Deep redox front developed in orogenic granitic rock have been studied. • The process was controlled by the buffering capacity of minerals. • This is an analogue of redox front penetration into HLW repositories in Japan. - Abstract: Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to

  14. Fracture hydrology relevant to radionuclide transport. Field work in a granite formation in Cornwall

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Durrance, E.M.; Heath, M.J.

    1985-01-01

    Separation, orientation, apertures and intersections of water-bearing fractures are the variables which control water flow and affect radionuclide transport through fractured rocks. The need is discussed for information on the distribution of these variables in statistical treatments of flow and transport, because of the inadequacy of permeability and porosity data in continuum treatments. Satisfactory methods of measuring distributions of separation, orientation and apetures have been developed and data for Cornish granite are presented. An estimate of the average distance between fracture intersections is made

  15. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    Heath, M.J.; Durrance, E.M.

    1985-01-01

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10 -7 ms -1 has been obtained, 2.11x10 -8 ms -1 if the major hydraulic features are excluded

  16. Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M.; Matias, Maria J.; Basto, Maria J.; Aires-Barros, Luis A. [Instituto Superior Tecnico, Centro de Petrologia e Geoquimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional n 10, 2686 - 953 Sacavem (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department, Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2010-06-15

    We discuss geochemical and isotopic ({sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 87}Sr/{sup 86}Sr) data recording the hydrothermal alteration of northern Portuguese Hercynian granites by Na-HCO{sub 3}-CO{sub 2}-rich mineral waters. Whole-rock samples from drill cores of Vilarelho da Raia granite have {delta}{sup 18}O values in the +11.47 to +10.10 permille range. The lower values correspond to highly fractured granite samples displaying vein and pervasive alteration. In the pervasive alteration stage, which probably results from a convective hydrothermal system set up by the intrusion of the granites, the metamorphic waters are in equilibrium with hydrous minerals. In contrast, the vein alteration of these granitic rocks was caused by water of meteoric origin. The oxygen ratios between water (W) and rock (R), the so-called W/R ratios, obtained for the open system (where the heated water is lost from the system by escape to the surface) range between 0.05 and 0.11, suggesting that the recrystallization of the veins was influenced by a small flux of meteoric water. Stable isotope analyses performed on the cores show that the vein alteration stage relates to post-emplacement tectonic stresses acting on the granite, probably of late Hercynian age. Our results are consistent with the existence of two separate alteration events (pervasive and vein) caused by hydrothermal waters of different isotopic characteristics. The studies presented in this paper should be viewed as a natural analogue that uses the alteration features observed in a fossil geothermal system at Vilarelho da Raia to assess possible water-rock reactions presently occurring at depth in granitic rocks of the nearby Chaves area. (author)

  17. Characterization on the Fracture system in jurassic granitic rocks: Kosung and Yusung areas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon

    2001-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of regional lineaments and background fractures in eastern and western-type granite rock mass.

  18. Characterization on the Fracture system in jurassic granitic rocks: Kosung and Yusung areas

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon

    2001-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of regional lineaments and background fractures in eastern and western-type granite rock mass

  19. The International intraval project. Phase 1 case 2. Radionuclide migration in single natural fractures in granite

    International Nuclear Information System (INIS)

    Skagius, K.

    1992-01-01

    The INTRAVAL study addresses validation of geosphere transport models for use in repository performance assessment by examining various test cases relevant to radioactive waste disposal. This report describes the results from INTRAVAL test case 2 which is based on a set of laboratory experiments studying migration of non-sorbing as well as sorbing tracers in a single fracture in granitic cores. Three project teams have investigated this test case. Models including advection, dispersion, sorption to the fracture surface, matrix diffusion and sorption within the rock matrix were calibrated against the experimental breakthrough curves. Obtained best-fit values of the parameters determining the interaction between tracer and rock were in fair agreement with independently measured data. Models neglecting matrix diffusion and sorption within the rock matrix gave poor fits to the experimental data. These results suggest the need to include matrix diffusion and matrix sorption in the model to represent data for this test case. Furthermore, it was not possible to distinguish between hydrodynamic dispersion and channelling dispersion since equally good fits were obtained with both models. Equally good fits were also obtained with models assuming constant fracture aperture and variable fracture aperture. In the context of performance assessment of repositories in fractured rock, the major outcome from this test case is additional support for the inclusion of matrix diffusion and matrix sorption in the transport models. 17 refs., 14 figs., 3 tabs

  20. Rock-water interaction involving uranium and thorium isotopes in the fractures of El Berrocal granite, Spain

    International Nuclear Information System (INIS)

    Ivanovich, M.; Cahmbers, N.; Hernandez-Benitez, A.

    1996-01-01

    In the framework of a number of R and D programmes, low permeability rocks in which the groundwater flow is governed by fractures are being considered as potentially suitable candidates for the long-term storage of radioactive waste at depth [1]. Such rocks are often one of the main sources of the radionuclides deriving from the natural radioactive decay chains headed by U and Th. This characteristic makes this type of rock very useful in providing geochemical analogues for the behaviour of transuranic radionuclides present in the nuclear waste [2,3]. The main aim of the work reported here is to study in detail the distribution of naturally occurring radionuclides in several types of fracture infill material from the El Berrocal granitic pluton. The pluton in situated at the southern edge of the Spanish Central System and contains a uranium-mineralized quartz vein (UQV) that has been mined for uranium in the past [4]. Groundwaters as well as natural colloids have been sampled from some of the boreholes with the ultimate intention to model rock/water interaction processes which may take place in the water-bearing fractures in the batholith. The second aim of this work has been to date some of the calcite-rich fracture infills derived from the drill cores at depth, especially at water-bearing horizons. (Author)

  1. Computed tomography of drill cores

    International Nuclear Information System (INIS)

    Taylor, T.

    1985-08-01

    A preliminary computed tomography evaluation of drill cores of granite and sandstone has generated geologically significant data. Density variations as small as 4 percent and fractures as narrow as 0.1 mm were easily detected

  2. Core-logs of the vertical borehole V2

    International Nuclear Information System (INIS)

    Carlsson, L.; Egerth, T.; Westlund, B.; Olsson, T.

    1982-08-01

    In the hydrogeological programme of the Stripa Project, borehole V2 was prolonged to a final depth of 822 m. The previous core from 0-471.4 m was relogged. The drill core was logged with regard to rock characteristics, fracture frequency, dipping and filling. The results are presented as core-logs and fracture diagrams. Borehole V2 shows similar characteristics as found in other drillings in the Stripa Mine. It penetrates Stripa granite to its full depth. recorded fractures shows a clear predominance of medium-steep fractures, while flat-lying fractures are more sparsly occuring, a fact which is even more pronounced below 400 m depth. Due to the vertical direction of the borehole, steeply dipping fractures are underestimated in the core. The mean fracture frequency, related to the total length of the core, is 2.1 fractures/m. Chlorite, calcite and epidote are the dominating coating minerals in the fractures, each making up about 25-30 percent of all coated fractures. (Authors)

  3. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Koide, Kaoru; Takeichi, Atsushi

    1997-01-01

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10 -3 - 10 -4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  4. A comparison of fracture styles in two granite bodies of the Superior Province

    International Nuclear Information System (INIS)

    Stone, D.; Kamineni, D.C.; Brown, A.; Everitt, R.

    1989-01-01

    A quantitative comparison is made between fracture styles in two late Archean instrusions of the Superior Province - the Lac du Bonnet Batholith (LDBB) and Eye-Dashwa Pluton (EDP). These instrusions have a similar geological setting, similar mineral and chemical composition, and similar physical properties but vary markedly in volume (LDBB = 9060 km 3 ; EDP = 122 km 3 ). The fracture style of the LDBB consists of mainly low-angle thrust faults within otherwise poorly fractured granite. Subvertical fractures are restricted to within 200 m of surface or zones encompassing the thrust faults. The mineral assemblage chlorite - iron oxide - carbonate is widespread in fractures. In contrast, fractures of the EDP are closely spaced, variably oriented, pervasive to depth, and dominated by subvertical transcurrent faults. Epidote is an abundant fracture-filling material. Most fractures formed in response to Early Proterozoic compression under low-greenschist conditions in the LDBB and upper-greenschist conditions in the EDP. Fractures in both intrusions were subsequently rejuvenated (clay - iron oxide filling materials) without appreciable modification to fracture styles. The presence of a strong planar fabric at one site, variation in the intensity of Early Proterozoic tectonism, and prolonged plastic deformation in the large LDBB are cited as possible causes for the observed variation in fracture styles

  5. A comparison of fracture styles in two granite bodies of the Superior Province

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D; Kamineni, D C; Brown, A; Everitt, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

    1989-02-01

    A quantitative comparison is made between fracture styles in two late Archean instrusions of the Superior Province - the Lac du Bonnet Batholith (LDBB) and Eye-Dashwa Pluton (EDP). These instrusions have a similar geological setting, similar mineral and chemical composition, and similar physical properties but vary markedly in volume (LDBB = 9060 km{sup 3}; EDP = 122 km{sup 3}). The fracture style of the LDBB consists of mainly low-angle thrust faults within otherwise poorly fractured granite. Subvertical fractures are restricted to within 200 m of surface or zones encompassing the thrust faults. The mineral assemblage chlorite - iron oxide - carbonate is widespread in fractures. In contrast, fractures of the EDP are closely spaced, variably oriented, pervasive to depth, and dominated by subvertical transcurrent faults. Epidote is an abundant fracture-filling material. Most fractures formed in response to Early Proterozoic compression under low-greenschist conditions in the LDBB and upper-greenschist conditions in the EDP. Fractures in both intrusions were subsequently rejuvenated (clay - iron oxide filling materials) without appreciable modification to fracture styles. The presence of a strong planar fabric at one site, variation in the intensity of Early Proterozoic tectonism, and prolonged plastic deformation in the large LDBB are cited as possible causes for the observed variation in fracture styles.

  6. A study on the characteristics of site-scale fracture system in granite and volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Chun Soo; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of conductive fractures in granite and volcanic rock mass. 10 refs., 32 figs., 13 tabs. (Author)

  7. Predictions of hydraulic and transport behavior in a granite fracture via coupled mechano-chemo conceptual model

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Lee, Dae Sung; Nakashima, Shinichiro; Kishida, Kiyoshi

    2009-01-01

    A conceptual model, accounting for pressure and free-face dissolutions, is presented to follow the evolution of fracture permeability in granite that was observed in a flow-through experiment. This model addresses the two dissolution processes at contacting asperities and free walls within fractures, and also describes the multi-mineral dissolution behavior, showing a capability that the evolution of fracture aperture (or related permeability) may be followed with time under an arbitrary temperature and pressure conditions. Predictions utilizing the model proposed in this study show a relatively good agreement with the experimental measurements, although the concentrations predicted underestimate the actual. (author)

  8. Structural and petrophysical characterisation of granite: intended for radioactive waste stocking

    International Nuclear Information System (INIS)

    Stanek, Martin

    2013-01-01

    Structural and petrophysical analysis have been conducted within the Melechov massif with focus on structures controlling the porosity, permeability and thermal conductivity of the rock. The structure of the massif has been constrained based on extensive dataset including AMS and field structural measurements of ductile and brittle structures. The fracture system of the massif has been described by four sets of fractures. The measured petrophysical data have been used to characterize the effect of fracturing and alteration on pore space geometry and in turn on permeability, thermal conductivity and elastic properties of the studied granite. Distinct petrophysical properties have been identified for pristine granite, for fractured fresh granite as well as for fractured granite altered by Fe-oxide, chlorite and clay minerals. A detailed microstructural study combined with multidirectional P-wave velocity measurements at high confining pressure and with AMS analysis has been conducted on a Schlieren bearing sample of Lipnice granite. The granite VP anisotropy at low confining pressure was controlled by intergranular cracks interconnecting Schlieren-sub parallel cleavage cracks in micas and feldspars and by exfoliation fracture-sub parallel intra- or trans-granular cracks in cleavage-free quartz. Major closing of the crack porosity linked to the Schlieren granite below depth of 500 m has been interpreted in terms of crack compliance reflected by rapid increase in VP with confining pressure. (author)

  9. Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings

    Science.gov (United States)

    Wang, L.; Zuo, R.

    2017-12-01

    The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.

  10. Microfracture pattern compared to core-scale fractures in the borehole of Soultz-sous-Forets granite, Rhine graben, France

    Energy Technology Data Exchange (ETDEWEB)

    Dezayes, C.; Villemin, T. [Universite de Savoie (France). Laboratoire de Geodynamique des Chaines Alpines, UPRES-A CNRS 5025; Pecher, A. [Universite Joseph Fourier, Grenoble (France). Laboratoire de Geodynamique des Chaines Alpines, UPRES-A CNRS 5025

    2000-07-01

    Microfractures appearing in thin section as fluid inclusion trails in quartz crystals were studied in four core samples of Soultz-sous-Forets granite. Their orientations in four series of three mutually perpendicular thin sections were estimated using a previously described apparent dip method and a new method involving measurements of strike and apparent dips. Three samples display three microfracture sets and one sample displays two sets. In all samples, one set is nearly vertical and strikes N-S. In two samples, one and two sets are nearly vertical and strike E-W. In two samples, two sets strike NW-SE: one is vertical, the other dips gently to the NE (or SW). Comparing microfracture and mesofractures sets in the same cores shows that (1) the N-S microfacture set is always dominant at both scales and (2) all other microfracture sets have no mesoscopic counterpart. The N-S microfracture sets could have been created during E-W extension of earliest Cenozoic age (Rhine Graben rifting). Differences between the two scales are explained by a {sigma}{sub 1}/{sigma}{sub 2} switching which occurred at the crystal scale and generated mutually perpendicular cracks.

  11. Mechanical properties of Stripa granite

    International Nuclear Information System (INIS)

    Stephansson, O.; Swan, G.; Leijon, B.

    1978-01-01

    For the determination of the mechanical properties of Stripa Granite samples were taken from the boreholes in the vicinity of the test site. The granite type taken from these different sources is of variable character. For the purpose of numerical calculations performed in projects related to the waste storage research program the following parameters have been determined: Young's modulus, Poisson's ratio, compressive fracture stress and expansion coefficient as a function of temperature 20< T<200C; Young's modulus and compressive fracture stress as a function of confining pressure; Brazilian tensile fracture stress; residual shear stress as a function of normal stress; anisotropy ratio for Young's modulus and compressive fracture stress; dilatational wave velocity and deduced dynamic Young's modulus. A brief description of the test methods and the results for each test are presented

  12. Influence of stress-induced deformations on observed water flow in fractures of the Climax Granitic Stock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1987-01-01

    Three examples of stress induced influence on fracture dominated hydrology were noted in drifts 1400 ft below surface in granite. Seepage into portions of shears near a fault zone and an adjoining drift, and mineralization of the joints were the three indicators of shear stress. Interpretation of these results are given

  13. The research frontier and beyond: granitic terrains

    Science.gov (United States)

    Twidale, C. R.

    1993-07-01

    Investigations of granite forms and landscapes over the past two centuries suggest that many features, major and minor, are shaped by fracture-controlled subsurface weathering, and particularly moisture-driven alteration: in other words etch forms are especially well represented in granitic terrains. Commonly referred to as two stage forms, many are in reality multistage in origin, for the structural contrasts exploited by weathering and erosion that are essential to the mechanism originated as magmatic, thermal or tectonic events in the distant geological past. Fracture patterns are critical to landform and landscape development in granitic terrains, but other structural factors also come into play. Location with respect to water table and moisture contact are also important. Once exposed and comparatively dry, granite forms tend to stability; they are developed and diversified, and many are gradually destroyed as new, epigene, forms evolve, but many granite forms persist over long ages. Reinforcement effects frequently play a part in landform development. Several granite forms are convergent, i.e. features of similar morphology evolve under the influence of different processes, frequently in contrasted environments. On the other hand many landforms considered to be typical of granitic terrains are also developed in bedrock that is petrologically different but physically similar to granite; and in particular is subdivided by fractures of similar pattern and density. To date, most of the general statements concerning the evolution of granitic terrains have been based in work in the tropics but other climatic settings, and notably those of cold land, are now yielding significant results. Future research will extend and develop these avenues, but biotic factors, and particularly the role of bacteria, in such areas as weathering, will take on a new importance. Structural variations inherited from the magnetic, thermal and tectonic events to which granite bodies have

  14. A study of the Eocene S-type granites of Chapedony metamorphic core complex (northeast of Yazd province, Central Iran)

    International Nuclear Information System (INIS)

    Zakipour, A.; Torabi, Gh.

    2016-01-01

    The Eocene Chapedony metamorphic core complex, is located in western part of the Posht-e-Badam block. This complex is consisting of migmatite, gneiss, amphibolite, marble, micaschist and various types of granitoids. In middle part of this complex (Kalut-e-Chapedony), an Eocene granitic rock unit cross cuts the other rocks. The minerals of this granite are plagioclase (An 9 Ab 8 7O r 4), potassium feldspars (orthoclase), quartz, euhedral garnet (Alm 7 7Sps 1 3Prp 9 Grs 1 ), zircon, apatite, fibrolitic sillimanite and muscovite. Petrology and geochemical studies reveal calc-alkaline, peraluminous and S-type nature of the studied granites. Chondrite-normalized REE patterns represent evident negative anomaly of Eu and low values of the REEs. Continental crust and North American shale composite (NASC) - normalized multi-elements spider diagrams indicate trace elements depletion. These granites are formed by melting of continental crust sedimentary rocks, resulted by emplacement of mantle-derived magma at the bottom of continental crust which formed the Chapedony metamorphic core complex. The source rock of these granites should be a clay-rich sedimentary rock with low amount of plagioclase and CaO/Na 2 O ratio.

  15. Characterization of natural colloids sampled from a fractured granite groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Keum, Dong Kwon; Hahn, Pil Soo [Korea Atomic Energy Research Institute, Taejeon (Korea); Vilks, Peter [AECL Whiteshell Laboratories (Canada)

    2000-02-01

    This study was carried out as a part of international joint study of KAERI with AECL. The main purpose of this study is to analyze the physicochemical characteristics and sorption properties of natural colloids sampled from the deep fractured granite groundwater located in the Underground Research Laboratory (URL) of AECL. Physicochemical characteristics such as composition, size distribution, and concentrations of natural colloids was analyzed. This study will be basic data for the analysis of the effect of colloids on the radionuclide migration in a geological medium. This study may provide information for the evaluation of the roles and effects of colloids in the safety and performance assessment of a possible future radioactive waste repository. 20 refs., 8 figs., 8 tabs. (Author)

  16. Characterization of Fractures in the Chicxulub Peak Ring: Preliminary Results from IODP/ICDP Expedition 364

    Science.gov (United States)

    McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.

    2017-12-01

    During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections

  17. Confocal μ-XRF, μ-XAFS, and μ-XRD Studies of Sediment from a Nuclear Waste Disposal Natural Analogue Site and Fractured Granite Following a Radiotracer Migration Experiment

    International Nuclear Information System (INIS)

    Denecke, Melissa A.; Brendebach, Boris; Rothe, Joerg; Simon, Rolf; Janssens, Koen; Nolf, Wout de; Vekemans, Bart; Falkenberg, Gerald; Somogyi, Andrea; Noseck, Ulrich

    2007-01-01

    Combined μ-XRF, μ-XAFS, and μ-XRD investigations of a uranium-rich tertiary sediment, from a nuclear repository natural analogue site, and a fractured granite bore core section after a column tracer experiment using a Np(V) containing cocktail have been performed. Most μ-XRF/μ-XAFS measurements are recorded in a confocal geometry to provide added depth information. The U-rich sediment results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(0). The As(0) forms thin coatings on the surface of pyrite nodules. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of ground water dissolved U(VI) leading to precipitation of less soluble U(IV) and thereby forming As(V). Results for the granite sample show the immobilized Np to be tetravalent and associated with facture material

  18. FY 1994 report on the survey of geothermal development promotion. Complementary survey on the fracture system, etc. (Wasabizawa area); 1994 nendo chinetsu kaihatsu sokushin chosa sogo kaiseki hokokusho futai shiryo. Wasabizawa chiiki danretsu kei tou hokan chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    For the contribution to elucidation of the geothermal structure in the Wasabizawa area, Akita Prefecture, survey by the paleomagnetic measurement and fracture system measurement was conducted of the borehole cores and specimens of outcrop granite obtained from boreholes of N6-WZ-3 and N6-WZ-4. In the survey, the following were carried out: measurement of the core fracture system of N6-WZ-3 (102-1,505m) and N6-WZ-4 (507-1,556m), paleomagnetic measurement of 9 outcrop granite specimens and 16 core specimens, and k/Ar age determination of 3 outcrop granite specimens. As a result of the paleomagnetic measurement of outcrop granite, the magnetization azimuth of the schistose granodiorite distributed in Kuwanosawa was regarded as almost NS. The measured magnetization azimuth of the core specimen obtained from the same rock mass was also made NS-based, and measurement of the fracture in the neighborhood was made. As a result, it was found out that the NNW system was dominant in dikes and that there was the NE system in most of the small geothermal channels. The fracture system of well tended to develop around the boundary between granite and metamorphic rock, and it was thought that this part could be a reservoir if temperature conditions are prepared. (NEDO)

  19. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    Science.gov (United States)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  20. Comparison of the simulated diffusion of 238U and 234U isotopes with profile data from granite fractures

    International Nuclear Information System (INIS)

    Latham, A.G.

    1991-01-01

    The observed profiles of uranium content and 234 U/ 238 U activity ratios as they vary with distance into the rock at a granite fracture wall have been interpreted using a simple diffusion-sorption model. For simplicity, the model assumes a linear reversible isotherm. Using simple constraints, it has been possible to estimate long-term values appropriate for the distribution coefficient, K d for uranium in granite. A potential constraint on the uranium K d value is provided by the 234 U/ 238 U activity ratio variations. However, natural 234 U/ 238 U activity ratios seldom change monotonically with distance and it is suspected that they are the result, to some extent, of later uranium removal. To take this approach further, corresponding physical rock property data and closer sampling in the fracture profiles would be required. Estimates of K d are in the range 0.1 to 10 m 3 kg -1 , and are in agreement with the upper part of the range obtained from laboratory experiments. (author)

  1. Rock mass characterization for storage of nuclear waste in granite

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Nelson, P.; Doe, T.; Thorpe, R.; Paulsson, B.; Gale, J.; Forster, C.

    1979-02-01

    The rock mass characterization in granite adjacent to an iron mine at Stripa, Sweden is being carried out by four different methods. The mechanical characterization includes monitoring the responses to thermal loading of jointed rock in situ, and mechanical tests on cores from 25 mm to 1 m in diameter. Geological characterization includes detailed surface mapping, subsurface mapping, and core mapping. Geophysical characterization uses a variety of borehole techniques, with emphasis on sonic methods. The hydrologic characterization is done through injection tests, pump tests, water pressure measurements, and controlled inflow tests to tunnels. Since the data are not yet complete, only tentative conclusions can be drawn regarding the best combinations of techniques for rock-mass characterization. Mapping studies are useful in defining continuity and fracture-system geometry. They do not give aperture, a factor significant in terms of both water flow and the displacements due to heating. Of the geophysical techniques, sonic methods appear most effective in fracture definition; other methods, gamma and neutron particularly, give data on radionuclide and water content and need further analysis with geologic and hydrologic data to determine their significance. Hydrologic work yields primarily aperture data, which with fracture geometry can be used to calculate directional permeabilities. Pressure measurements may provide one means of assessing fracture continuity. Finally, laboratory tests on large cores suggest considerable refinement in testing techniques may be needed before stress-aperture data can be extrapolated from laboratory to field

  2. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  3. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  4. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  5. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  6. Drill-back studies examine fractured, heated rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs

  7. Atmospheric and radiogenic gases in ground waters from the Stripa granite

    International Nuclear Information System (INIS)

    Andrews, J.N.; Hussain, N.; Youngman, M.J.

    1989-01-01

    Ground waters from depths of 350 m to 1,250 m in the Stripa granite contain dissolved radiogenic He in amounts up to 50,000 times that due to air-saturation. The groundwater He-contents increase with depth and lie close to the expected profile for He loss by aqueous diffusion (D = 0.032 m 2 a -1 ). Measurements on core samples show that the rock has retained about 10% of the possible cumulative radiogenic He and that this component is lost by matrix diffusion (D = 5 x 10 -7 m 2 a -1 ). Diffusive equilibrium between He in fracture fluids and in the adjacent rock matrix is rapidly established for the narrow fracture widths of the flow system. A major loss of stored He by both diffusion and advection along fluid-filled fractures is attributed to the proximity of a major fraction of uranium to the aqueous flow system because of its deposition within an interconnective microfracture system. The crustal flux of He is limited by its diffusion coefficient in the matrix of a granitic crust but may be supplemented by transport due to fluid circulation. The 3 He/ 4 He ratio of the excess He present in the Stripa ground waters, corresponds to that expected for radiogenic He production within the granite. The 40 Ar/ 36 Ar ratio of dissolved Ar shows that radiogenic 40 Ar has been released from the rock matrix, especially for ground waters from greater than 450 m depth. Slow alteration reactions are the most probable cause of this radiogenic 40 Ar release which has occurred in the more saline ground waters. Groundwater recharge temperatures, estimated from their noble gas contents, are about 3 degree C lower than those for modern shallow ground waters in the locality and are related to the stable isotope composition of the groundwater

  8. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  9. Face/core interface fracture characterization of mixed mode bending sandwich specimens

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, L.A.

    2011-01-01

    and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading......Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets...... application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack...

  10. Influence of stress-induced deformations on observed water flow in fractures at the Climax granitic stock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1987-06-01

    Three examples of stress-induced displacement influence on fracture-dominated hydrology were noted in drifts 1400 ft below surface in granite. Seepage into drifts was limited to portions of shears near a fault zone. No water entered the drifts from the fault itself, although its orientation relative to Basin and Range extension is favorable for fracture opening. Localization of seepage appears to result from excavation block motion that increased apertures of the shear zones in contrast to the fault where asperities had been destroyed by earlier shearing thus minimizing aperture increases. Seepage was also noted, in an adjoining drift, from a set of shallow-dip healed fractures that intersected the rib, and from vertical fractures that increased the crown. The restricted location of this seepage apparently was a result of shear opening of the joints that occurred because of cantilevered support of tabular rock between joints. Interpretation of paleostresses based on joint chronologies and orientations indicates that sets subjected to shear stresses at a time when normal stresses were low contained mineral infilling. Sets subjected to shear stresses at a time when the normal stresses were significant had minimal mineral infilling. 8 refs., 7 figs

  11. Fracture resistance of upper central incisors restored with different posts and cores

    Directory of Open Access Journals (Sweden)

    Maryam Rezaei Dastjerdi

    2015-08-01

    Full Text Available Objectives To determine and compare the fracture resistance of endodontically treated maxillary central incisors restored with different posts and cores. Materials and Methods Forty-eight upper central incisors were randomly divided into four groups: cast post and core (group 1, fiber-reinforced composite (FRC post and composite core (group 2, composite post and core (group 3, and controls (group 4. Mesio-distal and bucco-lingual dimensions at 7 and 14 mm from the apex were compared to ensure standardization among the groups. Twelve teeth were prepared for crown restoration (group 4. Teeth in other groups were endodontically treated, decoronated at 14 mm from the apex, and prepared for posts and cores. Resin-based materials were used for cementation in groups 1 and 2. In group 3, composite was used directly to fill the post space and for core build-up. All samples were restored by standard metal crowns using glass ionomer cement, mounted at 135° vertical angle, subjected to thermomechanical aging, and then fractured using a universal testing machine. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data. Results Fracture resistance of the groups was as follows: Control (group 4 > cast post and core (group 1 > fiber post and composite core (group 2 > composite post and core (group 3. All samples in groups 2 and 3 fractured in restorable patterns, whereas most (58% in group 1 were non-restorable. Conclusions Within the limitations of this study, FRC posts showed acceptable fracture resistance with favorable fracture patterns for reconstruction of upper central incisors.

  12. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    Science.gov (United States)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  13. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yuchao; Zhan, Jiemin; Wu, Nengyou; Luo, Yingying; Cai, Wenhao

    2016-01-01

    Highlights: • A numerical model of the 950–1350 m fractured granite reservoir through horizontal wells is established. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 26.9–24.3 MW with an efficiency of about 50.10–22.39. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation. - Abstract: Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950–1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01–11.57 MPa. In this work, we evaluated electricity generation potential from this fractured granite reservoir by water circulating through three horizontal wells, and analyzed main factors affecting the performance and efficiency through numerical simulation. The results show that in the reference case the system attains a production temperature of 248.0–235.7 °C, an electrical power of 26.9–24.3 MW, an injection pressure of 10.48–12.94 MPa, a reservoir impedance of 0.07–0.10 MPa/(kg/s), a pump power of 0.54–1.08 MW and an energy efficiency of 50.10–22.39 during a period of 20 years, displaying favorable production performance. Main factors affecting the production performance and efficiency are reservoir permeability, water production rate and injection temperature; within certain ranges increasing the reservoir permeability or adopting more reasonable water production rate or injection temperature will obviously improve the system production performance.

  14. Fracture Characterization of Sandwich Face/Core Interfaces

    DEFF Research Database (Denmark)

    Manca, Marcello

    of load transfer between the faces and the core layer is lost, the debonds are considered as primary damage initiators. Under fatigue loading the debonds may evolve into cracks that cause a reduction in structural performance and consequent failure. At present most structural design is based on “life-time...... of sandwich structures is defects that are introduced in the manufacturing process. It is inevitable that areas of the face sheets will not fully adhere to the core resulting in defects known as “debonds”. Debonds can also be induced in-service due to e.g. localised impact loading or overloading. As the means...... such result it is important to devise new experimental and analytical techniques to establish the multi-mode fracture characteristics of sandwich plate structures and accordingly develop methods to inhibit defect propagation. This thesis deals with characterization of fracture between face and core...

  15. Analysis of geological condition and prospecting potential of uranium metallogenesis in Maling granite mass

    International Nuclear Information System (INIS)

    Shao Fei; Zou Maoqing; Wu Yong; Xu Jinshan; Xu Wang; Chen Chang

    2011-01-01

    Based on the study of regional geological evolution of Maling granite mass, uranium content of granite mass and its peripheric strata, petrogeochemistry and the known spatial distribution pattern of uranium mineralization and ore-controlling structures, new recognition is 1) Maling composite mass is the 'S' type re-melted granite, 2) the accumulative area of regional uranium metallogenic substances forms uranium-rich re-melted strata, 3) magma evolution is the matter base for the uranium-rich hydrotherm, 4) NE-trending main faults are channels for metallogenesis and the lateral high-angle dipping faults, fractures and interlayer fractures in the peripheric strata are the spaces of mineralization. The ore intersected by drilling in Maling granite is acidic type. Prospecting potential of Maling granite mass is analyzed, and preferable prospecting space is delineated for further exploration. (authors)

  16. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  17. Multi-scale fracture damage associated with underground chemical explosions

    Science.gov (United States)

    Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.

    2018-05-01

    Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.

  18. SITE-94. Estimated rates of redox-front migration in granitic rocks

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Analytical models for the rate of migration of oxidizing groundwaters are derived based on the stationary-state approximation to coupled fluid flow and water-rock interaction, and are constrained by molar concentrations of ferrous silicate, oxide, and sulfide minerals in the granites and associated fractures comprising the host rock beneath Aespoe. Model results indicate that small amounts of ferrous minerals in Aespoe granites and fractures will retard the downward migration of oxidizing conditions that could be generated by infiltration of glacial meltwaters during periods of glacial maxima and retreat. Calculated front velocities are retarded relative to Darcy fluxes observed in conductive fracture zones at Aespoe (0.3 to 3 m/y) by factors ranging from 10 -3 to 10 -4 . Corresponding times for the front to migrate 500 m vary from 5,100 to 4,400,000 years. Retardation efficiency depends on mineralogy and decreases in the order: fractures > altered granites > unaltered granite. The most conductive structures in these rocks are therefore the most efficient in limiting the rate of front migration. Periods of recharge during glaciation are comparable to times required for an oxidizing front to migrate to repository levels. This suggests an oxidizing front could reach repository depths during a single glacial-interglacial event. The persistence of oxidizing conditions could be relatively short lived, however, because reversal of flow conditions driven by the advance and retreat of ice sheets could cause reducing conditions to be restored. 27 refs

  19. Determination of Matrix Diffusion Properties of Granite

    International Nuclear Information System (INIS)

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-01-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, 36 Cl, 131 I, 22 Na and 85 Sr at flow rates of 1-50 μL.min -1 . Rock matrix was characterized using 14 C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 μL.min -1 . The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  20. Face/core mixed mode debond fracture toughness characterization using the modified TSD test method

    DEFF Research Database (Denmark)

    Berggreen, Christian; Quispitupa, Amilcar; Costache, Andrei

    2014-01-01

    The modified tilted sandwich debond (TSD) test method is used to examine face/core debond fracture toughness of sandwich specimens with glass/polyester face sheets and PVC H45 and H100 foam cores over a large range of mode-mixities. The modification was achieved by reinforcing the loaded face sheet....... The fracture process was inspected visually during and after testing. For specimens with H45 core the crack propagated in the core. For specimens with an H100 core, the crack propagated between the resin-rich layer and the face sheet. © The Author(s) 2013 Reprints and permissions: sagepub...... with a steel bar, and fracture testing of the test specimens was conducted over a range of tilt angles. The fracture toughness exhibited mode-mixity phase angle dependence, especially for mode II dominated loadings; although, the fracture toughness remained quite constant for mode I dominated crack loadings...

  1. Core drilling of drillhole ONK-PVA8 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in July 2010. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The identification number of the hole is ONK-PVA8, and the length of the drillhole is 17.74 m. The drillhole is 75.7 mm by diameter. The drillhole was drilled in a niche of the access tunnel at chainage 2935. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core ONK-PVA8 is 1.7 pcs / m and the average RQD value 96.0 %. (orig.)

  2. Fracture Characterization of PVC Foam Core Sandwich Specimen Using the DCB-UBM Test Method

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Berggreen, Christian; Carlsson, Leif A.

    coupled with experimental validation is paramount to determine the fracture resistance of the face/core interface. In this paper, the test-rig exploiting the double cantilever beam with uneven bending moments (DCB-UBM) concept is used to determine the fracture toughness of PVC foam core sandwich......Face/core debond failure in sandwich composites is a critical failure mode. Lack of cohesion between face and core will lead to loss of structural integrity. The estimation of interface fracture toughness especially at the face/core interface is extremely challenging, provided the dissimilarity...... composites. The DCB-UBM test enables fracture testing over a large range of mode-mixities as expressed by a phase angle (ψ) which is a measure of the amount of shear loading at the crack tip. A desired phase angle may be achieved by changing the moment-ratio (MR = Md/Ms)....

  3. Diffusivity and electrical resistivity measurements in rock matrix around fractures

    International Nuclear Information System (INIS)

    Kumpulainen, H.; Uusheimo, K.

    1989-12-01

    Microfracturing of rock matrix around permeable fractures was studied experimentally from drill core samples around major fractures. The methods used were diffusion measurements using a 36 Cl-tracer and electrical resistivity measurements. Rock samples were from the Romuvaara investigation site, the granite specimen around a partially filled carbonate fracture (KR4/333 m) and gneiss specimen around a slickenside fracture (KR1/645 m). A consistent difference of one to two orders of magnitude in the levels of the methods with regard to the effective diffusion coefficients for Cl - -ion was found, the electrical resistivity measurement giving higher values. On the basis of the diffusion measurements the diffusion porosities could be calculated but these remained one to two orders of magnitude lower than that expected for granitic rocks using the water saturation method. A possible reason for these differences could have been the low, in some cases 0.004 M NaC1-concentration in the diffusion experiments vs. the 1 M NaCl-concentration used in the electrical resistivity measurements. Due to the small number of specimens and cross sectional areas of only 2 cm 2 , rock inhomogeneity effects were significant making the interpretation of the results somewhat troublesome. Porosities on fracture surfaces seemed to be higher than in the deeper, more intact rock matrix

  4. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  5. A multi-packer technique for investigating resistance to flow through fractured rock and illustrative results

    International Nuclear Information System (INIS)

    Bourke, P.J.; Rae, J.

    1981-01-01

    A multi-packer technique was used to locate twelve discrete fractures in the lower half of a 200 m deep drill hole in Cornish granite. The resistances to water flows into these fractures both singly and together were measured. Geological explanations of the results obtained were sought by examination of core from the hole. Analysis of the results and the further data needed and now being sought to determine resistance to flow over long distances through the pattern of interconnected fractures are discussed. This information is required for the assessment of the safety of burial of radioactive wastes

  6. A study on the uranium sorption properties of a domestic granite

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Kang, Mun Ja; Keum, Dong Kwon; Hahn, Pil Soo

    2003-01-01

    In this report, we selected a domestic granite rock as a studying medium. Granite rock is considered as candidate rock for a high-level radioactive waste repository site and as a representative system of the composite mineral systems. We performed sorption experiments for crushed particles, intact rock surfaces, and natural fracture surfaces of the domestic granite rock and investigated the effects of important geochemical parameters such as pH, ionic strength, carbonate concentration. Fracture surfaces showed higher sorption capacities than intact rock surfaces due to the higher content of secondary minerals and the amount of sorbed uranium was greatly dependent on pH, surface types, and carbonate concentration but little on ionic strength. Besides, we tried to investigate the nuclide sorption behaviors of composite mineral systems in terms of mineralogy in order to evaluate the contribution of constituent minerals and to analyze the sorption properties using sequential chemical extraction and XRD, and EPMA methods. It was found that one dominant mineral(mica in case of intact rock surfaces and chlorite in case of fracture surfaces) controls the uranium sorption and nuclide sorption behavior of composite mineral systems are quite different with that of single mineral systems.

  7. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  8. Experimental assessment of the sealing effectiveness of rock fracture grouting

    International Nuclear Information System (INIS)

    Schaffer, A.; Daemen, J.J.K.

    1987-03-01

    The objective of this investigation is to determine the effectiveness of cement grouts as sealants of fractures in rock. Laboratory experiments have been conducted on seven 15-cm granite cubes containing saw cuts, three 23-cm diameter andesite cores containing induced tension cracks, and one 15-cm diameter marble core containing a natural fracture. Prior to grouting, the hydraulic conductivity of the fractures is determined under a range of normal stresses, applied in loading and unloading cycles, from 0 to 14 MPa (2000 psi). Grout is injected through an axial borehole, at a pressure of 1.2 to 8.3 MPa (180 to 1200 psi), pressure selected to provide a likely groutable fracture aperture, while the fracture is stressed at a constant normal stress. The fracture permeability is measured after grouting. Flow tests on the ungrouted samples confirm the inverse relation between normal stress and fracture permeability. The equivalent aperture determined by these tests is a reliable indicator of groutability. Postgrouting permeability measurements as performed here, and frequently in practice, can be misleading, since incomplete grouting of fractures can result in major apparent reductions in permeability. The apparent permeability reduction is caused by grouting of a small area of a highly preferential flowpath directly adjacent to the hole used for grouting and for permeability testing. Experimental results confirm claims in the literature that ordinary portland cement inadequately penetrates fine fractures

  9. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Drillcon SMOY, Espoo (Finland)

    2014-12-15

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  10. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  11. Structural analysis of a fractured basement reservoir, central Yemen

    Science.gov (United States)

    Veeningen, Resi; Rice, Hugh; Schneider, Dave; Grasemann, Bernhard; Decker, Kurt

    2013-04-01

    The Pan-African Arabian-Nubian Shield (ANS), within which Yemen lies, formed as a result of Neoproterozoic collisional events between c. 870-550 Ma. Several subsequent phases of extension occurred, from the Mesozoic (due to the breakup of Gondwana) to the Recent (forming the Gulf of Aden and the Red Sea). These resulted in the formation of numerous horst- and-graben structures and the development of fractured basement reservoirs in the southeast part of the ANS. Two drill cores from the Mesozoic Marib-Shabwa Basin, central Yemen, penetrated the upper part of the Pan-African basement. The cores show both a lithological and structural inhomogeneity, with variations in extension-related deformation structures such as dilatational breccias, open fractures and closed veins. At least three deformation events have been recognized: D1) Ductile to brittle NW-SE directed faulting during cooling of a granitic pluton. U-Pb zircon ages revealed an upper age limit for granite emplacement at 627±3.5 Ma. As these structures show evidence for ductile deformation, this event must have occurred during the Ediacaran, shortly after intrusion, since Rb/Sr and (U-Th)/He analyses show that subsequent re-heating of the basement did not take place. D2) The development of shallow dipping, NNE-SSW striking extensional faults that formed during the Upper Jurassic, simultaneously with the formation of the Marib-Shabwa Basin. These fractures are regularly cross-cut by D3. D3) Steeply dipping NNE-SSW to ENE-WSW veins that are consistent with the orientation of the opening of the Gulf of Aden. These faults are the youngest structures recognized. The formation of ductile to brittle faults in the granite (D1) resulted in a hydrothermally altered zone ca. 30 cm wide replacing (mainly) plagioclase with predominantly chlorite, as well as kaolinite and heavy element minerals such as pyrite. The alteration- induced porosity has an average value of 20%, indicating that the altered zone is potentially a

  12. Geology of the Tono area with focus on the Toki granite

    International Nuclear Information System (INIS)

    Lanaro, Flavio

    2008-01-01

    This chapter offers an overview of the petrography, fracturing and large-scale structures occurring in Toki granite at the Tono area (Gifu Pref., Japan). Geological descriptions of the investigated Shobasama and MIU Underground Laboratory Construction Site are also given together with the layout of the facility. The overview provides the starting point for the analyses related to the strength of the Toki granite treated in the rest of this report. (author)

  13. Petrographic and mineralogical features of the uraniferous pink granites in the north eastern desert of egypt

    International Nuclear Information System (INIS)

    Atawiya, M.Y.; Salman, A.B.; El-Bayyomi, R.M.

    1998-01-01

    The present work is concerned with the petrological, mineralogical and geochemical studies of some uranium bearing younger granites in the north eastern desert of egypt particularly Gebel Gattar area. The area around Gebel Gattar comprises the following rock units (starting from the oldest): meta volcanic, diorite-grano-diorite complex- Dokhan volcanics- Hammamat sediments, younger granites and dykes. The most significant structural features are represented by NNE-ENE dominantly trending faults and joints. Petrographicaly, the pink granites are divided into normal and mineralized (uraniferous) granites. Normal granites are classified into three types; a) leucocratic perthitic granite, b) hornblende- biotite perthitic granite and c) two feldspars perthitic granite. Mineralized granites are sheared, deformed, pinkish brown in colour and strongly altered. A remarkable secondary uranium mineralization has been recorded along fault and fracture zones

  14. Tectonic imprints within a granite exposed near Srinagar, Rajasthan ...

    Indian Academy of Sciences (India)

    Partial melting in the middle to lower crustal level produces melts of granitic composition ..... of D1G generations with a steep easterly dipping limb and gently westerly ..... The great circles represent the average fracture orientation for each set.

  15. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Tanaka, Satoru; Kuno, Yoshio

    2001-01-01

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  16. Uranium and selected trace elements in granites from the Caledonides of East Greenland

    International Nuclear Information System (INIS)

    Steenfelt, A.

    1982-01-01

    The Caledonian fold belt of East Greenland contains calc-alkaline granite (sensu lato) intrusions with ages ranging from c.2000 Ma to c.350 Ma. The Proterozoic granites have low U contents and the pre-Devonian Caledonian granites contents of U corresponding to the clarke value for U in granites. Some aspects of the geochemistry of U are discussed using U-K/Rb, U-Sr, U-Zr, and U-Th diagrams. Secondary enrichment and mineralization occurs in fractured and hydrothermally altered granites and rhyolites situated in or near a major NNE fault zone. The U is associated with iron oxides or hydrocarbons. It is suggested that the source of the mineralization was Devonian acid magma, which also acted as a heat source for circulating hydrothermal fluids. (author)

  17. Geophysical characterization of an active hydrothermal shear zone in granitic rocks

    Science.gov (United States)

    Zahner, Tobias; Baron, Ludovic; Holliger, Klaus; Egli, Daniel

    2016-04-01

    Hydrothermally active faults and shear zones in the crystalline massifs of the central Alps are currently of particular interest because of their potential similarities and analogies with planned deep petrothermal reservoirs in the Alpine foreland. In order to better understand such hydrothermal systems, a near-vertical, hydrothermally active shear zone embedded in low-permeability granitic rocks has been drilled. This borehole is located on the Grimsel Pass in the central Swiss Alps, has an inclination of 24 degrees with regard to the vertical, and crosses the targeted shear zone between about 82 and 86 meters depth. The borehole has been fully cored and a comprehensive suite of geophysical logging data has been acquired. The latter comprises multi-frequency sonic, ground-penetrating radar, resistivity, self-potential, gamma-gamma, neutron-neutron, optical televiewer, and caliper log data. In addition to this, we have also performed a surface-to-borehole vertical seismic profiling experiment. The televiewer data and the retrieved core samples show a marked increase of the fracture density in the target region, which also finds its expression in rather pronounced and distinct signatures in all other log data. Preliminary results point towards a close correspondence between the ground-penetrating radar and the neutron-neutron log data, which opens the perspective of constraining the effective fracture porosity at vastly differing scales. There is also remarkably good agreement between the sonic log and the vertical seismic profiling data, which may allow for assessing the permeability of the probed fracture network by interpreting these data in a poroelastic context.

  18. Geology and fracture system at Stripa. Technical information report No. 21

    International Nuclear Information System (INIS)

    Olkiewicz, A.; Gale, J.E.; Thorpe, R.; Paulsson, B.

    1979-02-01

    The Stripa test site has been excavated in granitic rock between 338 m and 360 m below the ground surface, and is located under the north limb of an ENE-plunging synclinal structure. The granitic rocks, in the areas mapped, are of Archean age and are dominated by a reddish, medium-grained, massive monzogranite that shows varying degrees of deformation. The granitic rocks have been intruded by diabase (dolerite) and pegmatite dikes. Surface and subsurface mapping shows that the Stripa granite is highly fractured and that there are at least four joint sets in the area of the test excavations. In addition to the joints, the rock mass contains fissures, fracture zones, and small-scale shear zones, representing the complete spectrum of the fracture family. Most of the fractures are lined with chlorite, occasionally with calcite. Many of the small-scale shear fractures are filled or coated with epidote. Offsets of pegmatite dikes formed by these fractures are usually limited to one to two meters. Water seepage is observed only as drops from fractures or moist fracture surfaces. It was found that reconstruction of the local three-dimensional fracture system is the heater-experiment sites was difficult, and in some cases subjective. Such reconstruction is a prerequisite to accurate interpretation of thermal and mechanical data from such sites

  19. 2005 dossier: granite; Dossier 2005: granite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - advantage of granitic formations for the geologic disposal; 2 - containers; 3 - design study of a disposal facility in granitic environment; 4 - understanding and modelling of granite; 5 - description of disposal concepts in granitic environment; 6 - long-term and safety aspects; 7 - conclusion. (J.S.)

  20. Natural analogue and microstructural studies in relation to radionuclide retardation by rock matrix diffusion in granite

    International Nuclear Information System (INIS)

    Montoto, M.; Rodriguez Rey, A.; Ruiz de Argandona, V.G.; Calleja, L.; Menendez, B.

    1992-01-01

    The possibility that radionuclide retardation by rock matrix diffusion will be limited in granitic rocks by geological factors is studied, as well as the possibility that diffusion will be confined to a narrow zone from water-conducting fractures. Petrophysical measurements, uranium series and geochemical analyses in the rock adjacent to fractures, have been performed to establish the extent of fracture-related microstructural changes that might influence the potential for diffusion and whether or not there is any record of diffusion of uranium, its daughters, or other elements. The results obtained from El Berrocal (Spain), Stripa (Sweden) and White-shell (Canada) granites, suggest that: (a) there is a zone adjacent to the fractures (generally less than 100 mm) where microstructural changes and enhanced uranium mobility exist; (b) the evidence for diffusion having taken place in the rock is confined largely to this zone. So, it appears that diffusivity determinations on rock collected away from the influence of fractures will not give representative data for diffusion modelling, in addition to the effect of distressing after removing rocks from depth. It is suggested that diffusion will be of limited effectiveness as a retardation mechanism in many granitic rocks, particularly in water movement confined to narrow channels where access by nuclides to the fracture walls is restricted. 51 refs., 56 figs., 9 tabs., 9 appendices

  1. The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall

    Science.gov (United States)

    Breiter, K.; Ďurišová, J.; Hrstka, T.; Korbelová, Z.; Vašinová Galiová, M.; Müller, A.; Simons, B.; Shail, R. K.; Williamson, B. J.; Davies, J. A.

    2018-03-01

    The genetic relationship between a granite pluton and adjacent complex of rare-metal pegmatite-aplite-banded sheets (Megiliggar Sheet Complex - MSC) has been studied at the border of the Tregonning topaz granite at Megiliggar Rocks, Cornwall, SW England. Similarities in whole-rock chemical and mineralogical compositions, together with a gradual change in textures away from the granite margin, provide strong evidence for a genetic link between the Tregonning Granite and MSC. The sheets are likely to represent apophyses of residual melt which escaped from the largely crystallized roof of the granite pluton. The escaping melt was peraluminous, had a composition near the F, B, Li slightly enriched granite minimum, and, in comparison with other Cornish granites, was enriched in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and depleted in Fe, Mg, Ca, Sr, Th, Zr, and REE. With increasing distance from the Tregonning Granite, the silicate melt crystallized as homogeneous leucogranite sheets and banded complex sheets (i.e. combinations of bands with granitic, aplitic and pegmatitic textures), then layered aplite-pegmatites; this sequence becoming progressively more depleted in the fluxing and volatile elements F, Li, Rb, and Cs, but showing no change in Zr/Hf ratios. The fixed Zr/Hf ratio is interpreted as indicating a direct genetic link (parental melt) between all rock types, however the melt progressively lost fluxing and volatile elements with distance from the granite pluton, probably due to wall-rock reaction or fluid exsolution and migration via fractures. Differentiation of the primary melt into Na-Li-F-rich and separate K-B-rich domains was the dominant chemical process responsible for the textural and mineral diversity of the MSC. On a large (cliff-section) scale, the proximal Na-Li-F-rich leucogranite passes through complex sheets into K-B-rich aplite-pegmatites, whilst at a smaller (<1 m) scale, the K-B-rich bands are interspersed (largely overlain) by Na

  2. Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds

    International Nuclear Information System (INIS)

    Carter, R.G.; Gamble, R.M.

    2002-01-01

    Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)

  3. Rare metal granites and related rocks of the Ukrainian shield

    Directory of Open Access Journals (Sweden)

    Esipchuk, K.Ye.

    1993-12-01

    Full Text Available Two rare metal leucocratic granites, Perga and Kamennaya complexes, can be distinquished on the Ukrainian shield. The Perga complex consists of medium- and coarse grained, mainly porphyric, biotite, riebeckite and aegirine granites, granite porphyries, microclinites and albitites with rare metal mineralization (genthelvite, phenacite, tantalite, cassiterite and wolframite etc.. Granites from several stocks (up to 30 km2 in the northwestern part of the shield, situated along the fracture zone, restricted the large Korosten pluton of rapakivi granites to the northwest. The age of these granites (Pb-Pb and U-Pb methods on zircon and monazite practically coincide with the age of rapakivi granites being 1750 Ma. Within the Korosten complex of rapakivi granites we consider that zinnwaldite granites, which are characterized by fluorite and topazine mineralization, represent the final phase of pluton. These granites differ from the Perga ones by their low content of rare metals. The Kamennaya Mogila complex lies in the southeastern part of the Ukrainian shield. It consists of biotite and muscovite-biotite, medium- and coarse-grained (also porphyric, and occasionally greisining granites with rare metal mineralization (cassiterite, columbite, molybdenite, wolframite and beryl. Granites form several stocks (5-30 km2 situated 10-30 km to the west-northwest of the South-Kalchik gabbro-syenite-granite pluton. Granitoids in both of these complexes have similar isotopic ages (1800 Ma. Leucocratic subalkaline granites (the Novoyanisol type are known within the pluton itself, occupying an intermediate position between the above mentioned in terms of mineral and geochemical composition. The gabbro-syenite-granite formation of the Nearazov region has a substantial similarity to the anorthosite-rapakivi-granite formation. In this respect the relation of each of them to rare metal granites is rather remarkable. This relation is, most probably, not only spatial, but

  4. Hydrogeologic characteristics of domains of sparsely fractured rock in the granitic Lac Du Bonnet Batholith, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Kozak, E.T.; Davison, C.C.; Gascoyne, M.; Broadfoot, R.A.

    1996-06-01

    The hydrogeologic characteristics of the granitic Lac du Bonnet batholith in southeastern Manitoba have been studied since 1978, as part of AECL's program to assess the concept of disposing of Canada's nuclear fuel waste deep within plutonic rocks of the Canadian Shield (Davison et al. 1994a). These studies have included an extensive program of drilling, logging, testing, sampling and monitoring in 19 deep surface boreholes drilled at Grid areas located across the Lac du Bonnet batholith, at the Whiteshell Laboratory (WL), and in surface and underground boreholes at the Underground Research Laboratory (URL). Based on these investigations domains of low permeability, sparsely fractured rock (SFR) have been identified in the Lac du Bonnet batholith

  5. Site investigation SFR. Boremap mapping of core drilled borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the core drilled borehole KFR106, drilled from an islet ca 220 m southeast of the pier above SFR. The borehole has a length of 300.13 m, and a bearing and inclination of 195.1 deg and -69.9 deg, respectively. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. The geological mapping is based on simultaneous study of drill core and borehole image (BIPS). The two lowermost meters of the drill core was mapped in Boremap without access to complementary BIPS-image. The dominating rock type, which occupies 72% of KFR106, is fine- to medium-grained, metagranite granodiorite (rock code 101057), which is foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) is the second most common rock type and it occupies 16% of the mapped interval. It is also frequent as smaller rock occurrences (< 1 m) in other rock types throughout the borehole. Subordinate rock types are fine- to medium-grained granite (rock code 111058), felsic to intermediate meta volcanic rock (rock code 103076), fine- to medium-grained metagranitoid (rock code 101051) and amphibolite (rock code 102017). Totally 49% of the rock in KFR106 has been mapped as altered, where muscovitization and oxidation is the two most common. Additional shorter intervals of alterations are in decreasing order of abundance quartz dissolution, epidotization, argillization, albitization, chloritization, laumontization and carbonatization. A total number of 2801 fractures are registered in KFR106. Of these are 1059 open, 1742 sealed and 84 partly open. This result in the following fracture frequencies: 6.0 sealed fractures/m, 3.7 open fractures/m and 0.3 partly open fractures/m. In addition there are 5 narrow brecciated zones, and 20 sealed networks with a total length of 18 m. The most frequent fracture fillings in KFR106 are

  6. Characterization and interpretation of a fractured rocky massif from borehole data. Boreholes of geothermal project at Soultz-sous-Forets and other examples of unidirectional sampling; Caracterisation et interpretation d`un volume rocheux fracture a partir de donnees de forages. Les forages geothermiques de Soultz-sous-Forets et autres exemples d`echantillonnages unidirectionnels

    Energy Technology Data Exchange (ETDEWEB)

    Dezayes, CH

    1995-12-18

    In this thesis, we study fractures from borehole data on two sites: in one, located at Soultz-sous-Forets (Alsace) in the Rhine graben, boreholes reach a delta Jurassic series forming a petroleum reservoir. At Soultz, fractures have been studied on cores and borehole images. Striated faults present on cores permit to determine the tectonic history of the granite, completed by field study in Vosges Massif. This history corresponds to the Rhine graben history knowing by different authors. The analysis of vertical induced fractures observed on borehole images indicates a present-day NW-SE to NNW-SSE compression. These variations of stress direction are confirmed by others in situ measurements, as hydraulic injection, micro-seismicity, etc... On cores and borehole images, numerous fractures have been observed. Most of them are linked to the E-W distension, which permits the Rhine graben opening at Oligocene. At greatest scale, in quartz minerals, the micro-fractures are constitute by fluid inclusion trails. Several sets are related to the E-W distension, but others sets are linked to compressive stages. These sets are not observed on cores. This is a under-sampling of some fractures by the boreholes, but theses fractures exit into to rock massif. On borehole images, fracture density is weakest than the cores, however the set organisation is the same. At Ravenscar, the distribution of fracture spacing along different unidirectional sampling shows a exponential negative law. However, the fracture density varies with sampling. (author) 199 refs.

  7. Developing a Fracture Model of the Granite Rocks Around the Research Tunnel at the Mizunami Underground Research Laboratory in Central Japan

    Science.gov (United States)

    Kalinina, E.; Hadgu, T.; Wang, Y.

    2017-12-01

    The Mizunami Underground Research Laboratory (MIU) is located in Tono area in Central Japan. It is operated by the Japan Atomic Energy Agency (JAEA) with the main purpose of providing scientific basis for the research and development of technologies needed for deep geological disposal of radioactive waste in fractured crystalline rocks. The current work is focused on the research and experiments in the tunnel located at 500 m depth. The data collected in the tunnel and exploratory boreholes were shared with the participants of the DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), an international research and model comparison collaboration. This study describes the development of the fracture model representing granite rocks around the research tunnel. The model domain is 100x150x100m with the main experimental part of the tunnel, Closure Test Drift, located approximately in the center. The major input data were the fracture traces measured on the tunnel walls (total of 2,023 fractures), fractures observed in the horizontal borehole parallel to the tunnel, and the packer tests conducted in this borehole and one vertical borehole located within the modeling domain. 78 fractures (the ones with the inflow) in the tunnel were incorporated in the development of the fracture model. Fracture size was derived from the fracture trace analysis. It was shown that the fracture radius followed lognormal distributions. Fracture transmissivity was estimated from an analytical solution of inflow into the tunnel through an individual fracture and the total measured inflow into the tunnel. 16 fractures were incorporated in the model along the horizontal borehole. The packer test data in the different well intervals were used to estimate the range in fracture transmissivity. A relationship between the fracture transmissivity and fracture radius was developed. The fractures in the tunnel and borehole were used to derive fracture orientation and

  8. Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress.

    Science.gov (United States)

    Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  9. Identifying the site of granite uranium deposit with radon survey and soil-natural themoluminescence survey. A case study of Xiazhuang granite uranium field

    International Nuclear Information System (INIS)

    Yang Yaxin; Wu Yamei; Wu Xinmin; Chen Yue; Zheng Yongming; Zhang Ye; Wu Lieqin

    2007-01-01

    This paper briefly introduces the methods and procedures for field and indoor radon survey and themoluminescence (TL) survey. The application of these two methods to Xiazhuang uranium field in Guangdong province shows: (1) the positive anomalies of radon survey coincide well with fractured zone and the positive anomalies of TL survey response to uranium mineralization on granite type uranium deposit of silicated fracture zone, the uranium deposit can be effectively explored when these two kinds of anomalies match together. (2) the positive anomalies of radon survey coincide well with fractured zone and the positive anomalies of TL response to the position that intersection between the fractured zone and diabase dyke is projected on the ground. (authors)

  10. Crosshole investigations - physical properties of core samples from boreholes F1 and F2

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Carlsten, S.; Olsson, O.

    1987-06-01

    The geology and physical properties have been studied of roughly 100 core samples from the boreholes F1 and F2 drilled at the Crosshole site, located at the 360 m level in the Stripa mine. The granitic rock has been divided into two classes: Fracture zones (also called major units) and a rock mass which is relatively undeformed. Samples from the major units have lower resistivity, higher porosity and dielectric constant than the samples from the less deformed rock mass. The electrical properties of the core samples have been measured over a frequency interval ranging from 1 Hz to 70 MHz. The conductivity of the samples increases with frequency, approximately with the frequency raised to the power 0.38. The dielectric constant decreases with frequency but is essentially constant above 3 MHz. These results show that the Hanai-Bruggeman equation can be used to describe the electrical bulk properties of the Stripa granite. The electrical conductivity of the samples is well correlated to the water content of the samples. The granite has a small contents of electrically conductive minerals which could influence the electrical bulk properties. (orig.)

  11. Laboratory and in situ determination of the migration processes of actinide complexes and colloids in a fissured granitic environment. El Berrocal project (preliminary activities - phase 0)

    International Nuclear Information System (INIS)

    Astudillo, J.; Del Olmo, C.; Commission of the European Communities, Ispra

    1993-01-01

    The experimental site of El Berrocal has been chosen for a study of the migration of natural radionuclides in a fractured granitic environment. The granite is classified as an alkaline feldspar-rich quartz granite with two micas. The fresh granite is affected by hydrothermal alteration processes related to fractures, which has led to a strong sericitization of albite, and the precipitation of secondary chlorites and carbonates. The most important U-bearing and Th-bearing accessory minerals are uraninite, thorite-auerlite, monazite, anatase, apatite and zircon. Approximately 65% of the total of U in the rock is held as uraninite. In the altered granite, most of the U is held as autunite. Hydrogeochemical data show that Co 2 /H 2 CO 3 is the dominant system, followed by the silica-silicate system. Based on their stability analyses, two zones can be defined: (i) waters north of the dyke and from deep zones where calcite is in equilibrium and albite and gibbsite precipitate, and (ii) surface waters, south of the dyke, subsaturated in relation to calcite, producing the alteration of albite and the precipitation of montmorillonite. The size distribution of the colloids varies, depending on the treatment given to the water samples. The particles are mainly composed of K-feldspars and clay minerals (smectite) and occasionally by quartz, mica, calcite and pollen. The El Berrocal groundwaters have a very low amount of organic matter. Column migration tests have been carried out and were performed with intact granitic cores and with crushed granite. Np proved to be an adequate radionuclide for these experiments. Under oxic conditions and in the absence of organic matter, it was completely retained in both types of columns, whereas in the presence of organic matter a more rapid breakthrough was observed. Under anoxic conditions, and with or without organic matter, Np was found to move faster than under oxic conditions. (author). 13 refs., 46 figs., 23 tabs

  12. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    Directory of Open Access Journals (Sweden)

    Leite Renato J.

    2006-01-01

    Full Text Available The Piedade Granite (~600 Ma was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit and core (metaluminous titanite-bearing biotite monzogranite BmgT unit and felsic pink inequigranular granite (Bmg unit between them. Bmg has high LaN/YbN (up to 100, Th/U (>10 and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45, Ba and Sr, fractionated REE patterns (LaN/YbN= 45, 87Sr/86Sr(t~ 0.710, epsilonNd(t ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta. The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t = 0.713-0.714; epsilonNd(t= -14 to -16, similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  13. Mobilities of radionuclides in fresh and fractured crystalline rock

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Ittner, T.; Allard, B.; Andersson, K.; Olofsson, U.

    1982-12-01

    Sorption and migration of technetium, cesium and americium on fracture surfaces and fresh surfaces of granites taken from drilling cores from the Finnsjoen and Studsvik areas and the Stripa mine are reported. The three elements were used as reference elements with different chemistry and behaviour in water; under the conditions used in the experiments technetium exists as the heptavalent TcO -4 -ion, cesium as the non-complexed monovalent cation Cs + and americium as the strongly hydrolysed Am(OH)super (3-x) (x-1-4). The waters used were synthetic groundwaters representative of waters from the drilling holes. After the exposure of the fracture samples to spiked groundwater solutions for a period of three up to six months the penetration depths and concentration profiles were analysed and autoradiographs of cesium and americium distribution vs depth were taken. The sorption of technetium was found to be negligible. The transport of TcO -4 depends on accessibility to fractures and micro-fissures in the rock. Cesium is sorbed through an ion-exchange process. Migration of cesium depends not only on the transport in water into fractures and micro-fissures, but also on migration through mineral veins with a high CEC. Americium is strongly sorbed on most solid surfaces and did not migrate significantly during the contact time of three months. The diffusivity in granite was found to be around 10 - 13 m 2 /s for cesium; preliminary values for technetium and americium were 10 - 12 m 2 /s and less than 10 - 16 m 2 /s, respectively. (Authors)

  14. The role of granites for the ore mineralization in South German Variscides

    International Nuclear Information System (INIS)

    Dill, H.G.

    1987-01-01

    Granites are of widespred occurrence in the South German Variscides (F.R. of Germany), the Black Forest (=BF), and the NE Bavarian Basement (=NEBB). These areas are crossed by the Saxothuringian-Moldanubian plate boundary and were also affected by crustal subdulction and nappe tectonism, both of which are thought to be responsible for granitisation and enrichment of Sn, W,U,Au, Sb,Pb,Zn,F, and Ba in veins of different kind. Heat produced by gliding of plates above each other, by decay of radioctive elements in granites as well as set free by the granites themselves caused the above-mentioned elements to be released from their protores, which formed during Late Proterozoic and Early Paleozoic rifting. These hypogene ore mineralizations may be crudely subdivided into thrustbound, granite-related and granite-induced ore deposites. During Tertiary-Quaternary these granites were exposed the pervasive weathering under subtropical conditions, so that ''U yellow ores'' and china clay deposits came into existence. The whole ore mineralization in that region may be explained by a simple four-step model: preconcentration, fracturation, activation and peneplaination. (author) [pt

  15. Micro-fractures produced in the Cadalso de los Vidrios granite (Madrid) subjected to Freeze-Thaw Durability Testing

    Science.gov (United States)

    Freire-Lista, D. M.; Varas-Muriel, M. J.; Fort, R.

    2012-04-01

    , the quartz crystals are those that undergo more intracrystalline micro-fractures, whereas the biotites, behave in a more ductile form and they are not micro-fractured. Both analytical techniques give information of this granite deterioration, showing a relation between the number of freezing-thaw cycles, the superficial micro-fractures proliferation and the decrease of ultrasonic waves propagation velocity produced by the ageing cycles.

  16. Discriminations of Younger Granitic Masses at Gabal Qattar Area, North Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Wasfi, S.A.; Lliase, E.L.; Mousa, M.I.

    2009-01-01

    Gabal Qattar area is located in the north Eastern Desert of Egypt between Latitudes 26 degree 52 and 27 degree 08 N, and Longitudes 33 degree 13 and 33 degree 25 E. The exposed rock units, there, from the oldest to the youngest, are meta volcanics; granodiorites- diorite complex; Hammamat sediments and younger granites. Most of the area is densely traversed by felsic and mafic dykes. The Qattarian younger granites are divided into seven granitic areas according to their spectral characters to facilitate the studying and delineating physical characteristic differences between these areas as well as to throw a light about the best conditions of exploration for radioactive mineralizations. This study is based on brightness Digital Number values (DNs) of the granitic areas, predominant trends and densities of the structural lineaments, shape and type of weathering products. Three areas of these seven younger granite areas form Gabal (G.) Qattar, and designated Gr 1, Gr 3 and Gr 4, where the other granite areas which form the G. Urn Dissi (Gr 2), G. Thelma (Gr 5), G. Abu Samyuk (Gr 6) and G. Ayn AI Ruwayshed (Gr 7). Photo geologically, these seven granite areas show some differences in shape, texture, predominant trends and densities of structural lineaments and ability of weathering. This study shows that the seven granite areas could be gathered into three main groups according to their DNs values of Landsat ETM+ spectral bands especially of band 5, where these three main groups representing different, and mainly coincide with the three granite phases previously delineated according to chronological field relation, petrographic and geochemical studies. The Gr 1 area contains all uranium occurrences from locations I to V. This area is characterized by semi circular shape of NW trend, massive appearance with high relief peaks, and high fracture density, where the N 55 degree E, N 5 degree E, N 45 degree E and N 45 degree W are the predominant trends. Some of the N 55

  17. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-Chao; Zhan, Jie-Min; Wu, Neng-You; Luo, Ying-Ying; Cai, Wen-Hao

    2016-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950 ~ 1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01 ~ 11.57 MPa; in this well there mainly produces liquid and steam two-phase flow. In this work we numerically investigated the electricity generation potential from the fractured granite reservoir through a single vertical well, analyzed the process and mechanism of the two-phase flow, and evaluated main factors affecting the heat production and electricity generation. The results show that under the reference conditions the system attains a pump power of 0.02 ~ 0.16 MW, an electrical power of 2.71 ~ 2.69 MW, and an energy efficiency of 68.06 ~ 16.34, showing favorable electricity generation performance. During the production period, the bottomhole production pressure gradually decreases, and this makes the pump power increasing and the energy efficiency decreasing. When the bottomhole pressure is lower than the saturated vapor pressure, the liquid water begins to evaporate and the bottomhole wellbore begins to produce the mixture of liquid and steam. Main factors affecting the performance are reservoir porosity, permeability and fluid production rate. Higher reservoir porosity or higher permeability or lower fluid production rate will increase the bottomehole pressure, decrease the pump power and improve the energy efficiency. - Highlights: • We established a numerical model of a single vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 2.71 ~ 2.69 MW with an efficiency of about 68.06 ~ 16.34. • Electric power mainly depends on the reservoir porosity and water production rate. • Higher permeability within a certain range is favorable for electricity generation.

  18. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    carottes (n. Nous montrons que, pour le granite de Beauvoir, l'effet neutron de la matrice est important (en moyenne proche de 7% et ne peut être négligé lorsque l'on mesure des porosités voisines de 0,5% sur carottes. La calibration de l'outil neutron dans le granite et non pas dans des calcaires est d'autre part capitale quant à la précision quantitative des résultats. This article describes the research done on the Beauvoir granite (Echassières GPF 1 borehole, French Massif Central range. The aim of this project was to obtain representative values of the water saturation (n total free water porosity of the Beauvoir granite from PorosityN neutron porosity (BRGM neutron log. The exact knowledge of the porosity of a crystalline block is effectively fundamental to determine its possibilities for being used as a waste storage site. With this goal, neutron logging provides indispensable information concerning the characterization of a porous medium. Our procedure was experimental, and we tried to go more deeply into various problems linked to the use of neutron logging in a granitic rock. Two main factors governed the neutron response : (i the hydrogen concentration of the formation (free water and combined water of various minerals and (ii the presence of absorber elements with a large capture cross-section such as gadolinium, cadmium, boron as well as lithium for the Beauvoir granite. After measuring the Beauvoir granite n total (free water porosity on core samples, we evaluated the combined water content of each sample tested on the basis of fire loss tests on rock powder at 900°C. From the hydrogen atoms volumic concentration, we determined a hydrogen index that we directly converted into the PorosityN(OH- neutron porosity, (by definition, pure water at 20°C has a hydrogen index of 1 which is equivalent to a 100% porosity. For the Beauvoir granite, the matrix combined water represents an average neutron porosity (Table 1 of about 4%. In the second phase, we used

  19. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2014-04-15

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  20. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-04-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  1. Laboratory Mid-frequency (Kilohertz) Range Seismic Property Measurements and X-ray CT Imaging of Fractured Sandstone Cores During Supercritical CO2 Injection

    Science.gov (United States)

    Nakagawa, S.; Kneafsey, T. J.; Chang, C.; Harper, E.

    2014-12-01

    During geological sequestration of CO2, fractures are expected to play a critical role in controlling the migration of the injected fluid in reservoir rock. To detect the invasion of supercritical (sc-) CO2 and to determine its saturation, velocity and attenuation of seismic waves can be monitored. When both fractures and matrix porosity connected to the fractures are present, wave-induced dynamic poroelastic interactions between these two different types of rock porosity—high-permeability, high-compliance fractures and low-permeability, low-compliance matrix porosity—result in complex velocity and attenuation changes of compressional waves as scCO2 invades the rock. We conducted core-scale laboratory scCO2 injection experiments on small (diameter 1.5 inches, length 3.5-4 inches), medium-porosity/permeability (porosity 15%, matrix permeability 35 md) sandstone cores. During the injection, the compressional and shear (torsion) wave velocities and attenuations of the entire core were determined using our Split Hopkinson Resonant Bar (short-core resonant bar) technique in the frequency range of 1-2 kHz, and the distribution and saturation of the scCO2 determined via X-ray CT imaging using a medical CT scanner. A series of tests were conducted on (1) intact rock cores, (2) a core containing a mated, core-parallel fracture, (3) a core containing a sheared core-parallel fracture, and (4) a core containing a sheared, core-normal fracture. For intact cores and a core containing a mated sheared fracture, injections of scCO2 into an initially water-saturated sample resulted in large and continuous decreases in the compressional velocity as well as temporary increases in the attenuation. For a sheared core-parallel fracture, large attenuation was also observed, but almost no changes in the velocity occurred. In contrast, a sample containing a core-normal fracture exhibited complex behavior of compressional wave attenuation: the attenuation peaked as the leading edge of

  2. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts.

    Science.gov (United States)

    Panitiwat, Prapaporn; Salimee, Prarom

    2017-01-01

    This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2.0). Samples were randomly divided into four groups (n=10). Each group was built-up with one of the four core materials following its manufacturers' instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05), but was significantly higher than in those with LCZ and TNC (paligned with the same tendency of fracture loads. Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  3. Recent progress of the NEA Stripa project on in situ experiments in granite associated with the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Carlyle, S.G.; Carlsson, H.S.

    1987-01-01

    The NEA Stripa project has devoted considerable effort to the measurement and assessment of the hydrogeology, hydrogeochemistry and migration phenomena of the stripa granite and to the simulation of conditions likely to be found within an engineered repository in granitic rock. These include refining existing, and developing new, geophysical and hydraulic techniques for the mapping and characterization of fractures in crystalline rocks; conducting field experiments to assess the migration of tracers in single-and multiple-fracture systems; and studying the behaviour of bentonite clay as the back-filling and sealing material in a granitic environment. This paper summarizes the most important findings and outlines the main aims of possible future research under any phase 3 of the project. The latter may include making mathematical predictions of the hydrogeological behavior of the Stripa granite and their subsequent validation by field measurements

  4. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  5. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2011-10-01

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  6. Geology of the Northern part of the Strath Ossian Granite, Scotland

    International Nuclear Information System (INIS)

    Henderson, W.G.

    1982-12-01

    The Strath Ossian Granite is made up of granodiorite, dark, variable 'granodiorites' interpreted as mobilised diorite or basic material, appinite and porphyritic granodiorite. Huge rafts of psammitic metasediments occur within the mass and three fracture-zones and numerous dykes, dominantly of porphyrite, cut across it in a north-easterly direction. Granite emplacement may have occurred in stages, early batches being xenolith-rich and later ones xenolith-poor. New batches were intruded centrally, which created strong radial stresses, sufficiently strong to make room for the intrusion by forcing the metasedimentary country rocks downwards and aside. (author)

  7. Geological characteristics of granite type uranium deposits in middle of Inner Mongolia in comparison with south China

    International Nuclear Information System (INIS)

    Wang Gui

    2012-01-01

    Granites extensively distributed in middle of Inner Mongolia and South China, namely Caledonian, Hercynian and Yanshanian. Some of the intrusive are composed of granites which belong to different ages. Some of the uranium deposits were found inside the granite bodies or in sedimentary rocks and meta sedimentary rocks along the exocontact zone. Granite rock was comparing in middle Inner Mongolia and South China, including Uranium ore-forming geological conditions. ore-forming process and Ore-controlling factors. Think the Uranium ore-forming geological conditions is similar; ore-forming process is mainly for low-mid temperature hot liquid; Uranium ore bodies (uranium mineralization) was controlled by fracture. Explain granite type uranium mineralization potential is tremendous in middle of Inner Mongolia. (author)

  8. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  9. Natural analogue studies in crystalline rock: the influence of water-bearing fractures on radionuclide immobilisation in a granitic rock repository

    International Nuclear Information System (INIS)

    Alexander, W.R.; MacKenzie, A.B.; Scott, R.D.; McKinley, I.G.

    1990-06-01

    Current Swiss concepts for the disposal of radioactive waste involve disposal in deep mined repositories to ensure that only insignificant quantities of radionuclides will ever reach the surface and so enter the biosphere. The rock formations presently considered as potential candidates for hosting radwaste repositories have thus been selected on the basis of their capacity to isolate radionuclides from the biosphere. An important factor in ensuring such containment is a very low solute transport rate through the host formation. However, it is considered likely that, in the formations of interest in the Swiss programme (eg. granites, argillaceous sediments, anhydrite), the rocks will be fractured to some extent even at repository depth. In the instance of the cumulative failure of near-field barriers in the repository, these hydraulically connected fractures in the host formation could be very important far-field routes of migration (and possible sites of retardation) of radionuclides dissolved in the groundwaters. In this context, the so-called 'matrix diffusion' mechanism is potentially very important for radionuclide retardation. This report is the culmination of a programme which has attempted to assess the potential influence of these water-bearing fractures on radionuclide transport in a crystalline rock radwaste repository. 162 refs., 36 figs., 16 tabs

  10. Lithological and structural bedrock model of the Haestholmen study site, Loviisa, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Front, K.; Paulamaeki, S.; Ahokas, H.; Anttila, P

    1999-10-01

    The Haestholmen study site is located within the anorogenic Wiborg rapakivi granite batholith, 1640 1630 Ma in age. The bedrock consists of various rapakivi granites, which can be divided into three groups or lithological units: (1) wiborgite and pyterlite, (2) porphyritic rapakivi granite, and (3) even-grained or weakly porphyritic rapakivi granite, pyterlite being the dominant rock type. The evengrained and weakly porphyritic rapakivi granite has been interpreted to form a younger intrusive unit with a thickness of ca. 500 m, dipping approx. 20 deg to the NNW-NNE. Surface fractures form a distinct orthogonal system, with three perpendicular fracture directions: fractures dipping steeply (dip >75 deg) to the NE-SW and NW-SE plus subhorizontal (dip <30 deg) fractures. The fracturing in the outcrops is sparse,the average fracture frequency being 0.6 fractures/m. The majority of the fractures in the drill cores are horizontal or very gently dipping and there is no difference in fracture orientations in regard to rock type or depth. Core samples are usually slightly fractured (1 - 3 fractures/m), even-grained rapakivi granites being in places abundantly fractured (3 10 fractures/m. The broken sections in Haestholmen core samples represent about 4.6 % of the total length of the samples. Calcite, dolomite, Fe- hydroxides and clay minerals (illite, montmorillonite and kaolinite) form the most typical fracture mineral phases throughout the drill cores. Core discing is locally seen as repeated fracture-like subparallel cracks in core with spacing of about some millimetres to tens of millimetres. The structural model contains 27 structures (denoted by the term R+number), more than half of which have been verified by direct observations from boreholes or from the VLJ repository. The remaining structures are mainly based on the geophysical interpretation, and have been classified as probable or possible fracture zones. In addition, local structures with uncertain orientation

  11. Thermo-mechanical analysis of high level nuclear wastes in granite

    International Nuclear Information System (INIS)

    Millard, A.; Guri, G.; Raimbault, M.

    1991-01-01

    In order to appraise the safety of a storage of high level nuclear wastes in rock masses, it is necessary to assess, among other features, the thermo-mechanical behaviour of the host rock for long periods (thousands of years). In France, four different media are considered as potential host rocks: granite, shale, salt, clay. The present paper is devoted to some analysis of a generic storage configuration in granite. The case of a rock mass without any major fault has been considered. The granite is modelled by means of an elastic fracturing model (no tension type). The results obtained show that some fissures, induced by the heat generation, develop mainly above the repository. The opening of the fissures, within the frame of the adopted hypothesis, have not a strong influence on the rock mass, as a geological barrier for the radionuclides. (author)

  12. Effect of grain size on the sorption and desorption of SeO42- and SeO32- in columns of crushed granite and fracture infill from granitic water under dynamic conditions

    International Nuclear Information System (INIS)

    Videnska, K.; Institute of Chemical Technology, Prague; Palagyi, S.; Czech Technical University, Prague; Stamberg, K.; Vodickova, H.; Havlova, V.

    2013-01-01

    The sorption of 2 x 10 -5 mol/dm 3 Na 2 SeO 4 and Na 2 SeO 3 dissolved in synthetic granitic water (SGW) were investigated in columns of crushed granite and fracture infill (clay minerals) of various grain sizes. Desorption was studied using pure SGW. The goal of study was the quantification of the effect of grain size on the retardation and distribution coefficients of SeO 4 2- and SeO 3 2- , as well as on the other transport parameters (Peclet number and hydrodynamic dispersion coefficient). A model based on the erfc-function, assuming a non-linear reversible equilibrium sorption/desorption isotherm, was used for evaluation of sorption/desorption and transport parameters. The determination of selenium was performed using an ICP-MS technique. The experimental breakthrough curves were fitted using non-linear regression procedure, in the course of which the parameters mentioned were sought. Summing up, no sorption was recorded in the case of SeO 4 2- under these conditions. The values of retardation coefficients were practically one for all studied grain sizes. On the other hand, significant sorption was found for SeO 3 2- : depending on the grain size, the retardation coefficients varied between 1.6-8.7 in pure granite and 1.8-37.2 in infill materials. These values correspond to distribution coefficients of 0.2-2.5 and 0.2-12.7 cm 3 /g, respectively. The both parameters have similar values in a case of desorption which reflects the reversible character of sorption process. It was found that retardation and distribution coefficients and sorption capacity for SeO 3 2- also increase with decreasing grain size. (author)

  13. Fracture toughness testing of core from the Cambro-Ordovician Section on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lemiszki, P.J.; Landes, J.D.

    1996-01-01

    The modified ring test was used to determine the mode I fracture toughness of bedrock cores from the DOE Oak Ridge Reservation in east Tennessee. Low porosity sandstones, limestones, and dolostones from the lower part of the Paleozoic section in Copper Creek and Whiteoak Mountain thrust sheets were sampled. In general, the average mode I fracture toughness decreases from sandstone, dolostone, and limestone. The fracture toughness of the limestones varies between rock units, which is related to different sedimentologic characteristics. Quality of results was evaluated by testing cores of Berea Sandstone and Indiana Limestone, which produced results similar to published results

  14. Assessing the role of cation exchange in controlling groundwater chemistry during fluid mixing in fractured granite at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to simulate the mixing of dilute shallow groundwater with deeper more saline groundwater in the fractured granite of the Redox Zone at the Aespoe underground Hard Rock Laboratory (HRL). Fluid mixing simulations were designed to assess the role that cation exchange plays in controlling the composition of fluids entering the HRL via fracture flow. Mixing simulations included provision for the effects of mineral precipitation and cation exchange on fluid composition. Because the predominant clay mineral observed in fractures in the Redox Zone has been identified as illite or mixed layer illite smectite, an exchanger with the properties of illite was used to simulate cation exchange. Cation exchange on illite was modeled using three exchange sites, a planar or basal plane site with properties similar to smectite, and two edge sites that have very high affinities for K, Rb, and Cs. Each site was assumed to obey an ideal Vanselow exchange model, and exchange energies for each site were taken from the literature. The predicted behaviors of Na, Ca, and Mg during mixing were similar to those reported in a previous study in which smectite was used as the model for the exchanger. The trace elements Cs and Rb were predicted to be strongly associated with the illite exchanger, and the predicted concentrations of Cs in fracture fill were in reasonable agreement with reported chemical analyses of exchangeable Cs in fracture fill. The results of the geochemical modeling suggest that Na, Ca, and Sr concentrations in the fluid phase may be controlled by cation exchange reactions that occur during mixing, but that Mg appears to behave conservatively. There is currently not enough data to make conclusions regarding the behavior of Cs and Rb

  15. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts

    Directory of Open Access Journals (Sweden)

    Prapaporn PANITIWAT

    Full Text Available Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC, MultiCore Flow (MCF, and LuxaCore Z-Dual (LCZ, and a nanohybrid composite, (Tetric N-Ceram (TNC. Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post cemented with resin cement (Panavia F2.0. Samples were randomly divided into four groups (n=10. Each group was built-up with one of the four core materials following its manufacturers’ instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. Results One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05, but was significantly higher than in those with LCZ and TNC (p<0.05. In terms of the flexural modulus, the ranking from the highest values of the materials was aligned with the same tendency of fracture loads. Conclusion Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  16. Development of a geophysical methodology from boreholes for the study of granitic formation storage site

    International Nuclear Information System (INIS)

    Le Masne, D.

    1983-01-01

    The aim of this work is the characterization of the fracturation of a granitic formation by the examination of borehole environment. Two types of methods are used. Methods using one borehole only: well logging (electrical and nuclear). Didier logs (electric dipole-dipole), Eric probes (electromagnetic dipole-dipole) and methods between boreholes (grounding). These methods were applied to two boreholes of 500m and 1000 meters drilled into granite at Auriat (France)

  17. Granite intrusion in a metamorphic core complex: the example of the Mykonos laccolith (Cyclades, Greece)

    Science.gov (United States)

    Denèle, Yoann; Lecomte, Emmanuel; Jolivet, Laurent; Huet, Benjamin; Labrousse, Loïc.; Le Pourhiet, Laetitia; Lacombe, Olivier

    2010-05-01

    Numerical and analogical modelling underlined the importance of a pre-existing anomaly of viscosity-density such as a granite or migmatitic body below the brittle-ductile transition as a primary cause of metamorphic core complex (MCC) developpement. While field studies of MCC show a spatial and temporal link between MCC formation and plutonic activity, thermochronological studies show that there is no link between the intrusion of granites and the velocity of slip on the detachement plane. The Aegean domain is a good natural laboratory for studying the formation of MCC and syn-tectonic granites. In the northern Cyclades, the Mykonos-Delos-Rhenia MCC is characterised by the intrusion of a plurikilometric Late Miocene pluton of I-type granite within a migmatitic gneiss dome. AMS (Anisotropy of magnetic susceptibility) and microstructural studies in the Mykonos granites combined with recent cooling rate data allow us to use the granites as strain marker. The Mykonos granitoïds form a plurikilometric laccolith slightly deeping to the east and presenting an elliptical shape with a N170°E long axis. The laccolith is strongly asymmetrical with an outlying root zone in the SW cropping out on Delos and Rhenia islands and a major body mainly developed to the NE and cropping out on Mykonos Island. The laccolith consists of various petrographic facies presenting straight contacts that demonstrate emplacement by successive pulses of more or less differentiated magmas. The laccolith was developed at the interface between the Cycladic Basement and the Blueschists Unit and within the Blueschist Unit. Two events of deformation have been recorded in the granites. The first event is characterized by submagmatic and high to middle temperature protomylonite microstructures developped during or just after the intrusion. The second event of deformation characterized by low temperature mylonites and cataclasites close to the major detachment fault corresponds to the localization of

  18. Movement of fossil pore fluids in granite basement, Illinois

    International Nuclear Information System (INIS)

    Couture, R.A.; Seitz, M.G.

    1986-01-01

    The compositions of pore fluids in granite cores from the Precambrian basement in northern Illinois were determined. The estimated chloride concentration in the aqueous phase increases from near zero at the upper contact with sandstone to 2.7 M at 624 m below the contact. Traces of aliphatic oil are present in the overlying sandstone and the upper 516 m of granite, and oil occupies most of the pore space in one sample of unaltered granite 176 m below the contact. The oil has a Δ 13 C of -25%, about the same as average petroleum. The high concentrations of salt more than 500 m below the contact imply that little or no fresh water has reached these levels of the granite by flow. Lower concentrations near the contact are consistent with replacement of brine in the sandstone by fresh water at least 11 m.y. ago and subsequent upward diffusion of salt from the granite. Geologic data suggest that the time of replacement was about 130 Ma. The purpose of the investigation is to study the record of movement of intergranular fluids within a granite pluton. The composition and movement of ground waters can determine the extent that hazardous or radioactive wastes disposed in igneous rock will remain isolated

  19. Isotopic geochronology of granitic rocks from the Central Iberian Zone: comparison of methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, I. M. H. R.; Neiva, A. M. R.; Silva, M. M. V. G.

    2010-07-01

    Five granitic rocks, concentrically disposed from core to rim, were distinguished in the Castelo Branco pluton. U-Pb-Th electron microprobe monazite ages from granitic rocks are similar and ranging between 297-303 Ma. The granitic rocks from Castelo Branco pluton are 310 {+-} 1 Ma old, obtained by U-Pb (ID-TIMS) in separated zircon and monazite crystals, indicating a similar emplacement age for all granitic rocks of the pluton. Initial {sup 8}7Sr/{sup 8}6Sr isotopic ratios and {epsilon}Nd{sub 3}10 and {delta}{sup 1}8O values suggest three distinct pulses of granitic magma and that they are derived from partial melting of heterogeneous metasedimentary materials. The other granitic rocks are related by magmatic differentiation and show small variations in ({sup 8}7Sr/{sup 8}6Sr)310, {epsilon}Nd{sub 3}10 and {delta}{sup 1}8O. The granitic pluton of Castelo Branco shows a rare reverse zoning. (Author) 12 refs.

  20. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  1. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  2. Fracture resistance improvement of polypropylene by joint action of core-shell particles and nucleating agent

    International Nuclear Information System (INIS)

    Yang Gang; Han Liang; Ding Haifeng; Wu Haiyan; Huang Ting; Li Xiaoxi; Wang Yong

    2011-01-01

    Research highlights: →The core-shell particles, which were prepared from melt blending of POE and nano-CaCO 3 , and different nucleating agents (α-form NA or β-form NA) were first introduced into PP to prepare the super toughened PP materials. →NAs control the crystalline structures of PP matrix including the spherulites diameter and the crystal form. →NAs and core-shell particles exhibit apparent joint effect in improving the fracture resistance of PP. - Abstract: As a serial work about the fracture resistance improvement of polypropylene (PP), this work reports the joint effect of core-shell particles and nucleating agent (NA) on the microstructure and fracture resistance of PP. Core-shell particles were prepared through melt blending of ethylene-octene copolymer (POE) and calcium carbonate (CaCO 3 ). Different NA, i.e. α-form NA (P-tert-butylbenzoic acid-Al, MD-NA-28) and β-form NA (aryl amides compound, TMB-5) were introduced into PP matrix to control the crystalline structure. The phase morphology of POE and the distribution of CaCO 3 were characterized by using scanning electron microscope (SEM), and the crystallization behavior of PP matrix were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarization optical microscope (POM). The mechanical properties were obtained through universal tensile measurement and notched Izod impact measurement. Surprisingly, the results show that through addition of so-called core-shell particles and NA simultaneously, the fracture resistance of PP can be dramatically improved.

  3. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Cruden, Alexander R.

    2008-12-01

    models'). The unconstrained model profiles for both plutons are characterized by gently outward dipping upper contacts to depths ∼1 km, gently inward dipping lower contacts and a thin, centrally located root extending to depths of 5 to 10 km. However, this geometry is not supported by available boreholes, which do not penetrate the upper contact of the Goetemar pluton as predicted by the models. The constrained models are consistent with borehole data. They characterize the plutons as having vertical contacts in the upper 500 to 1,000 m, a 1,000 to 1,500 m thick mid-level body with outward dipping upper and horizontal and lower contacts, respectively, and broad roots extending to depths of ∼4 km. Preliminary observations and gravity modelling results indicate that the Goetemar and Uthammar granites are discordant plutons with geometries most consistent with punched laccoliths, with some modification due to floor subsidence due to root development. Their vertical and lateral dimensions fall in the upper range for laccoliths and lower range for plutons as defined by recent data compilations. Their emplacement required elastic bending and eventual failure of roof rocks that was likely accompanied by reactivation of pre-existing fractures and shear zones and possibly the creation of new brittle fractures. Cooling and crystallization of the granites resulted in thermal resetting of the wall rocks and the establishment of a transient hydrothermal system, now recorded by fracture filling mineral assemblages

  4. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Cruden, Alexander R. (Dept. of Geology, Univ. of Toronto (Canada))

    2008-12-15

    ;constrained models'). The unconstrained model profiles for both plutons are characterized by gently outward dipping upper contacts to depths approx1 km, gently inward dipping lower contacts and a thin, centrally located root extending to depths of 5 to 10 km. However, this geometry is not supported by available boreholes, which do not penetrate the upper contact of the Goetemar pluton as predicted by the models. The constrained models are consistent with borehole data. They characterize the plutons as having vertical contacts in the upper 500 to 1,000 m, a 1,000 to 1,500 m thick mid-level body with outward dipping upper and horizontal and lower contacts, respectively, and broad roots extending to depths of approx4 km. Preliminary observations and gravity modelling results indicate that the Goetemar and Uthammar granites are discordant plutons with geometries most consistent with punched laccoliths, with some modification due to floor subsidence due to root development. Their vertical and lateral dimensions fall in the upper range for laccoliths and lower range for plutons as defined by recent data compilations. Their emplacement required elastic bending and eventual failure of roof rocks that was likely accompanied by reactivation of pre-existing fractures and shear zones and possibly the creation of new brittle fractures. Cooling and crystallization of the granites resulted in thermal resetting of the wall rocks and the establishment of a transient hydrothermal system, now recorded by fracture filling mineral assemblages

  5. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  6. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    Energy Technology Data Exchange (ETDEWEB)

    Molinero Huguet, J

    2001-07-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  7. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    International Nuclear Information System (INIS)

    Molinero Huguet, J.

    2001-06-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  8. Verification of the both hydrogeological and hydrogeochemical code results by an on-site test in granitic rocks

    Directory of Open Access Journals (Sweden)

    Michal Polák

    2007-01-01

    Full Text Available The project entitled “Methods and tools for the evaluation of the effect of engeneered barriers on distant interactions in the environment of a deep repository facility” deals with the ability to validate the behavior of applied engeneered barriers on hydrodynamic and migration parameters in the water-bearing granite environment of a radioactive waste deep repository facility. A part of the project represents a detailed mapping of the fracture network by means of geophysical and drilling surveys on the test-site (active granite quarry, construction of model objects (about 100 samples with the shape of cylinders, ridges and blocks, and the mineralogical, petrological and geochemical description of granite. All the model objects were subjected to migration and hydrodynamic tests with the use of fluorescein and NaCl as tracers. The tests were performed on samples with simple fractures, injected fractures and with an undisturbed integrity (verified by ultrasonic. The gained hydrodynamic and migration parameters of the model objects were processed with the modeling software NAPSAC and FEFLOW. During the following two years, these results and parameters will be verified (on the test-site by means of a long-term field test including the tuning of the software functionality.

  9. Hydrothermally-induced changes in mineralogy and magnetic properties of oxidized A-type granites

    Science.gov (United States)

    Nédélec, Anne; Trindade, Ricardo; Peschler, Anne; Archanjo, Carlos; Macouin, Mélina; Poitrasson, Franck; Bouchez, Jean-Luc

    2015-01-01

    The changes in magnetic mineralogy due to the hydrothermal alteration of A-type granitic rocks have been thoroughly investigated in samples from the granite of Tana (Corsica, France), and compared with other A-type granites: Meruoca (NE Brazil), Bushveld (South Africa), Mount Scott (Wichita Mountains, Oklahoma, USA) and the stratoid hypersolvus granites of Madagascar. The altered red-colored samples and their non-altered equivalents were magnetically characterized by means of magnetic susceptibility measurements, hysteresis loops, remanent coercivity spectra, and Lowrie test. It is shown that hydrothermalization in magnetite-bearing granites is related to the formation of fine-grained magnetite and hematite, and to coeval depletion in the content of primary low-coercive coarse-grained magnetite. These mineralogical changes give typical rock magnetic signatures, namely lower susceptibility magnitudes and anisotropy degrees, prolate AMS (anisotropy of magnetic susceptibility) fabrics and increased coercivities. Optical microscopy and SEM (scanning electronic microscopy) images suggest that the orientation of the secondary magnetic minerals is related to fluid-pathways and micro-fractures formed during the hydrothermal event and therefore may be unrelated to magma emplacement and crystallization fabrics. Changes in magnetic mineralogy and grain-size distribution have also to be considered for any paleomagnetic and iron isotope studies in granites.

  10. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  11. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  12. Retention and radionuclide migration mechanisms in the environment of a radioactive waste repository in granitic formation

    International Nuclear Information System (INIS)

    Rancon, D.; Miara, P; Vinson, J.M.; Petronin, J.C.; Dozol, J.F.

    1986-01-01

    A laboratory pre-determination of retention mechanisms of radionuclides migrating outside the primary waste containers in repository surroundings was started up. Backfillings materials (clay and sand) as well as granite and its weathering products are concerned here. A method allowing the evaluation of the sorption and desorption of radionuclides of the surfaces of fractures by measuring surface retention coefficients, had initially been started up as well as a laboratory device developed for experiments in a reducing environment. The experiments have consisted of studying the sorbing properties of granite minerals of Auriat and its weathering products and of determining the retention of Np, Pu, AM, CS and Sr on the surface fractures of this granite. The influence of a reducing environment on the behaviour of activities has been studied. Complementary percolation tests have also been carried out on clays, at raised temperature and under irradiation. These experiments have enabled a deeper knowledge of retention mechanisms, the taking of parametric sensitivity measurements and the preparation of elaborating more performing experimental devices which included the parameters needed for a realistic simulation of transfer phenomena

  13. The Oldest Granites of Russia: Paleoarchean (3343 Ma) Subalkali Granites of the Okhotsk Massif

    Science.gov (United States)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.; Rodionov, N. V.

    2018-02-01

    The Paleoarchean age (3.34 Ga) of subalkali granite magmatism first established for the Kukhtui uplift of the Okhotsk Massif suggests a formation time of the mature continental K-rich crust in this region as early as the Paleoarchean. According to the geological structural, mineralogical-geochemical, geochronological, and isotopic-geochemical data, the Kukhtui uplift can be considered as the most ancient Paleoarchean province in Russia: the ancient consolidation core of the sialic protocrust of the Okhotsk-Omolon Craton.

  14. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Core drilling of drillholes ONK-PVA9 and ONK-PVA10 in ONKALO at Olkiluoto 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for groundwater monitoring stations in ONKALO at Eurajoki, Olkiluoto in 2011. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA9 was drilled in March 2011 and the drillhole ONK-PVA10 in June 2011. The lengths of the drillholes are 15.95 and 20.10 m respectively. The drillholes are 75.7 mm by diameter. The drillhole ONK-PVA9 was drilled in a niche of the access tunnel at chainage 4366 and the ONK-PVA10 in the access tunnel wall at chainage 3851. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in drill cores are 2.9 pcs/m (ONK-PVA9) and 2.3 pcs/m (ONK-PVA10) and the average RQD values 81.6 % and 96.2 % respectively. (orig.)

  16. 2005 dossier: granite

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - advantage of granitic formations for the geologic disposal; 2 - containers; 3 - design study of a disposal facility in granitic environment; 4 - understanding and modelling of granite; 5 - description of disposal concepts in granitic environment; 6 - long-term and safety aspects; 7 - conclusion. (J.S.)

  17. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    International Nuclear Information System (INIS)

    Palmer, S.P.

    1982-11-01

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 x 0.9 x 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs

  18. The natural analogous study of the migration of radionuclides in granite for nuclear waste disposal

    International Nuclear Information System (INIS)

    Yu Jinsheng

    1995-01-01

    Granite is one of the optimum types of surround rock for radioactive waste geological disposal. The study of natural analogues could provide very useful reference materials for selecting validating and designing site of repository in granite. The basic research substances are as follows: the fracture system and the circulation paths of the fluid, the hydrothermal alteration, the evolution of hydrothermal solution, the U, Th, REE element geochemical behaviours, the secondary mineral phases and its retention capacity for the concerned radioactive nuclides and the mass transfer modelling

  19. Contribution to the radioactivity of Um Ara granitic pluton, south-eastern desert, Egypt

    International Nuclear Information System (INIS)

    El Reedy, M.W.; Kamel, A.F.; Mansour, S.E.I.

    1988-01-01

    Um Ara area lies in the southern part of the eastern desert between latitudes 22 0 30' and 22 0 41'N and longitudes 33 0 46' and 33 0 54'E. Several types of granitic varieties ranging from high silica granite (SiO 2 >75%) to low silica granite (SiO 2 68-70%) occur in Um Ara granitic pluton. Surface samples were collected from the high anomalous locations in the pluton together with trenches samples (about 50cm in depth). The U content in the surface samples ranges from 69 to 7 ppm while in trenches samples, it ranges from 38 to 759 ppm. The thorium content on the other hand ranges from 34 to 402 ppm in surface samples and from 158 to 316 ppm in trenches samples. Some samples show no Th contents. The Th/U ratios ranges from 0.065 to 3.137 in surface samples and from 0.386 to 2.590 in trenches samples. An enrichment of U content is the main feature characterising this granitic pluton, it is mainly connected with the fractured zones. Uranium is mostly present as secondary U mineralization accompanied by Fe, Mn and to some extent by carbonate materials. A hydrothermal origin could be considered for this U mineralization in the pluton. Primary U mineralization (pitchblende) together with secondary mineralization was observed in some locations in the area disseminated in the granite, this reflects the syngenetic origin of this granitic type

  20. Uranium in granites

    International Nuclear Information System (INIS)

    Maurice, Y.T.

    1982-01-01

    Recent research activities of the Canadian Uranium in Granites Study are presented in 18 papers and 3 abstracts. 'Granites' is used as a generic term for granitoids, granitic rocks, and plutonic rocks

  1. An outline of 1994-1996 geological studies for underground laboratory siting in the Charroux-Civray sediment-capped granitic massif-(southern Vienne-Poitou-France)

    Energy Technology Data Exchange (ETDEWEB)

    Virlogeux, D. [ANDRA, Chatenay-Malabry (France)

    1998-09-01

    Following the selection of four potentially favourable districts, ANDRA carried out a comprehensive geological investigation in the cantons of Charroux and Civray in order to assess the suitability of a large volume of granitic rocks to host an underground laboratory according to safety regulations. Surface mapping, regional aeromagnetic and gravimetric surveys, seismic reflection lines and 16 cored boreholes led to the selection of a tonalitic unit near La Chapelle-Baton as the target formation to be proposed for detailed study. This volume extends over an area of more than 3x4 km at the surface and at least 800m vertically. There appears to be no prohibitive factors to installation of an underground laboratory for further exploration, particularly from the hydrogeological standpoint. Magmatic joint-type small fracturing shows no variation with depth and polyphasic hydrothermal history has led to plugging the fractures with clays and carbonates. Alkaline fluids crystallising Adular (-126 My) has led to a strong reduction in the initial permeability of basement paleo-weathering zone. The horizontal and relatively fault-free sedimentary cover reveals a simple tectonic history during the last 200 My. One of the objectives of the laboratory study program will be to confirm the conceptual model of slow, shallow circulation in depth, based on the following data: Low frequency water inflows, obtained in the boreholes by pumping and testing, show the very low permeability of (pluri)hectometric blocks delineated by conducting faults. Low hydraulic gradients recorded in the boreholes are consistent with regional topography, and hydraulic heads in the granite similar or lower than those recorded in the overlying sedimentary aquifers. The chemical composition of granitic waters exhibits significant salinity at depth, and is different from the Lias and Dogger aquifer waters, indicating limited hydraulic relationships. The origin and age of the salinity is still under debate

  2. Genesis of Uranium in the younger granites of gabal abu hawis area, central eastern desert of Egypt

    International Nuclear Information System (INIS)

    Ahmed, F.Y.; Moharem, A.F.

    2003-01-01

    The younger granites cropping out in gabal abu hawis area are considered as uraniferous (fertile) granites (the fertile is mainly is mainly attributed to presence of radioactive zircon). Abu hawis granitic pluton is dissected by joints faults of different trends forming two mineralized shear zones in the northern peripheries and southern border. The younger granites hosting uranium mineralizations along the two mineralized shear zones. The uranium minerals include uranophane and carnotite. The altered granites have much lower Th/U ratios (0.03-0.10) than those of the fresh granites (1.69-2.05), indicating strong mobilization of uranium in this pluton by super-heated solutions that resulted from supergence meteoric water as well as U-addition by hypogene fluids. These solutions could pass through the structural network of fractures, joints and fault planes and have leached some of labile uranium from the surrounding rocks and/or the younger granites themselves. Then, changing in the physicochemical conditions of these solutions caused uranium precipitation as uranium minerals filling the cracks in the rock and/or adsorbed on the surface of clay minerals and iron oxides in the two shear zones

  3. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  4. Laboratory experiments for understanding mechanical properties of fractured granite under supercritical conditions

    Science.gov (United States)

    Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.

    2017-12-01

    To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of triaxial deformation test on such cracked granites

  5. Thermophysical and Mechanical Properties of Granite and Its Effects on Borehole Stability in High Temperature and Three-Dimensional Stress

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-01-01

    Full Text Available When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite’s stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  6. Empirical model to estimate the thermal conductivity of granite with various water contents

    International Nuclear Information System (INIS)

    Cho, Win Jin; Kwon, Sang Ki; Lee, Jae Owan

    2010-01-01

    To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

  7. Site investigation SFR. Overview Boremap mapping of drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C

    International Nuclear Information System (INIS)

    Petersson, Jesper; Andersson, Ulf B.

    2011-01-01

    This report presents the results from a renewed geological overview mapping of 11 drill cores obtained during the construction of the final repository for low and middle level radioactive operational waste (SFR) during the 80's. Drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C, with a total length of 837 m, was selected primarily because of their distinctly crosscutting relationship with inferred deformation zones in the area. The main purpose for this geological mapping is calibration with the original mappings, which in turn aims to facilitate geological single-hole interpretation. The mapping was generally focused on the location and infilling mineralogy of broken and unbroken fractures, as well as crush zones, breccias and sealed networks. Also the overview lithology, alterations and ductile shear zones were documented. All boreholes selected for renewed mapping are located in a ductile, high-strain belt, which defines the northeastern margin of a structurally more homogeneous tectonic lens. The main component of the high-strain belt is felsic to intermediate rocks of inferred volcanic origin. The predominant rock in the selected drill cores is, however, a fine- to finely medium-grained metagranite, which clearly appears to be a high-strain variety of the typically medium-grained metagranite-granodiorite that prevails the tectonic lens. It is obvious that varieties of this high-strain rock previously was inferred to be meta volcanic rocks. Other volumetrically important rock types in the drill cores are pegmatitic granite, finely medium-grained granite and metagranodiorite-tonalite, aplitic metagranite, amphibolites and slightly coarser metagabbros. Virtually all rocks in the borehole have experienced Svecofennian metamorphism under amphibolite facies conditions. Excluding fractures within crush zones and sealed networks, there is a predominance of broken fractures in most of the drill cores. The total fracture

  8. Site investigation SFR. Overview Boremap mapping of drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper; Andersson, Ulf B. (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2011-01-15

    This report presents the results from a renewed geological overview mapping of 11 drill cores obtained during the construction of the final repository for low and middle level radioactive operational waste (SFR) during the 80's. Drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C, with a total length of 837 m, was selected primarily because of their distinctly crosscutting relationship with inferred deformation zones in the area. The main purpose for this geological mapping is calibration with the original mappings, which in turn aims to facilitate geological single-hole interpretation. The mapping was generally focused on the location and infilling mineralogy of broken and unbroken fractures, as well as crush zones, breccias and sealed networks. Also the overview lithology, alterations and ductile shear zones were documented. All boreholes selected for renewed mapping are located in a ductile, high-strain belt, which defines the northeastern margin of a structurally more homogeneous tectonic lens. The main component of the high-strain belt is felsic to intermediate rocks of inferred volcanic origin. The predominant rock in the selected drill cores is, however, a fine- to finely medium-grained metagranite, which clearly appears to be a high-strain variety of the typically medium-grained metagranite-granodiorite that prevails the tectonic lens. It is obvious that varieties of this high-strain rock previously was inferred to be meta volcanic rocks. Other volumetrically important rock types in the drill cores are pegmatitic granite, finely medium-grained granite and metagranodiorite-tonalite, aplitic metagranite, amphibolites and slightly coarser metagabbros. Virtually all rocks in the borehole have experienced Svecofennian metamorphism under amphibolite facies conditions. Excluding fractures within crush zones and sealed networks, there is a predominance of broken fractures in most of the drill cores. The total

  9. Fracture mapping for radionuclide migration studies in the Climax granite

    International Nuclear Information System (INIS)

    Thorpe, R.; Springer, J.

    1981-05-01

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift

  10. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    Science.gov (United States)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  11. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  12. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone

    Directory of Open Access Journals (Sweden)

    ANA CATARINA A. MOURA

    2014-12-01

    Full Text Available A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E–W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  13. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    Science.gov (United States)

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  14. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  15. Granites and granitoids of the southern region - Granite molybdenite system

    International Nuclear Information System (INIS)

    Issler, R.S.

    1987-01-01

    Economic concentrations of molybdenum are genetically closely associated with acidic and moderately acid granitoids-granites, granodiorites, monzonites and diorites, and are located in two geotectonic settings: subduction-related and rift-related. The aim of this paper is twofold, first succinctly approach the geology, tectonic setting and chemical parameters of the 'granite molybdenite system' as defined by Mutschler and/or alcali granite porphyry bodies emplaced in the North American continent for occasion of a Mesozoic-Fanerozoic extensile event; second to relate the computer-assisted evaluation of 422 major element chemical analysis of granites and granitoids of southern region of Brazil, using chemical fingerprints (SiO 2 ≥ 74. Owt%, Na 2 O ≤ 3.6wt%, K 2 O ≥ 4.5wt%), and K 2 O/Na 2 O ratio > 1.5 developed and testified from North American and Finnish occurrences, may locate molybdenite-bearing granite bodies with high exploration potential. These techniques suggest that some late Precambrian to early Paleozoic granite-rhyolite assemblages inserted at domains of the SG. 22/23 Curitiba/Iguape, SH. 21/22 Uruguaiana/Porto Alegre and SI.22 Lagoa Mirim Sheets, have exploration potential for molybdenum. (author) [pt

  16. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E.

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples

  17. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

  18. Statistical fracture mechanics approach to the strength of brittle rock

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1981-06-01

    Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models

  19. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    Science.gov (United States)

    Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  20. A study of the isotopic and geochemical gradients in the old granite of the Vredefort structure, with implications for continental heat flow

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The presence of granite of pre-Witwatersrand age forming the core of an updomed and overturned sequence of strata at Vredefort, South Africa, has been known for over seventy years. It is only recent geophysical, geochemical and geological evidence that has given rise to the proposal that the basement core has also been overturned, presenting a section of the earth's granitic crust to view. Comprehensive geochemical and isotope studies on this section are presented in the thesis. Detailed trace element profiles across the granite basement inidicate that (i) the central part of the core is depleted in the large ion lithophile elements U, Th and Rb, relative to the perimeter, (ii) the concentrations of U, Th and Rb falls of regularly from the granite margin inwards, and the distribution of these elements over the outer 8 km is consistent with an exponential depth-function, and (iii) the central part of the core is characterised by high K/Rb, Th/U, K/U, K/Th, Ba/Rb and low Rb/Sr ratios, and it is only the outer 5 km of the basement core that has elemental ratios which approach those found in 'normal' surface granites. The heat generation from the entire exposed vertical section of the Vredefort granite, together with heat production in the overlying stratified rocks, has been examined. By comparing the heat production in the crust to heat flow in the nearby Far West Witwatersrand goldfield, a reasonable estimate of the heat flow from the mantle has been made. A value of between .25 and .36 HFU has been estimated. The mantle heat flow has an important bearing on the depth of the lithosphere - asthenosphere boundary. Whole rock Rb-Sr, Th-Pb isotopic investigations were made on the granite and basic rocks of the Vredefort basement. The measured ages and initial ratios provide evidence that well preserved remnants of sedimentary supracrustals and basic to intermediate volcanics existed as a protocrust in pre-3.5 b.y. times

  1. Core drilling of drillholes ONK-KR13, ONK-KR14 and ONK-KR15 in ONKALO at Olkiluoto 2010 - 2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2011-08-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled three drillholes ONK-KR13 (120.45 m), ONK-KR14 (75.27 m) and ONK-KR15 (79.96 m) in ONKALO, at Olkiluoto in June 2010 - March 2011. The diameter of the drillholes is 75.7 mm. Sodium fluorescein was used as a label agent in the drilling water, and the drillholes were washed and flushed after the drilling. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. The core samples were logged according to Posiva's normal procedure for drillholes. The main rock types are veined and diatexitic gneisses and pegmatitic granite. The average natural fracture frequencies and RQDs of the core samples are 1.6 pcs/m and 97.0 % (ONK-KR13), 0.5 pcs/m and 99.3 % (ONK-KR14) and 1.6 pcs/m and 97.3 % (ONK-KR15). In drillhole ONK-KR13 one, and in drillhole ONK-KR15 three fractured zones were intersected. There was no fractured zones in drillhole ONK-KR14. Rock mechanical tests were performed to core samples. The average uniaxial compressive strength was 143.2 MPa, the average Young's Modulus was 57.3 GPa and the average Poisson's ratio was 0.25. (orig.)

  2. Calcite veins of the Stripa granite (Sweden) as records of the origin of the ground waters and their interactions with the granitic body

    International Nuclear Information System (INIS)

    Clauer, N.; Fritz, B.; Frape, S.K.

    1989-01-01

    A Sr isotopic study combined with stable isotope determinations (δ 18 O and δ 13 C), petrographic observations and speciation calculations suggests that the Stripa granite (Sweden) contains at least three different types of calcite veins. One type with δ 18 O = -18 to -24 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7814 to 1.0696 probably formed at temperatures above 200 degree C, together with chlorite and epidote, during one or two metamorphic events which are recorded in the Rb-Sr systematics of some minerals of the granite at 1.4 and 0.8 Ga. Another type with δ 18 O = -12 to -18 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7406 to 0.7536 and mainly associated with chlorite, is most likely in equilibrium with the present day ground waters, which probably have reacted with the fracture minerals of the granitic body for a long time without any supply of external fluids. The third type of calcite with δ 18 C = -12 to -18 per-thousand (PDB), δ 13 C = -5 to -45 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7266 to 0.7406, could have formed from reactions involving methane oxidation or sulfate reduction in the presence of bacteria

  3. Comparison of Chamfer and Deep Chamfer Preparation Designs on the Fracture Resistance of Zirconia Core Restorations

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2011-06-01

    Full Text Available Background and aims. One of the major problems of all-ceramic restorations is their probable fracture under occlusal force. The aim of the present in vitro study was to compare the effect of two marginal designs (chamfer and deep chamfer on the fracture resistance of all-ceramic restorations, CERCON. Materials and methods. This in vitro study was carried out with single-blind experimental technique. One stainless steel die with 50’ chamfer finish line design (0.8 mm deep was prepared using a milling machine. Ten epoxy resin dies were prepared. The same die was retrieved and 50' chamfer was converted into a deep chamfer design (1 mm. Again ten epoxy resin dies were prepared from the deep chamfer die. Zirconia cores with 0.4 mm thickness and 35 µm cement space were fabricated on the epoxy resin dies (10 chamfer and 10 deep chamfer samples. The zirconia cores were cemented on the epoxy resin dies and underwent a fracture test with a universal testing machine and the samples were investigated from the point of view of the origin of the failure. Results. The mean values of fracture resistance for deep chamfer and chamfer samples were 1426.10±182.60 and 991.75±112.00 N, respectively. Student’s t-test revealed statistically significant differences between the groups. Conclusion. The results indicated a relationship between the marginal design of zirconia cores and their fracture resistance. A deep chamfer margin improved the biomechanical performance of posterior single zirconia crown restorations, which might be attributed to greater thickness and rounded internal angles in deep chamfer margins.

  4. Study of phenomena of tracer transport and dispersion in fractured media

    International Nuclear Information System (INIS)

    Ippolito, Irene

    1993-01-01

    The objective of this research thesis is to present some transport phenomena according to two different approaches: firstly, the study of flows and tracing in a natural crack within a granitic site, and secondly, the study of flows of different geometries in model cracks, mainly by using techniques of tracer dispersion. The author first presents some properties of fractured media and elements of the theory of the phenomenon of dispersion. She notably discusses the reversibility of the Taylor dispersion which is the prevailing mechanism for simply connected geometries such as in the case of a flow between two continuous solid surfaces limiting a fracture. In the next chapters, the author reports the analysis of characteristics of local structures (mouths, roughnesses) of a single fracture by using echo dispersion. She reports experiments as well as Monte Carlo simulations performed on well defined geometries. In a parallel way, some characteristics measurements (rate-pressure, distribution of flows and tracing in transmission) and mechanical measurements of fracture deformation have been performed on a natural fracture in a granitic site [fr

  5. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  6. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts

    OpenAIRE

    PANITIWAT, Prapaporn; SALIMEE, Prarom

    2017-01-01

    Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2...

  7. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  8. Warren Hunt to test granite well

    International Nuclear Information System (INIS)

    Harvie, W.

    1996-01-01

    Various theories which purport to explain the existence of the Alberta oil sands, were discussed briefly. One theory, held among others by Warren Hunt, speculates that oil is formed deep in the Precambrian basement and not in the higher sedimentary rock. According to this theory, methane in the crust is the abiogenic product that results from hydrogen reacting with silicon carbide in the lower mantle. As it rises through the fractures, it encounters the microbiota, and hydrogen is stripped away making larger molecules until only bitumen remains. Hunt and other adherents of this theory believe that hydrocarbon reservoirs are replenished as oil is produced, hence there is no end to the world's oil supply. This theory is about to be tested by retesting a granite well near Fort McMurray, which was suspended in September 1994, when funding dried up. Kaleeda Enterprises, owners of the well, believe that the well bottom is currently in a granite pool, and oil will be found by deepening the well to 2,150 metres from the current 1,650 metres. While this is not universally accepted, if true, the abiogenic theory would go a long way towards explaining the origin of the oil sands

  9. Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach

    Science.gov (United States)

    Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof

    2018-04-01

    In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.

  10. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  11. Comparative study of large scale simulation of underground explosions inalluvium and in fractured granite using stochastic characterization

    Science.gov (United States)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2014-12-01

    This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.

  12. Core drilling of deep drillhole OL-KR47 at Olkiluoto in Eurajoki 2007-2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-02-01

    As a part of the confirming site investigations for ONKALO rock characterisation facility, Suomen Malmi Oy (Smoy) core drilled 1008.76 m and 44.31 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in October 2007 - January 2008. The identification numbers of the drillholes are OL-KR47 and OL-KR47B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1229 m 3 and 13.6 m 3 in drillholes OL-KR47 and OL-KR47B, respectively. Measured volume of the returning water in drillhole OL-KR47 was 1125 m 3 , water did not return in drillhole OL-KR47B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 92.1 MPa, the average Young's Modulus is 32.5 GPa and the average Poisson's ratio is 0.33. The main rock types are diatexitic and veined gneisses, pegmatitic granite and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.2 pcs / m in drillhole OL-KR47 and 3.4 pcs / m in drillhole OL-KR47B. The average RQD values were 95.3 % and 94.1 %. In drillhole OL-KR47 46 fractured zones and in drillhole OL-KR47B two fractured zones were penetrated during drilling work. (orig.)

  13. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Watkins, D.J.; Tsang, Y.W.

    1981-01-01

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  14. Complementary investigations of the bedrock in the Finnsjoe and Karlshamn areas, Sweden

    International Nuclear Information System (INIS)

    Olkiewicz, A.; Scherman, S.; Kornfaelt, K.-A.

    1979-02-01

    In its statement of the 1978-10-05 the government decided that the KBS' reports I and II did not prove the existance of a''sufficiently large'' geological formation with the qualities which were required in the KBS risk analysis. The government therefore demanded further investigations. Complementary investigations were carried out in two areas, Finnsjoen in northwestern Uppland and Sternoe in southwestern Blekinge, Sweden. This report comprises mapping of the drillcores and extended geological mapping of the actual investigated areas. Measurements of borehole-deviation as well as surface-geophysical investigations from the Finnsjoen area are enclosed. The mapping of the four drill-cores in the Finnsjoe area shows that the cores are dominated by a slightly gneissic granodiorite. Of secondary importance occurs a young red homogenous granite. The frequency of fractures and fracture sets is high and evenly distributed. The tectonized parts are very often red coloured, foliated and containing many calcite healed fractures. The mapping also shows that mylonites and breccias are common in connection with more disturbed zones. Fractures are usually lined with calcite and chlorite. The mapping of these five new boreholes at Sternoe (one of the holes an extension of Ka 1 from earlier investigations) shows quite a complex picture of the bedrock. This is probably an effect of granitization of the coastal gneiss. Close to the surface coastal gneiss is dominating, in the deeper sections granitic material, gneissgranite and granite, are dominating. Pegmatites are common in the shallow sections of the area investigated. The frequency of fractures and fracture sets are very low. The only exception is one core, Ka 4, drilled in close connection with a thrust-zone in ''Munkahusviken''. Coatings of fracture surfaces are dominated by calcite and gypsum. (author)

  15. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs

  16. The application of integrated geophysical methods composed of AMT and high-precision ground magnetic survey to the exploration of granite uranium deposits

    International Nuclear Information System (INIS)

    Qiao Yong; Shen Jingbang; Wu Yong; Wang Zexia

    2014-01-01

    Introduced two methods composed of AMT and high-precision ground magnetic survey were used to the exploration of granite uranium deposits in the Yin gongshan areas middle part of the Nei Monggol. Through experiment of methods and analysis of applicated results, think that AMT have good vertical resolution and could preferably survey thickness of rockmass, position of fracture and deep conditions, space distribution features of fracture zone ect, but it is not clear for rockmass, xenolith of reflection. And high-precision ground magnetic survey could delineate rockmass, xenolith of distribution range and identify the rock contact zone, fracture ect, but it generally measure position and it is not clear for occurrence, extension. That can resolve some geological structures by using the integrated methods and on the basis of sharing their complementary advantages. Effective technological measures are provided to the exploration of deep buried uranium bodies in the granite uranium deposits and outskirt extension of the deposit. (authors)

  17. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  18. Mineralogic investigation into occurrence of high uranium well waters in upstate South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Richard, E-mail: wrichar@clemson.edu [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Meadows, Jason; Sojda, Scott; Price, Van; Temples, Tom [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Arai, Yuji [Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634-0315 (United States); Fleisher, Chris [Department of Geology, University of Georgia, Athens, GA 30602-2501 (United States); Crawford, Bruce; Stone, Peter [Bureau of Water, South Carolina Department of Health and Environmental Control, Columbia, SC 29201 (United States)

    2011-05-15

    Research Highlights: > Oxidative dissolution of uraninite in biotite granite is primary source of uranium in high-U well waters near Simpsonville, SC. > Uranium is chiefly transported as mixed uranyl hydroxyl-carbonate complexes. > Local reduction has resulted in secondary precipitation of uranium along fractures as coffinite. > Dissolution of uraninite and precipitation of coffinite were geologically recent. - Abstract: High levels of U (up to 5570 {mu}g/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 {mu}m) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite. Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations

  19. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal

    Science.gov (United States)

    Fernandes, Susana; Gomes, Maria; Teixeira, Rui; Corfu, Fernando

    2013-04-01

    In the Central Iberian Zone (CIZ) extensive crustal recycling occurred during the post-thickening extension stage of the Variscan orogeny (~330-290 Ma). After the ductile deformation phase D3 (~320-300 Ma), characterized by the intrusion of large volumes of highly peraluminous granitic magmas, rapid and drastic tectonic changes at about 300 Ma gave rise to the brittle phase of deformation D4 that controlled the emplacement of Fe-K subalkaline granites (296-290 Ma; Dias et al. 1998). The Lamas de Olo Pluton (LOP) is controlled by NE-SW and NW-SE fracture systems, probably related to the Régua-Verin fault zone (Pereira, 1989). The LOP is a medium to coarse-grained, porphyritic biotite granite, accompanied by medium- to fine grained, porphyritic biotite granite (Alto dos Cabeços- AC) and a more leucocratic, fine-grained, slightly porphyritic biotite-muscovite granite (Barragens- BA). The contacts between LO and AC are generally diffuse, whereas those to BA are sharp. In fact, the BA granite can occur in dykes and sills cutting LO and AC. Microgranular enclaves and xenoliths are very rare. The LOP intrudes the Douro Group, presumably of Precambrian to Cambrian age, and two-mica granites from the Vila Real composite massif. The LOP granites consist of quartz, microcline, plagioclase, biotite, zircon, titanite, tourmaline apatite, fluorite, ilmenite, magnetite, and rutile, with muscovite in BA granite and rare allanite in the LO and AC granites. The plagioclase composition is of oligoclase (An12) - andesine (An35) for LO granite, albite (An9) - andesine (An30) for CA granite and albite (An5) - oligoclase (An20) for BA granite. There are decreases in: a) anorthite content from phenocryst to matrix plagioclase; b) Ba content from phenocryst to matrix microcline in all granites. The Fe2+ biotite has a composition similar to that of biotite from calc-alkaline to sub-alkaline rock series. The LO and AC granites are meta- to peraluminous with ASI variable between 1.05 and 1

  20. Core drilling of deep drillhole OL-KR50 at Olkiluoto in Eurajoki 2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2009-02-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 939.33 m and 45.44 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in September - November 2008. The identification numbers of the drillholes are OL-KR50 and OL-KR50B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1135 m 3 and 20 m 3 in the drillholes OL-KR50 and OL-KR50B, respectively. The measured volume of the returning water in the drillhole OL-KR50 was 954 m 3 . The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 129.7 MPa, the average Young's Modulus was 45.8 GPa and the average Poisson's ratio was 0.15. The main rock types were veined and diatexitic gneisses, pegmatitic granite and tonaliticgranodioritic-granitic gneiss. The average fracture frequency is 2.0 pcs/m in drillhole OL KR50 and 3.6 pcs/m in the drillhole OL-KR50B. The average RQD values are 96.1 % and 94.3 %, respectively. 39 fractured zones were penetrated by drillhole OL-KR50 and four by drillhole OL-KR50B. (orig.)

  1. Seismic attribute analysis and its application to mapping folds and fractures

    Science.gov (United States)

    Mai, Ha Thanh

    Geometric attributes such as coherence and curvature have been very successful in delineating faults in sedimentary basins. While not a common exploration objective, fractured and faulted basement forms important reservoirs in Venezuela, USA (Southern California), Brazil, Libya, Algeria, Egypt, Russia, and Vietnam (Landes, 1960; Canh, 2008). Because of the absence of stratified, coherent reflectors, illumination of basement faults is more problematic than illumination of faults within the sedimentary column. In order to address these problems, it is important to carefully analyze alternative forms of the 3D seismic data, which in this dissertation will be primarily combinations of one or more seismic attributes, and interpret them within the context of an appropriate structural deformation model. For that purpose, in this research, I concentrate on analyzing structural dip and azimuth, amplitude energy gradients, and a large family of attributes based on curvature to better illuminate fracture 'sweet spots' and estimate their density and orientation. I develop and calibrate these attribute and interpretation workflows through application to a complexly folded and faulted, but otherwise typical, geologic target in the Chicontepec Basin of Mexico. I then apply this calibrated workflow to better characterize faults and build fracture models in the granite basement of the Cuu Long Basin, Vietnam, and the granite and rhyolite-metarhyolite basement of Osage County, Oklahoma, USA. In the Cuu Long granite basement, it forms an important unconventional reservoir. In Osage County, we suspect basement control of overlying fractures in the Mississippian chat deposits.

  2. Hydraulic testing in granite using the sinusoidal variation of pressure

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Noy, D.J.

    1982-09-01

    Access to two boreholes at the Carwynnen test site in Cornwall enabled the trial of a number of innovative approaches to the hydrogeology of fractured crystalline rock. These methods ranged from the use of seisviewer data to measure the orientation of fractures to the use of the sinusoidal pressure technique to measure directional hydraulic diffusivity. The testing began with a short programme of site investigation consisting of borehole caliper and seisviewer logging followed by some single borehole hydraulic tests. The single borehole hydraulic testing was designed to assess whether the available boreholes and adjacent rock were suitable for testing using the sinusoidal method. The main testing methods were slug and pulse tests and were analysed using the fissured porous medium analysis proposed in Barker and Black (1983). Derived hydraulic conductivity (K) ranged from 2 x 10 -12 m/sec to 5 x 10 -7 m/sec with one near-surface zone of high K being perceived in both boreholes. The results were of the form which is typical of fractured rock and indicated a combination of high fracture frequency and permeable granite matrix. The results are described and discussed. (author)

  3. Field-scale colloid migration experiments in a granite fracture

    International Nuclear Information System (INIS)

    Vilks, P.; Frost, L.H.; Bachinski, D.B.

    1997-01-01

    An understanding of particle migration in fractured rock, required to assess the potential for colloid-facilitated transport of radionuclides, can best be evaluated when the results of laboratory experiments are demonstrated in the field. Field-scale migration experiments with silica colloids were carried out at AECL's Underground Research Laboratory (URL), located in southern Manitoba, to develop the methodology for large-scale migration experiments and to determine whether colloid transport is possible over distances up to 17 m. In addition, these experiments were designed to evaluate the effects of flow rate and flow path geometry, and to determine whether colloid tracers could be used to provide additional information on subsurface transport to that provided by conservative tracers alone. The colloid migration studies were carried out as part of AECL's Transport Properties in Highly Fractured Rock Experiment, the objective of which was to develop and demonstrate methods for evaluating the solute transport characteristics of zones of highly fractured rock. The experiments were carried out within fracture zone 2 as two-well recirculating, two-well non-recirculating, and convergent flow tests, using injection rates of 5 and 101 min -1 . Silica colloids with a 20 nm size were used because they are potentially mobile due to their stability, small size and negative surface charge. The shapes of elution profiles for colloids and conservative tracers were similar, demonstrating that colloids can migrate over distances of 17 m. The local region of drawdown towards the URL shaft affected colloid migration and, to a lesser extent, conservative tracer migration within the flow field established by the two-well tracer tests. These results indicate that stable colloids, with sizes as small as 20 nm, have different migration properties from dissolved conservative tracers. (author)

  4. Radiometric age determination on some granitic rocks in the Hida Range, central Japan. Remarkable age difference across a fault

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tanaka, Kazuhiro

    1999-01-01

    K-Ar and zircon fission-track dating was carried out on some granitic rocks in the Hida Range, central Japan. The samples analyzed were collected on both sides of one of the major faults in the Hida Range: the Kurobe-Takase fracture zone. Ages obtained west of the fault are ∼60 Ma, while those obtained to the east of the fault are less than ∼5 Ma. These results indicate a remarkable age difference across the fault. The Okukurobe granite, located west of the fault, cooled rapidly from ∼600degC to ∼240degC between 60-55 Ma, and the Kanazawa granodiorite, located east of the fault, cooled rapidly from ∼600degC to ∼240degC between 5-1 Ma. The Okukurobe granite has remained cooler than ∼240degC since ∼55 Ma. Thus, it was found that the granitic rocks across the fault have experienced a remarkable different cooling history. (author)

  5. The Influence Of Hydrothermal Alteration And Weathering On Rock Magnetic Properties Of Granites From The Eps-1 Drilling (soultz-sous-forÊts / France)

    Science.gov (United States)

    Just, J.; Schleicher, A.; Kontny, A.; de Wall, H.

    The EPS-1 drilling in Soultz-sous-Forêts (Rhinegraben, France) recovered a core pro- file of Tertiary to Permo-Mesozoic sediments deposited on a Variscan granitic base- ment. Magnetic susceptibility (k) measurements on the core material revealed a con- tinous increase from the basement/cover boundary (kmean 0.4 x 10-3 SI) into the magnetite-bearing granite (kmean 13 x 10-3 SI) over a depth range of 1417 U 1555 m. Rock magnetic and mineralogic studies were performed for the fresh granite, the hydrothermally altered granite near a fault zone and the altered granite from the fossil land surface near the basement/cover boundary. The decrease in susceptibility can be correlated with a gradual decomposition of magnetite to hematite and an alteration of the matrix minerals feldspars, biotite and hornblende to clay minerals and carbon- ates. Along with this transition, characteristic rock magnetic signatures can be dis- criminated for different degrees of alteration. While temperature-dependent magnetic susceptibility k(T)-curves in fresh granites indicate a typical multidomain magnetite course with good reversibility, different types of irreversible courses are observed for the altered granite. However, hematite could not be identified in the k(T)-curves. Al- tered granite shows relatively weak magnetic behaviour in AF-demagnetisation exper- iments, untypical for hematite. The alteration of the fresh granite also causes a change in magnetic fabric parameter, especially of the anisotropy factor. The magnetic min- eralogy from the altered granite in respect to the changes in rock magnetic properties will be discussed.

  6. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  7. Factors affecting neutron measurements and calculations. Part E. Hydrogen content in granite

    International Nuclear Information System (INIS)

    Komatsubara, Tetsuro; Sasa, Kimikazu; Ohshima, Hiroyuki

    2005-01-01

    For evaluation of radiation doses from the atomic bomb at Hiroshima, many systematic measurements have been made of the residual activities of activation products in rocks and concrete. For the Motoyasu Bridge, which is located close to the bomb hypocenter, the depth profile of 152 Eu was measured in a granite core (Hasai et al. 1987; Shizuma et al. 1997). In order to reproduce the depth profile of the activities, it is important to calculate the neutron scattering and absorption (Endo et al. 1999). In this section, the first result of hydrogen analysis by proton-proton elastic recoil coincidence spectrometry for the granite samples is described. (author)

  8. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    Science.gov (United States)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  9. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  10. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  11. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  12. Biofouling of granite-rapakivi in St. Petersburg monuments and in the quarry in Russia and Finland

    Science.gov (United States)

    Vlasov, Dmitry; Panova, Elena; Alampieva, Elena; Olhovaya, Elena; Popova, Tatyana; Vlasov, Alexey; Zelenskaya, Marina

    2013-04-01

    Granite-rapakivi was widely used in the architecture of St. Petersburg: the facades of buildings, embankments of rivers and canals, bridges, sculptural monuments, pedestals, facing the metro stations. This stone is rapidly destroyed due to the peculiarities of its structure. Biofouling of granite is insufficiently studied. Cause the destruction of granite can be bacteria, microscopic algae, fungi, mosses, lichens, higher plants, invertebrates and vertebrates. They often form specific lithobiotic communities that contribute to the destruction of granite-rapakivi. The objects of research were monuments of St. Petersburg (granite sculpture, facades, facing embankments) as well as granite-rapakivi quarries in Russia and Finland, where the stone was quarried for use in St. Petersburg. Sampling was carried out from the most typical biofouling sites. Different methods were applied for the study of damaged granite: petrographic analysis, light and scanning electron microscopy, methods for detection and identification of microorganisms, X-ray microprobe analysis. As result the main forms of granite destruction were described: fractures, ovoid weathering, granular disintegration, surface films, crusts and layers, pitting and fouling. Lichens, mosses, herbaceous and micromycetes were dominated on the granite-rapakivi in quarries. For example, in a Monferran quarry (Virolahti region) the complicated lithobiotic community was revealed. It included 30 species of micromycetes, 31 species of lichens, 10 species of moss. Bacteriological analysis showed the dominance of bacteria Bacillus, and actinomycetes in microbial biofilms. More than 100 species of plants were found on the granite embankments in St. Petersburg. They were confined to the cracks, seams of granite blocks. Plants and mosses were common to the granite embankments of rivers and canals in the central (historical) part of the city. Dimensions of mosses depend on the area of the deepening which they occupy. The most

  13. Heat production in granitic rocks

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Jakobsen, Kiki

    2017-01-01

    Granitic rocks play special role in the dynamics and evolution of the Earth and its thermal regime. First, their compositional variability, reflected in the distribution of concentrations of radiogenic elements, provides constraints on global differentiation processes and large scale planetary...... evolution, where emplacement of granites is considered a particularly important process for the formation of continental crust. Second, heat production by radioactive decay is among the main heat sources in the Earth. Therefore knowledge of heat production in granitic rocks is pivotal for thermal modelling...... of the continental lithosphere, given that most radiogenic elements are concentrated in granitic rocks of the upper continental crust whereas heat production in rocks of the lower crust and lithospheric mantle is negligible. We present and analyze a new global database GRANITE2017 (with about 500 entries...

  14. Prospecting fractured rock aquifers using radon soil gases method; Analise de radonio no solo para prospeccao de agua em aquiferos fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Paulo Henrique Prado; Roisenberg, Ari, E-mail: paulohenriquestefano@hotmail.com, E-mail: ari.roisenberg@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gallas, Jose Domingos Faraco, E-mail: jgallas@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Rocha, Zildete, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Groundwater prospecting in fractured aquifers depends on the detection of tectonic lineaments, which may be difficult in urban areas. A survey was carried out using radon soil gases concentrations in four localities in the region of Granite Santana and Viamao Granite, Porto Alegre, Rio Grande do Sul, in order to test the method for water prospecting in fractured aquifers. The radon data have been compared with electrical resistivity survey executed using dipole-dipole arrangement. At four studied areas, an interesting correlation was noted between the two methods. At regions of low resistivity, positive radon anomalies were found in fracture zones, reaching values up to 7 times the background of the region, starting from a concentration value of 2500 Bq/m{sup 3} in a non-fractured zones to 22187 Bq /m{sup 3} in the fractured zones. (author)

  15. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny)

    Science.gov (United States)

    Pereira, M. F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U.

    2018-01-01

    Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of emplacement and provide information about potential magma sources. Simple and composite zircon grains from three samples of S-type granite were analyzed by LA-ICP-MS. New U-Pb data indicate that granites crystallized in the Bashkirian (318.7 ± 4.8 Ma) overlapping the proposed age range of ca. 321-317 Ma of the nearby S-type granitic rocks of the Carrazeda de Anciães, Lamego and Ucanha-Vilar massifs. The timing of emplacement of such S-type granites seems to coincide with the waning stages of activity of a D2 extensional shear zone (i.e. Pinhel shear zone) developed in metamorphic conditions that reached partial melting and anatexis (ca. 321-317 Ma). Dykes of two-mica granites (resembling diatexite migmatite) are concordant and discordant to the compositional layering and S2 (main) foliation of the high-grade metamorphic rocks of the Pinhel shear zone. Much of the planar fabric in these dykes was formed during magmatic crystallization and subsequent solid-state deformation. Field relationships suggest contemporaneity between the ca. 319-317 Ma old magmatism of the study area and the switch from late D2 extensional deformation to early D3 contractional deformation. Inherited zircon cores are well preserved in these late D2-early D3 S-type granite plutons. U-Pb ages of inherited zircon cores range from ca. 2576 to ca. 421 Ma. The spectra of inherited cores overlap closely the range of detrital and magmatic zircon grains displayed by the Ediacaran to Silurian metasedimentary and metaigneous rocks of the Iberian autochthonous and parautochthonous domains. This is evidence of a genetic relationship between S-type granites and the host metamorphic rocks. There is no substantial evidence for the addition of mantle-derived material in the genesis of these late D2-early D3 S-type granitic rocks. The ɛNd arrays of heterogeneous

  16. Measurement of the fracture toughness of polycrystalline bubbly ice from an Antarctic ice core

    Directory of Open Access Journals (Sweden)

    J. Christmann

    2015-05-01

    Full Text Available The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter for simulating and predicting the breakup behavior of ice shelves from the calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic bubbly ice samples with densities between 840 and 870 kg m−3 has been determined by applying a four-point bending technique on single-edge v-notched beam samples. The examined ice core was drilled 70 m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E; 2882 m. Supplementary data are available at doi:10.1594/PANGAEA.835321.

  17. K/sub Ic/ and J/sub Ic/ of Westerly granite: effects of thickness and in-plane dimensions

    International Nuclear Information System (INIS)

    Schmidt, R.A.; Lutz, T.J.

    1978-01-01

    An investigation is described in which tensile properties, fracture toughness, and critical J integral are measured for Westerly granite, a rock that is widely used in rock mechanics studies. This was primarily a parameter sensitivity study in which the effects of specimen dimensions and testing techniques were assessed. It is hoped that this study will aid in establishing tentative standards and guidelines for fracture toughness testing of rock as well as indicate the feasibility of using a J integral fracture criterion for this material. ASTM standard specimen configurations of the compact and bend types were tested with compact specimens ranging in width from W = 25.4 mm to W = 406.4 mm (0.5T to 8T) and with thickness ranging from 13 mm to 100 mm. A series of 4T compact specimens were tested to assess the effects of thickness and fatigue precracking. Techniques are described that enable several values of K/sub Ic/, a complete J vs crack growth curve, and a J/sub Ic/ value to be obtained from each sample. Direct-pull tension tests on shaped specimens of Westerly granite are described which indicate a high degree of nonlinear, inelastic behavior. This fact raises questions about the use of LEFM, but the J/sub Ic/ data presented appear to validate the K/sub Ic/ measurements

  18. Kinematic and geometric characterization of the fracturation in the Berrocal (Toledo, Spain)

    International Nuclear Information System (INIS)

    Campos Egea, R.; Gumiel Martinez, P.; Pardillo Porras, J.

    1995-01-01

    The current research carried out it the El Berrocal Test Site belong to the ''Caracterizacion y validacion de los procesos de migracion de radionucleidos bajo condiciones reales en un medio granitico fracturado Project'', which is integrated in the ENRESA and EE R+D Programs aimed to establish the structural, lithological, geochemical, hydrochemical and hydrogeological aspects of the granite-Uranium mineralization system, to approach modelling of the U-Migration. The geometry and kinematics of fracturing which affect the El Berroal granite are shown in this paper. The kinematics of Late-Hercynian fractures is consistent with the development of an extension dilation zone off-set between the Meridional of Central System and Navamorcuente major faults, in a continued right-lateral shearing, accompanying E-W shortening in prolonged transpression. An statistical analysis of 1264 joints have been carried out. Joint spacing and aperture were also measured in profiles around the El Berrocal Test Site showing that joints may be grouped in three groups with orientations following Fisher distributions. Joint spacing shows fractal behaviour with a significant superimposed ramdon element (negative-exponential distribution) which is at present being evaluated. Finally, fracture trace mapping and detected fracture zones in boreholes from TLV data have been geometrically correlated and utilized to asses fracture connectivity. Connected networks of fractures have been obtained, which is a support fort further hydraulic tests carried out in the Porject. (Author) 53 refs

  19. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  20. Laboratory simulation of an oxidative disturbance in a deep granitic environment

    International Nuclear Information System (INIS)

    Trotignon, L.; Michaud, V.; Lartigue, J.E.

    2000-01-01

    the two experiments, especially for critical field parameters like bacterial populations and redox state. The in situ set-up is located in the deep part of the Aspo tunnel (-380 m below sea level). The replica set-up was built around the other half of the cored fracture surface. After 2 years of preparation, both experiments were run between May 1998 and July 1999. The replica adequately fulfilled the role of a mock-up, helping to dimension and define the experimental protocol, and also to identify major processes. The main limitation was the inability to reproduce correctly the in situ fluxes of geo-gases (H 2 , CH 4 ) in the lab. Results obtained on the replica provided a better understanding of processes governing the fate of oxygen in deep granite environments, particularly by revealing the importance of the coupling between microbial metabolism and inorganic mineral - solution reactions. Iron reducing bacteria seem to play a key role in this respect. A simple model was proposed from the data obtained on the replica setup to describe O 2 uptake kinetics. Important lessons were also drawn for the preparation of future underground experiments devoted to the study of metal corrosion: the role of bio-films located on different parts of the set-up cannot be ignored in the interpretation of results, e.g. hydrogen production, pH variation, etc. (authors)

  1. EXPLOITATION OF GRANITE BOULDER

    Directory of Open Access Journals (Sweden)

    Ivan Cotman

    1994-12-01

    Full Text Available The processes of forming, petrography, features, properties and exploitation of granite boulders are described. The directional drilling and black powder blasting is the succesful method in exploitation of granite boulders (boulder technology (the paper is published in Croatian.

  2. AMS studies in Portuguese variscan granites

    Science.gov (United States)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  3. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  4. Core fracture analysis applied to ground water flow systems: Chickamauga Group, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bittner, E.; Dreier, R.B.

    1989-01-01

    The objective of this study is to correlate hydrologic properties with detailed geologic fabrics and to investigate the influence of a complex geologic setting on ground water systems. The Chickamauga Group (CH) located in Bethel Valley on the DOE Oak Ridge Reservation is comprised of limestones and interbedded shales. Five core holes (CH 1-5), oriented across strike, provide a cross section of the CH and were mapped for fracture density, orientation and cross-cutting relationships as well as lithologic variations. Correlation of structural and lithologic features with downhole geophysical logs and hydraulic conductivity values shows a relationship between lithology, fracture density and increased permeability in an otherwise low-permeability environment. Structures identified as influential in enhancing hydraulic conductivity include contractional bedding plane and tectonic stylolites and extensional fractures. Three sets of extensional fractures are indicated by cross-cutting relationships and various degrees of veining. Hydraulic conductivity values (K) for the five wells indicate two ground water flow systems in the valley. A shallow system (up to 150 feet deep) shows a range in K from 10E-4 centimeters per second to 10E-6 centimeters per second. Shallow horizons show more open fractures than are observed at depth, and these fractures appear to control the enhanced K in the shallow system. A subhorizontal interface that is not defined by pre-existing structures or a stratigraphic horizon separates the two flow systems. The deeper system ranges in K values from 10E-9 centimeters per second to 10E-5 centimeters per second. The higher K values at depth correspond to increased fracture density at lithologic contacts, zones of tectonic stylolitization and partially veined extension fractures. 11 refs., 11 figs., 2 tabs

  5. Experimental thermomechanical damage as first approach to understand the petrophysical behavior of the granitic host-rocks from an active fractured-geothermal system (Liquiñe, Chile - 39º S)

    Science.gov (United States)

    Molina Piernas, E.; Sepúlveda, J.; Arancibia, G.; Roquer, T.; Morata, D.; Bracke, R.; Vázquez, P.

    2017-12-01

    Chile's location along an active subduction zone has endowed it with a high geothermal potential. However, a better understanding of the thermomechanical and fluid transport properties of rocks is required to assess the potential of geothermal systems and thereby enhance the possibilities for their use. We have focused in the area surrounding Liquiñe, in the Southern Andean Volcanic Zone (Chile, 39º S). This area hosts several recent thermal manifestations, predominantly hot springs, and it is affected by the Liquiñe-Ofqui Fault Zone (LOFZ), which controls the position of the modern volcanic arc in southern Chile and cuts the Patagonian batholith. We have carried out experimental analyzes in order to understand this geothermal system and the influence of the thermomechanical features over the granitic host-rocks (low-porous crystalline rocks). To do this, physical properties such as capillary water absorption coefficient, Vp-wave velocity and compressive resistance were evaluated before and after heating rock samples at 150 ºC and 210 ºC (at ambient pressure) in an oven at a heating rate of 6 °C/min and maintaining the maximum temperature for 4 hours. The cooling rate was less than 2 °C/min to avoid shrinkage phenomena. The results show that the damage by heat was greater at 210 ºC than 150 ºC, likely due to an increased capillary coefficient ( 30% and 25%). On the contrary, Vpvelocity ( -19% and -13%) and compressive resistance ( -27% in both cases) decreased, with respect to unheated samples. Consequently, we can infer an inherent effect on the later fracture process due to the thermal stress when this granitic body was at depth. After that, and considering the local and regional strain-stress state, both factors have facilitated the fluid flow, increasing the permeability of this granitic host-rock allowing the presence of hot-springs. Future work will be to acquire complementary petrophysical parameters, such as porosity, permeability, thermal

  6. Geometric Analysis of Vein Fracture Networks From the Awibengkok Core, Indonesia

    Science.gov (United States)

    Khatwa, A.; Bruhn, R. L.; Brown, S. R.

    2003-12-01

    Fracture network systems within rocks are important features for the transportation and remediation of hazardous waste, oil and gas production, geothermal energy extraction and the formation of vein fillings and ore deposits. A variety of methods, including computational and laboratory modeling have been employed to further understand the dynamic nature of fractures and fracture systems (e.g. Ebel and Brown, this session). To substantiate these studies, it is also necessary to analyze the characteristics and morphology of naturally occurring vein systems. The Awibengkok core from a geothermal system in West Java, Indonesia provided an excellent opportunity to study geometric and petrologic characteristics of vein systems in volcanic rock. Vein minerals included chlorite, calcite, quartz, zeolites and sulphides. To obtain geometric data on the veins, we employed a neural net image processing technique to analyze high-resolution digital photography of the veins. We trained a neural net processor to map the extent of the vein using RGB pixel training classes. The resulting classification image was then converted to a binary image file and processed through a MatLab program that we designed to calculate vein geometric statistics, including aperture and roughness. We also performed detailed petrographic and microscopic geometric analysis on the veins to determine the history of mineralization and fracturing. We found that multi-phase mineralization due to chemical dissolution and re-precipitation as well as mechanical fracturing was a common feature in many of the veins and that it had a significant role for interpreting vein tortuosity and history of permeability. We used our micro- and macro-scale observations to construct four hypothetical permeability models that compliment the numerical and laboratory modeled data reported by Ebel and Brown. In each model, permeability changes, and in most cases fluctuates, differently over time as the tortuosity and aperture of

  7. Relantionships between gold mineralization and granite - Discussion with the support of a pluridisciplinary study of the Passa Tres gold deposit (South Brazil)

    Science.gov (United States)

    Dressel, Bárbara; Chauvet, Alain; Trzaskos, Barbara; Biondi, Joao Carlos; Bruguier, Olivier; Monie, Patrick; Villanova, Sandro; Bazille, Jose

    2016-04-01

    The Passa Três Granite, located at East of the Paraná State is elongated following a NNE-SSW direction. This sienogranite is emplaced within metapelites of the meso to neoproterozoic Açungui Group, between the Morro Agudo and Lancinha transcurrent faults, comprising the N040°E trending Lancinha Transcurrent Fault System. Gold mineralization within the Passa Três Granite is constituted by huge quartz veins with sulfides, variable quantities of fluorite and carbonates, forming orebodies with different internal textures, including massive, banded, sheared and brecciated. Structural data indicate the existence of two major fault systems, one N-S and the other E-W, with dips of 15-45°W and 20-75°S, respectively. Both NS and EW systems are interpreted to be contemporaneous and conjugate. Normal motions are everywhere suspected and main mineralized veins are located at opening sites at these fault systems, such as pull-aparts. The structural model suggests that the normal motion can be initiated by shearing along a "guide" level, in which sulfides and clay minerals are concentrated. This configuration can be observed at several scales, such as field, hand samples and thin section. Mineralized veins mainly contain, in addition to the quartz of the gangue, sulphides (pyrite, chalcopyrite, galena, molybdenite), fluorite, chlorite, muscovite, sericite, and carbonate. The presence of sericite, kaolinite and chlorite indicate the occurrence of, at least, propylitic and phyllic-type alterations, both in core of the granite and best-expressed at the rim of quartz-rich orebodies. Gold occurs as native grains in core of the quartz veins, within fractures that affect pyrite and frequently exhibiting normal motions consistent with the one observed at larger scale and systematically associated with chalcopyrite and galena. Quartz veins are sometimes bordered by aplitic dike. Additionally, some of the veins can exhibit a very thin margin of adularia minerals that seems to

  8. Zircon growth in a granitic pluton with specific mechanisms, crystallization temperatures and U-Pb ages. Implication to the 'spatiotemporal' formation process of the Toki granite, central Japan

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Ishibashi, Masayuki; Sasao, Eiji; Iwano, Hideki; Danhara, Tohru; Kato, Takenori; Sakata, Shuhei; Hattori, Kentaro; Hirata, Takafumi; Sueoka, Shigeru; Nishiyama, Tadao

    2016-01-01

    Zircons collected from a granitic pluton provide evidence of serial growth events with specific mechanisms, crystallization temperatures and U-Pb ages, revealing details of the sequential formation process from intrusion through emplacement to crystallization/solidification. The events have been identified by: 1) the study of the internal structure of zircon using cathodoluminescence, 2) deriving crystallization temperatures using Ti-in-zircon thermometry of the internal structure and 3) U-Pb age dating of the internal structure. The magmatic zircons from the Toki granite, central Japan, show two kinds in their internal structure: a low luminescence core (LLC) and oscillatory zonation (OZ). The LLC was produced by interfacial reaction-controlled growth in the granitic magma with cooling from about 910 to 760°C. The formation of OZ occurred by diffusion-controlled growth in a cooling magma chamber from about 850 to 690°C. The U-Pb ages derived from the LLC ranges from 74.7 ± 4.2 to 70.5 ± 1.3 Ma, indicating the incipient intrusion timing of the magma into the shallow crust. The OZ ages distribute from 72.7 ± 0.6 to 70.4 ± 1.7 Ma, which mean the timing from emplacement to crystallization/solidification of the granite pluton. Thus, the serial processes from intrusion through emplacement to crystallization/solidification occurred within a few million years. The old LLC and OZ ages are recognized in the western margins of the Toki granite, implying that the magma forming the western margins was the first to intrude, emplace and crystallize/solidify. The western margins with initial intrusion may accompany the crustal assimilation in order to create sufficient magma reservoir space, which is consistent with larger SrI and ASI values found in the western margins of the granite. (author)

  9. Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil)

    Science.gov (United States)

    Siachoque, Astrid; Salazar, Carlos Alejandro; Trindade, Ricardo

    2017-04-01

    The Madeira granite is one of the Paleoproterozoic (1.82 Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE-SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE-SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA-B-C), hydrothermal vein, normal fault (F1-2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA-C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle

  10. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  11. Lithný granit ve vrtu Lysina-V1 v jižní části Slavkovského lesa, západní Čechy

    Czech Academy of Sciences Publication Activity Database

    Štědrá, V.; Jarchovský, T.; Krám, Pavel

    2016-01-01

    Roč. 49, aug (2016), s. 137-142 ISSN 0514-8057 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : geochemistry * Catchment * petrology * Slavkov Forest * core boreholes * Karlovy Vary Massif * Lysina granite * Li- and Rb-enriched granite Subject RIV: DD - Geochemistry

  12. Determination of rock fracture parameters from crack models for failure in compression

    International Nuclear Information System (INIS)

    Kemeny, J.M.; Cook, N.G.W.

    1987-01-01

    Micromechanical models for axial splitting and for shear faulting are used to investigate parameters associated with rock fracture under compressive stresses. The fracture energies to create splitting fractures and shear faults are calculated using laboratory triaxial data. These energies are compared with the fracture energies for the propagation of microcracks that coalesce to form the larger scale fractures. It is found that for Westerly granite, the energies to create splitting fractures and shear faults are about three orders of magnitude greater than the energy needed to drive the tensile microcracks, due to the large amount of subsidiary crack surface area created in forming the larger scale fractures. A similar scale effect can be expected when extrapolating the laboratory results to field scale problems

  13. Rock Magnetic Study of IODP/ICDP Expedition 364 Site M0077A Drill Cores: Post-Impact Sediments, Impact Breccias, Melt, Granitic Basement and Dikes

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.

    2017-12-01

    Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities

  14. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Peterman, Z.E.; Moscati, R.J.; Thivierge, R.H.

    2013-01-01

    Highlights: • AECL evaluates Chalk River Laboratories site as potential nuclear waste repository. • Isotope-geochemical data for rocks and fracture minerals at CRL site are reported. • Zircons from gneiss and granite yielded U–Pb ages of 1472 ± 14 and 1045 ± 6 Ma. • WR Rb–Sr and Pb–Pb systems do not show substantial large-scale isotopic mobility. • U-series and REE data do not support oxidizing conditions at depth in the past 1 Ma. - Abstract: As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks. Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate

  15. Natural radionuclide distribution in Brazilian commercial granites

    International Nuclear Information System (INIS)

    Anjos, R.M.; Veiga, R.; Soares, T.; Santos, A.M.A.; Aguiar, J.G.; Frasca, M.H.B.O.; Brage, J.A.P.; Uzeda, D.; Mangia, L.; Facure, A.; Mosquera, B.; Carvalho, C.; Gomes, P.R.S.

    2005-01-01

    The dimension stones sector in Brazil produces several varieties of granites, marbles, slates and basalts. More than half of this production corresponds to around 200 different commercial types of granites with specific names, geographical and geological origins and mineral compositions. The well-known natural radioactivity present in rocks, where high radiation levels are associated with igneous rocks such as granite, can be used to determine their general petrologic features. This subject is important in environmental radiological protection, since granites are widely used as building and ornamental stones. In this paper, it is applied to correlate the petrographic characteristics of commercial granites with their corresponding dose rates for natural radioactivity. Amounts of thorium, uranium and potassium concentrations have been reported in several Brazilian commercial granite samples

  16. Between-hole acoustic surveying and monitoring of a granitic rock mass

    International Nuclear Information System (INIS)

    Paulsson, B.N.P.; King, M.S.

    1980-02-01

    The purpose of this technical note is to present preliminary results of an acoustic monitoring study performed as part of a comprehensive rock mechanic and geophysics research program (Ref.20) associated with large-scale heater tests in an abandoned iron-ore mine in central Sweden. The investigation was performed in a fractured granitic rock mass at a sub-surface depth of 340 m, in a drift adjacent to the original iron-ore mine workings. Acoustic monitoring took place between four empty, dry, vertical boreholes of 10 m depth spaced in the vicinity of a vertical heater borehole in the floor of a drift

  17. Transport modeling of sorbing tracers in artificial fractures

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo.

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs

  18. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  19. Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling.

    Science.gov (United States)

    Zhou, Jian; Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua

    2017-07-21

    Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture-including mineral constituents, grain shape, size, and distribution-controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.

  20. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  1. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  2. Borehole radar survey at the granite quarry mine, Pocheon, Kyounggi province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the Donga granite quarry mine of Pocheon area in Kyounggi province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. Besides the various kinds of radar borehole survey, two surface geophysical methods, dipole-dipole resistivity survey and ground penetrating radar, were also applied to delineate the hidden parts of geological structures which was confirmed by geological mapping. The reflection data processing package, RADPRO ver. 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new programs to process radar reflection data using directional antenna were devised and used to calculate and image the orientation of reflectors. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna and the newly developed algorithm to image the orientation of reflectors, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone, the boundary of two mining areas. Many of hidden inhomogeneities were found by borehole radar methods. By the image of direction finding antenna, it was confirmed that nearly all of them were located at the outside of the planned mining area or were situated very deeply. Therefore, the surveyed area consists of very fresh and

  3. The Influence of Fractures on Radionuclide Transport in Granite Formations

    International Nuclear Information System (INIS)

    Guarracino, Luis; Quintana, Fernando; Bevilacqua, Arturo

    2003-01-01

    Simulation of radionuclide transport in fractured hard rocks is of interest to many research areas like geological disposal of high-level nuclear wastes.The objective of this study is to present a numerical simulation of water flow and radionuclide transport near a hypothetical repository in deep geological formations.The water flow is assumed to obey the highly nonlinear Richards' equation, which is approximated using a finite element method for the spatial discretization combined with a third order accurate Crank-Nicholson scheme in time.A Picard iteration scheme is used to treat the non-linear terms of the equation.Contaminant transport is described by the advection-diffusion-reaction equation, assuming linear adsorption and first order decay.This equation is solved using a Sub Grid Scale algorithm.Illustrative examples showing the influence of fractures in the contaminant process for different radioisotopes are presented

  4. SHRIMP U-Pb zircon dating of Archean core complex formatio and pancratonic strike-slip deformation in the East Pilbara Granite-Greenstone Terrain

    NARCIS (Netherlands)

    Zegers, T.E.; Nelson, D.R.; Wijbrans, J.R.; White, S.H.

    2001-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb dating of zircons from granitic rocks in the East Pilbara Granite-Greenstone Terrain has provided time constraints for main tectonic events in the Shaw Granitoid Complex and has shown that deformation was intricately related to granitoid

  5. Two-mica granites of northeastern Nevada.

    Science.gov (United States)

    Lee, D.E.; Kistler, R.W.; Friedman, I.; Van Loenen, R. E.

    1981-01-01

    The field settings are described and analytical data are presented for six two-mica granites from NE Nevada. High delta 18O and 87Sr/86Sr values indicate that all are S-type granite, derived from continental crust. The major element chemistry and accessory mineral contents of these rocks also are characteristic of S-type granites. Chemical, X ray, and other data are presented for the micas recovered from these granites. The muscovites are notably high in Fe2O3, FeO, and MgO. Except for one hydrobiotite, each of the biotites has an MgO content near 6.0 wt%. Two different types of two-mica granites are recognized in the area of this study. One type is distinguished by the presence of many biotite euhedra within muscovite phenocrysts and by an unusual suite of accessory minerals completely devoid of opaque oxides. This type probably resulted from anatexis of late Precambrian argillites under conditions of relatively low oxygen fugacity, along a line that roughly coincides with the westward disappearance of continental basement. In the other textural type of two-mica granite the micas are equigranular and there is a greater variety of accessory minerals. The magmatic evolution of this type also appears to reflect the influence of late Precambrian argillites; there may be age differences between the two types of two-mica granites.-Author

  6. Late Triassic granites from Bangka, Indonesia: A continuation of the Main Range granite province of the South-East Asian Tin Belt

    Science.gov (United States)

    Ng, Samuel Wai-Pan; Whitehouse, Martin J.; Roselee, Muhammad H.; Teschner, Claudia; Murtadha, Sayed; Oliver, Grahame J. H.; Ghani, Azman A.; Chang, Su-Chin

    2017-05-01

    The South-East Asian Tin Belt is one of the most tin-productive regions in the world. It comprises three north-south oriented granite provinces, of which the arc-related Eastern granite province and the collision-related Main Range granite province run across Thailand, Singapore, and Indonesia. These tin-producing granite provinces with different mineral assemblages are separated by Paleo-Tethyan sutures exposed in Thailand and Malaysia. The Eastern Province is usually characterised by granites with biotite ± hornblende. Main Range granites are sometimes characterised by the presence of biotite ± muscovite. However, the physical boundary between the two types of granite is not well-defined on the Indonesian Tin Islands, because the Paleo-Tethyan suture is not exposed on land there. Both hornblende-bearing (previously interpreted as I-type) and hornblende-barren (previously interpreted as S-type) granites are apparently randomly distributed on the Indonesian Tin Islands. Granites exposed on Bangka, the largest and southernmost Tin Island, no matter whether they are hornblende-bearing or hornblende-barren, are geochemically similar to Malaysian Main Range granites. The average ɛNd(t) value obtained from the granites from Bangka (average ɛNd(t) = -8.2) falls within the range of the Main Range Province (-9.6 to -5.4). These granites have SIMS zircon U-Pb ages of ca. 225 Ma and ca. 220 Ma, respectively that are both within the period of Main Range magmatism (∼226-201 Ma) in the Peninsular Malaysia. We suggest that the granites exposed on Bangka represent the continuation of the Main Range Province, and that the Paleo-Tethyan suture lies to the east of the island.

  7. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  8. Approach to the fracture hydrology at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Gale, J.E.; Witherspoon, P.A.

    1979-05-01

    There are two main problems associated with the concept of geologic storage of radioactive waste in fractured crystalline rock: (1) the thermo-mechanical effects of the heat generated by the waste, and (2) the potential for transport of radioactive materials by the groundwater system. In both problems, fractures play a dominant role. An assessment of the hydraulic and mechanical characteristics of fractued rock requires a careful series of laboratory and field investigations. The complexity of the problem is illustrated by the field studies in a fractured granite that are currently underway in an abandoned iron-ore mine at Stripa, Sweden. Much information is being gathered from an extensive series of boreholes and fracture maps. The approach being taken to integrate these data into an analysis of the fracture hydrology is reviewed and preliminary results from the hydrology program are presented. 13 figures

  9. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  10. Fractal Dimension of Fracture Surface in Rock Material after High Temperature

    Directory of Open Access Journals (Sweden)

    Z. Z. Zhang

    2015-01-01

    Full Text Available Experiments on granite specimens after different high temperature under uniaxial compression were conducted and the fracture surfaces were observed by scanning electron microscope (SEM. The fractal dimensions of the fracture surfaces with increasing temperature were calculated, respectively. The fractal dimension of fracture surface is between 1.44 and 1.63. Its value approximately goes up exponentially with the increase of temperature. There is a quadratic polynomial relationship between the rockburst tendency and fractal dimension of fracture surface; namely, a fractal dimension threshold can be obtained. Below the threshold value, a positive correlativity shows between rockburst tendency and fractal dimension; when the fractal dimension is greater than the threshold value, it shows an inverse correlativity.

  11. Core drilling of deep borehole OL-KR46 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-09-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 600.10 m and 45.16 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in May - June 2007. The identification numbers of the boreholes are OL-KR46 and OL-KR46B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning water, and the volume of drilling water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 466 m 3 and 20 m 3 in boreholes OL-KR46 and OL-KR46B, respectively. Measured volumes of the returning water were 407 m 3 in borehole OL-KR46 and 12 m 3 in borehole OL-KR46B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 116.5 MPa, the average Young's Modulus is 31.5 GPa and the average Poisson's ratio is 0.20. The main rock types are veined gneiss, tonalitic-granodioritic-granitic gneiss and pegmatite

  12. Core drilling of deep drillhole OL-KR45 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1023.30 m and 44.75 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in June - September 2007. The identification numbers of the drillholes are OL-KR45 and OL-KR45B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1186 m 3 and 19 m 3 in drillholes OL-KR45 and OL-KR45B, respectively. Measured volumes of the returning water were 962 m 3 in drillhole OL-KR45 and 15 m 3 in drillhole OL-KR45B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 126.2 MPa, the average Young's Modulus is 42.5 GPa and the average Poisson's ratio is 0.21. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic-granodioritic-granitic

  13. Preliminary petrographic and geophysical interpretations of the exploratory geothermal drill hole and core, Redstone, New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, R.B. Jr.; Stewart, G.W.

    1977-06-30

    A 3000 foot diamond drill hole was drilled in the Conway Granite in Redstone, New Hampshire. A comprehensive detailed petrographic and physical study of this core was made. The purpose of this study is to supply a sound data base for future geothermal and uranium-thorium studies of the drill core. An estimate of the heat flow potential of the Redstone drill hole gives a heat flow of 1.9 HFU. If only the red phase of the Conway Granite had been intersected the heat flow may have been as much as 2.7 HFU, reaching a temperature of 260/sup 0/C at 6 km. The drill hole intersected four lithologies; the green and red phase of the Conway Granite, the Albany quartz syenite and a medium-grained, hastingsite-biotite granite. The red phase has the highest and most irregular radioactivity. The irregularity is mainly due to minor variations in lithology. The drill core intersected several alteration zones up to a thickness of 150 feet. These alteration zones represent passage of low to medium temperature fluids which might have been mineralized. The Conway Granite has the physical and chemical characteristics necessary for the formation of vein type uranium deposits. The presence of unexplained radiometric anomalies lends support to the existence of such deposits.

  14. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    Science.gov (United States)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  15. School playground surfacing and arm fractures in children: a cluster randomized trial comparing sand to wood chip surfaces.

    Directory of Open Access Journals (Sweden)

    Andrew W Howard

    2009-12-01

    Full Text Available The risk of playground injuries, especially fractures, is prevalent in children, and can result in emergency room treatment and hospital admissions. Fall height and surface area are major determinants of playground fall injury risk. The primary objective was to determine if there was a difference in playground upper extremity fracture rates in school playgrounds with wood fibre surfacing versus granite sand surfacing. Secondary objectives were to determine if there were differences in overall playground injury rates or in head injury rates in school playgrounds with wood fibre surfacing compared to school playgrounds with granite sand surfacing.The cluster randomized trial comprised 37 elementary schools in the Toronto District School Board in Toronto, Canada with a total of 15,074 students. Each school received qualified funding for installation of new playground equipment and surfacing. The risk of arm fracture from playground falls onto granitic sand versus onto engineered wood fibre surfaces was compared, with an outcome measure of estimated arm fracture rate per 100,000 student-months. Schools were randomly assigned by computer generated list to receive either a granitic sand or an engineered wood fibre playground surface (Fibar, and were not blinded. Schools were visited to ascertain details of the playground and surface actually installed and to observe the exposure to play and to periodically monitor the depth of the surfacing material. Injury data, including details of circumstance and diagnosis, were collected at each school by a prospective surveillance system with confirmation of injury details through a validated telephone interview with parents and also through collection (with consent of medical reports regarding treated injuries. All schools were recruited together at the beginning of the trial, which is now closed after 2.5 years of injury data collection. Compliant schools included 12 schools randomized to Fibar that installed

  16. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    Science.gov (United States)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  17. Determination of dispersity of crushed granite

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The experimental crushed granite column breakthrough curves, using 99 Tc as spike tracer and 3 H as invariant tracer, are analyzed by different linear regression techniques. Dispersity of crushed granite and retardation factor of 99 TcO 4 - on the crushed granite are determined simultaneously by one linear regression technique. Dispersity of crushed granite is also obtained with 3 H as invariant tracer by the other linear regression technique. The dispersities found by spike source and invariant source methods are compared. The experimental results show that the dispersity found by spike source method is close to that found by invariant source method. It indicates that dispersity is only the characteristic of dispersion medium

  18. Determination of dispersity of crushed granite

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    Experimental crushed granite column breakthrough curves, using 99 Tc as spike tracer and 3 H as invariant tracer, were analyzed by different linear regression techniques. Dispersity of crushed granite and the retardation factor of 99 TcO 4 - on the crushed granite were determined simultaneously by one linear regression. Dispersity of crushed granite was also obtained with 3 H as invariant tracer by the other linear regression. The dispersities found by spike source and invariant source methods are compared. Experimental results show that the dispersity found by the spike source method is close to that found by the invariant source method. This indicates that dispersity is only a characteristic of the dispersion medium. (author)

  19. Uranium-enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by the anatexis of continental crust or processes occurring at a much greater depth. They commonly show enrichment in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (author)

  20. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  1. Identification of granite varieties from colour spectrum data.

    Science.gov (United States)

    Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio

    2010-01-01

    The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques.

  2. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Youn Soo [Institute of Mine Reclamation Technology, Mine Reclamation Corp., 2 Segye-ro, Wonju-si, Gangwon-do, 26464 (Korea, Republic of); Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841 (Korea, Republic of); Ryu, Ji-Hun; Kim, Geon-Young [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon, 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • Microfluidic tests was used to investigate water-rock (mineral) interactions. • Pb and U sorption onto thin shale and granite sections was evaluated. • Pb removal by thin shale section is related primarily to Fe-containing minerals. • A slightly larger amount of U was removed onto the thin granite section with Fe-containing minerals. - Abstract: The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl{sub 2} solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm{sup 2}) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm{sup 2}) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm{sup 2}) than the thin Bt-P section (240 μg/cm{sup 2}) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.

  3. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    Jambor, S.

    1980-06-01

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na 2 CO 3 /NaHCO 3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 70 0 C for a 24 hour time period. (author)

  4. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study.

    Science.gov (United States)

    Eapen, Ashly Mary; Amirtharaj, L Vijay; Sanjeev, Kavitha; Mahalaxmi, Sekar

    2017-09-01

    The purpose of this in vitro study was to comparatively evaluate the fracture resistance of endodontically treated teeth restored with 2 fiber-reinforced composite resins and 2 conventional composite resin core buildup materials. Sixty noncarious unrestored human maxillary premolars were collected, endodontically treated (except group 1, negative control), and randomly divided into 5 groups (n = 10). Group 2 was the positive control. The remaining 40 prepared teeth were restored with various direct core buildup materials as follows: group 3 teeth were restored with dual-cure composite resin, group 4 with posterior composite resin, group 5 with fiber-reinforced composite resin, and group 6 with short fiber-reinforced composite resin. Fracture strength testing was performed using a universal testing machine. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test. Fracture patterns for each sample were also examined under a light microscope to determine the level of fractures. The mean fracture resistance values (in newtons) were obtained as group 1 > group 6 > group 4 > group 3 > group 5 > group 2. Group 6 showed the highest mean fracture resistance value, which was significantly higher than the other experimental groups, and all the fractures occurred at the level of enamel. Within the limitations of this study, a short fiber-reinforced composite can be used as a direct core buildup material that can effectively resist heavy occlusal forces against fracture and may reinforce the remaining tooth structure in endodontically treated teeth. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Radiometric analysis of Chinese commercial granites

    International Nuclear Information System (INIS)

    Xinwei, L.; Lingqing, W.; Xiaodan, J.

    2006-01-01

    Due to the widespread use of granites as building and ornamental materials, measurements of 226 Ra, 232 Th and 40 K activities in commercial granites have been carried out using a NaI(Tl) γ-ray spectrometer with a matrix-inversion-based spectral stripping technique. The concentrations of 226 Ra, 232 Th and 40 K in Chinese commercial granite range from 14.5 to 204.7 Bq x kg -1 , 16.7 to 186.7 Bq x kg -1 and 185.7 to 1745.6 Bq x kg -1 , respectively. The mean values of the activity concentrations of 226 Ra, 232 Th and 40 K in red and pink commercial granites are all higher than those in black and gray commercial ones. The radium equivalent activity (Ra eq ), the external hazard index (H ex ), the internal hazard index (H in ) and the annual gonadal dose equivalent (AGDE) were also calculated and compared to the international recommended values. Six types of red commercial granites (CBR, MLR, QXR, PBR, JXR, LQR, YDR and TSR) of China do not satisfy the universal standards. (author)

  6. Core drilling of deep drillhole OL-KR54 at Olkiluoto in Eurajoki 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-11-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 500.18 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in July - August 2010. The identification number of the drillhole is OL-KR54. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 382 m 3 . The measured volume of the returning water in the drillhole was 334 m 3 . The deviation of the drillhole was measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 111.5 MPa, the average Young's Modulus was 43.7 GPa and the average Poisson's ratio was 0.17. The main rock types are diatexitic and veined gneisses, pegmatitic granite and mafic gneiss. The average fracture frequency is 1.6 pcs/m and the average RQD value is 97.6 %. Nine fractured zones were penetrated by the drillhole. (orig.)

  7. Rn-222 release to the environment: comparison between different granite sources

    International Nuclear Information System (INIS)

    Mamoon, M.; Kamal, S.M.

    2005-01-01

    In this work three different types of granites were studied, namely: pure granite, alkali granite and altered (hydrated) alkali granite. General radioactivity of the granites was studied along with the potential for 222 Rn emanation. The study indicated that altered alkali granite releases, relatively, the highest 222 Rn emanation to the surrounding air while alkali granite emits the more intense gamma radiation of the three granites. Hence, altered alkali granite can be used as a laboratory source for 222 Rn.

  8. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Lamarão, C. N.; Krás Borges, R. M.; Dall'Agnol, R.

    1192/195, April (2014), s. 208-225 ISSN 0024-4937 Institutional support: RVO:67985831 Keywords : zircon * A-type granites * S-type granites * Wiborg batholith * Brazil * Krušné hory/Erzgebirge Subject RIV: DD - Geochemistry Impact factor: 4.482, year: 2014

  9. Fracture resistance of endodontically treated teeth restored with Zirconia filler containing composite core material and fiber posts.

    Science.gov (United States)

    Jeaidi, Zaid Al

    2016-01-01

    To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (pcomposite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures.

  10. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  11. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  12. Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis

    Science.gov (United States)

    Bonin, Bernard

    2012-11-01

    The telluric planets and the asteroid belt display the same internal structure with a metallic inner core and a silicate outer shell. Experimental data and petrological evidence in silicate systems show that granite can be produced by extreme igneous differentiation through various types of igneous processes. On Moon, 4.4-3.9 Ga granite clasts display dry mineral assemblages. They correspond to at least 8 discrete intrusive events. Large K/Ca enrichment and low REE abundances in granite relative to KREEP are consistent with silicate liquid immiscibility, a process observed in melt inclusions within olivine of lunar basalts and in lunar meteorites. Steep-sided domes identified by remote sensing can represent intrusive or extrusive felsic formations. On Mars, black-and-white rhythmic layers observed on the Tharsis rise along the flanks of the peripheral scarps of the Tharsis Montes giant volcanoes suggest the possible eruption of felsic pyroclastites. Though no true granites were found so far in the Martian SNC meteorites, felsic glasses and mesostases were identified and a component close to terrestrial continental (granitic) crust is inferred from trace element and isotope systematics. Venus has suffered extensive volcanic resurfacing, whereas folded and faulted areas resemble terrestrial continents. Near large shield volcanoes, with dominant basaltic compositions, steep-sided domes have been interpreted as non-degassed silicic extrusions. The hypothesis of a granitic component is "tantalising". Extra-terrestrial granite is frequently found as clasts and mesostases in asteroidal meteorites. Porphyritic textures, with alkali feldspar crystals up to several centimetres in size, were observed in silicate enclaves within iron meteorites. In the chondrite clan, polymict breccias can contain granitic clasts, whose provenance is debated. One clast from the Adzhi-Bogdo meteorite yields a 4.53 ± 0.03 Ga Pb-Pb age, making it the oldest known granite in the solar system. The

  13. How in-situ combustion process works in a fractured system : two-dimensional, core and block scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fadaei, H.; Renard, G. [Inst. Francais du Petrole, Lyon (France); Quintard, M.; Debenest, G. [L' Inst. de Mecanique des Fluides de Toulouse, Toulouse (France); Kamp, A.M. [Centre Huile Lourde Ouvert et Experimental CHLOE, Pau (France)

    2008-10-15

    Core and matrix block scale simulations of in situ combustion (ISC) processes in a fractured reservoir were conducted. ISC propagation conditions and oil recovery mechanisms were studied at core scale, while the 2-D behaviour of ISC was also studied at block-scale in order to determine dominant processes for combustion propagation and the characteristics of different steam fronts. The study examined 2-phase combustion in a porous medium containing a solid fuel as well as 2-D conventional dry combustion methods. The aim of the study was to predict ISC extinction and propagation conditions as well as to understand the mechanisms of oil recovery using ISC processes. The simulations were also used to develop up-scaling guidelines for fractured systems. Computations were performed using different oxygen diffusion and matrix permeability values. The effect of each production mechanism was studied separately. The multi-phase simulations showed that ISC in fractured reservoirs is feasible. The study showed that ISC propagation is dependent on the oxygen diffusion coefficient, while matrix permeability plays an important role in oil production. Oil production was governed by gravity drainage and thermal effects. Heat transfer due to the movement of combustion front velocity in the study was minor when compared to heat transfer by conduction and convection. It was concluded that upscaling methods must also consider the different zones distinguished for oil saturation and temperatures. 15 refs., 2 tabs., 15 figs.

  14. Age of Pedra Branca granite (Goias) and possible geotectonic implications

    International Nuclear Information System (INIS)

    Marini, O.J.; Botelho, N.F.; Macambira, M.J.B.; Provost, A.

    1986-01-01

    Rb-Sr geochronologic dating of granites from the Pedra Branca Granite Massif (Nova Roma, Goias) shown an age of 1405 ± 21My. and a questionable initial Sr 87 /Sr 86 ratio of 0,7004 ± 0,006. Rhyolite from the base of the Arai Group is probably of the same age as the granitic intrusion. The 475 ± 19 My. age for the granitic intrusion is evidence of the Brasiliano Cycle imprint in Pedra Branca region. The age attributed to the Pedra Branca Granite is lower than known ages of the Goias tin granites giving rise to new geotectonic interpretations. It is possible that the Pedra Branca Granite represents a low-level intrusion emplaced at the beginning of structuration and deposition of the Arai basin. It may be correlated with granitic intrusions related to a rift stage above mantle hot spots, like the Nigerian tin younger granites. (author)

  15. Recommendation for measuring clinical outcome in distal radius fractures: a core set of domains for standardized reporting in clinical practice and research.

    Science.gov (United States)

    Goldhahn, Jörg; Beaton, Dorcas; Ladd, Amy; Macdermid, Joy; Hoang-Kim, Amy

    2014-02-01

    Lack of standardization of outcome measurement has hampered an evidence-based approach to clinical practice and research. We adopted a process of reviewing evidence on current use of measures and appropriate theoretical frameworks for health and disability to inform a consensus process that was focused on deriving the minimal set of core domains in distal radius fracture. We agreed on the following seven core recommendations: (1) pain and function were regarded as the primary domains, (2) very brief measures were needed for routine administration in clinical practice, (3) these brief measures could be augmented by additional measures that provide more detail or address additional domains for clinical research, (4) measurement of pain should include measures of both intensity and frequency as core attributes, (5) a numeric pain scale, e.g. visual analogue scale or visual numeric scale or the pain subscale of the patient-reported wrist evaluation (PRWE) questionnaires were identified as reliable, valid and feasible measures to measure these concepts, (6) for function, either the Quick Disability of the arm, shoulder and hand questionnaire or PRWE-function subscale was identified as reliable, valid and feasible measures, and (7) a measure of participation and treatment complications should be considered core outcomes for both clinical practice and research. We used a sound methodological approach to form a comprehensive foundation of content for outcomes in the area of distal radius fractures. We recommend the use of symptom and function as separate domains in the ICF core set in clinical research or practice for patients with wrist fracture. Further research is needed to provide more definitive measurement properties of measures across all domains.

  16. Tasmanian tin and tungsten granites - their radiometric characteristics

    International Nuclear Information System (INIS)

    Yeates, A.N.

    1982-01-01

    A radiometric survey of Tasmanian granites has shown, with one exception, that tin and tungsten-bearing granites have high radioactivity, largely owing to increased uranium. Many have a high uranium/thorium ratio as well. Radiometric measurements can also delineate different granite types within composite bodies

  17. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    Science.gov (United States)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  18. Portuguese granites associated with Sn-W and Au mineralizations

    Directory of Open Access Journals (Sweden)

    Ana M.R. Neiva

    2002-01-01

    Full Text Available In northern and central Portugal, there are different tin-bearing granites. Most of them are of S-type, others have mixed characteristics of I-type and S-type granites and a few are of I-type. Tin-tungsten deposits are commonly associated with Hercynian tin-bearing S-type granites. Some quartz veins with wolframite are associated with an I-type granite, which has a low Sn content. In suites of tin-bearing S-type granitic rocks, Sn content increases as a function of the degree of fractional crystallization. Greisenizations of two-mica S-type granites associated with tin-tungsten mineralizations are accompanied by an increase in SiO2, H2O+, Sn, W, Nb, Ta, Rb, Zn, and Pb and decrease in MgO, Na2O, V, Sc,Zr, and Sr. The granite associated with the Jales gold deposit is of S-type and strongly differentiated like the tin-bearing S-type granites, but it has a very low Sn content. During fractional crystallization, Si, Rb, Sn, Pb, Au, As, Sb, and S increase. During increasing degree of hydrothermal alteration of this granite at the gold-quartz vein walls, there are progressive increases in K2O, H2O+, Sn, Cs, Cu, Pb, Au, Sb, As, and S.

  19. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  20. Adsorption behavior of Am(III) on granite

    International Nuclear Information System (INIS)

    Zhang Yingjie; Feng Xiaogui; Liang Junfu; Chen Jing; Su Rui; Wang Ju; Liu Chunli

    2009-01-01

    The adsorption behavior of Am(III) on granite (sampled from drilling well BS01 at Beishan (BS) area--a potential candidate site for China's high-level radioactive waste repository, the granite sample's depth about 300 m) was studied in BS03 well groundwater by a batch technique at (25±1) degree C. The influences of pH, sulphate ion, total carbonate ion, humic acid, and concentration of the Am(III) on the adsorption behavior were also studied, and the possible adsorption mechanism was discussed. Experimental results show that the adsorption distribution rate of Am(III) on granite increases with increasing pH of aqueous phase. The chemical composition of the groundwater is the main factor which influences the species of Am(III) and adsorption behavior. The adsorption mechanism of Am(III) on granite is surface complexation. The adsorption isotherm of Am(III) on granite can be described by Freundlich's equation. (authors)

  1. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  2. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J.; Bluemling, P.; Vomvoris, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  3. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Cryogenic Fracture Toughness of CSR Modified Epoxy

    Science.gov (United States)

    Wang, Jun; Magee, Daniel; Schneider, Judy; Cannon, Seth

    2009-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace(Registered TradeMark) MX130 and Kane Ace(Registered TradeMark) MX960 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles up to 13.8wt%, while at LN2 temperatures, it reached a plateau at much lower CSR concentration.

  4. Portuguese granites associated with Sn-W and Au mineralizations

    OpenAIRE

    Ana M.R. Neiva

    2002-01-01

    In northern and central Portugal, there are different tin-bearing granites. Most of them are of S-type, others have mixed characteristics of I-type and S-type granites and a few are of I-type. Tin-tungsten deposits are commonly associated with Hercynian tin-bearing S-type granites. Some quartz veins with wolframite are associated with an I-type granite, which has a low Sn content. In suites of tin-bearing S-type granitic rocks, Sn content increases as a function of the degree of fractional cr...

  5. Genetic Affiliation of Gold and Uranium Mineralization in El-Missikat Granite, Central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ammar, F.A.; Omar, S.A.M.; El Sawey, El.H.

    2016-01-01

    Gabal El-Missikat granitic pluton is affected by two fault systems trending NW-SE (the oldest) and ENE-WSW directions. It is one of the uranium occurrences in the Eastern Desert of Egypt. The northwestern margins of El-Missikat pluton, along its contact with the gneissose quartz diorite, are dissected by numerous reactivated fractured shear zones running generally ENE-WSW to NE-SW and dipping about 60°-70° to SE. Many white (oldest), smoky or black and jasperoid (youngest) silica veinlets fill the fractures of these shear zones. These veins are of irregular shape and variable thickness ranging from few centimeters to about three meters. They are chiefly affected by silicification, sericitization, hematitization , kaolinization and hydrothermal alterations processes. The smoky black veins are hosting secondary uranium and fluorite-, sulphide-gold mineralizations. Polished surface studies, ICP-ES and Atomic Absorption as well as Scanning Electron Microscope measurements recorded galena, pyrite chalcopyrite, sphalerite and molybdenite in the black and jasperoid mineralized veins. Gold associated with ore mineral assemblage as pyrite, chalcopyrite, sphalerite, galena, sheelite and iron oxides. The identified sulphide minerals not bearing gold are recorded. Gold are relatively coarse-grained, massive and metallic yellow or stretched bronze colored particles. The recorded secondary U minerals associates the sulphide gold-mineralization in the black and jasperoid silica veins. Regarding the mobility of both uranium and gold, U 4+ mobilized in oxidizing medium and migrate and transport as U 6+ , then deposited later as U 4+ when the medium changes to be reducing characterized by high /O 2 . On contrary, gold mobilized when the medium is complex AuCl 3- ion bearing. Consequently, El- Missikat granitic pluton affected by oxidizing Au and Cl 3- bearing high temperature hydrothermal solutions that leached U 4+ , W and Mo from the granitic mass as U 6 + , later decrease of

  6. Investigation of porosity and pore structure adjacent to fractures by PMMA method. Samples taken from drill cores at Olkiluoto

    International Nuclear Information System (INIS)

    Siitari-Kauppi, M.; Ikonen, J.; Kauppi, L.; Lindberg, A.

    2010-10-01

    The porosity, pore structure and micro fracturing of 18 rock cores from drill holes OLKR4, OL-KR11, OL-KR13, OL-KR14, OL-KR15, OL-KR20 and OL-KR25. The porosity was investigated by the C-14-PMMA autoradiographic method. The main focus was to analyse the changes in porosity and mineralogy adjacent to the typical fractures in the bedrock of Olkiluoto as a mean of porosity profiles. The method makes it possible to study the spatial distribution of the pore space in rock, and the heterogeneity of rock matrices is revealed at the sub micrometre to the centimetre scale. Subsequent autoradiography and digital image analysis make it possible to analyse features limited in size by the range of C-14 beta radiation. The description of the method was given in Posiva working report 2009-03. The samples for this work were chosen in April 2008. The C-14-PMMA method involves the impregnation of centimetre-scale rock cores with C-14 labelled methylmethacrylate (C-14-MMA) in a vacuum, irradiation polymerisation, autoradiography and optical densitometry using digital image-processing techniques. Impregnation with C-14-MMA, a labelled low-molecular-weight and lowviscosity monomer which wets the silicate surfaces well and which can be fixed by polymerisation provides information about the accessible pore space in crystalline rock that cannot be obtained using other methods. The microscopy analyses for mineral identification were done for every PMMA impregnated sample in Geological Survey of Finland. The total porosities of the studied rock cores varied between 0.1 % and 8 %. However, spatially the porosities of 30 - 40 % were determined for the minerals that were strongly altered. The porosity changes were observed adjacent to the fracture surfaces forming from a few to several millimetres porous zones. The heterogeneity of the porosity patterns adjacent to the fracture surfaces was abundant due to mineral alteration. (orig.)

  7. 210Po measurement of borehole core and its significance for uranium exploration

    International Nuclear Information System (INIS)

    Chao Xiaolin

    2007-01-01

    210 Po survey is a tradition method in uranium exploration and has been widely applied to ground reconnaissance survey and detailed survey of uranium. However, it is seldom applied to drilling work. 210 Po measurements of borehole core for granite-type uranium deposit in Miaoershan area indicate that there are high and large range anomaly which greatly exceeds uranium orebody in uranium mineralization area. The investigation suggests that 210 Po measurements of borehole core can judge whether or not exist buried uranium orebody under the borehole depth and its surrounding in the final exploration stage. The method may be used to the exploration of granite-type uranium deposit. (authors)

  8. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    Science.gov (United States)

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen

    2016-06-01

    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  9. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material-An in vitro study.

    Science.gov (United States)

    Garlapati, Tejesh Gupta; Krithikadatta, Jogikalmat; Natanasabapathy, Velmurugan

    2017-10-01

    This in-vitro study tested the fracture resistance of endodontically treated molars with Mesial-Occluso-Distal (MOD) cavities restored with fibre reinforced composite material everX posterior in comparision with hybrid composite and ribbond fiber composite. Fifty intact freshly extracted human mandibular first molars were collected and were randomly divided into five groups (n=10). Group 1: positive control (PC) intact teeth without any endodontic preparation. In groups 2 through 6 after endodontic procedure standard MOD cavities were prepared and restored with their respective core materials as follows: group 2, negative control (NC) left unrestored or temporary flling was applied. Group 3, Hybrid composite (HC) as a core material (Te-Econom Plus Ivoclar Vivadent Asia) group 4, Ribbond (Ribbond; Seattle, WA, USA)+conventional composite resin (RCR) group 5, everX posterior (everX Posterior GC EUROPE)+conventional composite resin (EXP) after thermocycling fracture resistance for the samples were tested using universal testing machine. The results were analysed using ANOVA and Tukey's HSD post hoc tests. Mean fracture resistance (in Newton, N) was group 1: 1568.4±221.71N, group 2: 891.0±50.107N, group 3: 1418.3±168.71N, group 4:1716.7±199.51N and group 5: 1994.8±254.195N. Among the materials tested, endodontically treated teeth restored with everX posterior fiber reinforced composite showed superior fracture resistance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Underground disposal for radioactive wastes: study of the thermal impact in a fractured medium

    International Nuclear Information System (INIS)

    Coudrain, A.; Hosanski, J.M.; Ledoux, E.; Vouille, G.

    1982-01-01

    Radioactive waste storage in deep geologic formations, like granitic rocks, is one of the solutions studied for long-life radioactive wastes disposal. The study, presented in this document, has been developed in five stages: (1) theorical analysis of heat transfer in a fractured medium; bench-scale experiments (2) to study the convection in an artificial fracture with a punctual heat source, and, (3) in a real fracture with a spread heat source; (4) influence of the thermal stresses on the permeability of a fracture; (5) and finally, the mathematical model, validated in laboratory, used to simulate water and heat transfer, allows to discuss the radionuclides migration from an hydrodynamical point of view

  11. Microstructures and rheology of the shear zones in granite Marmarajá, Lavalleja Province, Uruguay

    International Nuclear Information System (INIS)

    Scaglia, F.; Paris, A.

    2010-01-01

    The study area (coordinates x : 567 , x : 577.7 , y: 6216 : and ' : 6225 km ) is located near the town of Marschallin (Department of Lavalleja). It is represented mostly by granite, deformed granites and quartzite mylonites , whereas amphibolites and volcanic breccias are of small size . The Marmarajá (biotite - monzogranite) batholith, considered to post- orogenic tardi occupies about 80% of the study area , and is fragmented into three sectors per kilometer mylonitic belts by the SW- NE direction. The deformed granite is located west and east of the study area forming an extensive parallel on both sides of the mylonite belt. The mylonites are in topographic low along which the major waterways of the narrow belts direction N50E and dips 40 ° -50 ° to the area SE with thicknesses of up to 1km and lengths of tens of kilometers continuously , north and south of the area study. These belts have similar directions mylonitic the Sierra megatranscurrencia whale and may be contemporaneous to it. In turn, the kinematic indicators suggest sinistral sense justifying further similarity to the previous one. Major fractures have three orientations: N15E ; Vertical to subvertical N64E and N45W ( approx. 80 °). Based on studies of the lithologies petrographic areas of low deformation and is relieved areas of moderate to high strain, each having typical microstructures of ductile deformation (greater than 400 ° C )

  12. Groundwater evolution of the granite area, Korea

    International Nuclear Information System (INIS)

    Kim, C.S.; Bae, D.S.; Koh, Y.K.; Kim, K.S.; Kim, G.Y.

    2001-01-01

    The geochemistry and environmental isotopes of groundwater in the Cretaceous granite of the Yeongcheon area has been investigated. The hydrochemistry of groundwater belongs to the Ca-HCO 3 type. The oxygen-18 and deuterium data are clustered along the meteoric water line, indicating that the groundwater is of meteoric water origin. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing rapidly along fractured zones. Based on the mass balance and reaction simulation approaches using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, the low-temperature hydrogeochemical evolution of groundwater in the area has been modeled. The results of geochemical simulation show that the concentrations of Ca, Na and HCO 3 and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg and K first increase with the dissolution of reactant minerals, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, i. e. the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: hematite > gibbsite > kaolinite > montmorillonite > illitic material > microcline. The results of reaction simulation agree well with the observed water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters. (author)

  13. Core drilling of deep borehole OL-KR43 at Olkiluoto in Eurajoki 2006

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2006-12-15

    , tonalitic-granodioritic- granitic gneiss and pegmatite granite. The average fracture frequency is 1.6 pes/m in borehole OL-KR43 and 1.5 pes/m in borehole OL-KR43B. The average RQD values were 96.2 % and 97.7 %. In borehole OL-KR43 24 fractured zones and in borehole OL-KR43B one fractured zone were penetrated during drilling work. (orig.)

  14. Isotopic geochronology of granitic rocks from the Central Iberian Zone: comparison of methodologies

    Directory of Open Access Journals (Sweden)

    Antunes, I. M.H.R.

    2010-06-01

    Full Text Available Five granitic rocks, concentrically disposed from core to rim, were distinguished in the Castelo Branco pluton. U-Pb-Th electron microprobe monazite ages from granitic rocks are similar and ranging between 297-303 Ma. The granitic rocks from Castelo Branco pluton are 310 ± 1 Ma old, obtained by U-Pb (ID-TIMS in separated zircon and monazite crystals, indicating a similar emplacement age for all granitic rocks of the pluton. Initial 87Sr/86Sr isotopic ratios and epsilon-Nd310 and delta-18O values suggest three distinct pulses of granitic magma and that they are derived from partial melting of heterogeneous metasedimentary materials. The other granitic rocks are related by magmatic differentiation and show small variations in (87Sr/86Sr310, epsilon-Nd310 and delta-18O. The granitic pluton of Castelo Branco shows a rare reverse zoning.

    En el plutón de Castelo Branco, se distinguen cinco granitoides, dispuestos concéntricamente de núcleo a borde del plutón. Las edades U-Pb-Th obtenidas en cristales de monacita por microsonda electrónica en estos granitoides son similares entre sí y varían entre 297 y 303 Ma. Los resultados de datación por U-Pb (ID-TIMS en cristales de circón y de monacita de los tres granitos seleccionados, indican una edad de implantación de 310 ± 1 Ma y que son rocas emplazadas simultáneamente. Las relaciones isotópicas iniciales de 87Sr/86Sr y los valores de epsilon-Nd310 y delta-18O de los tres pulsos magmáticos son característicos de granitos resultantes de anatexia cortical a partir de rocas metasedimentarias heterogéneas. En la secuencia de diferenciación magmática, las rocas graníticas presentan pequeñas variaciones en (87Sr/86Sr310, epsilon-Nd310 y delta-18O. El plutón de Castelo Branco presenta un

  15. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-07-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m 3 and 16.8 m 3 , respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  16. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m{sup 3} and 16.8 m{sup 3}, respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  17. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  18. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  19. Rapid extensional unroofing of a granite-migmatite dome with relics of high-pressure rocks, the Podolsko complex, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Žák, J.; Sláma, Jiří; Burjak, M.

    2017-01-01

    Roč. 154, č. 2 (2017), s. 354-380 ISSN 0016-7568 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * granite-migmatite dome * exhumation * metamorphic core complex * U-Pb zircon geochronology Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.965, year: 2016

  20. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts

    Science.gov (United States)

    Anma, Ryo

    2016-04-01

    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  1. Petrography, mineral chemistry and lithochemistry of the albitite and granite-gneissics rocks of anomaly 35 from Lagoa Real uranium province

    International Nuclear Information System (INIS)

    Santos, Camila Marques dos

    2016-01-01

    In the northwestern portion of the Lagoa Real Uranium Province (LRUP), located in south-central Bahia, it is located one of the most promising uranium anomalies Brazil (an35, Gameleira I deposit), the reserves and proximity to the Cachoeira mine. Other anomalies of this sector (eg. 31 AN and AN34), are also considered strategic for the content of radioactive minerals and REE. The objective was to develop a study of a representative drill core of an35, where the main rocks PULR are present. The research focused on the mineralogical and chemical changes observed in the passages of a lithology to another, from the rock to the meta granitic albitites, through gneiss and transitional rocks, and making comparisons with similar lithologies sampled on testimonies of AN31 and 34. The granites are classified as hypersolvus coarse alkali-feldspar granite and are variably deformed. The main mineral assemblage in granites are perthitic orthoclase+hedenbergite+ quartz +hastingsite + biotite, and zircon, apatite, ilmenite and titanite are accessories. The reddening of these rocks are characterized by feldspars sericitization and hematitization and the presence of 'vazios'. The gneisses are mainly gray and reach milonitic to protomilonitics terms. These rocks have characteristics of subsolidus changes as swapped rims and metasomatic perthites. The tardi-magmatic association (amphibole+biotite) indicates final crystallization or late influx by superficial fluids resulting in an increase in water and volatiles, such as F and Cl in the system, which must also have carried rare-earth elementsGranites have geochemical affinity with A-type ferroan granite, A2, reduced and are post-collisional. Their patterns of incompatible elements and rare earths are comparable to Sao Timoteo Granite, but their petrographic features indicate that it is a less common granite facies. Albitites were classified as garnet albitites, magnetite albitites and biotite albitites. Contacts between

  2. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  3. Groundwater Flow and Radionuclide Transport in Fault Zones in Granitic Rock

    International Nuclear Information System (INIS)

    Geier, Joel Edward

    2004-12-01

    Fault zones are potential paths for release of radioactive nuclides from radioactive-waste repositories in granitic rock. This research considers detailed maps of en echelon fault zones at two sites in southern Sweden, as a basis for analyses of how their internal geometry can influence groundwater flow and transport of radioactive nuclides. Fracture intensity within these zones is anisotropic and correlated over scales of several meters along strike, corresponding to the length and spacing of the en echelon steps. Flow modeling indicates these properties lead to correlation of zone transmissivity over similar scales. Intensity of fractures in the damage zone adjoining en echelon segments decreases exponentially with distance. These fractures are linked to en echelon segments as a hierarchical pattern of branches. Echelon steps also show a hierarchical internal structure. These traits suggest a fractal increase in the amount of pore volume that solute can access by diffusive mass transfer, with increasing distance from en echelon segments. Consequences may include tailing of solute breakthrough curves, similar to that observed in underground tracer experiments at one of the mapping sites. The implications of echelon-zone architecture are evaluated by numerical simulation of flow and solute transport in 2-D network models, including deterministic models based directly on mapping data, and a statistical model. The simulations account for advection, diffusion-controlled mixing across streamlines within fractures and at intersections, and diffusion into both stagnant branch fractures and macroscopically unfractured matrix. The simulations show that secondary fractures contribute to retardation of solute, although their net effect is sensitive to assumptions regarding heterogeneity of transmissivity and transport aperture. Detailed results provide insight into the function of secondary fractures as an immobile domain affecting mass transfer on time scales relevant to

  4. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    Science.gov (United States)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  5. Characterization and modelling of fluid flows in fissured and fractured media. relation with hydrothermal alterations and paleo-stress quantification; Caracterisation et modelisation des ecoulements fluides en milieu fissure. relation avec les alterations hydrothermales et quantification des paleocontraintes

    Energy Technology Data Exchange (ETDEWEB)

    Sausse, J.

    1998-10-15

    In all materials (rocks, concretes, ceramics,...), the presence of fractures at different scales implies high permeability and often oriented fluid flows. These fluid circulations in fractures induce more or less intense fluid-rock interactions with mineral crystallisation and/or dissolution. These phenomena directly depend on the nature of the fluids and the rocks, the physical and chemical properties of the media and the rate of fluid renewal (permeabilities). Usually, the development of such alterations leads to a massive sealing of the fractures (vein alterations) and of the fissures (fluid inclusion planes and microcracks, pervasive alteration). Therefore, their study brings us precious indications for the understanding of the mechanisms of fluid migrations in fossil systems. A geometrical study of the fracture systems at micro or macroscopic scales, based on the spatial distribution of sealing minerals, is applied to two different granites: the Soultz-sous-Foret granite (Bas-Rhin, France) and the Brezouard granite (Vosges, France). At the macroscopic scale, a new graphical method is proposed in order to study drilling data (Soultz granite). It allows to identify the presence of three independent mineral associations (quartz - illite, calcite-chlorite and hematite) in independent fracture systems characterised by a specific 3D geometry and hydraulic properties. These three types of vein alteration correspond to distinct and non contemporaneous fluid percolations. At the microscopic scale, the reconstitution of crack opening - fluid percolation - crack sealing stages is delicate. However, the study of their geometrical characteristics (orientations, radius, volume densities) and thereby the quantification of their porosities, exchange surfaces and permeabilities, allow to identify their respective roles in the fluid propagation. These microstructures, which are very numerous in granites, imply high but variable matrix permeabilities. This has been confirmed by

  6. Block scale interpretation on the spatial distribution of the fracture system in the study sites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Koh, Yong Kweon; Kim, Geon Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. This study aims to characterize the spatial distribution characteristics of regional lineaments and background fracture system in eastern and western-type granite rock mass. The spatial distribution characteristics of the fracture system around 500m depth has been estimated based on the homogeneous discontinuity domain except for the highly fractured upper zone. 6 refs., 16 figs., 7 tabs. (Author)

  7. Estimating the Reactivation Potential of Pre-Existing Fractures in Subsurface Granitoids from Outcrop Analogues and in-Situ Stress Modeling: Implications for EGS Reservoir Stimulation with an Example from Thuringia (Central Germany)

    Science.gov (United States)

    Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.

    2014-12-01

    The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.

  8. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    Science.gov (United States)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  9. Electrical conductivity of sandstone, limestone, and granite

    Energy Technology Data Exchange (ETDEWEB)

    Duba, A.; Piwinskii, A.J.; Santor, M.; Weed, H.C.

    1978-01-01

    The electrical conductivity of cylindrical cores of Westerly granite, Indiana limestone and Nugget, St Peter and Kayenta sandstones was measured at about 25/sup 0/C in vacuo, in air, and after saturation in distilled water, tap water, and 0.1 M NaCl solution. The three-electrode technique with a guard ring and the two-electrode technique without a guard ring were used. Core aspect ratio over the range of 2.00 to 0.25, as well as frequency over the range of 50 Hz to 10 kHz, influences the conductivity of all rocks, especially those measured in vacuo. Measurements from water-saturated samples using a guard ring are not appreciably different from those obtained without a guard ring. The conductivity of rocks saturated in 0.1 M NaCl solution changes least with a change in aspect ratio; for these rocks a linear relationship, known as Archie's Law, exists between log porosity and log conductivity. No simple correlation was found between those factors in rocks saturated with tap or distilled water. Thus, it appears Archie's Law is of questionable value for correlating laboratory data from rocks saturated with low-conductivity fluids.

  10. The comparative hydrochemistry of two granitic island aquifers. The Isles of Scilly, UK and the Hvaler Islands, Norway

    International Nuclear Information System (INIS)

    Banks, D.; Reimann, C.; Skarphagen, H.

    1998-01-01

    A comparative study is presented of granitic groundwaters from the Hvaler Islands, south-eastern Norway (11 samples) and the Scilly Islands, south-western England (10 samples). The islands display similar bulk lithologies (peraluminous S-type, U/Th-enriched granites) and land use, but differing glaciation and hence weathering histories. The groundwater of both groups bears a strong marine signature, although the Hvaler Islands display less marine influence and a greater degree of water-rock interaction. The most interesting hydrochemical dissimilarities concern the health related trace elements Rn, U and F. These display median (and maximum) values of 2510 Bq/l (8520 Bq/l), 15 μg/l (170 μg/l) and 3.3 mg/l (4.4 mg/l), respectively for Hvaler, compared with 140 Bq/l (200 Bq/l), 1.5 μg/l (4 μg/l) and 0.1 mg/l (0.27 mg/l) for Scilly. Commonly employed drinking water limits for these parameters are 500 Bq/l (Norwegian action level), 20 μg/l (Canadian limit) and 1.5 mg/l. The differences in groundwater contents of these elements between Hvaler and Scilly may be ascribed to: (1) differing trace element compositions of the granites and fracture mineralisations; (2) radically differing recent weathering histories; and (3) hydrodynamic factors

  11. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    Science.gov (United States)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within

  12. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    Science.gov (United States)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  13. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  14. Mueilha rare metals granite, Eastern Desert of Egypt: An example of a magmatic-hydrothermal system in the Arabian-Nubian Shield

    Science.gov (United States)

    Abu El-Rus, Mohamed A.; Mohamed, Mohamed A.; Lindh, Anders

    2017-12-01

    The Mueilha granite pluton is one of the rare-metals bearing peraluminous granitic plutons in the Arabian-Nubian Shield. It represents the apical part of a highly evolved magma chamber emplaced at a shallow level subsequent to the post Pan-African orogeny. The pluton can be seen as a highly leucocratic medium-grained albite/oligoclase framework infilled with quartz, K-feldspar and muscovite that are variably overgrown by K-feldspar, muscovite, quartz and topaz megacrysts. The increasing number and size of the K-feldspar megacrysts at the expense of the whitened albite/oligoclase framework imparts variably red color to the Mueilha granite. Contacts between the milky white and red granites are usually gradational, but may be locally sharp or may form narrow transition zones resulting from abrupt variations in texture and lithology. Textural relations indicate an initial stage of hydrothermal albitization of magmatic plagioclase and crystallization of topaz megacrysts resulting from infiltration of Na-rich fluorine bearing fluids. A subsequent stage of metasomatic enrichment is characterized by extensive growth of large K-feldspar, quartz and muscovite megacrysts at the expense of the albite/oligoclase crystals as a result of infiltration of K-Si rich hydrous fluids. Post-magmatic infiltration of hydrous fluids along the fault planes is shown by the intense replacement of alkali feldspar megacrysts by quartz, development of myrmekitic intergrowth pockets along the K-feldspar megacrysts and sealing of the micro-fractures by cryptocrystalline mixtures of clay minerals, iron oxides, sericite and chlorite. Compositionally, the red granitic rocks have higher SiO2, Fe2O3total, K2O/Na2O, Σ REE, Y, Th, U, Zr and Zn and lower Al2O3, Ga, Ta, Nb and Mo compared to the milky white granites. LILE and Sn do not show clear variation trends throughout the Mueilha granite pluton, suggesting their immobility during hydrothermal alteration. Microthermometric measurements indicate that

  15. Granitic rocks from the southern Gyeongsang basin, southeastern Korea, (1)

    International Nuclear Information System (INIS)

    Lee, Yoon-Jong

    1980-01-01

    In southern Gyeongsang basin, southeastern Korea, there are many granitic rock masses. They were divided into 7 groups according to their geological evidences. K-Ar age was determined on 36 samples obtained from the respective groups. Group A: pre-Gyeongsang granitic rock (Pre-Cretaceous), A 1 220 m.y., A 2 166 m.y.; group B: outer zone granitic rock (Cretaceous), 115-72 m.y.; group C: ditto (ditto), 97-70 m.y.; group D: ditto (ditto), 89-68 m.y.; group E: ditto (ditto), 82-68 m.y.; group F: inner zone granitic rock (Cretaceous), 75-74 m.y.; group G: Tertiary granitic rock, 63-41 m.y. The large part of the Cretaceous granitic masses show the double elongated ring form. Most of the Tertiary granitic rocks were probably emplaced in close relation with the Eonyang fault line and Ulsan fault line/or their extension line of the area. (J.P.N.)

  16. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  17. Core drilling of deep drillhole OL-KR56 at Olkiluoto in Eurajoki 2011 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 1201.65 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in October 2011 - January 2012. The identification number of the drillhole is OL-KR56. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 1628 m{sup 3}. The measured volume of the returning water in the drillhole was 1142 m{sup 3}. The deviation of the drillhole was measured with the deviation measuring instruments Reflex EMS and Reflex Gyro. The main rock types are veined and diatexitic gneisses, pegmatitic granite and mica gneiss. The average fracture frequency is 2.4 pcs/m and the average RQD value is 96.2 %. Fifty fractured zones were penetrated by the drillhole. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 120.0 MPa, the average Young's Modulus was 38.3 GPa and the average Poisson's ratio was 0.22. (orig.)

  18. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Directory of Open Access Journals (Sweden)

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  19. FFTF irradiation of fracture mechanics specimens for out-of-core structures

    International Nuclear Information System (INIS)

    King, D.C.

    1978-09-01

    The National Program Plan has established data requirements for out-of-core structures for FBRs. Significant FFTF irradiation space with moderate gamma heating levels is required to irradiate relatively large fracture mechanics specimens to total neutron fluences ranging between 5 x 10 21 and 5 x 10 22 n/cm 2 and temperatures which range between 400 0 C (750 0 F) and 650 0 C (1200 0 F). Priority 1 data on stainless steel welds requires a test volume of 7443 cm 3 (454 in 3 ). Priority 2 data on 304 and 316 SS and Inconel 718 materials and Inconel 718 welds requires 2760 cm 3 (168 in 3 ). Priority 3 data on stainless steels, other nickel-base alloys, and ferritics requires 33,118 cm 3 (2021 in 3 ). Priority 4 data at elevated temperatures on stainless steels, other nickel-base alloys and ferritics requires 69,182 cm 3

  20. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Fracture Toughness of an Epoxy Resin at Cryogenic Temperatures

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Schneider, J. A.

    2008-01-01

    This study investigates the effects of core-shell rubber (CSR) nanoparticles on the fracture toughness of an epoxy resin at liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace (Registered TradeMark) MX130 toughening agent were added to a commercially available EPON 862/W epoxy resin. Resulting fracture toughness was evaluated by the use of Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electric Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Up to nominal 4.6% addition of the CSR nanoparticles, resulted in a nearly 5 times increase in the measured breaking energy. However, further increases in the amount of CSR nanoparticles had no appreciable affect on the breaking energy.

  1. PREVALENCE OF METABOLIC SYNDROME IN GRANITE WORKERS

    Directory of Open Access Journals (Sweden)

    Srilakshmi

    2015-10-01

    Full Text Available BACKGROUND: The prevalence of the metabolic syndrome (MS has significantly increased over the last few decades and has become a main health challenge worldwide. Prevalence of MS is quickly rising in developing countries due to changing lifestyle. It was considered worthwhile to study MS and its components in granite workers since granite factories are situated in and around Khammam area. Moreover, no studies of MS in granite workers have been reported in literature. OBJECTIVES: Aim of our study is to assess the prevalence of metabolic syndrome and its components in granite workers. MATERIALS AND METHODS: 210 male workers in the age group of 20 - 50 working in granite industries located in and around the Khammam town of Telangana State are selected for the present study. Blood pressures (BP, waist circumference (WC were measured. Fasting blood samples were collected for the estimation of glucose and lipids. RESULTS: 69 subjects out of 210 were identified as having MS based on updated National cholesterol education programme - Adult Treatment Panel III (NCEP - ATP III guidelines. CONCLUSION: MS should be identified and remedial measures may be suggested, so that the risk of hypertension, cardiovascular risk, diabetes and the resultant morbidity is minimized and can be delayed

  2. Structural and geochemical techniques for the hydrogeological characterisation and stochastic modelling of fractured media

    International Nuclear Information System (INIS)

    Vela, A.; Elorza, F.J.; Florez, F.; Paredes, C.; Mazadiego, L.; Llamas, J.F.; Perez, E.; Vives, L.; Carrera, J.; Munoz, A.; De Vicente, G.; Casquet, C.

    1999-01-01

    Safety analysis of radioactive waste storage systems require fractured rock studies. The performance assessment studies of this type of problems include the development of radionuclide flow and transport models to predict the evolution of possible contaminants released from the repository to the biosphere. The methodology developed in the HIDROBAP project and some results obtained with its application in El Berrocal granite batholith are presented. It integrates modern tools belonging to different disciplines. A Discrete Fracture Network model (DFT) was selected to simulate the fractured medium and a 3D finite element flow and transport model that includes the inverse problem techniques has been coupled to the DFT model to simulate the water movement trough the fracture network system. Preliminary results show that this integrated methodology can be very useful for the hydrogeological characterisation of rock fractured media. (author)

  3. Natural colloids in groundwater from granite and their potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. As part of geochemical studies carried out in support of the EIS, the role of natural groundwater colloids (0.001 to 0.45 μm) and suspended particles (>0.45 μm) in radionuclide transport in granite rock has been investigated. This report summarizes the results of investigations carried out in groundwaters from the Whiteshell Research Area (WRA) of southern Manitoba and the Atikokan Research Area (ARA) of northwestern Ontario to determine the concentrations, size distributions, and compositions of natural particles in groundwaters from the Canadian Shield. Particles from groundwater were isolated by ultrafiltration under a nitrogen atmosphere and particle concentrations and size distributions were determined by filtration, and by laser-based particle counting and size analysis. Groundwaters from Canadian Shield granites contain particles in a broad range of sizes, with no one particular size being dominant. Particle compositions include aluminosilicates, Fe oxides, carbonate and organics. Suspended particles are most likely generated by the mobilization of fracture-lining minerals by groundwater flow, while colloids are formed by a combination of precipitation and mobilization of colloidal material from fracture surfaces. The average concentration of 0.01 to 0.45 μm colloids in WRA groundwaters was 1.05 ± 0.14 mg/L. Average colloid concentrations were slightly higher in the more highly fractured ARA, although the highest observed colloid concentration in the ARA was below the 7 mg/L maximum observed in a sample from the WRA. The existence of colloids in the 0.001 to 0.01 μm size range was demonstrated using the results of chemical analysis of particle concentrates and data obtained with the laser-based Ultrafine Particle Size Analyzer (UPA). The WRA groundwaters contain on average about 2.7 mg/L of 0

  4. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For

  5. Chemical and Physical Characteristics of Pulverized Granitic Rock Adjacent to the San Andreas, Garlock and San Jacinto Faults: Implications for Earthquake Physics

    Science.gov (United States)

    Rockwell, T. K.; Sisk, M.; Stillings, M.; Girty, G.; Dor, O.; Wechsler, N.; Ben-Zion, Y.

    2008-12-01

    We present new detailed analyses of pulverized granitic rocks from sections adjacent to the San Andreas, Garlock and San Jacinto faults in southern California. Along the San Andreas and Garlock faults, the Tejon Lookout Granite is pulverized in all exposures within about 100 m of both faults. Along the Clark strand of the San Jacinto fault in Horse Canyon, the pulverization of granitic rocks is highly asymmetric, with a much broader zone of pulverization along the southwest side of the Clark fault. In areas where the granite is injected as dyke rock into schist, only the granitic rock shows pulverization, demonstrating the control of rock type on the pulverization process. Chemical analyses indicate little or no weathering in the bulk of the rock, although XRD analysis shows the presence of smectite, illite, and minor kaolinite in the clay-sized fraction. Weathering products may dominate in the less than 1 micron fraction. The average grain size in all samples of pulverized granitic rock range between about 20 and 200 microns (silt to fine sand), with the size distribution in part a function of proximity to the primary slip zone. The San Andreas fault samples are generally finer than those collected from along the Garlock or San Jacinto faults. The particle size distribution for all samples is non-fractal, with a distinct slope break in the 60-100 micron range, which suggests that pulverization is not a consequence of direct shear. This average particle size is quite coarser than previous reports, which we attribute to possible measurement errors in the prior work. Our data and observations suggest that dynamic fracturing in the wall rock of these three major faults only accounts for 1% or less of the earthquake energy budget.

  6. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    Science.gov (United States)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  7. The instrumental neutron-activation analysis of granites from the Bushveld Complex

    International Nuclear Information System (INIS)

    Watterson, J.I.W.

    1978-01-01

    Three methods of instrumental neutron-activation analysis, 14MeV, reactor thermal, and reactor epithermal, are compared for the analysis of granites form the Bushveld Complex. A total of 34 elements can be determined in the granites by these methods. Samples from the Zaaiplaats area were analysed by thermal neutron activation, and 22 elements were determined in all of them. These elements were used to distinguish between the mineralized Bobbejaankop and Lease granites and the Main granite by the use of multivariate statistics. The Bobbejaankop granite appears as a more-differentaited rock carrying greater amounts of the incompatible elements than does the Main granite [af

  8. Status of LLNL granite projects

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1980-01-01

    The status of LLNL Projects dealing with nuclear waste disposal in granitic rocks is reviewed. This review covers work done subsequent to the June 1979 Workshop on Thermomechanical Modeling for a Hardrock Waste Repository and is prepared for the July 1980 Workshop on Thermomechanical-Hydrochemical Modeling for a Hardrock Waste Repository. Topics reviewed include laboratory determination of thermal, mechanical, and transport properties of rocks at conditions simulating a deep geologic repository, and field testing at the Climax granitic stock at the USDOE Nevada Test Site

  9. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    Science.gov (United States)

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial

  10. Fracture mapping at the Spent Fuel Test-Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1981-05-01

    Mapping of geologic discontinuities has been done in several phases at the Spent Fuel Test-Climax (SFT-C) in the granitic Climax stock at the Nevada Test Site. Mapping was carried out in the tail drift, access drift, canister drift, heater drifts, instrumentation alcove, and receiving room. The fractures mapped as intersecting a horizontal datum in the canister and heater drifts are shown on one figure. Fracture sketch maps have been compiled as additional figures. Geologic mapping efforts were scheduled around and significantly impacted by the excavation and construction schedules. Several people were involved in the mapping, and over 2500 geologic discontinuities were mapped, including joints, shears, and faults. Some variance between individuals' mapping efforts was noticed, and the effects of various magnetic influences upon a compass were examined. The examination of compass errors improved the credibility of the data. The compass analysis work is explained in Appendix A. Analysis of the fracture data will be presented in a future report

  11. Granite-related hypothermal uranium mineralization in South China

    International Nuclear Information System (INIS)

    Liu, X.; Wu, J.; Pan, J.; Zhu, M.

    2014-01-01

    As one of the important geological types, granite-related uranium deposits account for about 29% of the total discovered natural uranium resources in China. Most of the granite-related uranium deposits located in Taoshan - Zhuguang uranium metallogenic belt, South China. In addition to the typical pitchblende vein-type uranium mineralization of epithermal metallogenic system, a new type of granite-related uranium mineralization with characteristics of hypothermal matallogenic system was discovered in South China by current studies. However, hypothermal is contact thermal to epithermal mineralization, and not the conventional intrusive high temperature mineralization. Hypothermal uranium mineralization is presented by disseminated uraninite or pitchblende stockwork in fissures in granites normally with extensive alkaline alteration. The high temperature mineral assemblage of uraninite associate with scheelite and tourmaline was identified in hypothermal uranium mineralization. Fluid inclusion studies on this type mineralization indicated the middle to high temperature (>250℃) mineralization with the mixing evidence of ore forming solution derived from deep level, and the boiling and mixing of ore forming solution are regarded as the dominant mineralization mechanism for the precipitating of uranium. In contrast to the mineralization ages of 67 Ma to 87 Ma for typical pitchblende vein mineralization of epithermal metallogenic system, the mineralization age is older than 100 Ma for hypothermal uranium mineralization in granite. In the Shituling deposit, Xiazhuang uranium ore field, uraninite and pitchblende micro veins with extensive potassic alteration, chloritization and sericitization are hosted in fissures of Indo-Chinese epoch granites with the uranium mineralization age of 130 Ma to 138 Ma with a mineralization temperature of 290℃ to 330℃ indicated. Other examples sharing the similar characters of hypothermal uranium mineralization have been recognized in

  12. Mechanical properties of granitic rocks from Gideaa, Sweden

    International Nuclear Information System (INIS)

    Ljunggren, C.; Stephansson, O.; Alm, O.; Hakami, H.; Mattila, U.

    1985-10-01

    The elastic and mechanical properties were determined for two rock types from the Gideaa study area. Gideaa is located approximately 30 km north-east of Oernskoeldsvik, Northern Sweden. The rock types that were tested were migmatitic gneiss and migmatitic granite. The following tests were conducted: - sound velocity measurements; - uniaxial compression tests with acoustic emission recording; - brazilian disc tests; - triaxial tests; - three point bending tests. All together, 12 rock samples were tested with each test method. Six samples of these were migmatic gneiss and six samples were migmatitic granite. The result shows that the migmatitic gneiss has varying strength properties with low compressive strength in comparison with its high tensile strength. The migmatitic granite, on the other hand, is found to have parameter values similar to other granitic rocks. With 15 refs. (Author)

  13. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  14. Reactive transport of Sr, Cs and Tc through a column packed with fracture-filling material

    International Nuclear Information System (INIS)

    Cui, D.; Eriksen, T.

    1998-01-01

    The migration behaviour of the fission products 90 Sr, 137 Cs and 99 Tc in a granite fracture-groundwater system was studied in column experiments using crushed Stripa granite fracture-filling material (125-250 μm) as a sorbent. Based on breakthrough curves of Sr 2+ , Cs + , TcO 4 - and anthraquinonsulphonate, the distribution ratio K d (cm 3 /g) values for Sr 2+ and Cs + were estimated to be 1.5 and 2 respectively; non-sorbing behaviour of TcO 4 - under oxic conditions was observed. The diffusion of Sr 2+ in the material is shown to be a kinetic-controlling step in the desorption process that followed the initial leaching. Under reducing conditions, it was found that TcO 4 - was reduced to TcO 2 .nH 2 O(s) by the Fe(II)-containing fracture-filling material and Tc(IV) aq was rapidly sorbed by the material. This observation proves that the migration of technetium under reducing conditions in deep groundwater systems will not only be controlled by the solubility of TcO 2 . nH 2 O(s) and the speed of groundwater flow but also by the rapid sorption of Tc(IV) aq on all available mineral surfaces. (orig.)

  15. Core drilling of deep drillhole OL-KR48 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-01-01

    Poisson's ratio (0.36) were measured from the core samples. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic-granodioritic-granitic gneiss. Average fracture frequency is 1.1 pcs/m. and average RQD value is 98.0 %. In drillhole OL-KR48 seven fractured zones were penetrated during drilling work. (orig.)

  16. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  17. Rockfall triggering by cyclic thermal stressing of exfoliation fractures

    Science.gov (United States)

    Collins, Brian D.; Stock, Greg M.

    2016-01-01

    Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

  18. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (Pdesigns, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows

  19. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    International Nuclear Information System (INIS)

    Schulz, K.C.

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K Q due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail

  20. Geochemistry and petrogenesis of Proterozoic granitic rocks from ...

    Indian Academy of Sciences (India)

    Geochemistry and petrogenesis of Proterozoic granitic ... This study presents the geochemical characteristics of granitic rocks located on the northern ... Frost and Frost 2013). ...... King P L, White A J R, Chappell B W and Allen C M 1997.

  1. Strain-dependent partial slip on rock fractures under seismic-frequency torsion

    Science.gov (United States)

    Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.

    2017-05-01

    Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.

  2. The source rock characters of U-rich granite

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-03-15

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  3. The source rock characters of U-rich granite

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  4. Radon exhalation from granitic rocks

    International Nuclear Information System (INIS)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina; Denyak, Valeriy

    2017-01-01

    Naturally occurring radionuclides such as radon ( 222 Rn), its decay products and other elements from the radioactive series of uranium ( 238 U and 235 U) and thorium ( 232 Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ( 222 Rn), thoron ( 220 Rn), radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the 222 Rn and 220 Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The 222 Rn and 220 Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m 3 to 2087±19 Bq/m 3 , which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  5. A 3D Magnetotelluric Perspective on the Galway Granite, Western Ireland

    Science.gov (United States)

    Farrell, Thomas; Muller, Mark; Vozar, Jan; Feely, Martin; Hogg, Colin

    2017-04-01

    Magnetotelluric (MT) and audi-magnetotelluric (AMT) data were acquired at 75 locations across the exposed calc-alkaline Caledonian Galway granite batholith and surrounding country rocks into which the granite intruded. The Galway granite is located in western Ireland on the north shore of Galway bay, and has an ESE-WNW long axis. The granite is cut by trans-batholith faults, the Shannawona Fault Zone (SFZ) in the western part of the batholith, which has a NE-SW trend, and the Bearna Fault Zone (BFZ) in the eastern sector that has a NW-SE trend. Geobarometry data indicate that the central granite block between these fault zones has been uplifted, with the interpretation being that the granite in this central block is thinned. To the west of the SFZ, much of the Galway granite is below sea level, with the majority of the southern granite contact also beneath the sea in Galway bay. To the east of the batholith, the Carboniferous successions, consisting of mainly limestone with shale, overlie the basement rocks. The country rock to the north includes the metagabbro-gneiss suite, which itself intruded the deformed Dalradian successions that were deposited on the Laurentian margin of the Iapetus Ocean. The deformation of the Dalradian rocks, the intrusion of the metagabbro-gneiss suite and the intrusion of the Galway granite were major events in the protracted closure of the Iapetus Ocean. It is clear from geological mapping, from geobarometry and from the present submergence by the sea of a large part of the Galway granite, that inversion of MT data in this structurally complex geology is likely to require a 3D approach. We present a summary of 3D inversion of the Galway MT and AMT data. The study shows that the structure of the Galway granite is quite different from the pre-existing perspective. The central block, thought by its uplifting to be thinned, is shown to be the thickest part of the batholith. A geological model of granite intrusion is offered to explain this

  6. The Serra do Carambei Granite - PR and the uraniferous anomalism

    International Nuclear Information System (INIS)

    Pinto-Coelho, C.V.

    1986-01-01

    The Serra do Carambei Granite forms a pluton relatively homogeneous, covering about 33 km 2 , cropping out as an elongate retangular body trending NE-SW, being emplaced in the Cunhaporanga Granitoid Complex. Its characteristics indicates a kind of hololeucocratic granite, equigranular, medium to coarse-grained, consisting predominantly of microperthitic alkali-feldspar, quartz and a small amount of biotite (less than 1%), thus being classified as an alaskite. Chemical data allows a classification in the group of granite with high contents of silica (74-76% Wt. SiO 2 ), dominantly alkaline chemism and hypersolvus character, derived from a parental magma under saturated in water with distinguished features of granitoids from the magnetite series and types I and A granites. The pluton shows important chemical variations due to weathering processes. However detailed chemical studies reveal the presence of anomalous concentrations of trace elements such as U, Sn, Nb, Y, Zr, the Serra do Carambei Granite lacks economically important mineralizations because of the absence of well-developed tardi/pos-magmatic processes that could concentrate them. The SW side of the granite is cut by leucocratic rhyolite dykes that show some radiometric anomalies. These rocks, which are highly diferentiated, were emplaced contemporaneously to the Serra do Carambei Granite. Although petrographic and chronological similarities are found between the uraniferous alaskite of Roessing (Namibia) and the Serra do Carambei Granite anyhow it was not possible to establish any lateral continuity with the uranifeous Pan-African Province. (Author) [pt

  7. 2005 dossier: granite. Tome: architecture and management of the geologic disposal; Dossier 2005: granite. Tome architecture et gestion du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  8. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m{sup 3} and 25 m{sup 3} and the measured volumes of the returning water were 175 m{sup 3} and 7 m{sup 3} in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common

  9. Core drilling of deep borehole OL-KR36 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R.; Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 205.17 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR36. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling measurements. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 117 m{sup 3} and the measured volume of the returning water was about 51m{sup 3} in borehole OL-KR36. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR36 deviates 10.34 m left and 7.11 m up at the borehole depth of 204 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 126

  10. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    International Nuclear Information System (INIS)

    Niinimaeki, R.

    2005-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m 3 and 25 m 3 and the measured volumes of the returning water were 175 m 3 and 7 m 3 in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common fracture type. The average fracture

  11. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  12. Acoustic Emission and Damage Characteristics of Granite Subjected to High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2018-01-01

    Full Text Available Acoustic emission (AE signals can be detected from rocks under the effect of temperature and loading, which can be used to reflect rock damage evolution process and predict rock fracture. In this paper, uniaxial compression tests of granite at high temperatures from 25°C to 1000°C were carried out, and AE signals were monitored simultaneously. The results indicated that AE ring count rate shows the law of “interval burst” and “relatively calm,” which can be explained from the energy point of view. From 25°C to 1000°C, the rock failure mode changes from single splitting failure to multisplitting failure, and then to incomplete shear failure, ideal shear failure, and double shear failure, until complete integral failure. Thermal damage (DT defined by the elastic modulus shows logistic increase with the rise of temperature. Mechanical damage (DM derived by the AE ring count rate can be divided into initial stage, stable stage, accelerated stage, and destructive stage. Total damage (D increases with the rise of strain, which is corresponding to the stress-strain curve at various temperatures. Using AE data, we can further analyze the mechanism of deformation and fracture of rock, which helps to gather useful data for predicting rock stability at high temperatures.

  13. Limit of the radionuclides in granite

    International Nuclear Information System (INIS)

    Wang Shaling; Jiang Rangrong

    2003-01-01

    Granite is an important sort of building materials. Their radionuclide contents are limited by the national standard GB6566-2001 just as other building materials. This standard divides them into main materials and decorative materials, and relaxes the limit of the latter obviously. Owing to the consideration of public dose limit and environment protection, this method needs discussion. Otherwise, red granite contains high radionuclide contents relatively, especially the sort of Indian Red, and need be paid more attention

  14. Use of reservoir deposits to reconstruct the recent changes in sediment yields from a small granite catchment in the Yimeng Mountain region, China

    Science.gov (United States)

    Zhang, Yunqi; Long, Yi; Li, Bao; Xu, Shujian; Wang, Xiaoli; Liao, Jia

    2017-09-01

    Information on recent changes in sediment yields from small catchments provides a better understanding of temporal trends in soil loss from certain physical and human-influenced landscapes that have been subjected to recent environmental changes, and will help bridge the current knowledge gap that exists between hillslope erosion and sediment transport in rivers. The Yimeng Mountain region, characterized by alternating granite and limestone, is one of the most susceptible regions to soil erosion in northern China, and has been subjected to intensive anthropogenic activity in recent years. Soil loss from areas underlain by granite is particularly obvious, and is the main sediment source for the Yihe River. In this study, we used reservoir deposits to estimate the changes in sediment yields over the past 50 years from a small catchment underlain by granite, namely the Jiangzhuang catchment in the Yimeng Mountain region. Three cores were collected from the Jiangzhuang Reservoir in the catchment. The activities of 137Cs and 210Pbex at different depths, clay (grain size reference to human activity and environmental change in the catchment. The chronologies of the cores were established by 137Cs and 210Pbex dating. The area-specific sediment yield (SSY) for different time periods since dam construction was estimated from each core by referring to the original capacity curve of the reservoir. The results indicate that the depth profiles of 137Cs, 210Pbex, clay, and SOC contents in cores from the Jiangzhuang Reservoir reflect the general history of human disturbances on the catchment over the past 50 years. The estimated SSY value from each core for each period ranged from 7.2 ± 2.7 to 23.7 ± 8.3 t ha- 1 y- 1, with a mean of 12.5 ± 4.6 t ha- 1 y- 1. SSY decreased during 1954-1972, and then showed a general tendency to increase. The temporal pattern of the sediment yield largely reflects the history of environmental change influenced by human activity in the catchment.

  15. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    Science.gov (United States)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  16. Structural and Geophysical Characterization of Oklahoma Basement

    Science.gov (United States)

    Morgan, C.; Johnston, C. S.; Carpenter, B. M.; Reches, Z.

    2017-12-01

    Oklahoma has experienced a large increase in seismicity since 2009 that has been attributed to wastewater injection. Most earthquakes, including four M5+ earthquakes, nucleated at depths > 4 km, well within the pre-Cambrian crystalline basement, even though wastewater injection occurred almost exclusively in the sedimentary sequence above. To better understand the structural characteristics of the rhyolite and granite that makeup the midcontinent basement, we analyzed a 150 m long core recovered from a basement borehole (Shads 4) in Rogers County, NE Oklahoma. The analysis of the fracture network in the rhyolite core included measurements of fracture inclination, aperture, and density, the examination fracture surface features and fill minerology, as well as x-ray diffraction analysis of secondary mineralization. We also analyzed the highly fractured and faulted segments of the core with a portable gamma-ray detector, magnetometer, and rebound hammer. The preliminary analysis of the fractures within the rhyolite core showed: (1) Fracture density increasing with depth by a factor of 10, from 4 fractures/10m in the upper core segment to 40 fracture/10m at 150 m deeper. (2) The fractures are primarily sub-vertical, inclined 10-20° from the axis of the vertical core. (3) The secondary mineralization is dominated by calcite and epidote. (4) Fracture aperture ranges from 0.35 to 2.35mm based on the thickness of secondary filling. (5) About 8% of the examined fractures display slickenside striations. (6) Increases of elasticity (by rebound hammer) and gamma-ray emissions are systematically correlated with a decrease in magnetic susceptibility in core segments of high fracture density and/or faulting; this observation suggests diagenetic fracture re-mineralization.

  17. Fractured reservoirs - Indication from the EGS at Soultz

    Science.gov (United States)

    Schill, E.; Kümmritz, J.; Geiermann, J.

    2009-04-01

    The Soultz geothermal site is located in the Upper Rhine Graben, which is part of Cenozoic European Rift Structure. Local heat flow maxima of up to 150 mW m2 in the Upper Rhine valley originate from a strong convectional heat transport mainly in the granitic basement (e.g. Bächler, 2003). Such systems may be exploited using Enchanced Geothermal System (EGS) technology. By definition these systems are characterised by natural permeability, which is improved using stimulation techniques. In the case of the Soultz reservoir natural permeability of about up to 3x10-14 m2 was inferred from the temperature distribution (Kohl et al., 2000). High permeability is often related to active faulting (Gudmundsson et al., 2001). Seismic activity and GPS measurements indicate active faulting in the entire Upper Rhine Graben (Bonjer, 1997, Tesauro et al., 2006, Cardozo et al., 2005). The granitic basement at Soultz underwent multi-phase tectonic deformation including the Hercynian and Alpine phases. The main faults in the sedimentary cover of Soultz strike N20°E, i.e. they follow the Rhenish direction. At depth a horst structure is present and the top basement is at 1400 m. Within the horst seismic sections reveal faults mainly dipping to the W. In the five deep wells at Soultz 39 fracture zones have been determined on three different scales (Dezayes and Genter, 2008). In the granite the major direction is about N160°E to N-S with steep dipping to the East and West. With depth the strike of the main sets is consistent, the dip orientation, however, changes. Between 1420 to 2700 m TVD, the main fracture set dips to the East. In the sections between 2700 and 4800 m two conjugate sets reveal fractures dipping to the East and to the West and at reservoir depth between 4800 m and 5000 m the westward dipping set is dominant (Valley, 2007; Dezayes and Genter, 2008). New magnetotelluric (MT) data, as well as inversion of gravity and MT data may be used for estimating relative porosity

  18. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador

    Science.gov (United States)

    Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.

    2018-05-01

    granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites.

  19. Modelling tracer transport in fractured rock at Stripa

    International Nuclear Information System (INIS)

    Herbert, A.

    1992-01-01

    We present the results of a modelling study, making predictions for tracer transport experiments carried out within the H-zone feature in the Stripa mine. We use a direct fracture network approach to represent the system of interconnected flow-conducting fractures comprising this zone. It is a highly fractured granite, and our fracture-network models include up to 60000 fractures. We have had to develop efficient algorithms to calculate the flow and transport through these networks; these techniques are described and justified. The first stage of modelling addressed two saline injection experiments. The results of these were known to us and so in addition to 'predicting' the results of these experiments, we used them to calibrate a flow model of the experimental site. This model was then used to make true 'blind' predictions for a set of tracer experiments carried out in the natural head-field, caused by an open drift. Where our flow model was good, our predictions were found to be very accurate, explaining the dispersion in the tracer breakthrough in terms of the fracture network geometry. Discrepancies for experiments in less well characterised regions of the H-zone are presented, and we suggest that the errors in these predictions are a consequence of the inaccuracies of the flow-field. We have demonstrated the use of large-scale fracture network modelling. It has proved very successful, and made very accurate predictions of field experiments carried out at the Stripa mine. The measured dispersion of tracers can be accounted for by the geometry of the fracture network flow system. (14 refs.) (au)

  20. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  1. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

    Science.gov (United States)

    Ishida, Tsuyoshi; Chen, Youqing; Bennour, Ziad; Yamashita, Hiroto; Inui, Shuhei; Nagaya, Yuya; Naoi, Makoto; Chen, Qu; Nakayama, Yoshiki; Nagano, Yu

    2016-11-01

    We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC-CO2), liquid carbon dioxide (L-CO2), water, and viscous oil with viscosity of 0.051-336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low-viscosity fluid induced three-dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes.

  2. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024. Fracture toughness is one of the key engineering properties required for core internal materials. Together with other properties, which are being examined such as high-temperature steam oxidation resistance, radiation hardening, and irradiation-assisted stress corrosion cracking resistance, the alloys will be down-selected for neutron irradiation study and comprehensive post-irradiation examinations. According to the candidate alloys selected under the ARRM program, ductile fracture toughness of eight alloys was evaluated at room temperature and the LWR-relevant temperatures. The tested alloys include two ferritic alloys (Grade 92 and an oxide-dispersion-strengthened alloy 14YWT), two austenitic stainless steels (316L and 310), four Ni-base superalloys (718A, 725, 690, and X750). Alloy 316L and X750 are included as reference alloys for low- and high-strength alloys, respectively. Compact tension specimens in 0.25T and 0.2T were machined from the alloys in the T-L and R-L orientations according to the product forms of the alloys. This report summarizes the final results of the specimens tested and analyzed per ASTM Standard E1820. Unlike the

  3. Radon exhalation from granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: flaviadelclaro@gmail.com, E-mail: spaschuk@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: denyak@gmail.com [Instituto de Pesquisa Pelé Pequeno Príncipe (IPPP), Curitiba, PR (Brazil)

    2017-07-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ({sup 222}Rn), thoron ({sup 220}Rn), radium ({sup 226}Ra), thorium ({sup 232}Th) and potassium ({sup 40}K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the {sup 222}Rn and {sup 220}Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The {sup 222}Rn and {sup 220}Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m{sup 3} to 2087±19 Bq/m{sup 3}, which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  4. U(VI) sorption on granite: prediction and experiments

    International Nuclear Information System (INIS)

    Nebelung, C.; Brendler, V.

    2010-01-01

    One widely accepted approach - component additivity (CA) - to describe the sorption of contaminants onto complex materials such as rocks or soils is based on the assumption that the surface of a complex mineral assemblage is composed of a mixture of mineral constituents whose surface properties are known from independent studies. An internally consistent SCM (surface complexation model) database can be developed that describes the adsorption reactions of solutes to each phase. Here, the capability of such a methodology was tested, using the code MINTEQA2 including thermodynamic data of the NEA-TDB, and literature data for SCM, namely the DDL model. The sorption characteristics of U(VI) on granite (from Eibenstock, Saxony, Germany, with the main components quartz, albite, orthoclase, and muscovite) was predicted and then compared to batch experiments. Granite plays an important role in the remediation of former uranium ore mining and milling sites, but is also one of the host rocks considered for final disposal of nuclear materials. Safety assessment requires a detailed understanding of this system and its retention potential with regard to hazardous components. Namely the sorption of uranium in this complex rock is not fully understood yet. The experiments thus also provided a better understanding of the far-field behaviour in granitic geological nuclear repositories. The robustness of the prediction was tested by variation of the granite composition and the variation of the specific surface area (SSA) - first all components were predicted with a uniform granite SSA, second with a distinct SSA for each granite component (determined on pure minerals for the same grain size fractions). Changes in compositions yielded only marginal differences in the prediction. Different approaches to SSA showed somewhat larger deviations. In conclusion, the CA methodology is a valid and robust approach to U(VI) sorption onto complex substrates such as granite, provided sufficient

  5. Permian ultrafelsic A-type granite from Besar Islands group, Johor, peninsular Malaysia

    Science.gov (United States)

    Ghani, Azman A.; Hazad, Fatin Izzani; Jamil, Azmiah; Xiang, Quek Long; Atiqah Wan Ismail, Wan Nur; Chung, Sun-Lin; Lai, Yu-Ming; Roselee, Muhammad Hatta; Islami, Nur; Nyein, Kyaw Kyaw; Amir Hassan, Meor Hakif; Abu Bakar, Mohd Farid; Umor, Mohd Rozi

    2014-12-01

    The granitic rocks of the peninsula have traditionally been divided into two provinces, i.e., Western and Eastern provinces, corresponding to S- and I-type granite respectively. The Western Province granite is characterised by megacrystic and coarse-grained biotite, tin-mineralised, continental collision granite, whereas, the Eastern Province granite is bimodal I-type dominated by granodiorite and associated gabbroic of arc type granite. This paper reports the occurrence of an A-type granite from peninsular Malaysia. The rocks occur in the Besar, Tengah, and Hujung islands located in the southeastern part of the peninsula. The granite is highly felsic with SiO2 ranging from 75.70% to 77.90% (differentiation index = 94.2-97.04). It is weakly peraluminous (average ACNK =1.02), has normative hypersthene (0.09-2.19%) and high alkali content (8.32-8.60%). The granites have many A-type characteristics, among them are shallow level of emplacement, high Ga, FeT/MgO and low P, Sr, Ti, CaO and Nb. Calculated zircon saturation temperatures for the Besar magma ranging from 793 ∘ to 806 ∘C is consistent with high temperature partial melting of a felsic infracrustal source which is taken as one of the mechanisms to produce A-type magma. The occurrence of the A-type granite can be related to the extensional back arc basin in the Indo-China terrane during the earliest Permian.

  6. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  7. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala)

    International Nuclear Information System (INIS)

    Perez-Estaun, A.; Carbonell, R.; Marti, D.; Flecha, I.; Escuder Viruete, J.

    2002-01-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  8. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala); Estudios geologico-estructurales y geofisicos en Mina Ratones (Pluton de Albala)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Estaun, A; Carbonell, R; Marti, D; Flecha, I [Instituto de Ciencias de la Tierra Jaume Almera. Barcelona (Spain); Escuder Viruete, J [Universidad complutense de Madrid. Madrid (Spain)

    2002-07-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  9. Rare-earth elements in granites: concentration and distribution pattern

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1983-01-01

    The geochemistry of rare earth elements in granites is studied. The rare earth element (REE) distribution pattern in granites is characterized by a smooth curve with decreasing concentrations from La to Lu, and frequently a marked Eu negative anomaly. It seems to exist relationship between granite genesis and its REE pattern, in that bodies of primary (magmatic differentiation) origin always show this negative Eu anomaly, while those bodies generated by crustal anatexis do not show this anomaly. (E.G.) [pt

  10. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    Science.gov (United States)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500-550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400-450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.

  11. Quantitative determination and monitoring of water distribution in Aespoe granite

    International Nuclear Information System (INIS)

    Zimmer, U.

    1998-01-01

    To identify possible zones of two-phase-flow and the extension of the excavation disturbed zone, geoelectric measurements are conducted in the ZEDEX- and the DEMO-tunnel. The electric resistivity of a hard rock is usually determined by its water content, its water salinity and its porosity structure. By calibration measurements of the resistivity on rocks with well known water content, a relation between resistivity and water content for Aespoe granite is determined. This relation is used to correlate the in-situ resistivity with the water content of the rock. To determine the in-situ resistivity between the ZEDEX- and the DEMO-tunnel an electrode array of nearly 300 electrodes was installed along the tunnel walls and in one borehole. With a semiautomatic recording unit which is operated by a telephone connection from the GRS-office in Braunschweig/Germany, the resistivity is monitored between and around the tunnels. To correlate the resistivity with the water content, the measured apparent resistivity has to be converted into a resistivity model of the underground. Since many thin water bearing fractures complicate this inversion process, the accuracy and resolution of the different inversion programs are checked before their application to the data. It was found that an acceptable quantitative reconstruction of the resistivity requires the integration of geometric information about the fracture zones into the inversion process. For a rough estimation of the position of possible fracture zones, a simple inversion without any geometric boundary conditions can be used. Since the maximum investigation area is limited along a single tunnel for profile measurements, tomographic measurements were also applied to estimate the resistivity distribution between the ZEDEX- and the DEMO-tunnel. These tomographic measurements have a lower resolution than the profile measurements due to the required large computer power, but result in reconstructions that give an estimate of

  12. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Directory of Open Access Journals (Sweden)

    Mahmood DJH

    2016-02-01

    Full Text Available Deyar Jallal Hadi Mahmood, Ewa H Linderoth, Ann Wennerberg, Per Vult Von Steyern Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden Aim: To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP fixed dental prostheses (FDPs with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods: A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results: There was a significant difference (P<0.05 between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N and e.max® ZirPress (1,854±115 N and the state-of-the-art design with VITA VM® 9 (1,849±150 N demonstrated the highest mean fracture values. Conclusion: The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed

  13. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1991-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  14. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M; Wuschke, D M; Brown, A; Hayles, J G; Kozak, E T; Lodha, G S; Thorne, G A [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1992-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  15. Development of a geophysical methodology from boreholes for the study of radioactive waste repositories in granit formations

    International Nuclear Information System (INIS)

    Le Masne, D.

    1985-01-01

    Within the frame of a 2-year contract with the C.E.C., dealing with storage and disposal of radioactive wastes in geological formations the B.R.G.M. has been involved in a research on the detection of fracturation from boreholes by geophysical methods. Various geometrical arrays (mono-hole, cross-hole, hole-to-surface) concerning mainly electrical methods, have been used in the field on granitic rocks, and interpreted according to three dimensional earth-models. Conductive or resistivite parallelepipedic inhomogeneities embedded in stratified or homogeneous half-spaces, have been taken into account in this three dimensional modelling. The influence of the various geometrical and electrical parameters of the inhomogeneities for different electrical arrays has been studied. Advantages and drawbacks of these arrays for the detection of the fracturation from boreholes, can be thus derived. An analysis of the calculation and drawing routines gives way to possible future improvements especially for modelling

  16. Prediction of the existence or fine-grained granite dykes in the Simpevarp area; Prediktering av foerekomst av finkorniga granitgaangar i Simpevarpsomraadet

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan; Triumf, Carl-Axel [GeoVista AB, Luleaa (Sweden); Wahlgren, Carl-Henric [Geological Survey of Sweden, Uppsala (Sweden)

    2002-11-01

    Fine-grained granite dykes associated with a high fracture frequency occur in the bedrock of the Simpevarp region. In order to avoid problems in a future storage for nuclear waste it is important to find methods to detect areas where the dykes occur frequently. The aim of this project is to test the possibility to use airborne gamma ray spectrometry in the Simpevarp region to distinguish between different areas of the bedrock containing a varying frequency of fine-grained granite dykes. Investigations were also made to test if and how plastic deformation and a thin cover of moss affect the radiometric signature of the rocks. Ground measurements with a gamma ray spectrometer were performed on the islands of Aespoe, Aevroe and at the Simpevarp peninsula on different kinds of Smaaland granite with varying frequencies of fine-grained granite dykes. Reference measurements were performed on rocks without granite dykes. The bedrock at the measurement sites was geologically characterized in connection to the measurements. Air borne radiometric data (uranium, potassium and thorium) measured by the Geological Survey of Sweden in 1986 (flight altitude 30 m, point distance 40 m, line spacing 200 m) was compared to the existing bedrock map of the area and also to existing observation sites of fine-grained granite dykes. The ground measurements with gamma ray spectrometer clearly indicate that the fine-grained granite dykes have a specific radiometric signature compared to the granite-granodiorite at Aevroe and the quartzmonzodiorite-granodiorite at Aespoe. The main difference between the dykes and the other investigated rocks is seen in the thorium content, which is typically 3-5 times greater in the fine grained granite dykes. A thin cover of moss does not seem to significantly affect the radiometric signal of the bedrock, and neither does plastic deformation. However, the number of measurements on deformed and on covered rocks is low. The radiometric anomaly pattern shown in

  17. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    Science.gov (United States)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  18. Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia: evidence from mineral compositions and monazite dating

    Directory of Open Access Journals (Sweden)

    Broska Igor

    2015-12-01

    Full Text Available The Tribeč granitic core (Tatric Superunit, Western Carpathians, Slovakia is formed by Devonian/Lower Carboniferous, calc-alkaline I- and S-type granitic rocks and their altered equivalents, which provide a rare opportunity to study the Variscan magmatic, post-magmatic and tectonic evolution. The calculated P-T-X path of I-type granitic rocks, based on Fe-Ti oxides, hornblende, titanite and mica-bearing equilibria, illustrates changes in redox evolution. There is a transition from magmatic stage at T ca. 800–850 °C and moderate oxygen fugacity (FMQ buffer to an oxidation event at 600 °C between HM and NNO up to the oxidation peak at 480 °C and HM buffer, to the final reduction at ca. 470 °C at ΔNN= 3.3. Thus, the post-magmatic Variscan history recorded in I-type tonalites shows at early stage pronounced oxidation and low temperature shift back to reduction. The S-type granites originated at temperature 700–750 °C at lower water activity and temperature. The P-T conditions of mineral reactions in altered granitoids at Variscan time (both I and S-types correspond to greenschist facies involving formation of secondary biotite. The Tribeč granite pluton recently shows horizontal and vertical zoning: from the west side toward the east S-type granodiorites replace I-type tonalites and these medium/coarse-grained granitoids are vertically overlain by their altered equivalents in greenschist facies. Along the Tribeč mountain ridge, younger undeformed leucocratic granite dykes in age 342±4.4 Ma cut these metasomatically altered granitic rocks and thus post-date the alteration process. The overlaying sheet of the altered granites is in a low-angle superposition on undeformed granitoids and forms “a granite duplex” within Alpine Tatric Superunit, which resulted from a syn-collisional Variscan thrusting event and melt formation ~340 Ma. The process of alteration may have been responsible for shifting the oxidation trend to the observed

  19. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  20. Granite disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  1. Weathering-related origin of widespread monazite in S-type granites

    Energy Technology Data Exchange (ETDEWEB)

    Sawka, W N; Banfield, J F; Chappell, B W

    1986-01-01

    The S-type granite suites comprising more than a quarter of the extensively developed granites in the Lachlan Fold Belt, Australia, contain monazite which may be related to the chemical weathering of the sedimentary source rocks. We report a process whereby chemical weathering fixes mobile rare-earth elements (REE) in hydrous phosphate phases such as florencite and rhabdophane. This material contains up to 50 wt.% LREE and occurs as very small particles (approx. 3 ..mu..m). Dehydration of these hydrous REE phases during anatexis directly yields monazite. The low solubility of phosphorus in S-type granite melts inhibits dissolution of both monazite and apatite. Refractory monazite may be thus entrained and transported in S-type granites in a manner similar to processes resulting in inherited zircon. Since both Th and the light REE are major components in monazite, materials containing this minute phase may be of widespread geochemical significance in both granites and metamorphic rocks.

  2. Structure, Mechanics and Flow Properties of Fractured Shale: Core-Scale Experimentation and In-situ Imaging

    Science.gov (United States)

    Abdelmalek, B. F.; Karpyn, Z.; Liu, S.

    2014-12-01

    Over the last several years, hydrocarbon exploitation and development in North America has been heavily centered on shale gas plays. However, the physical attributes of shales and their manifestation on transport properties and storage capacity remain poorly understood. Therefore, more experimentally based data are needed to fill the gaps in understanding both transport and storage of fluids in shale. The proposed work includes installation and testing of an experimental system which is capable of monitoring the dynamic evolution of shale core permeability under variable loading conditions and in coordination with X-ray microCT imaging. The goal of this study is to better understand and quantify fluid flow patterns and associated transport dynamics of fractured shale samples. The independent variables considered in this study are: mechanical loading and pore pressure. The mechanical response of shale core is captured for different loading paths. To best replicate the in-situ production scenario, the pore pressure is progressively depleted to mimic pressure decline. During the course of experimentation, permeability is estimated using the pulse-decay method under tri-axial stress boundary conditions. Simultaneously, X-ray microCT imaging is used with a tracer gas that is allowed to flow through the sample as an illuminating agent. In the presence of an illuminating agent, either Xenon or Krypton, the X-ray CT scanner can image fractures, global pathways and diffusional fronts in the matrix, as well as sorption sites that reflect heterogeneities in the sample and localized deformation. Anticipated results from these experiments will help quantify permeability evolution as a function of different loading conditions and pore pressure depletion. Also, the X-ray images will help visualize the change of flow patterns and the intensity of sorption as a function of mechanical loading and pore pressure.

  3. Gamma-spectrometric surveys in differentiated granites. II: the Joaquim Murtinho Granite in the Cunhaporanga Granitic Complex, Parana, SE Brazil; Levantamentos gamaespectrometricos em granitos diferenciados. II: O exemplo do Granito Joaquim Murtinho, Complexo Granitico Cunhaporanga, Parana

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Francisco Jose Fonseca [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Lab. de Pesquisas em Geofisica Aplicada; Fruchting, Allan [Votorantim Metais, Sao Paulo, SP (Brazil)], e-mail: allan.fruchting@vmetais.com.br; Guimaraes, Gilson Burigo [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Geociencias], e-mail: gburigo@ig.com.br; Alves, Luizemara Soares [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mail: luizemara@petrobras.com.br; Martin, Victor Miguel Oliveira; Ulbrich, Horstpeter Herberto Gustavo Jose [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica], e-mail: vicmartin6@ig.com.br, e-mail: hulbrich@usp.br

    2009-07-01

    Detailed mapping at the NW corner of the large Neo proterozoic Cunhaporanga Granitic Complex (CGC), Parana state, SE Brazil, redefined the Joaquim Murtinho Granite (JMG), a late intrusion in CGC with an exposed area of about 10 km{sup 2}, made up mainly by evolved 'alaskites' (alkali-feldspar leuco granites). This unit is in tectonic contact with the Neoproterozoic-Eocambrian volcano-sedimentary Castro Group, to the W, and is intrusive into other less evolved granitic units of the CGC to the E. Petrographically, JMG shows mainly mesoperthite and quartz, with subordinate amounts of altered micas and some accessory phases, mainly zircon. The equi to inequigranular granites are usually deformed with cataclastic textures, are often brecciated, and may have miarolitic structures. Formation of late albite, sericite, carbonate and hematite was caused by deuteric and hydrothermal alteration. A gamma-ray spectrometric survey at 231 stations which measured total counts (TC), Ueq K%, eU ppm and eTh ppm was used to construct several direct and derived maps. Compared to neighboring units the JMG has significant anomalies, especially in the TC, %K, eTh and eU maps, although the differences are less obvious in some derived maps. These evolved granites are enriched in these three elements. Geochemical behavior of K, Th and U is used to analyse the results observed in maps. Enhanced weathering under a subtropical climate with moderate to high average temperatures and heavy rainfall affects mainly feldspars and biotite, and may also destabilize most U and Th-bearing accessory phases. Th is most likely retained in restite minerals in soils, being relatively immobile, while part of U may migrate as uranyl ion in oxidizing media. K is especially affected by feldspar alteration to K-free clays (mainly kaolinite), and may be completely leached. Gamma-ray spectrometric methods are valid tools to study facies in granitic rocks, especially in those that are enriched in K, Th and U

  4. Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Himmelsbach, T. [Ruhr-Univ., Bochum (Germany). Dept. of Applied Geology; Hoetzl, H. [Univ. of Karlsruhe (Germany). Dept. of Applied Geology; Maloszewski, P. [GSF-Inst. for Hydrology, Munich-Neuherberg (Germany)

    1998-09-01

    The results of field tracer experiments performed in the Lindau fractured rock test site (southern Black Forest, Germany) and subsequent modeling are presented. A vertical, hydrothermally mineralized fault zone, with a permeability much greater than the surrounding granite mass, lies beneath a planned dam site. A dense network of boreholes and tunnels were used to investigate scaling effects of solute transport processes in fractured rock. A series of tracer experiments using deuterium and dye tracers were performed over varying distances and under different testing procedures, resulting in different flow field conditions. Large-scale tracer experiments were performed under natural flow field conditions, while small-scale tracer experiments were performed under artificially induced radial-convergent and injection-withdrawal flow fields. The tracer concentration curves observed in all experiments were strongly influenced by the matrix diffusion. The curves were evaluated with the one-dimensional single fissure dispersion model (SFDM) adjusted for the different flow field conditions. The fitting model parameters found determined the fracture aperture, and matrix and fissure porosities. The determined fracture aperture varied between the sections having different hydraulic conductivity. The determined values of matrix porosity seemed to be independent of the scale of the experiment. The modeled matrix porosities agreed well with values determined in independent laboratory investigations of drill cores using mercury porosimetry. In situ fissure porosity, determined only in small-scale experiments, was independent of the applied geometry of the artificially induced flow fields. The dispersivities were found to be independent of the scale of experiment but dependent on the flow conditions. The values found in forced gradient tests lie between 0.2 and 0.3 m, while values in experiments performed under natural flow conditions were one order of magnitude higher.

  5. Granites of Zoz area, Baroda district, Gujarat and its economic significance

    International Nuclear Information System (INIS)

    Maithani, P.B.; Rathaiah, Y.V.; Varughese, Siby K.; Singh, Rajendra

    1998-01-01

    The granites around Zoz represent a differentiated, calc-alkaline, subaluminous, A-type granite with higher uranium content. The A-type affinity points to the possibility of encountering Sn, Mo, Bi, Nb, Ta and F mineralization in the area. The low Th/U ratio also favours vein type U-deposits within granites or in adjacent metasediments. (author)

  6. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    Science.gov (United States)

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.

  7. Mobility of heavy metals through granitic soils using mini column infiltration test

    Science.gov (United States)

    Zarime, Nur'Aishah; Yaacob, W. Z. W.

    2014-09-01

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%-63% and 46%-54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50-2.59 and 2.45-2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35-5.85 for BGR and pH 5.32-5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%-0.34% and 0.39%- 0.50% respectively for organic matter test, 17.96 m2/g-21.93 m2/g and 25.76 m2/g-26.83 m2/g respectively for SSA test and 0.79 meq/100g-1.35 meq/100g and 1.31 meq/100g-1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes.

  8. Design of a dosimetric evaluation protocol workers granite quarries

    International Nuclear Information System (INIS)

    Guillen, J.; Tejado, J. J.; Baeza, A.

    2011-01-01

    The Autonomous Community of Extremadura is one of the major regions of Spain as far as the extraction of granite and further processing of products derived from it are concerned. One of the most industrialized areas of the sector presents a serious problem for non-radiological occupational health of workers, particularly silicosis. Since in this area of activity levels of granites can be classified as medium-high within the precipitates ranges, the question is whether in addition to this occupational disease, there is a radiological impact associated with the activity NORM extraction and manufacturing of granite.

  9. Regional geological setting

    International Nuclear Information System (INIS)

    Kamineni, D.C.; Stone, D.

    1990-01-01

    The Eye-Dashwa Lake pluton is a zoned pluton with a monzodioritic to gronodioritic rim and a granitic core. During late crystallization stages, the pluton was extensively fractured and altered, developing brittle faults and greenschist facies minerals dominated by epidote. Subsequent reactivation of these faults involved permeation of groundwater and formation of low-temperature minerals

  10. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed

    International Nuclear Information System (INIS)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier

    2017-01-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging

  11. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  12. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  13. Programme of research into the management and storage of radioactive waste. Single fracture experiment at Chalk River

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1984-01-01

    A field experiment was carried out at Chalk river to measure the transport of bromine and strontium through a fracture in granite. Retardation of strontium transport by sorption onto the rock was also measured. Data was obtained for bromine but no useful data was obtained for strontium due to failure of the hydraulic equipment. (U.K.)

  14. Influence of Normal and Shear Stress on the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a Granite, and a Shale

    Science.gov (United States)

    Rutter, Ernest H.; Mecklenburgh, Julian

    2018-02-01

    Transmissivity of fluids along fractures in rocks is reduced by increasing normal stress acting across them, demonstrated here through gas flow experiments on Bowland shale, and oil flow experiments on Pennant sandstone and Westerly granite. Additionally, the effect of imposing shear stress at constant normal stress was determined, until frictional sliding started. In all cases, increasing shear stress causes an accelerating reduction of transmissivity by 1 to 3 orders of magnitude as slip initiated, as a result of the formation of wear products that block fluid pathways. Only in the case of granite, and to a lesser extent in the sandstone, was there a minor amount of initial increase of transmissivity prior to the onset of slip. These results cast into doubt the commonly applied presumption that cracks with high resolved shear stresses are the most conductive. In the shale, crack transmissivity is commensurate with matrix permeability, such that shales are expected always to be good seals. For the sandstone and granite, unsheared crack transmissivity was respectively 2 and 2.5 orders of magnitude greater than matrix permeability. For these rocks crack transmissivity can dominate fluid flow in the upper crust, potentially enough to permit maintenance of a hydrostatic fluid pressure gradient in a normal (extensional) faulting regime.

  15. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    Science.gov (United States)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  16. Mechanisms of hydrothermal alteration in a granitic rock. Consequences for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Parneix, J.C.

    1987-06-01

    The study of hydrothermal alteration in the Auriat granitic rock (France, Massif-Central) has evidenced three main events: - a pervasive chloritisation of biotites in some parts of the drill-core, - an alteration localized around subvertical cracks and superimposed on previously chloritized or unaltered granite, - an alteration localized around subhorizontal cracks cross-cutting the preceding ones. The second type of alteration, produced by a geothermal system, gives the most interesting results to be applied to the nuclear radwaste disposal problem. Among primary minerals of granite, only biotite (or chlorite) and oligoclase are intensively altered. Therefore, the chemical composition of these minerals induces the nature of secondary parageneses. These, associated to the subvertical cracks network, indicate a thermal gradient of 150 C/Km. The geochemical code has allowed to corroborate that the thermal gradient was responsible for the occurrence of different parageneses with depth. Moreover, it was shown that the variable mineralogy around cracks was due to a thermal profile established at equilibrium between the rock and the fluid. Therefore, the extent of the alteration was proportional to the thermal power of the fluid. A dissolution and next a precipitation phase of new minerals characterize hydrothermal alteration, which is due to the thermal power emitted by radioactive waste and linked with the evolution of temperature during time. This alteration provokes two favourable events to storage: decrease of rock porosity and increase of sorption capacity [fr

  17. Study of the possibilities of radioactive waste storage in crystalline formations. Investigation by deep drilling of the Auriat granite

    International Nuclear Information System (INIS)

    1982-01-01

    Various and complex scientific problems are raised in many areas by the disposal of radioactive waste in geological formations. Research works are therefore numerous, and are carried out in four basic areas: - improvement of the knowledge of geological media; - characterization of their behaviour vis a vis radioactive waste; - design of deep repositories; - long-term safety assessment of the selected disposal strategies. Aim of the present research is to develop a methodology for investigating granite formations at great depth, in order to characterize their internal structure, and to acquire data about the various physical properties of granite. This research therefore covers the first basic aspect. These goals were obtained by continuous core-drilling of two vertical boreholes at 10m pitch. The main borehole was drilled down to 1003.15m deep, the second one was stopped at 504.40m deep

  18. Exploration methods for granitic natural stones – geological and topographical aspects from case studies in Finland

    Directory of Open Access Journals (Sweden)

    Olavi Selonen

    2014-06-01

    Full Text Available Regional and local geological constraints for location of natural stone deposits in glaciated terrains of southern and central Finland have been studied and applied to practical exploration for natural stone. A list of geological and topographical aspects to be considered in exploration, is presented. Important aspects refer to: 1. Regional geology of the target area. 2. Magmatism (type and structure of intrusion, relative time of pluton emplacement. 3. Metamorphism (grade, mineral composition, parent material. 4. Deformation (lineaments, shear zones, folding, fault zones, fracture zones, shape preferred mineral orientations, and 5. Topography (relative elevation, micro topography. The proposed aspects can be used as geological guidelines in exploration for granitic natural stones.

  19. Terrestrial gamma ray dose rates on Ryoke granitic rocks in Ikoma Mountains

    International Nuclear Information System (INIS)

    Ikeda, Tadashi; Ueshima, Masaaki; Shibayama, Motohiko; Hiraoka, Yoshitsugu; Muslim, Dicky

    2012-01-01

    We measured the γ dose rate of 16 rock bodies in the field, which belonged to Ryoke granitic rocks distributed over Ikoma Mountains. The measurement points were 190 spots, and the mean dose rate was 82.0 ± 21.0 nGy/h. Results of analysis were summarized as follows. (1) The distribution of the dose rate in the Fukihata quartz diorite showed that the rocks crystallization differentiation had progressed from the south to the north. (2) The dose rate of granite tended to arise with the increase of SiO 2 quantity, but in the Iwahashiyama granite, the Takayasuyama granite, the Omichi granite and the Katakami granite, it was revealed that the dose rate was low in spite of high SiO 2 quantity. (3) It became clear that the dose rate of Ryoke granitic rocks from the first stage to the fourth stage was high to be considered as a new rock body. (4) Because the relationship between the dose rate of rocks and the main chemical elements did not show a common characteristic, it may be that those rocks were formed from different Magma. (author)

  20. Uranium occurrences in the Granite Zone

    International Nuclear Information System (INIS)

    Nyegaard, P.; Armour-Brown, A.

    1986-04-01

    This report describes the work and results of the South Greenland Exploration Programme (Sydex) during the 1984 field season in the Granite Zone, and discusses the results and conclusions that can be drawn from them. It also contains a structural analysis of the Ivigtut-Julianehaab region, which will help in future exploration by indicating the likely directions of uraniferous faults and fractures. It also includes suggestions for future work with both exploration and scientific aspects. The project was carried out by the Geological Survey Greenland (GGU) in co-operation with Risoe National Laboratory. It was financed by the Danish Ministry of Energy. The structural analysis was carried out using previous geological maps, our own field observations and an analysis of lineament frequencies taken from aerial photographs and satellite images. Major lineaments in the region are due to E-W sinistral wrench faults and NE-SW normal faults. Analysis of the minor lineaments showed that the region could be divided into three blocks which have each reacted differently to the same regional stress field which was active throughout the Gardar period. A northern block which has been influenced by an older system of faults in the Archaean gneiss, a central block dominated by a graben, and a southern block where there is a change to a less intensively faulted area. 2 maps, 27 refs. (EG)

  1. Experimental analysis on physical and mechanical properties of thermal shock damage of granite

    Directory of Open Access Journals (Sweden)

    He Xiao

    2017-01-01

    Full Text Available The purpose of this study was to explore the changes of mechanical and physical properties of granite under different thermal loading effects. Uniaxial compression experiments studying the rules of the influence of temperature load on mechanical properties of granite were carried out. After high-temperature heating at above 600 °C, granite tended to have stronger ductility and plasticity as well as declined peak stress and compressive strength. Thermogravimetry - differential scanning calorimetry (TG-DSC analysis results showed that, thermal load at different temperatures induced reactions such as water loss, oxidation and crystallization in the microstructure of granite, which led to physical changes of granite. Hence it is concluded that, heating can significantly weaken the mechanical performance of granite, which provides an important support for the optimization of heating assisted processing of granite. It also reveals that, heating assisted cutting technique can effectively lower energy consumption and improve processing efficiency.

  2. A gas migration test in saturated, fractured rock - final report for the joint UKDOE/AECL project, phase 2

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A.

    1991-12-01

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model derived from Thunvik and Braester (1987). Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determined the hydraulic conductivity of individual gas flow paths in the fractured rock. (author). 23 refs., 5 tabs., 37 figs

  3. Characterization of the fracturation of rock masses for determining flow

    International Nuclear Information System (INIS)

    Derlich, S.

    1984-02-01

    Flow in a rock mass is the consequence of the permeability of the rock, which can be roughly separated into matrix permeability and fissure permeability. In crystalline rocks fissure permeability is dominant, especially where the rocks are extensively fractured. It is thus essential, by means of studies either at the surface or underground, to characterize the volume fracturation in the mass considered. The purpose of this paper is to illustrate the methodology for analysing fracturation at a site by the studies performed on the granite mass of Auriat in the French Massif Central. A number of geology laboratories have participated in this study and a broad spectrum of observations has been made which can be used for determining the various stages of a study with a view to selection of a site, the advantages and limitations of each method or study plan and additional methods which need to be used for gaining as complete a picture as possible of the fracturation. A brief examination of the results obtained at Auriat enables the relative advantages of using these various methods at a particular site to be compared

  4. On the sources of uranium in some Scottish Caledonian granites

    International Nuclear Information System (INIS)

    Halliday, A.N.

    1982-01-01

    The lead isotope systematics, zircon uranium concentrations and whole-rock rubidium concentrations of 11 Scottish Caledonian granites are examined for clues to the origin of their uranium. A positive correlation between U in zircon and initial lead isotope ratios suggests that U and Pb were derived from the same source which, as some of these granites contain their U in inherited zircons, is likely to have been within the crust. It is argued, therefore, that most of the uranium in these granites had a crustal derivation but lead isotope ratios indicate that any Lewisian contribution was minor in comparison with those from postulated Grenville, Morarian or Caledonian metamorphic reservoirs. However, additional data are required before this conclusion can be extended to include uraniferous Caledonian granites such as Cairngorm. (author)

  5. Soil Radon In The Nigerian Younger Granites | Dewu | Nigerian ...

    African Journals Online (AJOL)

    ... not had enough time to attain equilibrium with its daughters. In general, the results suggest that with proper control, soil radon measurements over the Younger Granite can be used for uranium exploration in the region. Keywords: Radon, younger granite, soil uranium, half-lifeand thorium. Nigerian Journal of Physics Vol.

  6. Core drilling of deep borehole OL-KR37 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL-KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m{sup 3} and 21m{sup 3} and the measured volumes of the returning water were 221m{sup 3} and 16m{sup 3} in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled

  7. The distribution and uranium content characteristics of Indosinian granite in South China

    International Nuclear Information System (INIS)

    Sun Wenliang; Zhang Zhuo; Chen Wenwen; Chen Lulu; Xu Wenzheng

    2014-01-01

    In recent years, more and more Indosinian granite plutons has been found in South China, so some new ideas about the granity were proposed by scholars. The Indosinian granite in South China distributed in lineshape, and is controlled by some regional faults. Its formation was mainly related to geodynamic setting which began in the late Permian (about 256 Ma) by the subduction of the ancient Pacific Plate to the Eurasia. The average uranium content of Indosinian granite is 10.34ppm, much higher than the average value of world's acid rock. There occurs some couplings between the distribution of the Indosinian granite plutons and uranium mineralization belt in South China. So the Indosinian granite in South China may act as important uranium sources for the mineralization. (authors)

  8. Fracture energy of stick-slip events in a large scale biaxial experiment

    International Nuclear Information System (INIS)

    Okubo, P.G.; Dieterich, J.H.

    1981-01-01

    The concept of apparent fracture energy for the shear failure process is employed by many authors in modeling earthquake sources as dynamically extending shear cracks. Using records of shear strain and relative displacement from stick-slip events generated along a simulated, prepared fault surface in a large (1.5m x 1.5m x 0.4m) granite block and a slip-weakening model for the fault, direct estimates of the apparent shear fracture energy of the stick-slip events have been obtained. For events generated on a finely ground fault surface, apparent fracture energy ranges from 0.06 J/m 2 at a normal stress of 1.1 MPa to 0.8 J/m 2 at a normal stress of 4.6 MPa. In contrast to estimates for tensile crack formation, we find that the apparent fracture energy of stick-slip events increases linearly with normal stress. The results for the slip-weakening model for the stick-slip events are generally consistent with constitutive fault models suggested by observations of stable sliding in smaller scale experiments

  9. Thermal cracking in Lac du Bonnet granite during slow heating to 205 degrees celsius

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1993-09-01

    Acoustic emissions (AE) were recorded as drill core samples of Lac du Bonnet granite were slowly heated to between 66 and 205 degrees celsius to evaluate the effects of temperature on the properties of rock samples. Longitudinal and shear velocities of the samples were measured, and Young's moduli, shear moduli and Poisson's ratios were calculated. No significant AE activity was detected until temperatures reached approximately 73-80 degrees celsius. Above this 'threshold' temperature, calculated rock properties decreased, and at 205 degrees celsius calculated Young's modulus, shear modulus, and Poisson's ratio were reduced by 30, 26, and 29% respectively

  10. Mineralogical and geochemical characteristics of uranium-rich fluoriteinEl-Missikat mineralized granite,Central Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Fahmy Raslan

    2009-12-01

    Full Text Available A unique, highly radioactive variety of fluor it emineral has been recorded in the uranium occurrence of El-Missikat sheared granite pluton. In this occurrence, the uranium assumes different forms, including its presence as discrete, visible, secondary minerals, rare uraninite and its association with the jasperoid and silica veinlets. However,in some other parts of the sheared zone, the uranium was found to be solely incorporated with fluorite crystals,filling veinlet sand fractures with out any other manife station.This paper focuses ont her elevant mineralogical and geochemical characteristics of this unique fluorite variety.In addition to an investigation with binocular and polarizing microscopes, the separated fluorite grains were analyzed usingan environmental scanning electronmicroscope(ESEM and a field-emission scanning electron microscope.In addition to this,some fluorite crystals were subjected to electron microprobe analyses. While the fluorite accounted for as much as 20% of the sheared granite samples studied, it was found to range from 82 to 96 % in the different size fractions of the separated heavy mineral content. In some parts of the separated fluorite crystals,uranium inquantities of up to 2200 ppm was found to be heterogeneously distributed in the fluoritelattice,regardless of its coloration.

  11. Site characterization and validation - drift and borehole fracture data. Stage 1

    International Nuclear Information System (INIS)

    Gale, J.; Straahle, A.

    1988-09-01

    This report describes the procedures used in mapping fractures intersecting seven scanlines along the southern and eastern boundaries of the Site Characterization and Validation (SCV) site and the procedures used in logging and orienting the fractures intersecting the core from six 'boundary boreholes' that were drilled as part of the site characterization program for the SCV site at the 360 m level in the Stripa mine. Scanline mapping along the mine drifts provided a detailed description of the fracture geomentry on the boundaries of the SCV site. The cores from the boundary boreholes have been logged, reconstructed and oriented using a borehole Televiewer and a borehole TV camera and the true fracture orientations calcilated. This has provide additional data on the fracture geometry within the SCV site. The fractire data from both the scanlines and the core logging are presented in the appendices. In addition, an initial analysis has been completed of the fracture orientations, trace lengths and spacings. Based on the variation in fracture orientations over the SCV site, there are two strong subvertical fracture sets or or clusters and a poorly represented sub-horizontal fracture set. An empirical approach, based on the 'blind zone' concept has been used to correct for orientation bias and to predict the orientations of the fracture system that will be intersected by the C and D boreholes in stage III. (33 figs., 6 tabl., 19 refs.)

  12. Test plan: Air intake shaft performance test -- Addendum for obtaining cores in the Culebra for radionuclide retardation studies

    International Nuclear Information System (INIS)

    Gelbard, F.

    1991-10-01

    Core samples are needed for obtaining data on radionuclide retardation. The cores will be used to first determine local basic properties of Culebra rock such as permeability, structural integrity, fracture spacing, and fracture size. These quantities will then be used to design a laboratory experimental program to determine radionuclide retardation in a column flow apparatus using the cores obtained in this project. This addendum covers only the coring activities necessary to retrieve Culebra cores. The laboratory work will be documented in a separate test plan. It is anticipated that Culebra rock samples will be highly fractured, with a fracture spacing on the order of 2 to 3 inches To obtain representative core samples that are intact, horizontal cores about 6 inches in diameter and several feet long will be needed. These cores will provide a good indication of Culebra rock fracturing and provide several samples needed to conduct column flow experiments. If the rock is so fractured that only rubble is obtained, then the rubble will be used in the column experiments. In addition, as a byproduct of the coring operation, natural groundwater collected from the holes will be used to develop a synthetic brine for the laboratory experiments

  13. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  14. [Study on the fine structure of K-feldspar of Qichun granite].

    Science.gov (United States)

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  15. Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release

    Science.gov (United States)

    Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário

    2017-12-01

    Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.

  16. Geology of Muntok area and the potency of menumbang granite as source of Uranium and Thorium

    International Nuclear Information System (INIS)

    Kurniawan Dwi Saksama; Ngadenin

    2013-01-01

    In the West Bangka there are some granites namely Menumbing, Pelangas, Tempilang, and Jebus granite. The granites is granite tin belt that stretches from Thailand-Malaysia-Bangka Belitung. Granite tin belt or granite source of tin (cassiterite) can act as a source of U and Th. Aims of the study is to find out the information on the geology of Muntok area and its surrounding and to determine the potency of Menumbing granite as a source of U and Th. The methods used is surface geological mapping in Muntok areas and its surrounding with scale 1 : 25.000, measurement grade of uranium and thorium in Menumbing granite areas and petrographic and grain size analysis of sample of Menumbing granite. Determination of granites a source of U and Th is based on content of radioactive mineral, anomaly of U and Th, megascopic and microscopic observation of granite. Morphology of Muntok areas and its surrounding is denudasional undulating plains to hills with an elevation ranging from 0 to 455 meters. Stratigraphy of research areas from old to young is meta sandstone units, granite intrusion of Menumbing and alluvial. Evolving fault is a fault trending West-East. Based on the presence of radioactive minerals, grade of U and Th as well as the type of granite, it was concluded that the Menumbing granite is a source of Th and not sources of U. (author)

  17. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    Science.gov (United States)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  18. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  19. Mobility of heavy metals through granitic soils using mini column infiltration test

    International Nuclear Information System (INIS)

    Zarime, Nur 'Aishah; Yaacob, W. Z.W.

    2014-01-01

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%–63% and 46%–54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50–2.59 and 2.45–2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35–5.85 for BGR and pH 5.32–5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%–0.34% and 0.39%– 0.50% respectively for organic matter test, 17.96 m 2 /g–21.93 m 2 /g and 25.76 m 2 /g–26.83 m 2 /g respectively for SSA test and 0.79 meq/100g–1.35 meq/100g and 1.31 meq/100g–1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes

  20. Investigation of flow distribution in a fracture zone at the Stripa mine, using the radar method, results and interpretation

    International Nuclear Information System (INIS)

    Andersson, P.; Andersson, P.; Gustafsson, E.; Olsson, O.

    1989-12-01

    The objective of the current project was to map the steady state flow distribution in a fracture zone in the Stripa mine when water was injected into the zone from a borehole. The basic idea was to map the flow paths by taking the difference between radar results obtained prior to and after injection of a saline tracer (KBr) into the fracture zone. The radar experiments were combined with a more conventional migration experiment to provide validation and calibration of the radar results. Difference tomography using borehole radar was a valuable and successful tool in mapping groundwater flow paths in fractured rock. The data presented were of good quality and sufficiently consistent throughout the investigated rock volume. The interpreted results verified previous findings in the surveyed granite volume as well as contributed to new and unique information about the transport properties of the rock at the site. The inflow data and the tracer breakthrough data has served as a useful aid in the interpretation of the flow distribution within the investigated zone and also within the surrounding rock mass. From the differential attenuation tomograms the migration of the injected tracer was mapped and presented both in the fracture zone of interest and in the entire investigated granite volume. From the radar tomographic model, the major tracer migration was found to be concentrated to a few major flow paths. Two additional fracture zones originally detected within this project, were found to transport portions of the injected tracer. The radar results combined with the tracer breakthrough data were used to estimate the area with tracer transport as well as flow porosity and the wetted surface. (orig.)

  1. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex

    Science.gov (United States)

    Hill, M.; Barker, F.; Hunter, D.; Knight, R.

    1996-01-01

    The ??? 2052-Ma Lebowa Granite Suite (LGS) represents the culminating phase of an Early Proterozoic magmatic cycle in the Central Transvaal area of the Kaapvaal Province. Following extrusion of at least 200,000 km3 of intermediate to acid volcanics (Rooiberg Felsite), mafic and ultramafic magmas intruded at 2065 Ma to form the Rustenburg Layered Suite (RLS). The LGS includes the Nebo, Makhutso, Bobbejaankop, Lease, and Klipkloof granites. The Nebo Granite intruded the Rooiberg Felsite as sheets up to 4 km thick above the RLS. Smaller stocks of the other granites crosscut the Nebo. We determined major- and trace-element compositions and oxygen, Rb-Sr, and Sm-Nd isotope ratios for samples of: Nebo Granite; Rooiberg Felsite; granophyre and granophyric granite; Makhutso, Bobbejaankop, and Lease granites; and feldspar porphyry from areas throughout the exposed area of the LGS (Dennilton, Verena Balmoral, Enkeldoorn, Sekhukhune Plateau, Zaaiplaats-Potgeitersrus, and Western Transvaal). Coherent floor-to-roof geochemical trends exist in some areas, although it is not possible to model them convincingly. Regional variations in geochemistry exist and likely are related to source variations in the estimated 200,000 km3 of the Nebo Granite sheets. ??18O for the LGS range from +5.9??? to +9.5???; if these are approximate primary magmatic values, pelitic sediments cannot have been an important source for the LGS. The Rb-Sr isotope system has been altered, a finding consistent with previous studies. A mineral isochron for Nebo Granite near Dennilton yields a York regression age of 1995 ?? 99 Ma, with initial 143Nd/144Nd = 0.50978??8 and ???CHUR=-5.12. Samples from the Sekhukhune Plateau have higher 143Nd/144Nd ratios than do Dennilton-area samples, suggesting that the former originated from older or less LREE-enriched sources. We suggest that intrusion of mafic to ultramafic magmas at depth in the continental crust triggered melting of Archean quartzofeldspathic crystalline

  2. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    International Nuclear Information System (INIS)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs

  3. Monte Carlo simulations for generic granite repository studies

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Shaoping [Los Alamos National Laboratory; Lee, Joon H [SNL; Wang, Yifeng [SNL

    2010-12-08

    In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport models were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.

  4. Extraction of Th and U from Swiss granites

    International Nuclear Information System (INIS)

    Bajo, C.

    1980-12-01

    The extraction, at the laboratory level, of U and Th from Swiss granites is discussed. The Mittagfluh, Bergell and Rotondo granites and the Giuv syenite offered a wide range of U and Th concentrations; 7.7 to 20.0 ppm U and 25.5 to 67.0 ppm Th. U and Th were determined in the leach solutions by the fission track method and by spectrophotometry, respectively. Samples containing less than 0.3 μg U and 4 μg Th, could be measured with an accuracy of 10% for U and 5% for Th. Leach tests were performed during which the following parameters were varied: granite-type, grain size, acid-type, acid concentration, temperature and time. There were very great leaching differences between the granites studied. Temperature was the most important parameter. Sharp differences in extraction occurred between 20 0 C, 50 0 C and 80 0 C. At 80 0 C, more than 85% U and Th were extracted. The extraction curve (percent extracted as a function of time) of aliquots sampled after 1, 2, 4, 8, 12 and 24 hours showed a plateau after 8 hours. The half life of the reaction was between one and two hours. As a general rule, Th was better extracted than U. (Auth.)

  5. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    , or a lack of quality in the available data, for example, time and transport have that affected the frequency and condition of fractures. This activity has been performed on all 32 boreholes considered in this report: KFR01, KFR02, KFR03, KFR05, KFR10, KFR11, KFR 12, KFR14, KFR19, KFR20, KFR31, KFR32, KFR34, KFR37, KFR38, KFR51, KFR52, KFR57, KFR61-KFR68, KFR69, KFR70, KFR71, KFR72, KFR89, SFR (Silo 1). The lithology in KFR01 and KFR02 was earlier described in terms of pegmatite, coarse-grained granite, fine-grained biotite gneiss and fine- to medium-grained granite gneiss. Generally, the pegmatite and coarse-grained granite were translated into pegmatitic granite (101061), whereas the gneisses were coded as felsic to intermediate meta volcanic rock (103076) and fine- to medium-grained metagranite-granodiorite (101057). The major lithological components in the eleven drill cores subjected to the overview mapping are fine- to medium-grained metagranite-granodiorite (101057), pegmatitic granite (101061), felsic to intermediate meta volcanic rock (103076), fine- to medium-grained granite (111058) and subordinate occurrences of amphibolite (102017) and aplitic metagranite (101058). A continuous occurrence of cataclastic rock (108003) with a total drill core length of 11.2 m occurs in KFR71. Alteration other than oxidation is typically found in drill cores from boreholes intersecting or in the intimate vicinity of the Singoe deformation zone (i.e. KFR69, KFR71 and KFR72). Up to seven rock units have been identified in a single borehole, with an average of 2-4. Most rock units are dominated by fine- to medium-grained metagranite-granodiorite (101057) or pegmatitic granite (101061). All rock units have been interpreted with a medium or high degree of confidence. The rock units with a lower degree of confidence are restricted to boreholes with existing mappings, which were rock coded during the Forsmark site investigation, when the geological experience from the SFR area was

  6. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    lack of quality in the available data, for example, time and transport have that affected the frequency and condition of fractures. This activity has been performed on all 32 boreholes considered in this report: KFR01, KFR02, KFR03, KFR05, KFR10, KFR11, KFR 12, KFR14, KFR19, KFR20, KFR31, KFR32, KFR34, KFR37, KFR38, KFR51, KFR52, KFR57, KFR61-KFR68, KFR69, KFR70, KFR71, KFR72, KFR89, SFR (Silo 1). The lithology in KFR01 and KFR02 was earlier described in terms of pegmatite, coarse-grained granite, fine-grained biotite gneiss and fine- to medium-grained granite gneiss. Generally, the pegmatite and coarse-grained granite were translated into pegmatitic granite (101061), whereas the gneisses were coded as felsic to intermediate meta volcanic rock (103076) and fine- to medium-grained metagranite-granodiorite (101057). The major lithological components in the eleven drill cores subjected to the overview mapping are fine- to medium-grained metagranite-granodiorite (101057), pegmatitic granite (101061), felsic to intermediate meta volcanic rock (103076), fine- to medium-grained granite (111058) and subordinate occurrences of amphibolite (102017) and aplitic metagranite (101058). A continuous occurrence of cataclastic rock (108003) with a total drill core length of 11.2 m occurs in KFR71. Alteration other than oxidation is typically found in drill cores from boreholes intersecting or in the intimate vicinity of the Singoe deformation zone (i.e. KFR69, KFR71 and KFR72). Up to seven rock units have been identified in a single borehole, with an average of 2-4. Most rock units are dominated by fine- to medium-grained metagranite-granodiorite (101057) or pegmatitic granite (101061). All rock units have been interpreted with a medium or high degree of confidence. The rock units with a lower degree of confidence are restricted to boreholes with existing mappings, which were rock coded during the Forsmark site investigation, when the geological experience from the SFR area was more

  7. Core drilling of deep borehole OL-KR3B at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-10-15

    MPa, the average Young's Modulus is 39 GPa and the average Poisson's ratio is 0.18. The main rock types are migmatitic mica gneiss and granite. Filled fractures are most common type of fractures. The average fracture frequency is 1.5 pes/m. The average RQD value is 96.9 %. In borehole OL-KR38 15 fractured zones were penetrated. (orig.)

  8. Fracture characterization and discrimination criteria for karst and tectonic fractures in the Ellenburger Group, West Texas: Implications for reservoir and exploration models

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.E. [Science Applications International Corp., Germantown, MD (United States)]|[Kestrel Geoscience, Littleton, CO (United States); Sundberg, K.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Deyhim, P. [Oklahoma State Univ., Stillwater, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States). Lab. for Computational Geodynamics

    1998-12-31

    In the Ellenburger Group fractured dolomite reservoirs of West Texas, it is extremely difficult to distinguish between multiple phases of karst-related fracturing, modifications to the karst system during burial, and overprinting tectonic fractures. From the analyses of drill core, the authors developed criteria to distinguish between karst and tectonic fractures. In addition, they have applied these criteria within the context of a detailed diagenetic cement history that allows them to further refine the fracture genesis and chronology. In these analyses, the authors evaluated the relationships between fracture intensity, morphologic attributes, host lithology, fracture cement, and oil-staining. From this analysis, they have been able to characterize variations in Ellenburger tectonic fracture intensity by separating these fractures from karst-related features. In general, the majority of fracturing in the Ellenburger is caused by karst-related fracturing although a considerable percentage is caused by tectonism. These findings underscore the importance of considering the complete geologic evolution of a karst reservoir during exploration and field development programs. The authors have been able to more precisely define the spatial significance of the fracture data sets by use of oriented core from Andector Field. They have also demonstrated the importance of these results for exploration and reservoir development programs in West Texas, and the potential to extrapolate these results around the globe. Given the historic interest in the large hydrocarbon reserves in West Texas carbonate reservoirs, results of this study will have tremendous implications for exploration and production strategies targeting vuggy, fractured carbonate systems not only in West Texas, but throughout the globe.

  9. Granit, Prof. Ragnar Arthur

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1964 Honorary. Granit, Prof. Ragnar Arthur Nobel Laureate (Medicine) - 1967. Date of birth: 30 October 1900. Date of death: 11 March 1991. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year ...

  10. U-Th-Pb systematics of precambrian rocks in the Laramie Mountains, Wyoming

    International Nuclear Information System (INIS)

    Nkomo, I.T.; Rosholt, J.N.; Dooley, J.R. Jr.

    1979-01-01

    Uranium, thorium and lead concentrations and the isotopic composition of whole-rock samples of granite from the Laramie Mountains, Wyoming, suggest intrusion of the granite no later than 2530 +- 80 m.y. ago. The uranium in surface samples is present in amounts that are insufficient to account for the observed lead isotopic composition. However, some core samples of heavily fractured rock show an extreme isotopic disequilibrium between 238 U and 206 Pb. Their uranium concentrations are generally far in excess (up to 60%) of average amounts required to support the measured lead-206. Radioactive disequilibrium measurements indicate that large amounts of uranium were gained by these fractured rocks during the last 150,000 years. Lead data on K-feldspar separated from the rocks analyzed suggest that lead has been assimilated by these minerals since time of crystallization. 8 figures, 6 tables

  11. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 ± 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock δ 18 O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial 87 Sr/ 86 Sr (0.7033 ± 0.0042) calculated from the isochron intercept varies significantly. Calculated initial 87 Sr/ 86 Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock δ 18 O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial 87 Sr/ 86 Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite

  12. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    Science.gov (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    ]. Analyses of cores of some zircons from granodiorites of Lupveem batholith indicate Precambrian age of protolith (717, 1070.4 and 1581.5 m.a.) [15]. 40Ar-39Ar age of synmetamorphic biotite varies from 108 to 103 m.a. [15]. Intrusive rocks of Alarmaut dome are represented by wide spectrum of rocks: diorites, Q diorites, Q monzodiorites, granodiorites, tonalites, granites. Granodiorites and granites contain mafic enclaves of monzonites and Q monzonites. SiO2 contents in rocks of Alarmaut dome varies from 58,55% in diorites to 71,3% in granites; in enclaves - from 54,6% in monzonites to 61.89% in Q monzonites. Granitoids are normal and subalkaline rocks according to SiO2 vs K2O+Na2O and belong to high-K calc-alkaline and shoshonite series according to K2O vs SiO2. They are mainly metaluminous rocks (ASI intermediate rocks are characterized by LREE enrichment, HREE depletion and insignificant negative Eu-anomaly (LaN/YbN=8,42-15,69; Eu/Eu*=0,66-0,94). Granodiorites and granites REE patterns are more enriched in LREE, more depleted in HREE and have deeper negative Eu-anomaly (LaN/YbN=11,48-45,6; Eu/Eu*=0,47-0,81). REE patterns of monzonites from enclaves in granites and granodiorites are similar to patterns of host rocks. REE patterns of intermediate rocks and granodiorites are well correlated with those of "mafic root" rocks of K2 Kigluaik pluton from the core part of the same name gneiss dome, Seward Peninsula, Alaska [16], and K1-2 granitoids of Chauna fold zone, West Chukotka [17]. Spidergrams of granitoids and enclaves are similar and characterized by LILE, LREE enrichment and Nb, Sr, P, Ti depletion, typical for supra-subduction magmatites. On F1-F2 diagram [18], separating granitoids by geodynamic settings, granitoids fall in the field of collisional granites; on Rb vs Y+Nb diagram, along the boundary between the fields of syncollisional granites and volcanic arc granites, but within the field of postcollisional [19]. Geochronological and structural data indicate temporal

  13. ASSESSING LAND COVER CHANGES CAUSED BY GRANITE QUARRYING USING REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    R. S. Moeletsi

    2017-11-01

    Full Text Available Dimension stone quarrying in the area between Rustenburg and Brits in the North West Province of South Africa has been in existence for over 70 decades. The unique characteristics of the granite deposits in South Africa resulted in making the country a global producer of the granite rocks. This led to intensified quarrying activities between Rustenburg and Brits town. However, this surface mining method, has a potential to impact the environment in a negative way causing loss in vegetation, depletion of natural resources, loss of scenic beauty and contamination of surface water resources. To assess the land cover changes caused by granite quarrying activities, remotely sensed data in the form of Landsat images between 1998 and 2015 were used. Supervised classification was used to create maps. Accuracy assessment using Google EarthTM as a reference data yielded an overall accuracy of 78 %. The post classification change detection method was used to assess land cover changes within the granite quarries. Granite quarries increased by 1174.86 ha while formation of quarry lakes increased to 5.3 ha over the 17-year period. Vegetation cover decreased by 1308 ha in area while 18.3 ha bare land was lost during the same period. This study demonstrated the utility of remote sensing to detect changes in land cover within granite quarries.

  14. Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil

    Science.gov (United States)

    Teixeira, Mayara Fraeda Barbosa; Dall'Agnol, Roberto; Santos, João Orestes Schneider; de Sousa, Luan Alexandre Martins; Lafon, Jean-Michel

    2017-12-01

    The Gogó da Onça Granite (GOG) comprise a stock located in the Carajás Province in the southeastern part of Amazonian Craton near its border with the Araguaia Belt. Three facies were identified in the pluton: biotite-amphibole granodiorite, biotite-amphibole monzogranite and amphibole-biotite syenogranite. The GGO crosscut discordantly the Archean country rocks and are not foliated. All Gogó da Onça Granite varieties are metaluminous, ferroan A2-subtype granites with reduced character. The major and trace element behavior suggests that its different facies are related by fractional crystallization. Zircon and titanite U-Pb SHRIMP ages show that the pluton crystallized at ∼1880-1870 Ma and is related to the remarkable Paleoproterozoic magmatic event identified in the Carajás Province. Whole-rock Nd isotope data (TDM ages 2.78 to 2.81, εNd values of -9.07 to -9.48) indicate that the GOG magmas derived from an Archaean source compatible with that of some other Paleoproterozoic suites from Carajás Province. The GOG show significant contrasts with the Jamon and Velho Guilherme Paleoproterozoic suites from Carajás Province and the inclusion of the Gogó da Onça granite in any of these suites is not justified. The GOG is more akin to the Serra dos Carajás Suite and to the Seringa and São João granites of Carajás and to the Mesoproterozoic Sherman granite of USA and the Paleoproterozoic Suomenniemi Batholith of Finland. This study puts in evidence the relevance of precise geochronological data and estimation of magma oxidation state in the characterization and correlation of A-type granites.

  15. The rapakivi granite plutons of Bodom and Obbnäs, southern Finland: petrography and geochemistry

    Directory of Open Access Journals (Sweden)

    Kosunen, P.

    1999-12-01

    Full Text Available The Obbnäs and Bodom granite plutons of southernmost Finland show the typical petrographic and geochemical features of the Proterozoic rapakivi granites in Finland and elsewhere: they cut sharply across the 1900 Ma Svecofennian metamorphic bedrock and have the geochemical characteristics of subalkaline A-type granites. The Bodom pluton is composed of porphyritic granites (hornblende-, hornblende-biotite-, and biotite-bearing varieties and an even-grained granite that probably represent two separate intrusive phases. This lithologic variation does not occur in the Obbnäs pluton, which is almost entirely composed of porphyritic hornblende-biotite granite that gradually becomes more mafic to the southwest. Three types of hybrid granitoids resulting from magma mingling and mixing occur on the southwestern tip of the Obbnäs peninsula. The Bodom granites are syenogranites, whereas the composition of the Obbnäs granite varies from syeno- to monzogranite. The main silicates of both the Bodom and Obbnäs granites are quartz, microcline, plagioclase (An1541, biotite (siderophyllite, and generally also amphibole (ferropargasite or hastingsite. Plagioclase-mantled alkali feldspar megacrysts are absent or rare. The accessory minerals are fluorite, allanite, zircon, apatite, and iron-titanium oxides; the Obbnäs granite also contains titanite. The Bodom and Obbnäs granites are metaluminous to weakly peraluminous, with average A/CNK of 1.00 and 1.05, respectively, have high Fe/Mg (average FeOtot/[FeOtot+MgO] is 0.94 for the Bodom and 0.87 for the Obbnäs granites, and high Ga/Al (3.78 to 5.22 in Bodom and 2.46 to 4.18 in Obbnäs. The REE contents are high with LREE-enriched chondrite-normalized patterns and moderate (Obbnäs to relatively strong (Bodom negative Eu-anomalies. The Obbnäs granite is enriched in CaO, TiO2, MgO, and FeO, and depleted in SiO2 and K2O compared to the Bodom granites. Also, there are differences in the Ba, Rb, and Sr contents of

  16. Tracer movement in a single fissure in granitic rock - some experimental results and their interpretation

    International Nuclear Information System (INIS)

    Neretnieks, I.; Eriksen, T.; Taetinen, P.

    1980-08-01

    Radionuclide migration was studied in a natural fissure in a granite core. The fissure was oriented parallel to the axis in a cylindrical core 30 cm long and 20 in diameter. The traced solution was injected at one end of the core and collected at the other. Breakthrough curves were obtained for the nonsorbing tracers tritiated water, and a large molecular weight lignosulphonate molecule and the sorbing tracers cesium and strontium. From the breakthrough curves for the nonsorbing tracers it could be concluded that channeling occurs in the single fissure. A 'dispersion' model based on channeling is presented. The results from the sorbing tracers indicate that there is substantial diffusion into and sorption in the rock matrix. Sorption on the surface of the fissure also accounts for a part of the retardation effect of the sorbing species. A model which includes the mechanisms of channeling, surface sorption matrix diffusion and matrix sorption is presented. The experimental breakthrough curves can be fitted fairly well by this model by use of independently obtained data on diffusivities and matrix sorption. (author)

  17. Tracer Movement in a Single Fissure in Granitic Rock: Some Experimental Results and Their Interpretation

    Science.gov (United States)

    Neretnieks, Ivars; Eriksen, Tryggve; TäHtinen, PäIvi

    1982-08-01

    Radionuclide migration was studied in a natural fissure in a granite core. The fissure was oriented parallel to the axis in a cylindrical core 30 cm long and 20 cm in diameter. The traced solution was injected at one end of the core and collected at the other. Breakthrough curves were obtained for the nonsorbing tracers, tritiated water, and a large-molecular-weight lignosulphonate molecule and for the sorbing tracers, cesium and strontium. From the breakthrough curves for the nonsorbing tracers it could be concluded that channeling occurs in the single fissure. A `dispersion' model based on channeling is presented. The results from the sorbing tracers indicate that there is substantial diffusion into and sorption in the rock matrix. Sorption on the surface of the fissure also accounts for a part of the retardation effect of the sorbing species. A model which includes the mechanisms of channeling, surface sorption, matrix diffusion, and matrix sorption is presented. The experimental breakthrough curves can be fitted fairly well by this model by use of independently obtained data on diffusivities and matrix sorption.

  18. Fracture overprinting history using Markov chain analysis: Windsor-Kennetcook subbasin, Maritimes Basin, Canada

    Science.gov (United States)

    Snyder, Morgan E.; Waldron, John W. F.

    2018-03-01

    The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.

  19. The spatial variation of initial 87Sr/86Sr ratios in the Toki granite, Central Japan. Implications for the intrusion and cooling processes of a granitic pluton

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Tsuruta, Tadahiko; Hama, Katsuhiro; Nishiyama, Tadao

    2013-01-01

    The spatial variation in initial 87 Sr/ 86 Sr ratios (SrI) in the Toki granite, Central Japan, shows heterogeneity ranging from 0.708942 to 0.710069, which provides information on the intrusion and cooling processes of plutons. The Toki granite has three mineralogy-based rock facies: muscovite-biotite granite (MBG), hornblende-biotite granite (HBG) and biotite granite (BG). Large SrI values were found to be distributed at the western margin (west MBG) and the lithologically central region (central BG), while small SrI values were found at the northeast margin (northeast MBG). Regions with high and low Sr concentrations were also found in the Toki granite. In the Sr-rich samples, SrI (0.708942-0.709789) increases with 100/Sr (0.7-1.5). This geochemical trend extends towards the country sedimentary rocks of the Mino Terrane, which can be interpreted to result from assimilation and fractional crystallization (AFC) between the original granitic magma and the Mino sedimentary rocks. The SrI values in the Sr-rich regions show a correlation with the Alumina Saturation Index (ASI). In particular, the west MBG, with large SrI values, is classified as a peraluminous granitoid with large ASI, suggesting that the western margin of the pluton was strongly affected by assimilation during the intrusion process. The Sr-poor samples are present both in the central BG, with large SrI values, and in the northeast MBG, with small SrI values. The Sr-poor samples have small ASI and large differentiation indices, indicating that the central BG and the northeast MBG were generated either by different AFC process with different amounts of contaminants or by the intrusion and fractionation of different source magma with different SrI values. Overall, the geochemical spatial variations found in the Toki granite can be explained by various degrees of assimilation and fractional crystallization in the magma chamber and/or multi-stage intrusions with different degrees of crystallization of

  20. Database for Hydraulically Conductive Fractures. Update 2010

    International Nuclear Information System (INIS)

    Tammisto, E.; Palmen, J.

    2011-02-01

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10 -10 -9 m 2 /s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  1. The Swedish Bohus granite - a stone with a fascinating history

    Science.gov (United States)

    Schouenborg, Björn; Eliasson, Thomas

    2015-04-01

    One of the most well-known and well spread Swedish stone types used as building stones is the Bonus granite. It outcrops in an area north of Gothenburgh (SW Sweden), along the coastline, approximately 35 km wide and 85 km long. The granite continues into Norway as the Iddefjord granite. The Bohus granite is one of Sweden's youngest granites. Isotopic dating shows that the magma cooled at about 920 M years ago and thus marking the end of the Sveconorwegian orogoney. It is a composite granite massif area with several granitic intrusions but with rather homogeneous mineralogy. However, colour and texture varies quite a lot and the colour ranges from red to reddish grey although some pure grey varieties occur sparsely. The grain size ranges from medium grained to coarse grained and even with some porphyric parts. Quarrying in an industrial scale started 1842. The merchant A C Kullgren opened the first quarry and produced stones for the construction of the 86 km long Trollhättan channel connecting lake Vänern and the Atlantic ocean in the SW Sweden The stone was used for constructing harbors and wharves along the channel. Several quarries opened in the late 1800 around 1870 - 1890 and the export increased steadily with deliveries to Germany, Denmark, Holland, England and even to South America. The stone industries in Bohuslän (Bohus county), at its peak in 1929, engaged around 7 000 employees. During the depression in 1930 almost all of them became unemployed. However, as a curiosity, production and export continued to Germany for construction of Germania, the future World capital city ("Welthauptstadt Germania"), planned by Adolf Hitler and Albert Speer. About 500 stone workers were kept employed for this project during the late thirties. Today several varieties are still produced: Evja/Ävja, Tossene, Brastad, Näsinge, Broberg, Nolby, Allemarken and Skarstad. However, the number of stone workers is far from that of the early 1900. The Swedish production is mainly

  2. Fluid inclusion study of the uranium mineralised granite cataclasite/mylonite and quartz reef in the Mulapalle area, Cuddapah district, Andhra Pradesh

    International Nuclear Information System (INIS)

    Thirupathi, P.V.; Tripathi, B.K.; Umamaheswar, K.; Dhana Raju, R.

    2004-01-01

    Granite cataclasite and mylonite in the basement fracture zones around Mulapalle in the southwestern environs of the Cuddapah basin are uraniferous with the presence of brannerite, U-Ti complex and uraninite. The ENE-WSW trending fracture zone is cut by NW-SE trending quartz reef. Fluid inclusion study carried out on quartz from the mineralized cataclasite and as well as from the quartz reef shows the presence of both primary [8-20 microns] and abundant secondary up to [6 microns] inclusions. Most of the inclusions are bi-phase (L+V) liquid rich having a degree of fill around 0.90 with constant liquid to vapour ratio. Few inclusions are liquid monophase and multiphase [S+L+V]. They behave as H 2 O-NaCl system and homogenize into liquid phase at low temperature range [125 to 200 degC] except some bi-phase inclusions in the barren quartz reef, which are found to behave as an impure H 2 O-NaCl system admixed with other salts. Wide variation of salinity in the range of 3-25 wt%e NaCl is recorded by the inclusions in both the mineralized cataclasite and the barren quartz reef. The trapping pressure [P T ] of the inclusions of barren quartz reef spreads between 200 to 600 bars while those of mineralized cataclasite restricts to upper end of that range. Some inclusions in mineralized cataclasite that homogenize at high temperatures [200 to 250 degC] show P T between 800 to 1000 bars. The presence of more than one population without any change in fluid composition indicate their origin at different stages of deformation modifying the primary inclusions of the granite and from fluids migrated through fractures at later stages. In the barren quartz reef, the distribution of inclusions of contrasting salinity implies the environment of mixing of connectively driven hydrothermal fluid of metamorphic origin and meteoric water. (author)

  3. Greisen deposits associated to carboniferous post-orogenic granites with mineralization potential, Sierra de Fiambala, Catamarca, Argentina

    International Nuclear Information System (INIS)

    Fogliata, A. S.; Rubinstein, N. R.; Avila, J. C.; Baez, M.

    2008-01-01

    The Fiambala range is located in the central south part of the province of Catamarca, Western Sierras Pampeanas, Argentina. It is largely conformed by Precambrian metamorphic rocks, a Cambrian granitic intrusive, Ordovician basic and ultra basic rocks and epi zonal Carboniferous granites (Los Ratones, El Salto and Ayacucho Granites). The Carboniferous granites are sub alkaline, weakly peraluminous, high silica (except for the porphyritic facies of Los Ratones granite) and moderately enriched in K. Contents of trace elements and REE indicate that El S alto and Ayacucho granites and the granular facies of Los Ratones granite have characteristics of evolved and differentiated granite associated with hydrothermal systems. The variations of trace elements, particularly Sn, W, U, Rb, Ba, Zr and Sr suggest that they correspond to granites with mineralization potential. Genetically linked to these granites there are Sn, W, U and minor base metals greisen deposits. The hydrothermal process that yield to these deposits involved two main alteration stages, beginning with alkali metasomatism follow by greissenization. According to the isotopic ages the hydrothermal processes postdate about 1 Ma the magmatic activity. The analyses of the granites and the associated greisen deposits confirm that the post orogenic carboniferous magmatism is the major metallogenetic control of the ore deposits from the studied area. This metallogenetic control could be a useful tool in prospecting similar deposits in the rest of the Western Sierras Pampeanas. (Author)

  4. Investigation of exfoliation joints in Navajo sandstone at the Zion National Park and in granite at the Yosemite National Park by tectonofractographic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bahat, D.; Grossenbacher, K.; Karasaki, K.

    1995-04-01

    Tectonofractographic techniques have been applied to the study of joint exfoliation in the Navajo sandstone at Zion National Park and in the granite at Yosemite National Park. New types of fracture surface morphologies have been observed which enabled the discerning of incipient joints and consequent fracture growth in these rocks. Incipient jointing in the sandstone is mostly manifested by elliptical and circular fractures (meters to tens meters across) initiating from independent origins. They interfere with each other and grow to larger circular fractures producing exfoliation surfaces up to hundreds of meters across. Less frequently, series of large concentric undulations demonstrate the propagation of a large fracture front producing exfoliation from an individual origin. One such fracture front reveals refraction of undulations at a layer boundary. Certain en echelon fringes surround the joint mirror plane with well defined rims of en echelons and hackles which enable the determination of the tensile fracture stress, {sigma}f. Arches in Zion National Park are ubiquitous in shape and size, revealing stages in their evolution by a mechanical process, which was associated with exfoliation, but independent of local faulting. Exfoliation and arching mostly occurred on vertical surfaces of N-NNW and NE sets of prominent joints, but there are also deviations from this general trend. In Yosemite National Park large exfoliations (hundreds of meters in size) developed on the El Capitan cliff by the interaction and merging of many previous smaller incipient joints that vary in size from meters to tens of meter.

  5. 2005 dossier: granite. Tome: architecture and management of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  6. Uraniferous alaskitic granites with special reference to the Damara Orogenic Belt

    International Nuclear Information System (INIS)

    Toens, P.D.; Corner, B.

    1980-10-01

    The control and patterns of uranium mineralisation in the alaskitic granites of the Damara Orogenic Belt are discussed. The polyphase Damara metamorphism produced high-grade metamorphic assemblages, migmatites and syn-, late-, and post-tectonic anatectic granites through reactivation of the basement and overlying Damara rocks. During anatexis the incompatible elements, particularly the uranium derived from these formations, were incorporated into the melts which then rose, in an attempt to attain gravitational equilibrium, by varying distances depending on the depth of origin of the melts, on their water content and on the availability of tensional environments. Fractional crystallisation during ascent and increased water content concentrated the uranium into residual melts which finally crystallised as alaskitic pegmatitic granite. Structural episodes played an important part in the emplacement of the uraniferous granites and the presence of marble bands was an important factor in not only providing a structural trap for the alaskitic melts and associated uranium-rich volatiles, but also by leading to the boiling of the magma and the subsequent deposition of uranium. The present-day level of erosion is considered to be an important factor contributing to the preservation of many of the uraniferous granite bodies. In addition it is suggested that secondary enrichment occurring above the water-table in the prevailing desert environment is an important criterion in enriching the tenor of mineralisation to ore grades. The exploration techniques necessary for the location of uraniferous granite bodies are briefly outlined [af

  7. Uranium distribution in Brazilian granitic rocks. Identification of uranium provinces

    International Nuclear Information System (INIS)

    Tassinari, C.G.G.

    1993-01-01

    The research characterized and described uranium enriched granitoids in Brazil. They occur in a variety of tectonic environments and are represented by a variety granite types of distinct ages. It may be deduced that in general they have been generated by partial melting process of continental crust. However, some of them, those with tonality composition, indicate a contribution from mantle derived materials, thus suggesting primary uranium enrichment from the upper mantle. Through this study, the identification and characterization of uranium enriched granite or uranium provinces in Brazil can be made. This may also help identify areas with potential for uranium mineralization although it has been note that uranium mineralization in Brazil are not related to the uranium enrichment process. In general the U-anomalous granitoids are composed of granites with alkaline composition and granite ''sensu strictu'' which comprise mainly of syenites, quartz-syenites and biotite-hornblende granites, with ages between 1,800 - 1,300 M.a. The U-anomalous belongings to this period present high Sr initial ratios values, above 0.706, and high Rb contents. Most of the U-enriched granitoids occur within ancient cratonic areas, or within Early to Mid-Proterozoic mobile belts, but after their cratonization. Generally, these granitoids are related to the border zones of the mobile belts or deep crustal discontinuity. Refs, 12 figs, 3 tabs

  8. Distribution of monazite in granite and alluvial of South Bangka

    International Nuclear Information System (INIS)

    Ngadenin

    2011-01-01

    Monazite is one source of thorium (Th), which has significant economic value and potential as an alternative fuel of nuclear power plants. The aims of research is to find out the distribution monazite alternative fuel of nuclear power plants. The aims of research is to find out the distribution monazite and its potential as a resource of radioactive minerals on the Bangka Island, then the data will be used and its potential as a resource of radioactive minerals on the Bangka Island, then the data will be used as a reference in the development of radioactive minerals exploration areas in the coming year. The research location is in the Bencah and Gadung villages, South Bangka Regency. The method used is the geological mapping, sampling of rock for petrographic, mineragraphic and autoradiographic analysis and heavy mineral for grains counting analysis. The results showed that lithologic area of Bencah Village composed of clay stone and alluvial deposits, while the Gadung Village composed by granite and alluvial deposits. Granite Gadung is predicted as the ilmenite series granite and tend to be of S type, while the material of Bencah alluvial is predicted come from the Klabat granite groups. In general, distribution of monazite in the alluvial slightly more potent of monazite than in the granite so that the development of radioactive minerals exploration will be prioritized in the alluvial areas. (author)

  9. The Sao Jose do Rio Pardo mangeritic-granitic suite, south eastern Brazil

    International Nuclear Information System (INIS)

    Campos Neto, M.C.; Figueiredo, M.C.H.; Janasi, V.A.; Basei, M.A.S.; Fryer, B.J.

    1988-01-01

    In the Sao Jose do Rio Pardo region, Sao Paulo and Minas Gerais States, occur some intrusive, folded tabular bodies of mangerites associated with hornblende granitoids. The country rocks correspond to a complex association of gneisses and migmatites, locally with granulite facies assemblages. Both the magnerites and hornblende granitoids present a tectonic foliation with mineral flattening and stretching. Petrographically the mangeritic rocks are mainly dark green quartz mangerites with mesoperthite, plagioclase, quartz, hypersthene, clinopyroxene and variable amounts of hornblende, with zircon as conspicuous acessory. The pink hornblende granitoids are mainly granite s.s. exhibiting higher quartz and amphibole contents and lacking pyroxenes. Hololeucocratic alkali feldspar granites are locally associated to the hornblende granites. The textures of the mangerites and granites almost always show an important metamorphic overprinting, with relictic mesoperthite and pyroxene crystal into a granoblastic matrix. The magneritic-granitic suite is characterized by relatively high Fe/(Fe + Mg), K and HFS elements and low Ca contents, being comparable to typical anorogenic magneritic-granitic suites from Svcandinavia and North America. The Rb/Sr data indicate a Late Proterozoic metamorphic isotopic rehomogenization (930 Ma, Ro = 0.706). Geological evidence suggest that the intrusive age could be Middle Proterozoic, wich is reinforced by another Rb-Sr value of about 1300 Ma. (author) [pt

  10. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  11. A Rb-Sr isotope study of a young granite sheet at Marble Delta, southern Natal

    International Nuclear Information System (INIS)

    Naidoo, D.D.; Eglington, B.M.; Harmer, R.E.

    1989-01-01

    Rb-Sr isotope data are presented for two apophyses of a granite sheet intrusive into marble at Marble Delta, southern Natal. Granite samples collected near the margins of these apophyses contain calcite and are thought to have been contaminated by the marble during intrusion of the granite magma. In contrast, those further away from contacts lack calcite. The 'uncontaminated' granite samples define an isochron date of 899 ± 11 Ma. This data is thought to represent the intrusive age of the granite sheet. 11 refs., 5 figs., 2 tabs

  12. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  13. Physical Properties of Fractured Porous Media

    Science.gov (United States)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  14. A structural analysis of the Minas da Panasqueira vein network and related fracture generations

    Science.gov (United States)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    and tip lines, we try to sort out if a dominant σ2 propagation direction, typical for hydrofractures, exists within the vein network. By doing so, we can evaluate whether the subhorizontal vein network formed under a compressive stress regime, or was mainly dictated by the strength anisotropy of the rocks under near-isotropic stress conditions of σhmax ≡ σhmin. The regional dominance of subhorizontal aplites, pegmatites and hydrothermal veins, exploiting subhorizontal fracture networks, occurs over a wide area of more than 100 km2 along the Serra de Estrela granitic massif (Derré et al., 1986). This orientation contrasts with the more common vertical attitude of granite-related hydrothermal veins, observed throughout the Iberian massif. A detailed orientation analysis of the fracture sets should allow to explore the possible causes of this particular late orogenic, flat-lying fracture network related to the granitic intrusion. References Derré, C., Lecolle, M., Roger, G., Tavares de Freitas Carvalho, J., 1986. Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by Sn-W, aplite-pegmatite and quartz veins, southeastern border of the Serra de Estrela granitic massif (Beira Baixa, Portugal). Ore Geology Reviews 1, 43-56. Foxford, K. A., Nicholson, R., Polya, D. A., and Hebblethwaite, R. P. B., 2000. Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal; evidence from vein spatial distributions, displacements and geometries. Journal of Structural Geology 22, 1065-1086.

  15. Core curriculum illustration: rib fractures.

    Science.gov (United States)

    Dunham, Gregor M; Perez-Girbes, Alexandre; Linnau, Ken F

    2017-06-01

    This is the 24th installment of a series that will highlight one case per publication issue from the bank of cases available online as part of the American Society of Emergency Radiology (ASER) educational resources. Our goal is to generate more interest in and use of our online materials. To view more cases online, please visit the ASER Core Curriculum and Recommendations for Study online at http://www.aseronline.org/curriculum/toc.htm .

  16. A metallogenetic model of supergene extraction, releasing and enrichment in the mixed zone for granite-type uranium deposits in south China

    International Nuclear Information System (INIS)

    Li Minglian.

    1986-01-01

    The major geological features and their related geological events provide a base for the modelling of granite-type uranium deposits in South China. This paper presents a metallogenetic model to suggest the process of ore fluid circulation. There are two streams of ore fluids moving in the fracture zone: one comes from meteoric water and extracts uranium from wall rocks, flowing from top to bottom which is named uranium-loading fluid; another derives from the depth of the crust flowing from bottom to top and contains reducing matters as H 2 S etc. called uranium-releasing fluid. These two streams of solutions of different genesis, composition and character encountered and mixed at certain depth to precipitate the uranium. During the process the longitudinal circulation of underground thermal water in fracture zone results in the Bernoulli latitudinal circulation of ore fluids, which caused the ore fluids to ceaselessly flow into the minerogenetic location, where mineralization can be formed continuously in a certain period

  17. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China

    Science.gov (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao

    2018-01-01

    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  18. Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1

    International Nuclear Information System (INIS)

    1998-12-01

    The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age

  19. Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine

    International Nuclear Information System (INIS)

    Martel, S.

    1992-04-01

    A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. This report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implication of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone. (72 refs.) (au)

  20. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    Science.gov (United States)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  1. Database for hydraulically conductive fractures. Update 2009

    International Nuclear Information System (INIS)

    Palmen, J.; Tammisto, E.; Ahokas, H.

    2010-03-01

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  2. Radiatives elements distribution in Serra do Carambei granite, Parana, Brazil

    International Nuclear Information System (INIS)

    Pinto-Coelho, C.V.; Siedlecki, K.N.

    1988-01-01

    In the Serra do Carambei Granite, the uranium present in the rock in anomalous concentration is hosted, preferentially, in accessory mineralogical phases-zircon, xenotime, magnetite and ilmenite, and, in lesser proportion, in the essential minerals of the rock-potassium feldspar and also iron oxydes/hydroxydes and alterated biotite. Optical petrography, autorradiomicrography, scanning electronic microscopy, and the utilization of correlation matrixes and the respective dendrograms revealed a distribution of radioactive elements basically controlled by autometassomatic, tardi/pos-magmatic or supergene processes. Intrusive felsic dikes in the Serra do Carambei Granite have radioelement concentration level approximately four times higher than the enclosing granite, where uranium as well as thorium is preferentially found in metamictized accessory minerals-zircon and allanite. (author) [pt

  3. Laboratory simulation of an oxidative disturbance in a deep granitic environment; Reconstitution au laboratoire des effets d'une pertubation oxydante en milieu granitique profond

    Energy Technology Data Exchange (ETDEWEB)

    Trotignon, L; Michaud, V; Lartigue, J E [CEA Saclay, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SESD), 91 - Gif-sur-Yvette (France)

    2000-07-01

    between the two experiments, especially for critical field parameters like bacterial populations and redox state. The in situ set-up is located in the deep part of the Aspo tunnel (-380 m below sea level). The replica set-up was built around the other half of the cored fracture surface. After 2 years of preparation, both experiments were run between May 1998 and July 1999. The replica adequately fulfilled the role of a mock-up, helping to dimension and define the experimental protocol, and also to identify major processes. The main limitation was the inability to reproduce correctly the in situ fluxes of geo-gases (H{sub 2}, CH{sub 4}) in the lab. Results obtained on the replica provided a better understanding of processes governing the fate of oxygen in deep granite environments, particularly by revealing the importance of the coupling between microbial metabolism and inorganic mineral - solution reactions. Iron reducing bacteria seem to play a key role in this respect. A simple model was proposed from the data obtained on the replica setup to describe O{sub 2} uptake kinetics. Important lessons were also drawn for the preparation of future underground experiments devoted to the study of metal corrosion: the role of bio-films located on different parts of the set-up cannot be ignored in the interpretation of results, e.g. hydrogen production, pH variation, etc. (authors)

  4. Figure-Ground Processing: A Reassessment of Gelb and Granit.

    Science.gov (United States)

    Nelson, Rolf; Hebda, Nicholas

    2018-03-01

    In 1923, Adhemar Gelb and Ragnar Granit, two prominent researchers in early Gestalt perceptual theory, reported a lower threshold for detection of a target (a small colored dot) on the ground region of an image than on an adjacent figural region. Although their results had a wide influence on the understanding of figure-ground perception, they are at odds with more recent investigations in which figural regions appear to have a processing advantage over ground regions. The two present studies replicated Gelb and Granit's experiment using a similar figure-ground stimulus albeit with a two-alternative forced choice procedure rather than their original method of adjustment. Experiment 1 found that, contrary to Gelb and Granit's findings, a detection advantage was found for the figural over the ground region. Experiment 2 indicated that explicit contours might have played a role in detection.

  5. Review of geomechanics data from French nuclear explosions in the Hoggar granite, with some comparisons to tests in US granite

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1983-05-01

    Numerous unclassified reports on the French nuclear explosions in the Hoggar (1961-1966) were reviewed from the standpoint of geomechanics. The following aspects of the tests are summarized: spectral content of the tests compared to U.S. results; shock front positions with time; cavity radius as a function of yield, coupling, density of rock, rock shear strength, and overburden; radial pressure, tangential pressure and peak velocity as a function of distance and yield; pressure vs. time at various distances; mechanical properties of granite; scaling laws for acceleration, velocity and displacement as a function of yield and distance for all Hoggar shots; extent of tunnel damage as a function of distance and yield; time to collapse of chimney as a function of yield, or cavity radius; extent of granite crushing and disking as a function of distance and yield cavity height relation to cavity radius; faulting and jointing on the Taourirt Tan Afella massif; and influence of water content on cavity radius vs. yield. Whenever possible, these French data are compared to corresponding data obtained in the U.S. granite events Hard Hat, Shoal, and Piledriver. The following results emerge from the comparison: (1) agreement is found between the French and U.S. experience for: mechanical properties of the granites, rock damage due to the blast, and yield-scaled peak values of acceleration, velocity and displacement; and (2) lack of agreement exists for: cavity size, chminey height, and time to cavity collapse. Average spacing of rock joints also was about 5 times greater in the Hoggar

  6. An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Jianming He

    2018-03-01

    Full Text Available The process of hydraulic fracturing makes use of a liquid to fracture reservoir rocks for the exploitation of unconventional resources. Hence, it is vital to understand the processes that produce the fracture networks that occur during hydraulic fracturing. A shale reservoir is one of the largest unconventional resources and it displays obvious anisotropic characteristics due to its inherent sedimentary structures. The viscosity and flow ability of the fracturing fluid plays an important role in this process. We conducted a series of hydraulic fracturing tests on shale cores (from the southern Sichuan Basin using freshwater and supercritical CO2 (SCO2 as fracturing fluids to investigate the different modes of fracture propagation. The pump pressure curves that we obtained during the fracturing experiment show how the shale responded to each of the fracturing fluids. We examined the influence of the anisotropic characteristics on the propagation of hydraulic fractures by conducting a series of hydraulic fracturing experiments on the shale cores using different bedding orientations. The bedding orientation of the shale had a profound influence on the fracture propagation when using either freshwater or a SCO2 fluid. The breakdown pressure of the shale core was affected not only by the bedding orientation but also by the fracturing fluid. A macroscopic observation of the fractures revealed different fracture geometries and propagation patterns. The results demonstrated that the anisotropic structures and the fracturing fluids could influence the path of the hydraulic fracture.

  7. High level and long life radioactive wastes. Todays situation and future evolutions. Framework and process of the Granite collegial mission of dialogue. FAQ about the Granite collegial mission of dialogue

    International Nuclear Information System (INIS)

    2000-03-01

    On December 9, 1998, the French government decided the construction of two underground laboratories for the study of the disposal of radioactive wastes in the deep underground. One site will be located in a granitic massif which remains to be determined. This document presents the framework and the different steps of the 'Granite' mission: the situation of radioactive wastes in France, some data about the conditioning, storage and reprocessing of high activity and long life radioactive wastes, the legal framework of the management of radioactive wastes and the related warranties, the disposal in deep underground and the realization of underground research laboratories, the government decision of December 9, 1998, the 'Granite' collegial mission of dialogue and the different steps of the geological surveys about granites. A second part answers some frequently asked questions about the 'Granite' collegial mission of dialogue: decision procedure, planning of the mission, consultation of the geologic survey, role of the mission, public information etc.. (J.S.)

  8. Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa

    Science.gov (United States)

    Schweitzer, J. K.; Hatton, C. J.; De Waal, S. A.

    1997-02-01

    Until recently, it was proposed that the Bushveld Complex, consisting of the extrusive Rooiberg Group and the intrusive Rashoop Granophyre, Rustenburg Layered and Lebowa Granite Suites, evolved over a long period of time, possibly exceeding 100 Ma. Most workers therefore considered that the various intrusive and extrusive episodes were unrelated. Recent findings suggest that the intrusive, mafic Rustenburg Layered Suite, siliceous Rashoop Granophyre Suite and the volcanic Rooiberg Group were synchronous, implying that the Bushveld igneous event was short-lived. Accepting the short-lived nature of the complex, the hypothesis that the granites are genetically unrelated to the other events of the Bushveld Complex can be reconsidered. Re-examination of the potential Rooiberg Group/Lebowa Granite Suite relationship suggests that the granites form part of the Bushveld event. Rhyolite lava, granite and granophyre melts originated from a source similar in composition to upper crustal rocks. This source is interpreted to have been melted by a thermal input associated with a mantle plume. Granite intruded after extrusion of the last Rooiberg rhyolite, or possibly overlapped in time with the formation of the youngest volcanic flows.

  9. Rare metal granites in the structures of the Russian sector of Pacific ore belt

    Directory of Open Access Journals (Sweden)

    В. И. Алексеев

    2016-08-01

    Full Text Available Data are presented on the geology of areas of rare metal granites proliferation in the Russian sector of the Pacific Ore Belt that make one take a fresh look at the East Asian granitoid area to update its metallogeny. History is reviewed of studying rare metal granites of the Russian Far East. As a rule, these are found in the vicinity of major tungsten-stanniferous ore deposits, except much later than discovering the former, at the stages of their assessment and survey. Rare earth granites are usually missed by the geologists during the early stages of regional geological surveys due to their small size, weak eroding and external similarity with earlier granites. Using the examples of the Central Polousny, Badzhal and Kuyviveem-Pyrekakay regions the structural and geological conditions are characterized of localization of rare metal granites. Comparative analysis of geological situations made it possible to formulate the areal character of manifestation of rare metal granites; their confinedness to late Mesozoic orogenic arched uplifts of bogen structures above deep granitoid batholiths; positioning in the areas where longitudinal and transversal deep laying faults cross; gravitation to the environs of pre-Cambrian median masses. Similarity of structural-geological conditions for manifestation of the well-studied ore-containing granites serves to confirm the hypothesis on the joint stage of late Cretaceous rare metal magmatism in the Russian sector of the Pacific Ore Belt and the existence in the region of a magmatic super-province – the Far East belt of rare metal granites that includes the Novosibirsk-Chukotka, the Yana-Kolyma and the Sikhote-Alin rare metal – granite provinces.

  10. Dynamic characterisation of the specific surface area for fracture networks

    Science.gov (United States)

    Cvetkovic, V.

    2017-12-01

    One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide

  11. Comparative Study on The Geological and Geochemical Characteristics of Some Rare-Metal Granites, Southeastern Desert, Egypt

    International Nuclear Information System (INIS)

    El Galy, M.M.; Khaleal, F.M.; Bakhit, A.F.

    2016-01-01

    The Egyptian younger granites are characterized by the presence of more than 14 exposures of rare- metal granites. The studied granites are included into three geological modes of occurrence. The first includes Igla and Abu Dabbab plutons, which occur as small stocks of circular, ovoid, or apophyses and leucocratic outcrops. The second comprises the plugs and dyke-like bodies intruded peralkaline granites of Bir Um Hibal. The third includes Homrit Waggat and Muweilha plutons. vThey cover small areas and exhibit obvious pervasive post magmatic alterations. The petrographic and mineralogical studies are confirmed by the geochemical investigations indicating that the concerned rare-metal granites being broadly distinguished into magmatic and metasomatic associations. The magmatic granite associations are further subdivided into two subgroups; i) peraluminous granites (Li-mica rich) including Igla and Abu Dabbab plutons and ii) peralkaline granites including Um Hibal pluton. The studied peraluminous granites are generally enriched in Nb, Rb, Ta, Li, F, Y, Zr, U and Th elements. The peralkaline granites are enriched in K_,0 oxide as well as Zr, Nb, F, U, Th and Ta elements. On the other hand, the metasomatic granite associations are represented by Homrit Waggat and Muweilha plutons. They are characterized by high contents of Na_2O oxide as well as Nb, Ta, U, Th and Rb elements. Igla pluton has highest average U and Th contents (42 ppm and 58 ppm respectively), while Um Hibal pluton has lowest average U and Th contents (14 ppm and 26 ppm respectively)

  12. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  13. Formation of chemical gardens on granitic rock. A new type of alteration for alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Hisao [Mitsubishi Materials Corporation, Naka (Japan). Energy Project and Technology Center; Tsukamoto, Katsuo [Tohoku Univ. Aramaki, Sendai (Japan). Dept. of Earth and Planetary Materials Science; Garcia-Ruiz, Juan Manuel [Granada Univ., Armilla (Spain). Lab. de Estudios Cristalograficos

    2014-06-15

    In order to understand the groundwater flow at near-underground facilities such as waste repositories, we have studied the effects of flowing an alkaline solution leached from cementitious building materials through the fractures of low-porosity granitic rocks under laboratory conditions. The results show that silica released from the dissolution of sodium-rich plagioclase and quartz reacts with the calcium leached from cementitious buildings to form calcium silicate hydrates (C-S-H) phases in the form of hollow tubular structures. These tubular structures form selectively on the surface of plagioclase in a similar way to reverse silica gardens structures. It was found that the rate of precipitation of C-S-H phases is faster than the rate of dissolution of plagioclase. This selftriggered dissolution/precipitation phenomenon may be an important factor controlling groundwater permeation in natural alkaline underground systems.

  14. Formation of chemical gardens on granitic rock. A new type of alteration for alkaline systems

    International Nuclear Information System (INIS)

    Satoh, Hisao; Tsukamoto, Katsuo; Garcia-Ruiz, Juan Manuel

    2014-01-01

    In order to understand the groundwater flow at near-underground facilities such as waste repositories, we have studied the effects of flowing an alkaline solution leached from cementitious building materials through the fractures of low-porosity granitic rocks under laboratory conditions. The results show that silica released from the dissolution of sodium-rich plagioclase and quartz reacts with the calcium leached from cementitious buildings to form calcium silicate hydrates (C-S-H) phases in the form of hollow tubular structures. These tubular structures form selectively on the surface of plagioclase in a similar way to reverse silica gardens structures. It was found that the rate of precipitation of C-S-H phases is faster than the rate of dissolution of plagioclase. This selftriggered dissolution/precipitation phenomenon may be an important factor controlling groundwater permeation in natural alkaline underground systems.

  15. The regional geological and structural setting of the uraniferous granitic provinces of Southern Africa

    International Nuclear Information System (INIS)

    Jacob, R.E.; Corner, B.; Brynard, H.J.

    1986-01-01

    Uranium-bearing granites, comprising both potentially economic deposits and source rocks for uranium deposits is duricrustal and sedimentary sequences, are confined chiefly to the mobile belts of Southern Africa and to the Cape granites emplaced during late Precambrian times. The direct uranium potential of the mobile belts, i.e. the Damara, Namaqua-Natal and Limpopo belts, decreases with an increase in the age of associated ensialic diastrophism. This review paper is thus mainly confined to the Damara Belt, although a brief discussion of the potential of the Namaqua Belt is presented. Aspects of the Damara Belt that are discussed in detail, with particular reference to the occurrence of uraniferous granite, include regional tectonic setting, stratigraphy, structure, metamorphism and the patterns and origin of the uranium mineralization. Initial concentrations of uranium in basement and Nosib rocks have led, through ultrametamorphism and fractionation, to uraniferous granites of both economic and sub-economic grade. These granites, in turn, have acted as source of secondary mineralization in overlying superficial calcareous and gypsiferous deposits. The Damara Belt thus provides a good example of multicyclic processes of ore formation. With regard to the uraniferous granites of Namaqualand it is concluded that the porphyroblastic gneisses and late-intrusive Concordia granites, although not of direct economic interest, represent major sources of uranium for secondary superficial deposits. Smaller bodies of late-phase differentiates associated with the Concordia granitic gneiss may themselves, however, represent potentially economically viable deposits

  16. Petrogenesis of Mesozoic granites in the Xitian, South China: Evidence from whole-rock geochemistry and zircon isotopes

    Science.gov (United States)

    Liu, Q.; Sun, J.; He, M.; Hou, Q.; Niu, R.

    2017-12-01

    Mesozoic granitoids are widespread in southeastern China, which accompanied with lots of world-famous polymetallic deposits. The mineralization is believed to be related to the Mesozoic granitic magmatism. However, the petrogenesis of these granites and their relation to the mineralization are still debated. As a typical granitic pluton, Xitian granites from the eastern Hunan Province are formed during this period and associated with tungsten-tin deposit. Whole-rock geochemical, SIMS zircon geochronology and oxygen isotopes, as well as LA-ICPMS zircon Lu-Hf isotopic analyses, were carried out on a suite of rocks from Xitian granitic pluton to constrain their magmatic sources and petrogenesis. Xitian granitic pluton is mainly composed of biotite adamellite, biotite granite, fine-grained granite. SIMS and LA-ICPMS U-Pb dating of zircons indicate that there are two episodes of these rocks, i.e., Late Triassic granites (227-233Ma) and Late Jurassic granites (150-154Ma). The Xitian granites are silica-rich, potassic and weakly peraluminous. Petrographic and geochemical features show that they are highly fractionated I-type granites. The combined elemental and isotopic results indicated that the Late Triassic granite in Xitian area experienced a process of crystal fractionation of crustal-derived magmas coupled with strong assimilation of the surrounding rocks. The occurrence of Jurassic granitoids in Xitian area is attributed to ascending of mantle-derived magmas, which provide heat for partial melting of crustal materials. The Late Jurassic granite may be derived from juvenile crust or partial melting of ancient crustal rocks, whereas high degrees of crystal fractionation further enriched tungsten-tin in the evolved granitic rocks. This work was financially supported by the Research Cooperation between Institute and University of Chinese Academy of Sciences grant (Y552012Y00), Public Welfare Project of the Ministry of land and Resources of China (201211024

  17. Correlation of transmissive fractures in pilot holes ONK-PH8 - PH12 and fracture traces mapped in ONKALO

    International Nuclear Information System (INIS)

    Palmen, J.; Nummela, J.; Ahokas, H.

    2014-05-01

    In a preceding study Posiva flow logging (PFL) with a 0.5 m test interval and 0.1 m steps has been used together with optical drillhole images and core logging fracture data for the exact determination of the depth of hydraulically conductive fractures in pilot holes. The fracture traces have been mapped from the ONKALO tunnel walls as a part of the systematic mapping. The mapping results has been digitized to a 3D tunnel layout in Surpac programme. The data integrity and fracture trace uniqueness has been verified by Datactica Oy and further collected to a database (RakokantaDatacticaPosiva20100607.mdb). Fractures mapped with leakage attribute have been defined as flowing, dripping, wet, or damp where the attribute is recorded. The fractures with no leakage attribute value appear to be non leaking. The water leaking surfaces on the ONKALO tunnel walls have been mapped sequentially and conclusively (once or twice a year) as a part of the Olkiluoto monitoring program (OMO) using an equal five step measure as used with fracture traces in systematic mapping. The PFL results correlated with core logging fracture data from the pilot holes ONK-PH8 - ONK-PH12 were in this work further correlated with the fractures mapped from the ONKALO tunnel walls. Each hydraulically conductive fracture of ONK-PH8 - ONK-PH12 was investigated and linked to ONKALO fracture of a coherent orientation and matching location, where such fracture trace was available. Also tunnel crosscutting fracture (TCF) data was used in combining, since the systematic mapping data was not yet available for the pilot holes ONK-PH11 and ONK-PH12 at the time of the evaluation. The main objective of the work was to identify the ONKALO fractures which correspond to the flow from fracture(s) identified with the PFL method in pilot holes and to collect basic information about the occurrence, frequency and orientation of water bearing fractures along the ONKALO tunnel. The correlated hydraulically conductive

  18. Correlation of transmissive fractures in pilot holes ONK-PH8 - PH12 and fracture traces mapped in ONKALO

    Energy Technology Data Exchange (ETDEWEB)

    Palmen, J.; Nummela, J.; Ahokas, H. [Poeyry Finland Oy, Vantaa (Finland)

    2014-05-15

    In a preceding study Posiva flow logging (PFL) with a 0.5 m test interval and 0.1 m steps has been used together with optical drillhole images and core logging fracture data for the exact determination of the depth of hydraulically conductive fractures in pilot holes. The fracture traces have been mapped from the ONKALO tunnel walls as a part of the systematic mapping. The mapping results has been digitized to a 3D tunnel layout in Surpac programme. The data integrity and fracture trace uniqueness has been verified by Datactica Oy and further collected to a database (RakokantaDatacticaPosiva20100607.mdb). Fractures mapped with leakage attribute have been defined as flowing, dripping, wet, or damp where the attribute is recorded. The fractures with no leakage attribute value appear to be non leaking. The water leaking surfaces on the ONKALO tunnel walls have been mapped sequentially and conclusively (once or twice a year) as a part of the Olkiluoto monitoring program (OMO) using an equal five step measure as used with fracture traces in systematic mapping. The PFL results correlated with core logging fracture data from the pilot holes ONK-PH8 - ONK-PH12 were in this work further correlated with the fractures mapped from the ONKALO tunnel walls. Each hydraulically conductive fracture of ONK-PH8 - ONK-PH12 was investigated and linked to ONKALO fracture of a coherent orientation and matching location, where such fracture trace was available. Also tunnel crosscutting fracture (TCF) data was used in combining, since the systematic mapping data was not yet available for the pilot holes ONK-PH11 and ONK-PH12 at the time of the evaluation. The main objective of the work was to identify the ONKALO fractures which correspond to the flow from fracture(s) identified with the PFL method in pilot holes and to collect basic information about the occurrence, frequency and orientation of water bearing fractures along the ONKALO tunnel. The correlated hydraulically conductive

  19. ''In situ'' migration tests at the Berrocal site with conservative isotopic tracers: laboratory and field results from phase I of the project

    International Nuclear Information System (INIS)

    D'Alessandro, M.; Mousty, F.; Guimera, J.; Yllera de Llano, A.

    1996-01-01

    Cross-hole migration tests were performed between two boreholes connected by a fracture in the granite aquifer of the El Berrocal site. The suitability of a natural isotopic tracer (''79BR) as hydrological marker of groundwater movement, was evaluated on the basis of laboratory and field tests. Small scale infiltration experiments with granite cored columns and repacked columns of crushed granite showed that the change of the natural isotopic ratio ''79Br/''81Br with time can be used to monitor the tracer breakthrough. Comparison was made with other non-sorbing tracers, such as tritiated water, chloride and iodide. The difference in travel time of halides was ascribed to anion exclusion and ion size effects. The in-situ migration test demonstrated the feasibility of the described technique for monitoring the groundwater movement without altering the geochemistry of the site. The following approach has been chosen: 1) a first preliminary test demonstrating the feasibility of using the enriched isotopic tracer technique for ''in-situ''tests. 2) Preliminary assessment of the parameters necessary to plan a radial-flow migration test directed to characterize the permeable system through the definition of the hydrodynamic parameters of the fracture. (Author)

  20. Carboniferous granite basement dredged from a site on the southwest margin of the Challenger Plateau, Tasman Sea

    International Nuclear Information System (INIS)

    Tulloch, A.J.; Kimbrough, D.L.; Wood, R.A.

    1991-01-01

    Discordant zircon fractions from a granite sample dredged off a basement horst on the western margin of the Challenger Plateau yield a 335 ± 7 Ma lower intercept date interpreted as the crystallisation age of the granite. This age, and the modal composition of the granite, is similar to that of the Karamea Suite of Westland and Nelson, New Zealand, and some Tasmanian granites. The concordia upper intercept date of 1747 ± 300 Ma implies the presence of Proterozoic continental crustal material in the source region of the granite. The Challenger granite is distinct from older S-type granites of southeastern Australia and I-type granites of northern Victoria Land and Marie Byrd Land, Antarctica. Subsequent to emplacement, the granite was brecciated and hydrothermally altered. A K-Ar age of 95 Ma on hydrothermal sericite indicates that this event overlapped with a major crustal extension event recorded in Westland and Nelson, and predates the oldest known sea floor in the Tasman Basin by at least 11 Ma. (author). 23 refs., 3 figs., 2 tabs

  1. Analysis of Shield Construction in Spherical Weathered Granite Development Area

    Science.gov (United States)

    Cao, Quan; Li, Peigang; Gong, Shuhua

    2018-01-01

    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  2. A compilation of radioelement concentrations in granitic rocks of the contiguous United States

    International Nuclear Information System (INIS)

    Stuckless, J.S.; VanTrump, G. Jr.

    1982-01-01

    Concentration data for uranium, thorium, and potassium have been compiled for approximately 2,500 granitic samples from the contiguous United States. Uranium and thorium concentrations and ratios involving these elements exhibit a log-normal distribution with statistical parameters. In order to check for a bias in the results due to high concentrations of data in anomalous or heavily sampled areas, the data were reevaluated by averaging all analyses within a 0.5 0 latitude by 0.5 0 longitude grid. The resulting data set contains 330 entries for which radioelements are log-normally distributed. Mean values are not significantly different from those of the ungridded data, but standard deviations are lower by as much as nearly 50 percent. The areal distribution of anomalously high values (more than one standard deviation greater than the geometric mean) does not delineate large uranium districts by either treatment of the data. There is sufficient information for approximately 1,500 samples to permit subdivision of the granites by degree of alumina saturation. Relative to the six variables listed above, peraluminous samples have slightly lower mean values, but the differences are not statistically significant. Standard deviations are also largest for the peraluminous granites with α for Th/U nearly 3 times larger for peraluminous granite than for metaluminous granite. Examination of the variations in Th/U ratios for a few specific granites for which isotopic data are available suggests that variability is caused by late-stage magmatic or secondary processes that may be associated with ore-forming processes. Therefore, although anomalous radioelement concentrations in granitic rocks do not seem to be useful in delineating large uranium provinces with sediment-hosted deposits, highly variable uranium concentrations or Th/U ratios in granitic rocks may be helpful in the search for uranium deposits

  3. Petrogenesis of Malaysian tin granites: geochemistry, fractional crystallization, U-Pb zircon geochronology and tectonic setting

    Science.gov (United States)

    Wai-Pan Ng, Samuel; Searle, Mike; Whitehouse, Martin; Chung, Sun-Lin; Ghani, Azman; Robb, Laurence; Sone, Masatoshi; Oliver, Grahame; Gardiner, Nick; Roselee, Mohammad

    2014-05-01

    The Malaysian tin granites forming the backbone of the Thai-Malay Peninsula has been long recognized with two distinct granitic provinces:- 1. Early Permian to Late Triassic Eastern Province with mainly "I-type" (Hbl)-Bt granites with associated Cu-Au deposits, with subordinate Bt granites hosting limited Sn-W deposits, and 2. Late Triassic Main Range Province with mainly "S-type" Bt granites with associated Sn-W deposits, and subordinate (Hbl)-Bt granites. New geochemical data show that Chappell and White's (1974) I-S granite classification adopted in the existing model does not adequately distinguish the granites from one another as previously implied. Trace element geochemistry and Sr-Nd isotopic compositions show that the Malaysian tin granites in both provinces have transitional I-S characteristics. In addition, they inherited within-plate signature from Cambro-Ordovician Gondwana-related source rocks. Previous ages were obtained by whole rock Rb-Sr and biotite K-Ar geochronology in the 70s and 80s, dating methods that may not accurately represent the crystallization age of granites. We re-sampled the entire Malaysian Peninsula and 40 samples were collected for high-precision U-Pb SIMS dating on extracted zircon grains in order to better constrain the magmatic and tectonic evolution of Southeast Asia. The crystallization ages of the Eastern Province granitoids have been constrained ranging from 220 to 290 Ma, while the Main Range (Western) Province granitoids have ages ranging from 200 to 230 Ma. A progressive westward younging trend is apparent across the Eastern Province, but becomes less obvious in the Main Range Province. Our model suggests two east dipping subduction zones. We suggest that subduction roll-back along the Bentong-Raub suture might account for the westward younging trend, in the Eastern province. A second Late Triassic east-dipping subduction zone beneath western Malaysia is proposed in order to explain the "I-type" components to the Main

  4. Continuous time random walk analysis of solute transport in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  5. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  6. Assessment of radioactivity in building material(granite) in Sudan

    International Nuclear Information System (INIS)

    Osman, Z. A; Salih, I; Albadwai, K. A; Salih, A. M; Salih, S. A.

    2016-01-01

    In the present work radioactivity in building materials (granite) central Sudan was evaluated. In general the building materials used in Sudan are derived either from rocks or soil. These contain trace amounts of naturally occurring radioactive materials(NORMs), so it contains radionuclides from uranium and thorium series and natural potassium. The levels of these radionuclides vary according to the geology of their site of origin. High levels increase the risk of radiation exposure in homes(especially exposure due to radon). Investigation of radioactivity in granite used of the building materials in Sudan is carried out, a total of 18 major samples of granite have been collected and measured using X- ray fluorescence system (30 mci). The activity concentrations have been determined for uranium ("2"3"8U), thorium ('2"3"2Th) and potassium("4"0K) in each sample. The concentrations of uranium have been found to range from 14.81 Bq/kg to 24.572 Bq/kg, thorium between 10.02 Bq/kg and 10.020-84.79 Bq/kg and the potassium concentration varies between 13.33 Bq/kg to 82.13 Bq/kg. Limits of radioactivity in the granite are based on dose criteria for controls. This study can be used as a reference for more extensive studies of the same subject in future. (Author)

  7. Geochemistry and isotope hydrology of groundwaters in the Stripa Granite: results and preliminary interpretation

    International Nuclear Information System (INIS)

    Fritz, P.; Barker, J.F.; Gale, J.E.

    1979-04-01

    The results of geochemical and isotopic analyses on water samples from the granite at Stripa, Sweden, are presented. Groundwater samples collected from shallow, private wells; surface boreholes; and boreholes drilled from the 330 m and 410 m mine levels were analyzed for their major ion chemistry, dissolved gases, and environmental isotope contents. The principal change in the chemical load with depth is typified by chloride concentration, which increases from less than 5 mg/liter to about 300 mg/liter. There is a parallel increase in pH, which changes from about 6.5 to over 9.75. It is important to notice that calcite saturation is maintained and that, because of rising pH, dissolved inorganic carbon is lost. The total carbonate content thus decreases from about 70 mg/liter to less than 7 mg/liter. The 18 O and deuterium analyses demonstrate that different fracture systems contain different water masses, whose age increases with depth. Groundwater age determinations with 14 C and isotopes of the uranium decay series strongly indicate that water ages exceed 25,000 years. The 13 C contents of the aqueous carbonate in these groundwaters indicate groundwater recharge through vegetated soil, presumably during an interglacial period. The 13 C and 18 O determinations show that most fracture calcites have formed in a wide variety of depositional environments, and not in the waters circulating today

  8. U/Th-isotopes as natural analogues for the mobility of actinides in granitic rocks

    International Nuclear Information System (INIS)

    Mengel, K.; Gerdes, A.

    2001-01-01

    The short-lived decay products of 238 U ( 234 U and 230 Th) can be used as natural analogues for actinides in a hard rock repository. Their mobility in the past may serve as a key for understanding actinide migration in the future. For generally old calcites of the HRL Aespoethe age of disturbance of 238 U/ 234 U and 234 U/ 230 Th activity ratios ranges from 30 000 to 436 000 years at degrees of disturbance ranging from 0.5 to 6.7. The results obtained imply that during the past 440 000 years U was mobile throughout the tunnel sections of the HRL Aespoeinvestigated here. For the FL Grimsel, the disequilibrium states of the 234 U/ 238 U and 230 Th/ 234 U activity ratios in fracture minerals (calcites silicates) also imply that the reactions causing isotopic disturbances have occurred within the past 500 000 years. The U/Th-isotope data of both the samples from the HRL Aespoeand the FL Grimsel have in common the mobilization of U in secondary fracture minerals by migrating solutions within the past 500 000 years. As for the question of a final disposal of radioactive waste in granite host rocks, the transport of U - and thus of similarly behaving actinides - in migrating underground solutions can therefore not be ruled out, if suitable hydraulic systems are considered. (orig.)

  9. Study on Sr-Nd isotopes of mesozoic-cenozoic granites in Qinghai-Tibetan plateau

    International Nuclear Information System (INIS)

    Qiu Ruizhao; Deng Jinfu; Zhou Su; Xiao Qinghui; Cai Zhiyong

    2003-01-01

    Mesozoic-Cenozoic magmatic activities were intensive in Qinghai-Tibetan plateau. Nd-Sr isotopic compositions of representative granitic plutons in western Qinghai-Tibetan plateau are reported in this paper. Combining with past isotopic data, which has reported in eastern Qinghai-Tibetan plateau, Sr-Nd isotopic compositions and material source and genesis of Mesozoic and Cenozoic granites in Qinghai-Tibetan plateau have been studied. The research result indicates there are three types of granite existing in Qinghai-Tibetan plateau, the granites of Late stage of Yanshan Period which distributing on north and south boundary of Gandes block (namely in north and south granitic belts of Dangdes) and cause of oceanic crust subduction, have ( 87 Sr/ 86 Sr)i of 0.7041-0.7064, ε (Nd) t of +2.5 - +5.7 and TDM age of 312-562 Ma, positive ε Nd, low ( 87 Sr/ 86 Sr)i ratio and young Nd model ages suggest relatively high contents of mantle-derived components in their sources, and this type granite might melt from subduction oceanic crust. The granites occurred intra-Gangdes block which were caused by collision of continent and post-collision, have ( 87 Sr/ 86 Sr)i of 0.706-0.719, ε (Nd) t of -5.3 - -8.3 and TDM age of 1323-1496 Ma, negative ε Nd, relative high ( 87 Sr/ 86 Sr)i ratio with an mid-Proterozoic Nd model ages, suggest granite has the mixing genesis of mantle-derived components and old crustal components in their sources. With relatively small variation range in ε (Nd) t and TDM age, it might imply granitic isotopic source in Gandes block to keep relative homogenization in long period. The granites in Himalayan block which there is not oceanic material to join in melting and to cause of intra-continental subduction, has most ( 87 Sr/ 86 Sr)i ratio more than 0.720, ε (Nd) t of -10.3 - -16.3 and TDM age of 1792-2206 Ma, high ( 87 Sr/ 86 Sr)i ratio, low negative ε (Nd)t with old Nd isotopic model ages and consistent with the Sr, Nd isotopic compositions of basement

  10. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    Science.gov (United States)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  11. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  12. Chemical analysis of minerals in granitic rocks by electron probe micro analyser

    International Nuclear Information System (INIS)

    Hiraoka, Yoshihiro

    1994-01-01

    The chemical compositions of minerals in a few granitic rocks were determined by electron probe micro analyser (EPMA). The accurate analytical data for standard feldspar groups were obtained by correcting the low analytical values of sodium and potassium that were arised from the damage in EPMA analysis. Using this method, feldspar groups and biotites in three granitic rocks gathered from Hiei, Hira and Kurama areas respectively, were analyzed. As the results, the local characteristics were observed in the kinds of feldspar groups and the chemical compositions of biotites that were contained in granitic rocks. (author)

  13. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    Science.gov (United States)

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  14. Studies of Transport Properties of Fractures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  15. Geology and geochronology of Mata Surrao granites - South-West of Rio Maria - Para State, Brazil

    International Nuclear Information System (INIS)

    Duarte, K.D.; Pereira, E.D.; Dall'Agnol, R.; Lafon, J.M.

    1991-01-01

    This paper summarize the preliminary data about a geological mapping on the scale 1:50.000 located at an area in the southeastern part of the Para State. The recognized units comprise the Mata Surrao granite, which is within the typical Archean Granite-Greenstone Terrain of Rio Maria, and has mainly a monzogranitic composition. Its foliation is restricted to the north and east borders. The mapped host rocks are represented by Tonalitic Ortho gneisses, Gneisses with Pegmatites, Migmatite Gneisses, both latter show different deformation rates. Rb/Sr on whole rock systematics had been applied for the Mata Surrao granite and yield an age of 2541 ± 74 Ma with Sr initial ratio of 0.71040 ± 343 (MSWD = 2.81). This data revealed another Archean granitic body (strictu sensu) related to the Rio Maria Granite-Greenstone Terrain. Such age can be interpreted either as the crystallization age of this granitic body, or a renewed one caused by the thermo tectonic event that affected the region at the end of Archean time. It can be deduced from the initial ratio that an important crustal contribution controlled the Mata Surrao granite genesis. (author)

  16. Scale effect experiment in a fractured rock mass. Pilot study in the certified Fanay-Augeres mine (F)

    International Nuclear Information System (INIS)

    Durand, E.; Peaudecerf, P.; Ledoux, E.; De Marsily, G.

    1985-01-01

    This report (in two volumes) presents the results of a first phase of research about ''scale effect'' on permeability and solute transport in a fractured rock mass, to assess its suitability for future disposal of radioactive wastes. The gallery which was ''certified'' is located in the Fanay-Augeres mine(F), at a depth of about 175 m, in a granite mass. The portion selected for the subsequent experimental work is about 100 m long

  17. Aftershocks and triggering processes in rock fracture

    Science.gov (United States)

    Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.

    2017-12-01

    One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.

  18. Effect of reinforcement with resin composite on fracture strength of structurally compromised roots.

    Science.gov (United States)

    Fukui, Yuji; Komada, Wataru; Yoshida, Keiichi; Otake, Shiho; Okada, Daizo; Miura, Hiroyuki

    2009-09-01

    This study was aimed at evaluating the fracture resistance of structurally compromised roots restored with four different post and core systems. Thirty-two bovine roots were uniformly shaped to simulate human mandibular premolar roots. The roots were divided into four groups based on the type of restoration: cemented cast post and core (Group MC), resin composite build-up (Group CR), resin composite and prefabricated glass fiber post build-up (Group FRC), and thick-layer dual-cured resin composite-reinforced small-diameter tapered cast post and core (Group CRM). After a static loading test, the failure mode and fracture resistance were recorded. Group CRM (719.38+/-196.73 N) exhibited a significantly high fracture resistance compared with the other groups (Group MC: 429.56+/-82.43 N; Group CR: 349.56+/-66.21 N; Group FRC: 398.94+/-112.71 N; pCRM exhibited better mechanical properties for structurally compromised roots with no ferrules, although all types of restorations showed non-restorable fracture modes.

  19. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    Science.gov (United States)

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  20. Correlation of transmissive fractures in holes OL-PH1, ONK-PH2 .. ONK-PH7 and ONKALO tunnel fractures

    International Nuclear Information System (INIS)

    Palmen, J; Nummela, J.; Ahokas, H.

    2011-02-01

    In a preceding study Posiva flow logging (PFL) with a 0.5 m test interval and 10 cm steps has been used together with optical drillhole images and core logging fracture data for the exact determination of the depth of hydraulically conductive fractures in pilot holes. The fracture traces has been mapped from the ONKALO tunnel walls as a part of the systematic mapping. The mapping results has been digitized to a 3D tunnel layout in Surpac Vision programme. The data integrity and fracture trace uniqueness has been verified by Datactica Oy and further collected to a database (Rakokanta D atactica P osiva20091119.mdb). Water leakage of the mapped fractures exists as an attribute field for each fracture, but the value of the attribute has not been assessed conclusively. Those fractures mapped with leakage attribute have been defined as flowing, dripping, wet, or damp where the attribute is recorded. The fractures with no leakage attribute value appear to be dry (not leaking) or the information is not available (assessment was not performed). The water leaking surfaces on ONKALO tunnel wall have been mapped sequentially and conclusively (twice a year) as a part of the Olkiluoto monitoring program (OMO) using an equal five step measure as used with fracture traces in systematic mapping. The PFL results correlated with core logging fracture data from pilot holes OL-PH1 and ONK-PH2 .. ONK-PH7 were in this work further correlated with the fractures mapped from the ONKALO tunnel walls. Each hydraulically conductive fracture of OL-PH1 and ONK-PH2 - ONK-PH7 was investigated and linked to ONKALO fracture of a coherent orientation and matching location, where such fracture trace was available. The main objective of the work was to identify the ONKALO fractures which correspond to the flow from fracture(s) identified with the PFL method in pilot holes and to collect basic information about the occurrence, frequency and orientation of water bearing fractures along ONKALO tunnel