WorldWideScience

Sample records for fracture resistance measurement

  1. Characterizing Fracture Property Using Resistivity Measured at Different Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N. [Stanford Univ., CA (United States); Li, Kewen [Stanford Univ., CA (United States)

    2014-09-30

    The objective was to develop geophysical approaches to detecting and evaluating the fractures created or existing in EGS and other geothermal reservoirs by measuring the resistivity at different frequencies. This project has been divided into two phases: Phase I (first year): Proof of Concept – develop the resistivity approach and verify the effect of frequency on the resistivity in rocks with artificial or natural fractures over a wide range of frequencies. Phase II: Prototyping Part 1 (second year): measure the resistivity in rocks with fractures of different apertures, different length, and different configurations at different frequencies. Part 2 (third year): develop mathematical models and the resistivity method; infer the fracture properties using the measured resistivity data.

  2. Diffusivity and electrical resistivity measurements in rock matrix around fractures

    International Nuclear Information System (INIS)

    Kumpulainen, H.; Uusheimo, K.

    1989-12-01

    Microfracturing of rock matrix around permeable fractures was studied experimentally from drill core samples around major fractures. The methods used were diffusion measurements using a 36 Cl-tracer and electrical resistivity measurements. Rock samples were from the Romuvaara investigation site, the granite specimen around a partially filled carbonate fracture (KR4/333 m) and gneiss specimen around a slickenside fracture (KR1/645 m). A consistent difference of one to two orders of magnitude in the levels of the methods with regard to the effective diffusion coefficients for Cl - -ion was found, the electrical resistivity measurement giving higher values. On the basis of the diffusion measurements the diffusion porosities could be calculated but these remained one to two orders of magnitude lower than that expected for granitic rocks using the water saturation method. A possible reason for these differences could have been the low, in some cases 0.004 M NaC1-concentration in the diffusion experiments vs. the 1 M NaCl-concentration used in the electrical resistivity measurements. Due to the small number of specimens and cross sectional areas of only 2 cm 2 , rock inhomogeneity effects were significant making the interpretation of the results somewhat troublesome. Porosities on fracture surfaces seemed to be higher than in the deeper, more intact rock matrix

  3. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    Science.gov (United States)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the

  4. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  5. Small-scale electrical resistivity tomography of wet fractured rocks.

    Science.gov (United States)

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  6. An approach to ductile fracture resistance modelling in pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L.N.; Fredj, A. [BMT Fleet Technology Ltd., Kanata (Canada)

    2009-07-01

    Ductile fracture resistance studies of high grade steels in the pipeline industry often included analyses of the crack tip opening angle (CTOA) parameter using 3-point bend steel specimens. The CTOA is a function of specimen ligament size in high grade materials. Other resistance measurements may include steady state fracture propagation energy, critical fracture strain, and the adoption of damage mechanisms. Modelling approaches for crack propagation were discussed in this abstract. Tension tests were used to calibrate damage model parameters. Results from the tests were then applied to the crack propagation in a 3-point bend specimen using modern 1980 vintage steels. Limitations and approaches to overcome the difficulties associated with crack propagation modelling were discussed.

  7. In vitro fracture resistance of three commercially available zirconia crowns for primary molars.

    Science.gov (United States)

    Townsend, Janice A; Knoell, Patrick; Yu, Qingzhao; Zhang, Jian-Feng; Wang, Yapin; Zhu, Han; Beattie, Sean; Xu, Xiaoming

    2014-01-01

    The purpose of this study was to measure the fracture resistance of primary mandibular first molar zirconia crowns from three different manufacturers-EZ Pedo (EZP), NuSmile (NSZ), and Kinder Krowns (KK)-and compare it with the thickness of the zirconia crowns and the measured fracture resistance of preveneered stainless steel crowns (SSCs). The thickness of 20 zirconia crowns from three manufacturers were measured. The mean force required to fracture the crowns was determined. Preveneered NuSmile (NSW) SSCs were tested as a control. EZP crowns were significantly thicker in three of the six measured locations. The force required to fracture the EZP crown was significantly higher than that required for NSZ and KK. There was a positive correlation between fracture resistance and crown thickness in the mesial, distal, mesioocclusal, and distoocclusal dimensions. None of the zirconia crowns proved to be as resistant to fracture as the preveneered SSCs. Statistically significant differences were found among the forces required to fracture zirconia crowns by three different manufacturers. The increase in force correlated with crown thickness. The forces required to fracture the preveneered stainless steel crowns were greater than the forces required to fracture all manufacturers' zirconia crowns.

  8. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    Science.gov (United States)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  9. Role of Alcohol on the Fracture Resistance of Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Ravi K.; Kinney, John H.; Tomsia, Antoni P.; Ritchie,Robert O.

    2006-05-01

    Healthy dentin, the mineralized tissue that makes up the bulk of the tooth, is naturally hydrated in vivo; however, it is known that various chemical reagents including acetone and ethanol can induce dehydration and thereby affect its properties. Here, we seek to investigate this in light of the effect alcohol can have on the mechanical properties of dentin, specifically by measuring the stiffness, strength and toughness of dentin in simulated body fluid and scotch whisky. Results indicate that chemical dehydration induced by the whisky has a significant beneficial effect on the elastic modulus, strength and fracture toughness of dentin. Although this makes teeth more resistant to fracture, the change in properties is fully reversible upon rehydration. This effect is considered to be associated with increased cross-linking of the collagen molecules from intermolecular hydrogen-bonding where water is replaced with weaker hydrogen-bond forming solvents such as alcohol.

  10. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  11. Evaluation of Fracture Resistance in Root Canal-Treated Teeth ...

    African Journals Online (AJOL)

    2018-06-11

    Jun 11, 2018 ... Objective: This study aimed to evaluate the effects of different coronal restoration techniques on fracture ... Therefore, the application of horizontal fiber posts in. MOD cavities has .... Table 1: Median and 25% and 75% quartile values of the groups n ..... restorations on fracture resistance and failure mode of.

  12. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Kaytbay, Saleh; El-Hadek, Medhat

    2014-01-01

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  13. A multi-packer technique for investigating resistance to flow through fractured rock and illustrative results

    International Nuclear Information System (INIS)

    Bourke, P.J.; Rae, J.

    1981-01-01

    A multi-packer technique was used to locate twelve discrete fractures in the lower half of a 200 m deep drill hole in Cornish granite. The resistances to water flows into these fractures both singly and together were measured. Geological explanations of the results obtained were sought by examination of core from the hole. Analysis of the results and the further data needed and now being sought to determine resistance to flow over long distances through the pattern of interconnected fractures are discussed. This information is required for the assessment of the safety of burial of radioactive wastes

  14. Assessment of copper resistance to stress-corrosion cracking in nitrite solutions by means of joint analysis of acoustic emission measurements, deformation diagrams, qualitative and quantitative fractography, and non-linear fracture mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Khanzhin, V.G.; Nikulin, S.A. [Moscow State Inst. of Steel and Alloys (Russian Federation)

    2005-06-01

    A study of stress-corrosion cracking (SCC) of copper in 0.1M NaNO{sub 2} aqueous solution is presented. The fracture kinetics was monitored by measuring the acoustic emission (AE) signals. Macro- and micro-fractography analysis, using scanning electron microscopy (SEM), was employed to investigate the fracture mechanisms. Estimates of stress intensity factor, KI, and J-integral were derived in order to assess the resistance of copper to stress corrosion cracking. Two kinds of SCC tests under continuous circulation of the corrosive solution were employed in the present study: 1. Constant extension rate (2x10{sup -6}/s) tests on pre-cracked, middle tension (MT) panel specimens. 2. Tests on pre-cracked, compact tension (CT) specimens at a fixed (by a fixing bolt) opening of the crack walls ({delta} = 0.3 mm, K{sub i} = 27 MPax{radical}m). The time base for these tests was about two months. After the completion of the SCC test, the CT specimen was additionally tested, under a constant-rate (0.02 mm/s) off-center extension. In the both kinds of tests, the SCC fracture kinetics is found to exhibit two typical stages: Stage 1: SCC initiation stage (after a certain incubation period, T{sub i}, measured to be T{sub i} {approx_equal} 3-4 hours for MT specimens under constant extension, the corresponding stress was {sigma} {approx_equal} 40-70 MPa, and T{sub i} {approx_equal} 200 hours for CT specimens under a fixed crack wall opening). Stage 2: Active fracture process (SCC macro-fracture) distinguished by strong AE pulses (which are registered after time T{sub 2} {approx_equal} 8 hours for MT specimens and T{sub 2} {approx_equal} 800 hours for CT specimens). Fractography analysis has shown that the zone of SCC fracture in MT specimens extends to approximately 1,500 {mu}m. A 400-700 {mu}m deep zone of brittle transgranular fracture, which included small areas showing characteristic SCC 'striations', was observed adjacent to the fatigue pre-crack area. At higher

  15. Electrical resistivity measurements to predict abrasion resistance

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Electrical resistivity measurements to predict abrasion resistance of rock aggregates ... It was seen that correlation coefficients were increased for the rock classes. In addition ...

  16. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  17. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Rothwell, Brian; Carlson, Lorne; Fletcher, Leigh; Venton, Philip

    2010-01-01

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  18. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Arévalo, R.; Sørensen, Bent F.

    2014-01-01

    molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance. © 2014 Springer Science......The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron...... microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general...

  19. Effect of MTA and Portland Cement on Fracture Resistance of Dentin

    Directory of Open Access Journals (Sweden)

    Maryam Forghani

    2013-06-01

    Full Text Available Background and aims. It is important to evaluate the effects of endodontic materials on tooth structures to avoid endodontic treatment failure. The aim of the present study was to investigate the effect of mineral trioxide aggregates (MTA and Portland cement (PC on fracture resistance of dentin. Materials and methods. Thirty-six freshly extracted human single-rooted premolar teeth were selected. The crowns were removed and the roots were randomly divided into two experimental groups and one control group. The root samples were longitudinally divided into two halves and a dentin bar (2×2×10 mm was cut from each root section for short-term (2 weeks and long-term (12 weeks evaluations. The root sections in the experimental groups were exposed to MTA or PC, while keeping the control group specimens in physiologic saline. The fracture resistance of each specimen was measured using an Instron testing machine. The results were statistically analyzed using ANOVA, a post hoc Tukey test and paired ttest at 5% significance level. Results. The fracture resistance of MTA-treated specimens significantly increased between 2 and 12 weeks (P0.05. Conclusion. The results showed that MTA increased the fracture resistance of root dentin, while PC had no significant effect on dentin fracture resistance.

  20. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  1. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Pcomposite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  2. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  3. Fracture resistance of teeth submitted to several internal bleaching protocols.

    Science.gov (United States)

    Leonardo, Renato de Toledo; Kuga, Milton Carlos; Guiotti, Flávia Angélica; Andolfatto, Carolina; Faria-Júnior, Norberto Batista de; Campos, Edson Alves de; Keine, Kátia Cristina; Dantas, Andrea Abi Rached

    2014-03-01

    The aim of this study was to evaluate the fracture resistance of teeth submitted to several internal bleaching protocols using 35% hydrogen peroxide (35HP), 37% carbamide peroxide (37CP), 15% hydrogen peroxide with titanium dioxide nanoparticles (15HPTiO2) photoactivated by LED-laser or sodium perborate (SP). After endodontic treatment, fifty bovine extracted teeth were divided into five groups (n = 10): G1-unbleached; G2-35HP; G3-37CP; G4-15HPTiO2 photoactivated by LED-laser and G5-SP. In the G2 and G4, the bleaching protocol was applied in 4 sessions, with 7 days intervals between each session. In the G3 and G5, the materials were kept in the pulp teeth for 21 days, but replaced every 7 days. After 21 days, the teeth were subjected to compressive load at a cross head speed of 0.5 mm/min, applied at 135° to the long axis of the root using an eletromechanical testing machine, until teeth fracture. The data were submitted to ANOVA and Tukey tests (α = 5%). The 35HP, 37CP, 15HPTiO2 and SP showed similar fracture resistance teeth reduction (p > 0.05). All bleaching treatments reduced the fracture resistance compared to unbleached teeth (p endodontically-treated teeth, but there were no differences between each other. There are several internal bleaching protocols using hydrogen peroxide in different concentrations and activation methods. This study evaluated its effects on fracture resistance in endodontically-treated teeth.

  4. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Science.gov (United States)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  5. Electromigration early resistance increase measurements

    NARCIS (Netherlands)

    Niehof, J.; Flinn, P.A.; Maloney, T.J.

    1993-01-01

    An early resistance change measurement set-up, using an AC bridge technique, has been developed, and measurements have been performed. Large sample-to-sample variations occur. The characteristic time for the resistance change curve is shorter for resistance increase (under current stress) than for

  6. Fracture Resistance of Zirconia Restorations with a Modified Framework Design

    Directory of Open Access Journals (Sweden)

    sakineh Nikzadjamnani

    2017-12-01

    Full Text Available Objectives: Chipping is one of the concerns related to zirconia crowns. The reasons of chipping have not been completely understood. This in-vitro study aimed to assess the effect of coping design on the fracture resistance of all-ceramic single crowns with zirconia frameworks. Materials and Methods: Two types of zirconia copings were designed (n=12: (1 a standard coping (SC with a 0.5mm uniform thickness and (2 a modified coping (MC consisted of a lingual margin of 1mm thickness and 2mm height connected to a proximal strut of 4mm height and a 0.3mm-wide facial collar. After veneer porcelain firing, the crowns were cemented to metal dies. Afterwards, a static vertical load was applied until failure. The modes of failure were determined. Data were calculated and statistically analyzed by independent samples T-test. P<0.05 was considered statistically significant.Results: The mean and standard deviation (SD of the final fracture resistance equaled to 3519.42±1154.96 N and 3570.01±1224.33 N in SC and MC groups, respectively; the difference was not statistically significant (P=0.9. Also, the mean and SD of the initial fracture resistance equaled to 3345.34±1190.93 N and 3471.52±1228.93 N in SC and MC groups, respectively (P=0.8. Most of the specimens in both groups showed the mixed failure mode. Conclusions: Based on the results, the modified core design may not significantly improve the fracture resistance.

  7. Increase in cellular concrete resistance to brittle fracture

    International Nuclear Information System (INIS)

    Chernyshov, E.M.; Krokhin, A.M.

    1979-01-01

    Considered are theoretical premises of decrease in cellular concrete resistance to brittle fracture at the expense of dispersed reinforcement. It is stated experimentally that the introduction of 3% asbestos fibers permits to increase the ultimate extensibility and strength during cellular concrete tension by 15-30% and to increase in unit rupture work 1.4-1.6 time more and therefore to decrease its brittleness

  8. Fracture toughness measurements on zirconia toughened ceramics

    International Nuclear Information System (INIS)

    El Sayed Ali, M.; Toft Soerensen, O.

    1986-12-01

    Three techniques for fracture toughness measurements on zirconia toughened ceramics were evaluated: the notched beam (NB) technique, the indentation fracture (IF) technique and the indentation strength in bending (ISB) technique. Using these techniques comparative measurements were performed on samples prepared by pressing (uniaxial) and sintering of four commercially available powder types. These were: Toya Soda (Japan) powders with the designations TZ3Y (2.86 mole% Y 2 O 3 ), TZ3YA (2.77 mole% Y 2 O 3 , 0.1 wt% Al 2 O 3 ) and TZ3Y20A (2.88 mole% Y 2 O 3 , 20 wt.% Al 2 O 3 ) and a powder supplied by Viking Chemicals (Denmark) designated as YP5Z-2.5 (2.5 mole% Y 2 O 3 ). The measurements showed that similar K Ic values were obtained with the IF- and ISB-techniques, which therefore are recommended for K Ic measurements. Too high values were, however, obtained with the NB-technique which therefore cannot be recommended. Finally, the measurements showed that a high temperature annealing is recommended prior to testing for the IF-technique. (author)

  9. The relationship between material fracture resistance and the kinetics of fracture in steel components

    International Nuclear Information System (INIS)

    Irvine, W.H.

    1978-01-01

    The conditions necessary for the onset of fast brittle fracture are reasonably well understood. However with increasing material ductility at normal engineering stress levels the effects of structure size and type of loading become more important and make the understanding of the behaviour of large structures and laboratory test pieces and their inter-relation, more difficult.By using Berry's concept of a fracture locus, it is shown that the crack size - stress level - material fracture resistance relationship, as typified for instance by the Griffith-Irwin formulae, is necessary and sufficient for defining the point at which fast brittle fracture occurs, but that in the case of fast ductile fracture it is not sufficient by itself and must be supplemented by a description of the unloading path of the structural system. Although the demarcation line between these two types of behaviour is seen to be dependent on stress level it can nevertheless provide a definition of brittle and ductile fracture in engineering structures. Berry's use of the Griffith equation to describe the separation of the crack tip material limits any practical use of his locus equation to stress levels that are low by present day engineering standards. Consideration is given to the use of relationships describing crack tip failure which are more appropriate for the ductilities and stress levels of current engineering interest. These equations explicitly involve the size of the crack tip perturbation and therefore allow a direct check to be made on validity. Examples are given of the application of these methods to describe fractures which have occurred in structural components. (author)

  10. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    Science.gov (United States)

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N

  11. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  12. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    Science.gov (United States)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  13. Fracture resistance of teeth restored with packable and hybrid composites

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2006-06-01

    Full Text Available Background and Aim: With recent introduction of packable composites, it is claimed that they apply less stress on tooth structure because of reduced polymerization shrinkage, and similarity of coefficient of thermal expansion to tooth structure. However, the high viscosity may in turn cause less adaptation, so it is not clearly known whether these materials strengthen tooth structure or not. The aim of this study was to evaluate fracture resistance of maxillary premolars, receiving hybrid or packable composite restorations with different methods of application and curing. Materials and Methods: In this experimental study, seventy five intact premolars were randomly assigned to five groups of 15 teeth each. One group was maintained intact as the control group. Similar MOD cavities were prepared in the other teeth. The teeth in group two were restored with Spectrum in incremental layers and light cured with 500 mw/cm2 intensity. The third group were filled with Surefil and cured with light intensity of 500 mw/cm2. The groups four and five were restored with Surefil in bulk technique with two different modes: 500 mw/cm2 intensity and a ramp mode (100-900 mw/cm2 respectively. After thermocycling, force to fracture was assessed and degree of conversion (DC at the bottom of cavities was evaluated for different modes and methods. The curing and placement methods in groups tested for DC (A to D were the same as fracture resistance groups (2 to 5. Data were analyzed using one way ANOVA and Tukey HSD tests with p<0.05 as the limit of significance. Results: All the restored groups showed significantly less fracture resistance than the control group, but had no significant difference among themselves. DC of Spectrum was higher than Surefil. Bulk method with 500 mw/cm2 light intensity, significantly decreased DC. DC in bulk method with high light intensity was not significantly different from incremental method with 500 mw/cm2 light intensity. Conclusion

  14. J-R Fracture Resistance of SA533 Gr.B-Cl.1 Steel for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji-Hyun; Hong, Seokmin; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A rolled plate might show different mechanical behaviors from a forging, even though they contain same chemical compositions. Furthermore, it is known that the fracture behavior of a rolled plate is very sensitive to material orientation comparing to a forging. In this study, the J-R fracture resistances of SA533 Gr.B-Cl.1 plate were measured at reactor operating temperature and the material orientation sensitivity was discussed. The decrease of fracture resistance of this kind of low alloy steel at an elevated temperature is known as the effect of dynamic strain aging (DSA). It was attributed to that the carbides and grains elongated to primary rolling direction, so that the aspect ratio of carbides and grains in the specimen with T-L orientation is larger. Generally, the hard second phase could take a roll of trigger point of unstable fracture. It is needed that the fracture surfaces of the tested specimens to be examined profoundly.

  15. Fracture resistance of welded panel specimen with perpendicular crack in tensile

    International Nuclear Information System (INIS)

    Gochev, Todor; Adziev, Todor

    1998-01-01

    Defects caused by natural crack in welded joints of high-strength low-alloy (HSLA) steels are very often. Perpendicular crack in welded joints and its heat treatment after the welding has also an influence on the fracture resistance. The fracture resistance of welded joints by crack in tense panel specimens was investigated by crack mouse opening displesment (CMOD), the parameter of fracture mechanic. Crack propagation was analysed by using a metallographic analysis of fractured specimens after the test. (Author)

  16. Effects of solidified microstructures on J-R fracture resistances of the surge line pipe welds

    International Nuclear Information System (INIS)

    Youn, J. H.; Lee, B. S.; Yoo, W.

    2003-01-01

    The cause of the difference in J-R fracture resistances of AISI Type 347 GTAW welds which had almost same amounts of chromium carbides were investigated by the microstructural observations. As a result, the difference in the fracture resistances with the morphologies of the retained δ-ferrites in Type 347 welds were observed. The fracture resistance of the weld which had mostly vermicular type δ-ferrites was inferior to the weld which has lacy and acicular mixed type δ-ferrites. Therefore, it was deduced that the morphology of δ-ferrites affected the J-R fracture resistances of Type 347 welds

  17. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  18. Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology

    Science.gov (United States)

    Frómeta, D.; Tedesco, M.; Calvo, J.; Lara, A.; Molas, S.; Casellas, D.

    2017-09-01

    Lightweight designs and demanding safety requirements in automotive industry are increasingly promoting the use of Advanced High Strength Steel (AHSS) sheets. Such steels present higher strength (above 800 MPa) but lower ductility than conventional steels. Their great properties allow the reduction of the thickness of automobile structural components without compromising the safety, but also introduce new challenges to parts manufacturers. The fabrication of most cold formed components starts from shear cut blanks and, due to the lower ductility of AHSS, edge cracking problems can appear during forming operations, forcing the stop of the production and slowing down the industrial process. Forming Limit Diagrams (FLD) and FEM simulations are very useful tools to predict fracture problems in zones with high localized strain, but they are not able to predict edge cracking. It has been observed that the fracture toughness, measured through the Essential Work of Fracture (EWF) methodology, is a good indicator of the stretch flangeability in AHSS and can help to foresee this type of fractures. In this work, a serial production automotive component has been studied. The component showed cracks in some flanged edges when using a dual phase steel. It is shown that the conventional approach to explain formability, based on tensile tests and FLD, fails in the prediction of edge cracking. A new approach, based on fracture mechanics, help to solve the problem by selecting steel grades with higher fracture toughness, measured by means of EWF. Results confirmed that fracture toughness, in terms of EWF, can be readily used as a material parameter to rationalize cracking related problems and select AHSS with improved edge cracking resistance.

  19. Fracture resistance of bleached teeth restored with different procedures

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available This study evaluated the fracture resistance of teeth submitted to internal bleaching and restored with different non-metallic post. Eighty mandibular incisors were endodontically treated and randomly divided in 10 groups (n = 8: G1- restored with composite resin (CR, G2- CR + fiber-reinforced composite post (FRC, Everstick post, Sticktech cemented with resin cement self-etch adhesive (RCS, Panavia F 2.0, Kuraray, G3- CR + FRC + self-adhesive resin cement (SRC, Breeze, Pentral Clinical, G4- CR+ glass fiber post (GF, Exacto Post, Angelus + RCS, G5- CR + GF + SRC. The G6 to G10 were bleached with hydrogen peroxide (HP and restored with the same restorative procedures used for G1 to G5, respectively. After 7 days storage in artificial saliva, the specimens were submitted to the compressive strength test (N at 0.5 mm/min cross-head speed and the failure pattern was identified as either reparable (failure showed until 2 mm below the cement-enamel junction or irreparable (the failure showed <2 mm or more below the cement-enamel. Data were analyzed by ANOVA and Tukey test (α = 0.05. No significant difference (p < 0.05 was found among G1 to G10. The results suggest that intracoronal bleaching did not significantly weaken the teeth and the failure patterns were predominately reparable for all groups. The non-metallic posts in these teeth did not improve fracture resistance.

  20. Fracture resistance improvement of polypropylene by joint action of core-shell particles and nucleating agent

    International Nuclear Information System (INIS)

    Yang Gang; Han Liang; Ding Haifeng; Wu Haiyan; Huang Ting; Li Xiaoxi; Wang Yong

    2011-01-01

    Research highlights: →The core-shell particles, which were prepared from melt blending of POE and nano-CaCO 3 , and different nucleating agents (α-form NA or β-form NA) were first introduced into PP to prepare the super toughened PP materials. →NAs control the crystalline structures of PP matrix including the spherulites diameter and the crystal form. →NAs and core-shell particles exhibit apparent joint effect in improving the fracture resistance of PP. - Abstract: As a serial work about the fracture resistance improvement of polypropylene (PP), this work reports the joint effect of core-shell particles and nucleating agent (NA) on the microstructure and fracture resistance of PP. Core-shell particles were prepared through melt blending of ethylene-octene copolymer (POE) and calcium carbonate (CaCO 3 ). Different NA, i.e. α-form NA (P-tert-butylbenzoic acid-Al, MD-NA-28) and β-form NA (aryl amides compound, TMB-5) were introduced into PP matrix to control the crystalline structure. The phase morphology of POE and the distribution of CaCO 3 were characterized by using scanning electron microscope (SEM), and the crystallization behavior of PP matrix were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarization optical microscope (POM). The mechanical properties were obtained through universal tensile measurement and notched Izod impact measurement. Surprisingly, the results show that through addition of so-called core-shell particles and NA simultaneously, the fracture resistance of PP can be dramatically improved.

  1. In Vitro Evaluation of the Effect of Tooth Structure Loss on Fracture Resistance of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    Shirinzad M

    2017-06-01

    Full Text Available Introduction: Since preserving the structure of treated teeth is a critical success factor, studying the effects of tooth structure loss on fracture resistance of the tooth tissue appears necessary. The aim of this study was to evaluate the consequences of the loss of different tissues regarding fracture resistance of teeth undergoing root canal treatment without the use of indirect restorations. Methods :In this experimental study, 70 healthy maxillary first premolar teeth were randomly divided into 7 groups of 10 members, including control group, endodontic access preparation only, MOD cavity preparation, cutting buccal cusp, cutting palatal cusp, cutting buccal cusp and marginal ridge, and cutting the palatal cusp and marginal ridge. The coronal section of teeth was restored incrementally with light cure composite. Finally, samples underwent compressive load with 45˚ angle from each cusp slope in the middle of cusp with an instant speed of 1 mm per min in the Instron machine. Fracture resistance was measured and samples were examined under stereo-microscope to evaluate the mode of failure. Results: The resistance to fracture in root canal treated teeth in different groups in order from first to seventh was 797.13 ± 52.92, 722.50 ± 131.40, 432.15 ± 203.20, 592.66 ± 195.86 124.53 ± 33.09, 85.17 ± 18.45, and 26.03 ± 5.21 Newton. ANOVA test showed statistically significant differences between the groups in terms of their fracture resistance (P = 0.000. Conclusions: The results showed that fracture resistance levels of teeth were significantly affected by amount of their tissue loss. In this study, removal of teeth palatal cusp and marginal ridge had a significant effect on decreasing the fracture resistance, while removing the buccal cusps alone cannot have a significant effect.

  2. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  3. Electrical Resistivity Measurements: a Review

    Science.gov (United States)

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  4. Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2016-01-01

    A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...

  5. Hidden contributions of the enamel rods on the fracture resistance of human teeth

    OpenAIRE

    Yahyazadehfar, M.; Bajaj, Devendra; Arola, Dwayne D.

    2012-01-01

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack ...

  6. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  7. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John

    2016-03-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.

  8. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  9. Evaluation of elastic-plastic fracture of toughness and fracture resistance of carbon steel STS42

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Nakamura, Haruo; Kashiwagi, Kohmei

    1987-01-01

    The elastic-plastic fracture toughness (J Ic ) and fracture resistance (J-R curve) of a carbon steel, STS42, used for piping in a nuclear reactor were evaluated according to the several evaluating methods recommended or proposed so far, to discuss their applicability and utility. The results obtained are as follows: (1) In evaluating J Ic , the multiple specimen method recommended by the Japan Society for Mechanical Engineers (JSME standard S001) gives the most reliable results by using smaller sized specimens. (2) The single-specimen methods by using the compliance technique, adopted in the ASTM standards (E813, E813 modified, Tentative test procedure for determining the plain strain J-R curve), do not give an accurate J-R curve or J Ic , due to an error in the calculated crack length. (3) In evaluating the J-R curve, it is necessary to account for crack extension in calculating the J-integral. (4) According to the above results, a new standard method for determining the J-R curve including the J Ic test method should be poprosed. (author)

  10. Fracture mechanical investigations about crack resistance behaviour in non-transforming ceramics in particular aluminum oxide

    International Nuclear Information System (INIS)

    Baer, K.K.O.; Kleist, G.; Nickel, H.

    1991-03-01

    The aim of this work is the clearification of R-curve behaviour of non-transforming ceramics, in particular aluminum oxide exhibiting incrystalline fracture. Investigations of crack growth in controlled bending experiments were performed using 3-Pt- and 4-Pt-bending samples of differing sizes under inert conditions. The fracture experiments were realized using several loading techniques, for example constant and varying displacement rates, load rupture (P = 0) and relaxation tests (v = 0). In addition unloading and reloading experiments were performed to investigate hysteresis curves and residual displacements in accordance with R-curve behaviour. During the crack-growth experiments, the crack extension was measured in situ using a high resolution immersion microscope. With this technique, the fracture processes near the crack tip (crack activity zone) was observed as well. The crack resistance as a function of crack extension (R-curve) was determined using differing calculation methods. All of the methods used resulted in approximately identical R-curves, within the statistical error band. The crack resistance at initiation R 0 was 20 N/m. The crack resistance increased during approximately 3 mm of growth to a maximum of 90 N/m. A decrease in the crack resistance was determined for large a/W (crack length normalized with sample height) values, independant of the calculation methods. The R-curve behaviour was interpreted as due to a functional resistance behind the observed crack tip, which arises from a volume dilatation in the crack activity zone while the crack proceeds. (orig.) [de

  11. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  12. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-01-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media

  13. Fracture toughness measurements of WC-based hard metals

    International Nuclear Information System (INIS)

    Prakash, L.; Albert, B.

    1983-01-01

    The fracture toughness of WC-based cemented carbides was determined by different methods. The values obtained are dependent on the procedure of measurement. Each method thoughness of hard metals mutually. (orig.) [de

  14. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    Science.gov (United States)

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  15. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side of the transfo......Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side...

  16. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and

  17. Fracture resistance of reattached incisor fragments with mini fibre-reinforced composite anchors.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Kreulen, C.M.; Wolke, J.G.C.; Fokkinga, W.A.; Machado, C.; Creugers, N.H.J.

    2009-01-01

    OBJECTIVES: Fractured coronal fragments of incisors can be adhered to the remaining tooth with resin composite, but are prone to failure. This study explores whether mini fibre-reinforced composite (FRC) anchors increase fracture resistance of reattached fragments. METHODS: Forty-five extracted

  18. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  19. Effects of the Ratio between Pigment and Bleaching Gel on the Fracture Resistance and Dentin Microhardness of endodontically treated Teeth.

    Science.gov (United States)

    Galloza, Marina Og; Jordão-Basso, Keren Cf; Bandeca, Matheus C; Costa, Samuel O; Borges, Alvaro H; Tonetto, Mateus R; Tirintan, Fabio C; Keine, Kátia C; Kuga, Milton C

    2017-11-01

    The aim of this study was to evaluate the effects of bleaching gel using 35% hydrogen peroxide (HP), associated with red carmine pigment (RC), in the 3:1 or 1:1 ratio, on fracture resistance and dentin microhardness of endodontically treated teeth. A total of 40 lower incisors were endodontically treated and divided into four groups (n = 10), according to the bleaching protocol: G1 (HP3), 35% HP + RC (3:1); G2 (HP1), 35% HP + RC (1:1); G3 (positive), 38% HP; and G4 (negative), unbleached. Four dental bleaching sessions were performed. The dental crowns were restored after the last session and submitted to the fracture resistance test. Totally, 60 specimens from the endodontically treated lower incisor crowns were prepared to evaluate the effects on dentin microhardness. The analysis was measured (in Knoop) prior to and after the last dental bleaching session using similar bleaching protocols. G2 presented the lowest fracture resistance (p 0.05). No difference was observed in the reduction of dentin microhardness among the groups (p > 0.05). A 1:1 ratio (bleaching gel:pigment) caused a significant fracture resistance reduction in relation to the other protocols. No effect on the dentin microhardness reduction was observed. The pigment addition to the bleaching agent accelerates the bleaching chemical reaction. However, no studies have evaluated the ideal proportion to optimize tooth bleaching.

  20. Fracture-specific pressure measurements at the Olkiluoto site in Eurajoki drillhole OL-KR39

    International Nuclear Information System (INIS)

    Ripatti, K.; Poellaenen, J.; Hurmerinta, E.; Rouhiainen, P.

    2011-12-01

    An option was built to the Posiva Flow Log, Difference flow method (PFL DIFF). A double packer device was combined together with a PFL DIFF probe. The new tool was needed for measurements of the very low hydraulic head. Indications of these were detected earlier in some fractures of drillhole OL-KR39. The target fractures could be measured with the accurate absolute pressure sensor in the PFL DIFF probe. Principles of the methods and the results of measurements are presented in this report. The measurements were carried out in drillhole OL-KR39 at the Olkiluoto investigation site between April 2011 and May 2011. The device used includes a sensor for single point resistance (SPR). SPR measurement is used to place the device accurately on the chosen fracture. The section length limited by the packers is about 1 m. The measurements were carried out in natural (i.e. un-pumped) conditions. The same measuring program was employed in all chosen fractures. Electrical conductivity (EC) of drillhole water and flow rate along the drillhole were also measured in conjunction with the pressure measurements. (orig.)

  1. Fracture resistance curves and toughening mechanisms in polymer based dental composites

    DEFF Research Database (Denmark)

    De Souza, J.A.; Goutianos, Stergios; Skovgaard, M.

    2011-01-01

    The fracture resistance (R-curve behaviour) of two commercial dental composites (Filtek Z350® and Concept Advanced®) were studied using Double Cantilever Beam sandwich specimens loaded with pure bending moments to obtain stable crack growth. The experiments were conducted in an environmental...... significantly higher fracture resistance than the composite with the coarser microstructure. The fracture properties were related to the flexural strength of the dental composites. The method, thus, can provide useful insight into how the microstructure enhances toughness, which is necessary for the future...

  2. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  3. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  4. Fracture Resistance and Failure Mode of Endodontically Treated Premolars Restored with Different Adhesive Restorations

    Directory of Open Access Journals (Sweden)

    Nasrin Sarabi

    2015-03-01

    Full Text Available Introduction: The restoration of endodontically treated teeth is a topic that has been studied extensively but it is still a challenge for dental practitioners. The aim of this study was to evaluate fracture resistance, fracture patterns and fracture location of endodontically treated human maxillary premolars restored with direct and indirect composite resin and ceramic restoration. Methods: Eighty non-carious maxillary premolars were selected and divided into four groups (n=20. Endodontic treatment and mesio-occluso-distal preparations were carried out in all the groups except for the control group (group I. Subsequently, the prepared teeth were restored as follows: group II: indirect composite restoration; group III: ceramic restoration; group IV: direct composite restoration. The specimens were subjected to compressive axial loading until fracture occurred. The mode of failure was also recorded. Results: Group I had higher fracture resistance (1196.82±241.74 than the other groups (P

  5. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  6. Fracture Resistances of Y_2O_3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Kang, Suk Hoon; Lee, Yongbok; Kim, Sung Soo

    2012-01-01

    The fracture resistance and tensile properties of Y_2O_3 oxide dispersion strengthened steel containing 9 wt% Cr (9Cr-ODS) were measured at various temperatures up to 700°C. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below 500°C. The strength difference between the two materials was almost diminished at 700°C. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at 300°C and 500°C. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse Cr_2O_3 particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

  7. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques, s......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  8. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  9. Temperature effect on crack resistance and fracture micromechanisms in tungsten-copper pseudoalloy

    International Nuclear Information System (INIS)

    Babak, A.V.; Gopkalo, E.E.; Krasovskij, A.Ya.; Nadezhdin, G.N.; Uskov, E.I.

    1988-01-01

    Results of the mechanical- and-physical study of peculiarities of the tungsten-copper pseudoalloy fracture in the temperature range of 293-2273 K are presented. It is shown that the studied material possesses maximum crack resistance in the vicinity of the upper temperature range boundary of the ductile-brittle transition and minimum resistance to cracks propagation when it contains melted copper. It is established that the peculiarities of changes in crack-resistance correspond to peculiarities of fracture micromechanisms for tungsten-copper pseudoalloy in the studied tempearture range

  10. Hidden contributions of the enamel rods on the fracture resistance of human teeth.

    Science.gov (United States)

    Yahyazadehfar, M; Bajaj, Devendra; Arola, Dwayne D

    2013-01-01

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin-enamel junction, they are deflected by the decussated rods and continue growth about the tooth's periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Effect of amalgam cuspal coverage on the fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Mahshid Mohammdi Basir

    2013-05-01

    Full Text Available   Background and Aims: Endodontically treated teeth are prone to fracture because they loose a big amount of their structure. The treatment plan of those teeth is completed when they are rehabilitated with a strong and functional restoration. The purpose of this study was to evaluate the fracture resistance of endodontically treated teeth restored with amalgam cuspal coverage in comparison with other restorative techniques.   Materials and Methods: 40 human healthy maxillary premolars were divided into 4 groups: group1 (S: sound teeth, group 2(Co: endodontically treated teeth with MOD cavity restored with bonding and composite, group 3(Am-B: endodontically treated teeth with MOD cavity restored with bonding and amalgam and group 4 (Am-CC: endodontically treated teeth with MOD cavity restored with amalgam cuspal coverage. Then the restorations were stored in water and room temperature for 100 days at then thermocycled for 500 cycles between water baths at (5.5 ± 1 and (55 ± 1 0 C. The fracture resistance was evaluated by universal testing machine (Instron, 1195 UK with the compressive force of about 2000 N in 0.5 mm/min. The fracture modes were evaluated in four groups by a stereomicroscope. Statistical analysis (Scheffe test was done for all groups (P0.05. The lowest fracture resistance was found in group 2 (Co (384 ± 137.4 N that had no significant difference with group 3 (Am-B (P>0.05. The fracture resistance in group 4 was significantly higher than group 2 (Co and 3 (Am-B. The fracture mode in group 1 was cohesive within tooth and in group 2 (Co and 3 (Am-B was mixed cohesive and adhesive, and in group 4 was cohesive within in restorative material.   Conclusion: The highest fracture resistance was found in teeth that received amalgam cuspal coverage.

  12. CSA-90 Promotes Bone Formation and Mitigates Methicillin-resistant Staphylococcus aureus Infection in a Rat Open Fracture Model.

    Science.gov (United States)

    Mills, Rebecca; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Isaacs, David; Genberg, Carl; Savage, Paul B; Little, David G; Schindeler, Aaron

    2018-06-01

    Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and

  13. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in-process......The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...

  14. Electrical resistivity measurement to predict uniaxial compressive ...

    Indian Academy of Sciences (India)

    Electrical resistivity values of 12 different igneous rocks were measured on core samples using a resistivity meter in the ... It was seen that the UCS and tensile strength values were linearly correlated with the ..... Innovation 2 20. Archie G E ...

  15. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  16. Finite element analysis and fracture resistance testing of a new intraradicular post

    Directory of Open Access Journals (Sweden)

    Eron Toshio Colauto Yamamoto

    2012-08-01

    Full Text Available OBJECTIVES: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the São José dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. MATERIAL AND METHODS: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10 and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. RESULTS: The fracture test presented the following averages and standard deviation: G1 (45.63±8.77, G2 (49.98±7.08, G3 (43.84±5.52, G4 (47.61±7.23. Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. CONCLUSIONS: The experimental post (original and modified versions presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008-PA/CEP.

  17. Effect of Crack Tip Stress Concentration Factor on Fracture Resistance in Vacuum Environment

    Science.gov (United States)

    2015-01-20

    indicate: (1) in all alloys, the fracture resistance is highest for blunt-notches (smaller Kt), and is lowest for fatigue -sharpened precracked...paths are transgranular and the fracture mode is ductile void coalescence in all cases, irrespective of the stress concentration factor. 20-01-2015...because of corrosion and/or various loading conditions such as fatigue , fretting, abrasion, etc. Also, the geometry of the structure may cause an

  18. Evaluation of fatigue crack growth and fracture resistance of SA350 LF2 material

    International Nuclear Information System (INIS)

    Singh, P.K.; Dubey, J.S.; Chakrabarty, J.K.; Vaze, K.K.; Kushwaha, H.S.

    2003-01-01

    The aim of the present paper is to evaluate the tensile and fracture mechanics properties of the SA350 LF2 carbon steel material used as the Header material in the primary heat transport (PHT) system piping of the Indian pressurized heavy water reactors (PHWR). Tensile, fatigue crack growth rate and fracture toughness tests have been carried out on specimens machined from the Header of the actual PHT pipes. The effect of temperature on tensile properties has been discussed. The effect of temperature and notch orientation on fracture resistance behavior of the material and fatigue crack growth rate dependence on the notch orientation and stress ratio has also been discussed. (author)

  19. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  20. Fracture Resistance Force of Primary Molar Crowns Milled from ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... molar stainless steel crown (SSC) and stored in water at 37°C for 30 days. The crowns were seated on Cr‑Co ... model) or chairside (in‑office system model) CAD/ ..... crowns, deformation may be observed instead of fracture.

  1. Fracture processes and mechanisms of crack growth resistance in human enamel

    Science.gov (United States)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  2. Determination of the resistance to tensile fracture of refractory mixtures of gunite

    International Nuclear Information System (INIS)

    Gomez Sanchez, A; Tomba Martinez, A.G

    2004-01-01

    The determination of the mechanical properties of cooled refractory mixtures is useful since it allows the materials to be compared for the purposes of selection and reports on their degree of internal cohesion, green or calcination, so that their structural ability can be estimated, especially during installation. Given the testing difficulties originating in the fragility of the ceramic materials, the tension test is not generally used in refractories. However, ASTM C-307 94 determines the tensile strength of cured chemical-resistant materials, for which this work considered the possibility of testing cement-based monolithic refractories in this non conventional condition. The tensile resistance to the fracture of three different refractory mixtures (A, B 1 and B 2 ), used in heat repairing by gunite in coking ovens, that were characterized by chemical, granulometric, and mineralogical analysis pycnometric density measurements. The pieces for the tests ('bone' type: length = 75 mm, maximum width = 40 mm, minimum width = 25 mm, thickness = 10 - 25 mm) were prepared by ramming of mixtures of material/water in a metallic mold; they were sinterized (1200 o C, 1h) and characterized by measures of bulk density, porosity and observation of the surface texture, in green and calcinated. The tensile tests, based on ASTM C-307 94, were performed in an Instron model 4467 machine in open air, at room temperature and position control (0.5 mm/min). The following values were obtained, in kPa: AW347±308; B 1 W738±130; B 2 W604±64. These values were lower than those for the tensile fracture module (MOR), although they displayed an equivalent order: A≤B 2 ≤B 1 . This was related to the characteristics of each refractory mixture and at the end of the pieces tested (CW)

  3. In vitro compressive fracture resistance of human maxillary first premolar with different mesial occlusal distal cavity

    Directory of Open Access Journals (Sweden)

    Wen-Chou Wu

    2014-09-01

    Conclusion: A bonded ceramic restoration restores the fracture load of a tooth comparable to an intact tooth independent of the examined design parameters, whereas the fracture loads of composite-resin-restored teeth were dependent on cavity widths. Cavity pulpal floor depth is not a significant factor of cusp fracture resistance in a tooth restored with either a ceramic inlay or composite resin.

  4. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  5. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  6. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  7. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  8. Determining the Resistivity of Resistive Sheets Using Transmission Measurements

    National Research Council Canada - National Science Library

    Hyde, IV, Milo W

    2006-01-01

    In September 2005, radar cross section (RCS) measurements were made of resistive sheets, or R-cards, wrapped around a polystyrene foam cylinder to compare with a newly developed theoretical RCS prediction technique...

  9. Fracture resistance of premolar teeth restored with silorane-based or dimethacrylate-based composite resins.

    Science.gov (United States)

    Akbarian, Golsa; Ameri, Hamideh; Chasteen, Joseph E; Ghavamnasiri, Marjaneh

    2014-01-01

    To restore posterior teeth using low-shrinkage composite to minimize microleakage. To compare the fracture resistance of mesio-occlusal-distal (MOD) cavity preparations restored with either low-shrinkage composite or with dimethacrylate-based composite in conjunction with cavity liners and without them. The null hypothesis of the study is that there are no differences in either fracture resistance or fracture mode between the silorane group and dimethacrylate groups with and without the use of cavity liners. Sixty maxillary premolars were divided into six groups of 10. MOD cavities were prepared in four groups: F: posterior composite (Filtek P60); GF: 0.5-mm Glass Ionomer (Fuji LC) + posterior composite; FF: 0.5-mm flowable composite (Filtek Supreme XT) + posterior composite; and S: low-shrinkage composite (Filtek P90). Negative (N) and positive (P) control groups consisted of unrestored and sound teeth, respectively. The specimens were thermocycled and loaded. Data were analyzed using analysis of variance, Tukey, and chi-square tests (α = 0.05). Groups FF (1643.09 ± 187/80 N) and GF (1596.80 ± 163/93 N) (p = 0.06 > 0.05) were statistically identical, although less than group P (1742/33 ± 110/08 N), but still demonstrated greater fracture resistance than the other groups. The fracture resistance of group S (1434/69 ± 107/62 N) was identical to GF and FF (p = 0.06 > 0.05). The fracture resistance of F (1353/19 ± 233/90 N) was less than GF and FF, and statistically identical to S (p = 0.87 > 0.05). Silorane-based composite showed a resistance to fracture similar to methacrylate-based composite restorations regardless of whether cavity liners were used. The findings of this study support the selection of silorane-based composite for the restoration of maxillary premolars with standardized Class II cavity preparations in order to strengthen the resistance to fracture to the same extent as do dimethacrylate

  10. Measurements of interface fracture properties of composite materials

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Bank-Sills, L.; Travitzky, N.; Eliasi, R.

    1998-01-01

    In this investigation, interface Fracture properties are measured. To this end, glass/epoxy Brazilian disk specimens are studied. In order to calibrate the specimen, a numerical procedure is used. The finite element method is employed to derive stress intensity factors as a function of loading angle and crack length. By means of the weight friction method together with finite elements, a correction to the stress intensity factors for residual thermal stresses is obtained. These are combined to determine the critical interface energy release rate as a function of phase angle Tom the measured load and crack length at Fracture. A series of tests on a glass/epoxy material pair were carried out. It may be observed from the results that the residual thermal stresses resulting from the material mismatch greatly affect the interface toughness values

  11. Fracture resistance of class IV fiber-reinforced composite resin restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    P S Praveen Kumar

    2017-01-01

    Full Text Available Objectives: The aim of this study was to evaluate fracture resistance of incisal edge fractures (Class IV restored with a Glass Fiber-reinforced Composite (FRC. Materials and Methods: Twenty-four extracted sound maxillary central incisors were randomly divided into two groups. Group I (control contained untreated teeth. Samples in experimental groups II were prepared by cutting the incisal (one-third part of the crown horizontally and was subjected to enamel preparations, then restored with a Glass FRC. Fracture resistance was evaluated as Newton's for samples tested in a Hounsfield universal testing machine. Failure modes were examined microscopically. Results: Mean peak failure load (Newton's observed in Glass Fiber-reinforced Nanocomposite was 863.50 ± 76.12. The experimental group showed similar types of failure modes with the majority occurring as cohesive and mixed type. 58% of the teeth in Glass FRC group fractured below the cementoenamel junction. Conclusion: Using Fiber reinforced composite substructure under conventional composites in Class IV restorations, the fracture resistance of the restored incisal edge could be increased.

  12. [Antibiotic resistance: measures urgently needed].

    NARCIS (Netherlands)

    Kluytmans, J.; Vandenbroucke-Grauls, C.M.; Meer, J.W.M. van der

    2010-01-01

    Antimicrobial resistance is increasing rapidly and there are hardly any new antimicrobial agents to be expected in the coming years. The number of patients affected by extended spectrum beta-lactamase producing organisms (ESBLs) is rising and there are strong indications that this is caused in part

  13. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  14. An in vitro study to determine fracture resistance of tooth roots after different instrumentation techniques

    Directory of Open Access Journals (Sweden)

    Marri Shilpa Reddy

    2016-01-01

    Conclusion: Preparation of canals with a conventional hand instrumentation technique using 0.02 taper K-files showed highest fracture resistance with least amount of dentin removed at all levels followed by Endowave, ProTaper Hand, and Rotary files.

  15. Fracture Resistance of Implant Abutments Following Abutment Alterations by Milling the Margins: An In Vitro Study.

    Science.gov (United States)

    Patankar, Anuya; Kheur, Mohit; Kheur, Supriya; Lakha, Tabrez; Burhanpurwala, Murtuza

    2016-12-01

    This in vitro study evaluated the effect of different levels of preparation of an implant abutment on its fracture resistance. The study evaluated abutments that incorporated a platform switch (Myriad Plus Abutments, Morse Taper Connection) and Standard abutments (BioHorizons Standard Abutment, BioHorizons Inc). Each abutment was connected to an appropriate implant and mounted in a self-cured resin base. Based on the abutment preparation depths, 3 groups were created for each abutment type: as manufactured, abutment prepared 1 mm apical to the original margin, and abutment prepared 1.5 mm to the original margin. All the abutments were prepared in a standardized manner to incorporate a 0.5 mm chamfer margin uniformly. All the abutments were torqued to 30 Ncm on their respective implants. They were then subjected to loading until failure in a universal testing machine. Abutments with no preparation showed the maximum resistance to fracture for both groups. As the preparation depth increased, the fracture resistance decreased. The fracture resistance of implant abutment junction decreases as the preparation depth increases.

  16. Effect of the ferrule on fracture resistance of teeth restored with ...

    African Journals Online (AJOL)

    However few studies have considered the effect of different ferrule designs on prefabricated post and composite core systems. Aim: This study investigated the effect of different ferrule designs on the fracture resistance of teeth incorporating prefabricated posts and composite cores. It also assessed the necessity of a post in ...

  17. Gradients in fracture force and grazing resistance across canopy layers in seven tropical grass species

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Scheper, J.A.; Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Elgersma, A.

    2013-01-01

    In reproductive swards, stems can act as a barrier that affects the grazing behaviour of ruminant livestock. The barrier effect of stems is closely associated with both the force required to fracture the stems and the density of these stems (in combination, these make up grazing resistance), and

  18. Fracture resistance of direct inlay-retained adhesive bridges : Effect of pontic material and occlusal morphology

    NARCIS (Netherlands)

    Breuklander, Marijn; Salihoglu-Yener, Esra; Ozcan, Mutlu

    This study evaluated the effect of a) pontic materials and b) occlusal morphologies on the fracture resistance of fiber-reinforced composite (FRC) inlay-retained fixed dental prostheses (FDP). Inlay-retained FRC FPDs (N=45, n=9) were constructed using a) resin composite (deep anatomy), b) natural

  19. Effect of inadequate ferrule segment location on fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Satheesh B Haralur

    2018-01-01

    Full Text Available Introduction: The circumferential 2 mm ferrule during the fabrication of the crown is strongly advocated for the long-term clinical success. During the routine clinical practice, the dentist encounters the endodontically treated tooth (ETT with inadequacy of the ferrule in some segment due to caries, abrasion, and erosions. The aim of this in vitro study was to investigate the consequence of inadequate segmental ferrule location on fracture strength of the root canal-treated anterior and posterior teeth. Materials and Methods: Fifty each maxillary canine and mandibular premolar intact human teeth were root canal treated and sectioned at 2 mm above the cementum-enamel junction. The teeth samples were divided into 5 groups of 10 each. The G-I and G-V samples had the 360° ferrule and complete absence of the ferrule, respectively. The G-II had the inadequate ferrule on the palatal surface, while G-III and G-IV had inadequate ferrule at buccal and proximal area. Teeth samples were subsequently restored with glass-reinforced fiber post, composite core, and full veneer metal crown. The samples were tested with universal testing machine under static load to record the fracture resistance. The acquired data were subjected to ANOVA and Tukey's post hoc statistical analysis. Results: The G-I with circumferential ferrule showed the higher fracture resistance. The teeth samples with lack of the ferrule had the least fracture resistance. Among the segmental absence of ferrule, teeth samples with lack of the proximal ferrule were least affected. Deficiency of a ferrule on the lingual wall significantly affected the fracture strength in both anterior and posterior ETT. Conclusions: The ETT with sectional inadequacy of the ferrule is significantly more effective in resisting the fracture in comparison to the complete absence of the ferrule.

  20. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function.

    Science.gov (United States)

    Resnick, Barbara; Gruber-Baldini, Ann L; Hicks, Gregory; Ostir, Glen; Klinedinst, N Jennifer; Orwig, Denise; Magaziner, Jay

    2016-07-01

    Measurement of physical function post hip fracture has been conceptualized using multiple different measures. This study tested a comprehensive measurement model of physical function. This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living, and performance was tested for fit at 2 and 12 months post hip fracture, and among male and female participants. Validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise, and social activities post hip fracture. The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participants. The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. © 2015 Association of Rehabilitation Nurses.

  1. Fracture Resistance of Pulpotomized Primary Molar Restored with Extensive Class II Amalgam Restorations

    Directory of Open Access Journals (Sweden)

    F. Mazhari

    2008-06-01

    Full Text Available Objective: The aim of the present study was to evaluate fracture resistance of pulpoto-mized primary molar teeth restored with extensive multisurface amalgam restorations.Materials and Methods: Eighty extracted carious human primary molar teeth were se-lected forpresent study. Teeth were divided in to eight groups of ten. Mesio- or disto-occlusal and Mesio-occluso-distal cavities with different cavity wall thickness (1.5 or 2.5mm were prepared in both first and second primary molar teeth. After restoring teeth with amalgam, all specimens were stored in distilled water at 37°C for 7 days. Then samples were thermocycled for 1000 cycles from 5°C to 55°C. The specimens then were subjected to a compressive load in a universal testing machine at a crosshead speed of 0.5 mm min-1. ANOVA and t-test were used for statistical analysis.Results: Mean fracture resistance of first and second molar teeth were 975.5 N (SD=368.8 and 1049.2 N (SD=540.1 respectively. In the first molar group, fracture resis-tance of two-surface cavities was significantly more than three-surface cavities (P<0.001, however this difference was not statistically significant in the second molar group. In both first and second molar group, fracture resistance incavities with 2.5 mm wall thickness, was significantly more than the group with 1.5 mm wall thickness.Conclusion: The mean fracture resistance in pulpotomized primary molar restored with amalgam restorations was higher than reported maximum bite force in primary teeth even in extensive multi-surface restorations. Therefore, the teeth with large proximal carious lesions in schoolchildren could be restored with amalgam.

  2. Fracture resistance of 3 types of primary esthetic stainless steel crowns.

    Science.gov (United States)

    Beattie, Sean; Taskonak, Burak; Jones, James; Chin, Judith; Sanders, Brian; Tomlin, Angela; Weddell, James

    2011-01-01

    Demand is increasing for esthetic restorations in pediatric dentistry. When full coverage is indicated, one option is to use esthetic stainless steel crowns (SSCs). However, this type of crown is prone to fracture. The purpose of this study was to evaluate the fracture resistance of 3 types of esthetic SSCs. Esthetic SSCs for first primary mandibular molars were cemented to idealized epoxy dies with glass ionomer cement. The die-crown units were fractured on a universal testing machine. The force was delivered by a stainless steel ball fixture, set in a uniaxial lever to replicate a cusp contact, with a crosshead speed of 1 mm/min. The differences among the 3 types of crown, in terms of force required to fracture, were compared statistically by 1-way analysis of variance. Pairwise comparisons were performed with Fisher's protected least significant difference test, at an overall significance level of 5%. The force required to fracture, expressed as average ± standard error, did not differ significantly among the 3 brands of esthetic SSCs: 1730 N ± 50 N, 1826 N ± 62 N and 1671 N ± 68 N, respectively (p = 0.19), well below the maximum bite force of pediatric patients determined in a previous study. Esthetic SSCs should be able to resist occlusal forces over short clinical periods. However, long-term occlusal loading and fatigue failures should be taken into account when evaluating the success of this type of crown.

  3. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

    Science.gov (United States)

    Schofield, Robert M S; Niedbala, Jack C; Nesson, Michael H; Tao, Ye; Shokes, Jacob E; Scott, Robert A; Latimer, Matthew J

    2009-06-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.

  4. Fracture resistance of upper central incisors restored with different posts and cores

    Directory of Open Access Journals (Sweden)

    Maryam Rezaei Dastjerdi

    2015-08-01

    Full Text Available Objectives To determine and compare the fracture resistance of endodontically treated maxillary central incisors restored with different posts and cores. Materials and Methods Forty-eight upper central incisors were randomly divided into four groups: cast post and core (group 1, fiber-reinforced composite (FRC post and composite core (group 2, composite post and core (group 3, and controls (group 4. Mesio-distal and bucco-lingual dimensions at 7 and 14 mm from the apex were compared to ensure standardization among the groups. Twelve teeth were prepared for crown restoration (group 4. Teeth in other groups were endodontically treated, decoronated at 14 mm from the apex, and prepared for posts and cores. Resin-based materials were used for cementation in groups 1 and 2. In group 3, composite was used directly to fill the post space and for core build-up. All samples were restored by standard metal crowns using glass ionomer cement, mounted at 135° vertical angle, subjected to thermomechanical aging, and then fractured using a universal testing machine. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data. Results Fracture resistance of the groups was as follows: Control (group 4 > cast post and core (group 1 > fiber post and composite core (group 2 > composite post and core (group 3. All samples in groups 2 and 3 fractured in restorable patterns, whereas most (58% in group 1 were non-restorable. Conclusions Within the limitations of this study, FRC posts showed acceptable fracture resistance with favorable fracture patterns for reconstruction of upper central incisors.

  5. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2012-01-01

    Full Text Available To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n=10. Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37∘C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth.

  6. Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures

    Directory of Open Access Journals (Sweden)

    A. Razmi

    2018-05-01

    Full Text Available The main objective of this study is to obtain fracture toughness of asphalt concrete modified by Crumb Rubber (CR and Sasobit at low temperatures. First, Bending Beam Rheometer (BBR test was performed on unmodified binder (binder 60/70, binder 60/70 + 3%Sasobit and 20%CR + 3%Sasobit modified asphalt binder to find how each modifier affect asphalt binder stiffness and relaxation rate at low temperatures. Mixed mode I/II fracture tests were conducted by cracked Semi-Circular Bending (SCB specimens and the critical stress intensity factors were calculated for pure mode I, mixed mode I/II and pure mode II conditions. Results of BBR tests indicated that 20%CR + 3%Sasobit reduces stiffness and the m-value increase at low temperatures. As a result, 20%CR + 3%Sasobit has positive effect on low temperatures performance by improving thermal cracking resistance. Also, according to the fracture toughness test results, the Warm Mix Asphalt (WMA mixture containing 20% CR, shows higher resistance against crack growth than WMA mixture. It was found that mixed mode I/II can be more detrimental than pure mode I and II conditions. Keywords: Crumb rubber, Asphalt concrete, Bending Beam Rheometer, Fracture resistance, Semi-circular bending test

  7. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Eduardo Aloisio Fleck NEUMANN

    2014-08-01

    Full Text Available Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1, polyetheretherketone (PEEK screws (Group 2, and 30% carbon fiber-reinforced PEEK screws (Group 3. The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey’s range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05. Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  8. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    Science.gov (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  9. In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations.

    Science.gov (United States)

    Tan, Philip L B; Aquilino, Steven A; Gratton, David G; Stanford, Clark M; Tan, Swee Chian; Johnson, William T; Dawson, Deborah

    2005-04-01

    The in vitro effectiveness of a uniform circumferential ferrule has been established in the literature; however, the effect of a nonuniform circumferential ferrule height on fracture resistance is unknown. This in vitro study investigated the resistance to static loading of endodontically treated teeth with uniform and nonuniform ferrule configurations. Fifty extracted intact maxillary human central incisors were randomly assigned to 1 of 5 groups: CRN, no root canal treatment (RCT), restored with a crown; RCT/CRN, no dowel/core, restored with a crown; 2 FRL, 2-mm ferrule, cast dowel/core and crown; 0.5/2 FRL, nonuniform ferrule (2 mm buccal and lingual, 0.5 mm proximal), cast dowel/core and crown; and 0 FRL, no ferrule, cast dowel/core and crown. The teeth were prepared to standardized specifications and stored for 72 hours in 100% humidity prior to testing. Testing was conducted with a universal testing machine with the application of a static load, and the load (N) at failure was recorded. Statistical analysis was performed with a 1-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05). The mode of fracture was noted by visual inspection for all specimens. There was strong evidence of group differences in mean fracture strength ( P <.0001). Following adjustment for all pairwise group comparisons, it was found that the lack of a ferrule resulted in a significantly lower mean fracture strength (0 FRL: 264.93 +/- 78.33 N) relative to all other groups. The presence of a nonuniform (0.5 to 2-mm vertical height) ferrule (0.5/2 FRL: 426.64 +/- 88.33 N) resulted in a significant decrease ( P =.0001) in mean fracture strength when compared with the uniform 2-mm vertical ferrule (2 FRL: 587.23 +/- 110.25 N), the group without RCT (CRN: 583.67 +/- 86.09 N), and the RCT-treated tooth with a crown alone (CRN/RCT: 571.04 +/- 154.86 N). The predominant mode of failure was an oblique fracture extending from the lingual margin to the facial

  10. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material.

    Science.gov (United States)

    Fráter, Márk; Forster, András; Keresztúri, Márk; Braunitzer, Gábor; Nagy, Katalin

    2014-09-01

    The purpose of this in vitro study was to evaluate the efficiency of a short fibre-reinforced composite (SFRC) material compared to conventional composites when restoring class II. MOD cavities in molar teeth with different layering techniques. One hundred and thirty mandibular third molars were divided into 5 groups (n=26). Except for the control group (intact teeth), in all other groups MOD cavities were prepared. The cavities were restored by either conventional composite with horizontal and oblique layering or by SFRC with horizontal and oblique layering. The specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were evaluated. In general, no statistically significant difference was found in fracture toughness between the study groups, except for horizontally layered conventional composite restorations, which turned out to be significantly weaker than controls. However, SFRC yielded noticeably higher fracture thresholds and only obliquely applied SFRC restorations exhibited favourable fracture patterns above chance level. The application of SFRC did not lead to a statistically significant improvement of the fracture toughness of molar teeth with MOD cavities. Still, SFRC applied in oblique increments measurably reduces the chance of unrestorable fractures of molar teeth with class II MOD cavities. The restoration of severely weakened molar teeth with the use of SFRC combined with composite might have advantages over conventional composites alone. It was observed from the statistical data, that the application of SFRC with an oblique layering technique yielded not significantly but better fracture thresholds and more favourable fracture patterns than any other studied material/technique combination. Thus further investigations need to be carried out, to investigate the possible positive mechanical effects of SFRC. The application of the horizontal layering technique with conventional composite materials is inferior

  11. Effect of length and diameter of fiber reinforced composite post (FRC on fracture resistance of remaining tooth structure

    Directory of Open Access Journals (Sweden)

    Mahdiyeh seifi

    2013-03-01

    Full Text Available Introduction: Post and core has been considered for endodontically treated tooth, especially in cases with severe damage crowns. Recently fiber reinforced composite posts (FRC post have been used in the treatment of endodontically treated teeth. Because the length and diameter of posts are effective in stress distribution, the purpose of this study is to evaluate the effect of length and diameter of FRC post on fracture resistance. Methods: In this experimental study, 36 glass fiber posts with combination of 7mm, 9mm, and 12mm length and 1.1mm, 1.3mm and 1.5mm diameter were divided into 9 groups of 4. These posts were cemented in root canals by Panavia. Samples were tested with 45° compressive forces for the evaluation of fracture resistance. Datas were analyzed using SPSS soft ware and One- way and Two-way ANOVA analyses. Results: Fracture resistance did not increase significantly with the effect of length and diameter simultaneously (P=0.85. Samples with 12mm length and 1.5mm diameter had the greatest fracture resistance (1023/33N±239/22. The minimum fracture resistance had occurred in post with 7mm length and 1.5mm diameter (503/13N ±69/18. Fracture resistance increased significantly by increasing the length and the same diameter. Conclusion: It can be concluded that fracture resistance is affected by the length and not the diameter of FRC post.

  12. Calculation of skid resistance from texture measurements

    Directory of Open Access Journals (Sweden)

    Andreas Ueckermann

    2015-02-01

    Full Text Available There is a wide range of routine skid resistance measurement devices on the market. All of them are measuring the friction force between a rubber wheel and the wetted road surface. Common to all of them is that they are relatively complex and costly because generally a truck carrying a large water tank is needed to wet the surface with a defined water layer. Because of the limited amount of water they can carry they are limited in range. Besides that the measurement is depending on factors like water film thickness, temperature, measurement speed, rubber aging, rubber wear and even road evenness and curviness. All of these factors will affect the skid resistance and are difficult to control. We present a concept of contactless skid resistance measurement which is based on optical texture measurement and consists of two components: measurement of the pavement texture by means of an optical measuring system and calculation of the skid resistance based on the measured texture by means of a rubber friction model. The basic assumptions underlying the theoretical approach and the model itself based on the theory of Persson are presented. The concept is applied to a laboratory device called Wehner/Schulze (W/S machine to prove the theoretical approach. The results are very promising. A strong indication could be provided that skid resistance could be measured without contact in the future.

  13. Studies on postoperative enophthalmos in orbital fractures and zygomatic fractures. Measurements using CT images

    International Nuclear Information System (INIS)

    Abe, Yayoi; Hasumi, Toshiaki; Hosaka, Yoshiaki

    2010-01-01

    Enophthalmos is a common result of orbital fractures and zygomatic fractures. Reconstruction of the orbita is very important, because enophthalmos leads to not only functional but also cosmetic problems. We have experienced cases in which the eyeball became recessed following an operation or trauma. Even when we performed an overcorrective reconstruction surgical procedure, several patients showed tardive enophthalmos. The purpose of this study was to investigate the changes in eyeball position after operation or trauma. We measured the degree of eyeball displacement in 16 patients by using computed tomographic data collected immediately after operation and at one year. In 12 patients, enophthalmos was progressed, and the average change was 1.38 mm. We propose that the progression of enophthalmos was primarily caused by atrophy and cicatrisation of the soft tissue of the orbita. This change in the soft tissue is the result of traumatic hemorrhage, edema and the operative procedure. These findings suggest that we should perform an even more overcorrective reconstruction surgical procedure than in the past. (author)

  14. A computational technique to measure fracture callus in radiographs.

    Science.gov (United States)

    Lujan, Trevor J; Madey, Steven M; Fitzpatrick, Dan C; Byrd, Gregory D; Sanderson, Jason M; Bottlang, Michael

    2010-03-03

    Callus formation occurs in the presence of secondary bone healing and has relevance to the fracture's mechanical environment. An objective image processing algorithm was developed to standardize the quantitative measurement of periosteal callus area in plain radiographs of long bone fractures. Algorithm accuracy and sensitivity were evaluated using surrogate models. For algorithm validation, callus formation on clinical radiographs was measured manually by orthopaedic surgeons and compared to non-clinicians using the algorithm. The algorithm measured the projected area of surrogate calluses with less than 5% error. However, error will increase when analyzing very small areas of callus and when using radiographs with low image resolution (i.e. 100 pixels per inch). The callus size extracted by the algorithm correlated well to the callus size outlined by the surgeons (R2=0.94, p<0.001). Furthermore, compared to clinician results, the algorithm yielded results with five times less inter-observer variance. This computational technique provides a reliable and efficient method to quantify secondary bone healing response. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Dry fracture method for simultaneous measurement of in-situ stress state and material properties

    International Nuclear Information System (INIS)

    Serata, S.; Oka, S.; Kikuchi, S.

    1996-01-01

    Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing

  16. Comparison of Chamfer and Deep Chamfer Preparation Designs on the Fracture Resistance of Zirconia Core Restorations

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2011-06-01

    Full Text Available Background and aims. One of the major problems of all-ceramic restorations is their probable fracture under occlusal force. The aim of the present in vitro study was to compare the effect of two marginal designs (chamfer and deep chamfer on the fracture resistance of all-ceramic restorations, CERCON. Materials and methods. This in vitro study was carried out with single-blind experimental technique. One stainless steel die with 50’ chamfer finish line design (0.8 mm deep was prepared using a milling machine. Ten epoxy resin dies were prepared. The same die was retrieved and 50' chamfer was converted into a deep chamfer design (1 mm. Again ten epoxy resin dies were prepared from the deep chamfer die. Zirconia cores with 0.4 mm thickness and 35 µm cement space were fabricated on the epoxy resin dies (10 chamfer and 10 deep chamfer samples. The zirconia cores were cemented on the epoxy resin dies and underwent a fracture test with a universal testing machine and the samples were investigated from the point of view of the origin of the failure. Results. The mean values of fracture resistance for deep chamfer and chamfer samples were 1426.10±182.60 and 991.75±112.00 N, respectively. Student’s t-test revealed statistically significant differences between the groups. Conclusion. The results indicated a relationship between the marginal design of zirconia cores and their fracture resistance. A deep chamfer margin improved the biomechanical performance of posterior single zirconia crown restorations, which might be attributed to greater thickness and rounded internal angles in deep chamfer margins.

  17. The application of DCPD method to evaluating dynamic J-R fracture resistance characteristics

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Hong, Jun Hwa; Lee, Bong Sang; Chi, Se Whan; Kim, Joo Hag; Oh, Yong Jun; Kwun, Sun Chil; Oh, Jong Myung

    1999-06-01

    The reliable DCPD (Direct Current Potential Drop) test and data acquisition system were developed on the basis of analysis of various technical problems to accompanied with the application of DCPD method to J-R fracture resistance test. The test system contains electric insulation rod and high performance data acquisition system. The test and analysis method was applied to J-R fracture resistance test for SA516-Gr.70 steel for nuclear primary coolant system elbow. The reliabilities of test and analysis method were confirmed through the load-ratio method in case of dynamic loading test, and through the standard unloading compliance test in case of static loading test. (author). 17 refs., 1 tab., 18 figs

  18. The application of DCPD method to evaluating dynamic J-R fracture resistance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Hong, Jun Hwa; Lee, Bong Sang; Chi, Se Whan; Kim, Joo Hag; Oh, Yong Jun; Kwun, Sun Chil; Oh, Jong Myung

    1999-06-01

    The reliable DCPD (Direct Current Potential Drop) test and data acquisition system were developed on the basis of analysis of various technical problems to accompanied with the application of DCPD method to J-R fracture resistance test. The test system contains electric insulation rod and high performance data acquisition system. The test and analysis method was applied to J-R fracture resistance test for SA516-Gr.70 steel for nuclear primary coolant system elbow. The reliabilities of test and analysis method were confirmed through the load-ratio method in case of dynamic loading test,and through the standard unloading compliance test in case of static loading test. (author). 17 refs., 1 tab., 18 figs.

  19. Technology development on analysis program for measuring fracture toughness of irradiated specimens

    International Nuclear Information System (INIS)

    Shibata, Akira; Takada, Fumiki

    2007-03-01

    The fracture toughness which represents resistance for brittle or ductile fracture is one of the most important material property concerning linear and non-linear fracture mechanics analyses. In order to respond to needs of collecting data relating to fracture toughness of pressure vessel and austenitic stainless steels, fracture toughness test for irradiated materials has been performed in JMTR hot laboratory. On the other hand, there has been no computer program for analysis of fracture toughness using the test data obtained from the test apparatus installed in the hot cell. Therefore, only load-displacement data have been provided to users to calculate fracture toughness of irradiated materials. Recently, request of analysis of fracture toughness have been increased. Thus a computer program, which calculates the amount of the crack extension, the compliance and the fracture toughness from the data acquired from the test apparatus installed in the hot cell, has been developed. In the program unloading elastic compliance method is applied based on ASTM E1820-01. Through the above development, the request for the fracture toughness analysis can be satisfied and the fracture toughness of irradiated test specimens can be provided to users. (author)

  20. Reliability of radiographic measurements for acute distal radius fractures

    International Nuclear Information System (INIS)

    Watson, Narelle J.; Asadollahi, Saeed; Parrish, Frank; Ridgway, Jacqueline; Tran, Phong; Keating, Jennifer L.

    2016-01-01

    The management of distal radial fractures is guided by the interpretation of radiographic findings. The aim of this investigation was to determine the intra- and inter-observer reliability of eight traditionally reported anatomic radiographic parameters in adults with an acute distal radius fracture. Five observers participated. All were routinely involved in making treatment decisions based on distal radius fracture radiographs. Observers performed independent repeated measurements on 30 radiographs for eight anatomical parameters: dorsal shift (mm), intra-articular gap (mm), intra-articular step (mm), palmar tilt (degrees), radial angle (degrees), radial height (mm), radial shift (mm), ulnar variance (mm). Intraclass correlation coefficients (ICCs) and the magnitude of retest errors were calculated. Measurement reliability was summarised as high (ICC > 0.80), moderate (0.60–0.80) or low (<0.60). Intra-observer reliability was high for dorsal shift and palmar tilt; moderate for radial angle, radial height, ulnar variance and radial shift; and low for intra-articular gap and step. Inter-observer reliability was high for palmar tilt; moderate for dorsal shift, ulnar variance, radial angle and radial height; and low for radial shift, intra-articular gap and step. Error magnitude (95 % confidence interval) was within 1–2 mm for intra-articular gap and step, 2–4 mm for ulnar variance, 4–6 mm for radial shift, dorsal shift and radial height, and 6–8° for radial angle and palmar tilt. Based on previous reports of critical values for palmar tilt, ulnar variance and radial angle, error margins appear small enough for measurements to be useful in guiding treatment decisions. Our findings indicate that clinicians cannot reliably measure values ≤1 mm for intra-articular gap and step when interpreting radiographic parameters using the standardised methods investigated in this study. As a guide for treatment selection, palmar tilt, ulnar variance and radial angle

  1. Fracture resistance of endodontically-treated teeth: effect of combination bleaching and an antioxidant.

    Science.gov (United States)

    Khoroushi, Maryam; Feiz, Atieh; Khodamoradi, Roghayeh

    2010-01-01

    This in vitro study assessed the fracture resistance of endodontically-treated teeth undergoing combination bleaching with 38% and 9.5% hydrogen peroxide gels as in-office and at-home bleaching techniques, respectively. In addition, the effect of an antioxidizing agent, sodium ascorbate, was investigated. Sixty maxillary premolars were endodontically-treated, received a glass ionomer barrier as a mechanical seal and were embedded in acrylic resin up to the cemento-enamel junction. The specimens were divided into four groups (n = 15) as follows: G I: no bleaching, access cavity restored with resin composite (negative control); G II: bleached for three weeks daily using 9.5% hydrogen peroxide for two hours and three sessions of in-office bleaching using 38% hydrogen peroxide every seven days, then restored (positive control); G III: bleached similar to G II and restored after one week; G IV: bleached similar to G II, along with the use of an antioxidizing agent for 24 hours, then restored. In each in-office and at-home bleaching session, the whitening gels were applied to the buccal surface of the tooth and placed inside the pulp chamber (inside/outside bleaching technique). Finally, the specimens underwent fracture resistance testing; the data were analyzed using ANOVA and Scheffé's test (alpha = 0.05). Significant differences were observed among the study groups (p 0.05). Within the limitations of the current study, it can be concluded that the fracture resistance of endodontically-treated teeth decreases after combination bleaching. The use of sodium ascorbate can reverse decreased fracture resistance.

  2. Hydraulic fracturing rock stress measurement at Haestholmen, Finland

    International Nuclear Information System (INIS)

    Ljunggren, C.; Klasson, H.

    1992-12-01

    This report presents hydraulic fracturing measurements in two boreholes located on the Haestholmen island near Loviisa, Finland. The aim of the measurements was to provide stress data, forming input for the design of an underground facility for disposal of low- and medium-level waste as well as future plant decommissioning radioactive waste from the IVO reactor units situated on Haestholmen. The theoretical background to the hydrofracturing method is summarized, as is the equipment and experimental procedures used in the present case. All results obtained are presented and critically discussed. The final stress parameters presented are magnitudes and directions of the maximum and minimum horizontal stresses. Testing was successfully completed according to schedule in both boreholes.(orig.)

  3. Fracture resistance of weakened teeth restored with condensable resin with and without cusp coverage

    Directory of Open Access Journals (Sweden)

    Rafael Francisco Lia Mondelli

    2009-06-01

    Full Text Available OBJECTIVES: This in vitro study evaluated the fracture resistance of weakened human premolars (MOD cavity preparation and pulp chamber roof removal restored with condensable resin composite with and without cusp coverage. MATERIAL AND METHODS: Thirty human maxillary premolars were divided into three groups: Group A (control, sound teeth; Group B, wide MOD cavities prepared and the pulp chamber roof removed and restored with resin composite without cusp coverage; Group C, same as Group B with 2.0 mm of buccal and palatal cusps reduced and restored with the same resin. The teeth were included in metal rings with self-curing acrylic resin, stored in water for 24 h and thereafter subjected to a compressive axial load in a universal testing machine at 0.5 mm/min. RESULTS: The mean fracture resistance values ± standart deviation (kgf were: group A: 151.40 ± 55.32, group B: 60.54 ± 12.61, group C: 141.90 ± 30.82. Statistically significant differences were found only between Group B and the other groups (p<0.05. The condensable resin restoration of weakened human premolars with cusp coverage significantly increased the fracture resistance of the teeth as compared to teeth restored without cusp coverage. CONCLUSION: The results showed that cusp coverage with condensable resin might be a safe option for restoring weakened endodontically treated teeth.

  4. Resistance of Bonded Composite Restorations on Fractures of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2005-01-01

    Full Text Available Introduction: This study was performed to evaluate the effect of dentine bonding agents and Glass Ionomer cement beneath composite restorations and its resistance on fractures of endodontically treated teeth. Material and Methods: Forty sound maxillary teeth were selected; ten of them for positive control, and on the rest, RCT and MOD cavity preparations were done with standard methods. Then, the teeth were divided to four groups: 1-Sound teeth for positive control. 2-Prepared without any restoration for negative control. 3-Prepared and restored with Vitrabond(3M, USA, Single bond(3M, USA and Z100(3M, USA resin composite. 4-Prepared and restored by Single bond and Z100 resin composite. Specimens were subjected to compressive load by Instron 8502 until fracture occurred. Results: Group 1 showed the highest resistance to compressive forces followed by group 4,3&2 respectively. ANOVA, t test and Chi-square tests indicated significant difference between all the groups. Conclusion: Use of dentine bonding agents and resin composite increases resistance of endodontically treated teeth to fractures more than teeth restored with sandwich of glass ionomer cements, dentine bonding agents and resin composite.

  5. Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography

    CSIR Research Space (South Africa)

    May, F

    2010-11-01

    Full Text Available , N Jovanovic2 and A Rozanov1 University of Stellenbosch1 and Council for Scientific and Industrial Research (CSIR)2 Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography Introduction... of slow and fast flowing pathways. Materials and Methods TABLE 1 DATE, TIME AND WEATHER CONDITIONS DURING RESISTIVITY TOMOGRAPHY SURVEY Survey No. Date Start time End time Precipitation (mm) Description KB001 8/27/2010 12H00 13H40 0.0 Sunny KB002 8...

  6. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  7. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange

    Directory of Open Access Journals (Sweden)

    C. M. Steelman

    2017-06-01

    Full Text Available Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI and electrical resistivity tomography (ERT methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle and dominant surficial rock properties (competent versus weathered rock rubble surface. While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river

  8. Surface resistivity measurement of plasma treated polymers

    International Nuclear Information System (INIS)

    Simon, D.; Pigram, P.J.; Liesegang, J.

    2000-01-01

    Full text: Resistivity of insulators is an important property of materials used within the integrated circuit and packaging industries. The measurement of electrical resistivity of insulator materials in the surface region in this work is interpreted through observations of surface charge decay. A self-field driven and diffusion charge transport theory is used to model the process and resistivity values obtained computationally. Data for the charge decay of surface charged samples are collected by suspending them inside a coaxial cylinder connected to an electrometer. Samples used have been low density polyethylene LDPE sheet, both pristine and surface treated. Some samples have been treated by air plasma at low vacuum pressures for different periods of time; others have been washed in ethyl acetate and then plasma treated before the resistivity measurement. The sets of resistivity measurements form the various treatments are compared below. X-ray photoelectron spectroscopy (XPS) has also been used to investigate and account for the observed variations in surface resistivity

  9. Evaluation of resistance of teeth subjected to fracture after endodontic treatment using different root canal sealers: An in vitro study

    Directory of Open Access Journals (Sweden)

    S S Bhat

    2012-01-01

    Full Text Available Aims: The aim of this study was to compare the ex-vivo effects of different root canal sealers on the fracture resistance of endodontically treated teeth. Materials and Methods: Seventy-five freshly extracted human mandibular premolars were used for the study. The length was standardized to 14 mm and all the teeth were biomechanically prepared and divided into five different groups based on the type of root canal sealers used. Group I:- Roeko seal + gutta percha, Group II: AH plus ® root canal sealer + gutta percha, Group III: PULPDENT root canal sealer + gutta percha, Group IV: Zinc oxide-eugenol sealer + gutta percha, Group V: Control (unobturated teeth. The teeth were embedded in acrylic resin blocks and compressive strengths were measured using universal testing machine (Instron. Statistical Analysis Used: One-way ANOVA, unpaired t- test Results: Data obtained were statistically evaluated using one-way ANOVA and unpaired t-test. All groups showed a statistically significant result (P < 0.05. Teeth obturated with Group I and Group II showed higher resistance to fracture than teeth obturated with other three Groups. It was seen that the teeth obturated with group III showed a better fracture resistance than Group IV and there was no statistical significance found between Group and Group V. Conclusions: From this study, it has been concluded that both the resin based sealers that were used in this study were equally effective compared to that of the zinc oxide-based sealers and the control group. However, no significant results were obtained when the comparison was made between zinc oxide-eugenol and gutta-percha and the control group.

  10. Fracture resistance of endodontically treated permanent anterior teeth restored with three different esthetic post systems: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ameet J Kurthukoti

    2015-01-01

    Full Text Available Background: Esthetic coronal reconstruction of fractured anterior teeth is often performed using intra radicular posts. Most of the commonly used commercially esthetic post systems do not exhibit similar physical properties as dentin resulting in failures. Aim: To evaluate and compare the fracture resistance and mode of failure of simulated traumatized permanent central incisors restored with three different post systems including biologic dentin posts. Materials and Methods: A total of 40 recently extracted human maxillary central incisors with similar dimensions were decoronated 2 mm above the cemento-enamel junction and endodontically treated. Ten specimens were randomly selected as the Group I - Control group (core built teeth without intraradicular posts. The remaining 30 teeth were equally divided and restored with zirconia (Group II, n = 10, fiber re-inforced composite (FRC (Group III, n = 10 and biologic dentin posts (Group IV, n = 10 using resin bonded cement and their cores built-up. These samples were embedded in acrylic resin and then secured in a Universal Testing Machine and subjected to fracture resistance testing. The location of failure in the specimens was evaluated using a stereomicroscope. Results: Intergroup comparison revealed that the control group and zirconia post group (522 ± 110 N demonstrated the least fracture resistance, while dentin post group (721 ± 127 N the highest. There was no statistically significant difference between fiber post and dentin post groups. Fractures that were repairable were observed in fiber post and dentin post groups, whereas mostly unrestorable, catastrophic fractures were observed in the zirconia post group. Conclusion: Teeth restored with the biologic dentin post system demonstrated the highest fracture resistance and repairable fractures, closely followed by FRC post system. The least fracture resistance and most catastrophic fractures were demonstrated by the zirconia post system.

  11. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (12.5 mm diam by 4.6 mm thick). Both unloading compliance and potential drop methods have been used to monitor crack extension during the J-integral resistance (J-R) curve testing. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hat cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimens 12.7-mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  12. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    Science.gov (United States)

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  13. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    Science.gov (United States)

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    Science.gov (United States)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  15. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  16. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  17. Effect of reverse cyclic loading on the fracture resistance curve in C(T) specimen

    International Nuclear Information System (INIS)

    Sung Seok, C.; Jin Kim, Y.; Il Weon, J.

    1999-01-01

    Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to investigate the effect of reverse cyclic loading on the J-R curves in C(T) specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δ cycle /δ i ), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance tests on C(T) specimens with varying the load ratio and the incremental plastic displacement were performed, and the test results showed that the J-R curves were decreased with decreasing the load ratio and decreasing the incremental plastic displacement. Direct current potential drop (DCPD) method was used for the detection of crack initiation and crack growth in typical laboratory J-R tests. The values of crack initiation J-integral (J I ) and crack initiation displacement (δ i ) were also obtained by using the DCPD method. (orig.)

  18. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  19. Effect of reverse cyclic loading on the fracture resistance curve of nuclear piping material

    International Nuclear Information System (INIS)

    Weon, Jong Il; Seok, Chang Sung

    1999-01-01

    Fracture resistance (J-R) curves, which are used for the elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to study the effect of reverse cyclic loading on J-R curves in CT specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δ cycle /δ i ), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance test on CT specimens with varying load ratio and incremental plastic displacement were performed. For the SA 516 Gr. 70 steel, the results showed that the J-R curves were decreased with decreasing the load ratio and the incremental plastic displacement. When the load ratio was set to -1, the results of the J-R curves and the J i value were about 40-50 percent of those for the monotonic loading condition. Also on condition that the incremental plastic displacement reached 1/40, the J-R curves and the J i value were about 50-60 percent of those for the incremental plastic displacement of 1/10

  20. Measuring Learning Resistance to Workplace Training

    Science.gov (United States)

    Taylor, Jonathan E.; Lounsbury, John

    2016-01-01

    Training Transfer has been a topic bearing considerable mention over the past several decades. This article focuses on the connection between training transfer and learning resistance and presents research findings describing the design, creation, and testing of the Learning Efficiency Inventory (LEI). The LEI was designed to measure learning…

  1. Acoustic emission measurements during impacts tests for determining ductile fracture data

    International Nuclear Information System (INIS)

    Richter, H.

    2000-09-01

    The document reports work for further development of methods and tests to obtain better information on the crack initiation toughness (J id ) under impact loading conditions, by acoustic emission measurements. The applicability of the acoustic emission tests for the given purpose was proven by instrumented Charpy tests using modified ISO-V specimens. The physical crack initiation toughness served as the reference value for reliable evaluation of the characteristic data obtained. This reference value is derived from the crack resistance curve determined by the multi-specimen cleavage fracture method combined with data from measurements of the stretching zone width. Verification of the acoustic emission-defined initiation value included a variety of tests, as e.g. additional dynamic single-specimen methods (L-COD, magnetic emission), and supplementary tests (D3PB, pendulum impact testing machine). The test materials are various steels with different strength/toughness properties. (orig./CB) [de

  2. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  3. Influence of intracanal irrigants on coronal fracture resistance of endodontically treated and bleached teeth: An In vitro Study

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2017-01-01

    Full Text Available Background: Irrigation has a key role in the success of endodontic treatment. Intracanal irrigant solutions have adverse effects on the physical properties of dentin. Aim: The present study aimed to evaluate the effect of different irrigation protocols on coronal fracture resistance of endodontically treated teeth undergoing bleaching treatment. Design and Materials and Methods: Access cavities were prepared in 120 maxillary premolars which were divided into two groups (n = 60 – Group A: nonbleached, Group B: bleached (B. Each group was subdivided into five subgroups based on irrigation protocol (n = 12; G1: normal saline (NS, G2: 2.5% sodium hypochlorite (NaOCl, G3: 10% citric acid (CA, G4: 17% ethylene diamine tetra acetic acid, and G5: NaOCl plus CA. In Group B, the teeth were bleached using 38% hydrogen peroxide and 20% carbamide peroxide gels as in-office and at-home bleaching techniques for 3 weeks. All the teeth were restored with composite resin, thermocycled, and incubated for 24 h. The specimens underwent fracture resistance tests. Data were analyzed with ANOVA, Tukey honestly significant difference test, t-test, and Chi-squared test (α =0.05. Results: T-test showed significant differences between each two corresponding subgroups (P < 0.0001. In Group A, NS demonstrated significantly higher fracture resistance compared to others; however, minimum fracture resistance recorded in G2. In Group B, the maximum fracture resistance was recorded in G1, with the minimum being recorded in G5. Samples irrigated with NaOCl and NaOCl plus CA exhibited significantly lower fracture resistance compared to NS subgroup (P < 0.05. Conclusions: Within the limitations of this study, it can be concluded that the irrigation protocol used during endodontic treatment with/without bleaching can affect the coronal fracture resistance.

  4. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    Science.gov (United States)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  5. Measuring and Modeling Flow in Welded Fractured Tuffs

    International Nuclear Information System (INIS)

    R. Salve; C. Doughty; J.S. Wang

    2001-01-01

    We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field

  6. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  7. High resolution resistivity measurements at the Down Ampney research site

    International Nuclear Information System (INIS)

    Hallam, J.R.; Jackson, P.D.; Rainsbury, M.; Raines, M.

    1991-01-01

    A new high resolution resistivity surveying method is described for fault detection and characterisation. The resolution is shown to be significantly higher than conventional apparent resistivity profiling when applied to geological discontinuities such as faults. Nominal fault locations have been determined to an accuracy of 0.5 m, as proven by drilling. Two dimensional profiling and image enhancement of the resulting 2-D data set indicated the possibility of subsidiary fractures and/or lateral changes within the clay to clay' fault zone. The increased resolution allows greater confidence to be placed on both the fault detection and lateral perturbations derived from processed resistance and resistivity images. (Author)

  8. Effects of Crack Measurement Methods on The Determination of Fracture Toughness of IG-110 Isotropic Graphite

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Kim, Dae Jong; Jang, Chang Heui

    2010-02-01

    This report represents experimental data on the differences in the fracture toughness values due to different crack length measurement methods, i.e. direct current potential drop method (DCPD), traveling microscope method (TM), and dye penetration method (DP). SENB specimens made of IG-11 fine grained isotropic graphite (specimen size: 200(L) x 20(W) x 15(B) mm 3 ) were used. Results on crack length estimation showed that the TM and the DP methods resulted in similar crack length changing behaviors, and the crack length estimated by DCPD was the shortest. Comparisons of crack growth resistance curves (K R curves) showed that the DCPD showed the lowest and a decreasing K R curve with a crack extension. Both the curves from TM and DP showed increasing K R curves with a crack extension, but the curve from DP was unstable. The K R curve estimated from TM appeared to be the most stable one

  9. Resistance to corrosion fatigue fracture in heat resistant steels and their welded joints

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Fedorova, V.A.; Zvezdin, Yu.I.; Vajner, L.A.; Filatov, V.M.

    1987-01-01

    Experimental data on cyclic crack resistance of heat-resistant steels and their welded joints employed for production of the reactor bodies are for the first time generalized and systematized. The formula is suggested accounting for surface and inner defects to calculate the fatigue crack growth in the process of operation. This formula for surface defects regards also the effect of the corrosion factor. Mechanisms of the reactor water effect on the fatigue crack growth rate are considered as well as a combined effect of radiation and corrosive medium on this characteristic

  10. Loss-resistant unambiguous phase measurement

    OpenAIRE

    Dinani, Hossein T.; Berry, Dominic W.

    2014-01-01

    Entangled multi-photon states have the potential to provide improved measurement accuracy, but are sensitive to photon loss. It is possible to calculate ideal loss-resistant states that maximize the Fisher information, but it is unclear how these could be experimentally generated. Here we propose a set of states that can be obtained by processing the output from parametric down-conversion. Although these states are not optimal, they provide performance very close to that of optimal states for...

  11. The Effect of Diode Laser Treatment for Root Canal Disinfection on Fracture Resistance and Micro-hardness of the Tooth

    International Nuclear Information System (INIS)

    Elmiligy, H.H; Diab, A.H.; Sabet, N.E.; Saafan, A.M.

    2014-01-01

    This study evaluated the effect of diode laser treatment for root canal disinfection on fracture resistance and micro-hardness of the tooth. Sixty freshly extracted mandibular and maxillary premolars were accessed under coolant then root canals were flared up to apical preparation size 40 MFA coupled with 5.25% NaOCl as an irrigant. Teeth were divided into two groups, control group (group I) and lased group (group II) that was lased by diode laser with average power 2 w through fibrooptic into the canal 2 mm shorter than the apex. Each tooth was embedded in acrylic block, and then subjected to the fracture resistance test. Each root was then sectioned transversely and polished to record dentin Vickers hardness. Data was analysed with student t-test then with linear regression test. The Lased samples presented a significantly higher resistance to fracture than unlased samples. There was no statistically significant differences found between Vickers hardness (HV) of lased and unlased samples and there was no relation between fracture resistance and microhardness. Diode laser (980 nm) treatment had no adverse effect on dentin microhardness, also it increased the fracture resistance of dentin. Diode laser (980 nm) treatment could attain better function ability and maintenance of tooth after endodontic treatment.

  12. Trabecular mineral content of the spine in women with hip fracture: CT measurement

    International Nuclear Information System (INIS)

    Firooznia, H.; Rafii, M.; Golimbu, C.; Schwartz, M.S.; Ort, P.

    1986-01-01

    The trabecular bone mineral content (BMC) of the spine was measured by computed tomography in 185 women aged 47-84 years with vertebral fracture (n = 74), hip fracture (n = 83), and both vertebral and hip fracture (n = 28). Eighty-seven percent of vertebral-fracture patients, 38% of hip-fracture patients, and 82% of vertebral- and hip-fracture patients had spinal BMC values below the fifth percentile for healthy premenopausal women and values 64%, 9%, and 68% below the fifth percentile for age-matched control subjects. No significant loss of spinal trabecular bone was seen in patients with hip fracture. If it is assumed that the rate of trabecular bone loss is the same in the spine and femoral neck, then hip fracture (unlike osteoporotic vertebral fracture) is not associated with disproportionate loss of trabecular bone. Hip fracture occurs secondary to weakening of bone and increased incidence of falls. Bone weakening may be due to disproportionate loss of trabecular or cortical bone, proportionate loss of both, or other as yet undetermined qualitative changes in bone

  13. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  14. Comparison of the fracture resistance of dental implants with different abutment taper angles.

    Science.gov (United States)

    Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei

    2016-06-01

    To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (Pabutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (Pabutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study.

    Science.gov (United States)

    Al-Wahadni, Ahed M; Hussey, David L; Grey, Nicholas; Hatamleh, Muhanad M

    2009-03-01

    The aim of this study was to investigate the fracture resistance of two types of ceramic crowns cemented with two different cements. Forty premolar crowns were fabricated using lithium-disilicate (IPS Empress-2) and glass-infiltrated aluminium-oxide (In-Ceram) ceramic systems. The crowns were divided into four groups (n=10) with Group 1 (IPS Empress-2) and Group 2 (In-Ceram) cemented with glass ionomer cement. Group 3 (IPS Empress-2) and Group 4 (In-Ceram) were cemented with resin cement. Crowns were tested in a universal testing machine at a compressive-load speed of 10 mm/min. Fracture modes were grouped into five categories. One way analysis of variance (ANOVA) and Bonferroni post-hoc tests were used to detect statistical significances (p0.05) on fracture resistance within each ceramic system tested. In-Ceram crowns cemented with either glass ionomer or resin cements exhibited a statistically significantly higher fracture-resistance than IPS Empress-2 crowns (pEmpress-2 and In-Ceram crowns was not affected by the type of cement used for luting. Both In-Ceram and IPS Empress-2 crowns can be successfully luted with the cements tested with In-Ceram exhibiting higher fracture resistance than IPS Empress-2.

  16. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  17. A versatile stereo photogrammetry based technique for measuring fracture mode displacements in structures

    DEFF Research Database (Denmark)

    Alvarado, Jonathan Shmueli; Eder, Martin Alexander; Tesauro, Angelo

    2015-01-01

    The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types. Further......The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types......-made automated image processing software (AIPS) allows a rapid and reliable evaluation of a multitude of subsequently taken measurements at a high-precision level. The SDMS is used to measure the LRDs at three different locations close to the trailing edge of a wind turbine rotor blade. In addition...

  18. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1994-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (1.25 mm diam by 4.6 mm thick). Specimens of European type 316L austenitic stainless steel were irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 C and tested over a temperature range from 20 to 250 C. Results show that irradiation to this dose level at these temperatures reduces the fracture toughness but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 C is more damaging than at 90 C, causing larger decreases in the fracture toughness. The testing shows that it is possible to generate useful fracture toughness data with a small disk compact specimens

  19. Fracture Resistance of Ceramic Laminate Veneers Bonded to Teeth with Class V Composite Fillings after Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Leyla Sadighpour

    2018-01-01

    Full Text Available Purpose. Porcelain laminate veneers (PLVs are sometimes required to be used for teeth with composite fillings. This study examined the fracture strength of PLVs bonded to the teeth restored with different sizes of class V composite fillings. Materials and Methods. Thirty-six maxillary central incisors were divided into three groups (n=12: intact teeth (control and teeth with class V composite fillings of one-third or two-thirds of the crown height (small or large group, resp.. PLVs were made by using IPS e.max and bonded with a resin cement (RelyX Unicem. Fracture resistance (N was measured after cyclic loading (1 × 106 cycles, 1.2 Hz. For statistical analyses, one-way ANOVA and Tukey test were used (α=0.05. Results. There was a significant difference between the mean failure loads of the test groups (P=0.004, with the Tukey-HSD test showing lower failure loads in the large-composite group compared to the control (P=0.02 or small group (P=0.05. The control and small-composite groups achieved comparable results (P>0.05. Conclusions. Failure loads of PLVs bonded to intact teeth and to teeth with small class V composite fillings were not significantly different. However, extensive composite fillings could compromise the bonding of PLVs.

  20. Short-term effect of zoledronic acid upon fracture resistance of the mandibular condyle and femoral head in an animal model.

    Science.gov (United States)

    Camacho-Alonso, Fabio; López-Jornet, Pía; Vicente-Hernández, Ascensión

    2013-05-01

    The aim of this study was to compare the effects in terms of resistance to fracture of the mandibular condyle and femoral head following different doses of zoledronic acid in an animal model. A total of 80 adult male Sprague-Dawley rats were included in a prospective randomized study. The animals were randomly divided into four groups of 20 rats each. Group 1 (control) received sterile saline solution, while groups 2, 3 and 4 received a accumulated dose of 0.2 mg, 0.4 mg and 0.6 mg of zoledronic acid, respectively. The animals were sacrificed 28 days after the last dose, and the right hemimandible and the right femur were removed. The fracture strength was measured (in Newtons) with a universal test machine using a 1 kN load connected to a metal rod with one end angled at 30 degrees. The cross-head speed was 1 mm/min. Later, the specimens were observed under a scanning electron microscope with backscattered electron imaging (SEM-BSE). At last, chemical analysis and elemental mapping of the mineral bone composition were generated using a microanalytical system based on energy-dispersive and X-ray spectrometry (EDX). A total of 160 fracture tests were performed. The fracture resistance increased in mandible and femur with a higher accumulated dose of zoledronic acid. Statistically significant differences were recorded versus the controls with all the studies groups. The chemical analysis in mandible showed a significantly increased of calcium and phosphorous to compare the control with all of the study groups; however, in femur no statistically significant differences between the four study groups were observed. The administration of bisphosphonates increases the fracture resistance in mandible and femur.

  1. Marginal ridge fracture resistance, microleakage and pulpal response to glass ionomer/glass cermet partial tunnel restorations.

    Science.gov (United States)

    Prabhu, N T; Munshi, A K; Shetty, T R

    1997-01-01

    Sixty sound premolars which were to be extracted for orthodontic treatment purposes were restored either with glass ionomer cement or glass cermet cements after partial tunnel preparation, and prior to the extraction after a time interval of 30 and 60 days respectively. The teeth were then subjected to marginal ridge fracture resistance, microleakage study using dye penetration and histological evaluation of the pulpal response to these materials. Both the materials exhibited increase in marginal ridge fracture resistance at 60 days, with minimal degree of microleakage and were biologically compatible with the dental pulp.

  2. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  3. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  4. Fracture resistance of structurally compromised and normal endodontically treated teeth restored with different post systems: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Full Text Available Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9. In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post (group DT.N and zirconia posts (Cosmopost (group Zr.N. In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W, double taper Light posts and Ribbond fibers (DT+R.W and Zirconia posts (Zr.W. After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05. Results: The mean failure loads (N were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05. A significant difference was detected between groups DT.N and Zr.W (P=0.027. Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004. Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts.

  5. Compressional acoustics in a borehole. Measurement of fracture permeability

    International Nuclear Information System (INIS)

    Samaden, G.

    1987-04-01

    The detection of open fracturation of reservoirs or underground formations is very important for hydrogeology, geothermal energy and underground waste storage. The refracted compressional P wave only is studied because being faster there is less noise from interferences detection is relatively simple and easy for computer programming. 12 refs [fr

  6. Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants.

    Science.gov (United States)

    Costa-Berenguer, Xavier; García-García, Marta; Sánchez-Torres, Alba; Sanz-Alonso, Mariano; Figueiredo, Rui; Valmaseda-Castellón, Eduard

    2018-01-01

    To assess the effect of implantoplasty on the fracture resistance, surface roughness, and macroscopic morphology of standard diameter (4.1 mm) external connection dental implants. An in vitro study was conducted in 20 screw-shaped titanium dental implants with an external connection. In 10 implants, the threads and surface were removed and polished with high-speed burs (implantoplasty), while the remaining 10 implants were used as controls. The final implant dimensions were recorded. The newly polished surface quality was assessed by scanning electron microscopy (SEM) and by 3D surface roughness analysis using a confocal laser microscope. Finally, all the implants were subjected to a mechanical pressure resistance test. A descriptive analysis of the data was made. Also, Student's t tests were employed to detect differences regarding the compression tests. Implantoplasty was carried out for a mean time of 10 min and 48 s (standard deviation (SD) of 1 min 22 s). Macroscopically, the resulting surface had a smooth appearance, although small titanium shavings and silicon debris were present. The final surface roughness (S a values 0.1 ± 0.02 μm) was significantly lower than that of the original (0.75 ± 0.08 μm S a ) (p = .005). There was minimal reduction in the implant's inner body diameter (0.19 ± 0.03 mm), and no statistically significant differences were found between the test and control implants regarding the maximum resistance force (896 vs 880 N, respectively). Implantoplasty, although technically demanding and time-consuming, does not seem to significantly alter fracture resistance of standard diameter external connection implants. A smooth surface with S a values below 0.1 μm can be obtained through the use of silicon polishers. A larger sample is required to confirm that implantoplasty does not significantly affect the maximum resistance force of standard diameter external connection implants. © 2017 John Wiley & Sons A/S. Published

  7. Electrical resistivity measurements to predict abrasion resistance of ...

    Indian Academy of Sciences (India)

    WINTEC

    increasing expansion of highway and other construction works and decreasing natural aggregate resources in the world, the demand for crushed stone aggregates has in- creased from day-to-day. One of the important properties of rock aggregates is abrasion resistance. The abrasion resistance of aggregates is generally ...

  8. Loss-resistant unambiguous phase measurement

    Science.gov (United States)

    Dinani, Hossein T.; Berry, Dominic W.

    2014-08-01

    Entangled multiphoton states have the potential to provide improved measurement accuracy, but are sensitive to photon loss. It is possible to calculate ideal loss-resistant states that maximize the Fisher information, but it is unclear how these could be experimentally generated. Here we propose a set of states that can be obtained by processing the output from parametric down-conversion. Although these states are not optimal, they provide performance very close to that of optimal states for a range of parameters. Moreover, we show how to use sequences of such states in order to obtain an unambiguous phase measurement that beats the standard quantum limit. We consider the optimization of parameters in order to minimize the final phase variance, and find that the optimum parameters are different from those that maximize the Fisher information.

  9. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts.

    Science.gov (United States)

    Panitiwat, Prapaporn; Salimee, Prarom

    2017-01-01

    This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2.0). Samples were randomly divided into four groups (n=10). Each group was built-up with one of the four core materials following its manufacturers' instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05), but was significantly higher than in those with LCZ and TNC (paligned with the same tendency of fracture loads. Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  10. Electrical resistivity tomography investigation of coseismic liquefaction and fracturing at San Carlo, Ferrara Province, Italy

    Directory of Open Access Journals (Sweden)

    Nasser Abu Zeid

    2012-10-01

    Full Text Available Massive surface fracturing and sand ejection took place during the main shock of the May 20, 2012, earthquake (Ml = 5.9 in the Emilia-Romagna region, northern Italy. These phenomena were induced by the liquefaction of water-saturated sand layers, and they damaged several buildings, as well as many roads and sidewalks. They were clustered between the villages of Sant'Agostino and Vigarano Mainarda, located along a paleo-reach of the Reno River [Papathanassiou et al. 2012, this volume]. The subsurface surrounding two major (several decameters long ground ruptures was investigated using electrical resistivity tomographies (ERT, as resistivity is strongly affected by the chemico-physical conditions of loose sediments. Italian regulations require the Municipalities within seismically active areas to develop maps of the potential liquefaction risk. Not all of the territories that are under this kind of risk have been investigated to date. A strong effort to improve this knowledge is therefore needed. Noninvasive geophysical methods can help to fill this gap, as high-resolution techniques are available with good result-to-cost ratios. Among the available methodologies, the most suitable are the methods based on electrical resistivity and permittivity, as they are highly sensitive to the presence of underground water. The ERT method has been carried out successfully across active faults, providing crucial paleoseismological information [Caputo et al. 2003, 2007]. […

  11. Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments.

    Science.gov (United States)

    Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2015-07-01

    Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic

  12. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    Science.gov (United States)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  13. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  14. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok Woo; /Stanford U., Geballe Lab.; Lee, Hyun-Wook; /Stanford U., Materials Sci. Dept.; Ryu, Ill; /Brown U.; Nix, William D.; /Stanford U., Materials Sci. Dept.; Gao, Huajian; /Brown U.; Cui, Yi; /Stanford U., Materials Sci. Dept. /SLAC

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.

  15. Evaluation of easily measured risk factors in the prediction of osteoporotic fractures

    Directory of Open Access Journals (Sweden)

    Brown Jacques P

    2005-09-01

    Full Text Available Abstract Background Fracture represents the single most important clinical event in patients with osteoporosis, yet remains under-predicted. As few premonitory symptoms for fracture exist, it is of critical importance that physicians effectively and efficiently identify individuals at increased fracture risk. Methods Of 3426 postmenopausal women in CANDOO, 40, 158, 99, and 64 women developed a new hip, vertebral, wrist or rib fracture, respectively. Seven easily measured risk factors predictive of fracture in research trials were examined in clinical practice including: age (, 65–69, 70–74, 75–79, 80+ years, rising from a chair with arms (yes, no, weight (≥ 57kg, maternal history of hip facture (yes, no, prior fracture after age 50 (yes, no, hip T-score (>-1, -1 to >-2.5, ≤-2.5, and current smoking status (yes, no. Multivariable logistic regression analysis was conducted. Results The inability to rise from a chair without the use of arms (3.58; 95% CI: 1.17, 10.93 was the most significant risk factor for new hip fracture. Notable risk factors for predicting new vertebral fractures were: low body weight (1.57; 95% CI: 1.04, 2.37, current smoking (1.95; 95% CI: 1.20, 3.18 and age between 75–79 years (1.96; 95% CI: 1.10, 3.51. New wrist fractures were significantly identified by low body weight (1.71, 95% CI: 1.01, 2.90 and prior fracture after 50 years (1.96; 95% CI: 1.19, 3.22. Predictors of new rib fractures include a maternal history of a hip facture (2.89; 95% CI: 1.04, 8.08 and a prior fracture after 50 years (2.16; 95% CI: 1.20, 3.87. Conclusion This study has shown that there exists a variety of predictors of future fracture, besides BMD, that can be easily assessed by a physician. The significance of each variable depends on the site of incident fracture. Of greatest interest is that an inability to rise from a chair is perhaps the most readily identifiable significant risk factor for hip fracture and can be easily incorporated

  16. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  17. Ex vivo fracture resistance of direct resin composite complete crowns with and without posts on maxillary premolars.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Bell, A.M. Le; Kreulen, C.M.; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.

    2005-01-01

    AIM: To investigate ex vivo the fracture resistance and failure mode of direct resin composite complete crowns with and without various root canal posts made on maxillary premolars. METHODOLOGY: The clinical crowns of 40 human extracted single-rooted maxillary premolars were sectioned at the

  18. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness.

    Science.gov (United States)

    Taha, Doaa; Spintzyk, Sebastian; Schille, Christine; Sabet, Ahmed; Wahsh, Marwa; Salah, Tarek; Geis-Gerstorfer, Jürgen

    2017-12-11

    The purpose of this in vitro study was to assess the effect of varying the margin designs and the occlusal thicknesses on the fracture resistance and mode of failures of endodontically treated teeth restored with polymer infiltrated ceramic endocrown restorations. Root canal treated mandibular molars were divided into four groups (n=8) and were prepared to receive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) fabricated polymer infiltrated ceramic endocrowns (ENAMIC blocks). Group B2 represents teeth prepared with a butt joint design receiving endocrowns with 2mm occlusal thickness and the same for group B3.5 but with 3.5mm occlusal thickness. Group S2 represents teeth prepared with 1mm shoulder finish line receiving endocrowns with 2mm occlusal thickness and the same for group S3.5 but with 3.5mm occlusal thickness. After cementation and thermal aging, fracture resistance test was performed and failure modes were observed. Group S3.5 showed the highest mean fracture load value (1.27±0.31kN). Endocrowns with shoulder finish line had significantly higher mean fracture resistance values than endocrowns with butt margin (p<0.05). However, the results were not statistically significant regarding the restoration thickness. Evaluation of the fracture modes revealed no statistically significant difference between the modes of failure of tested groups. For the restoration of endodontically treated teeth, adding a short axial wall and shoulder finish line can increase the fracture resistance. However, further investigations, especially the fatigue behavior, are needed to ensure this effect applies with small increases of restoration thickness. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  20. Fracture resistance of endodontically treated roots filled with resilon and guttapercha - A comparative in-vitro study

    Directory of Open Access Journals (Sweden)

    Rajesh R Shetty

    2009-01-01

    Full Text Available Aims and objectives: The purpose of this study was to evaluate and compare in vitro the fracture resistance of endodontically treated roots filled with Resilon and Gutta-percha. Methodology: Eighty extracted single canal teeth were selected and randomly assigned to five groups of sixteen teeth each. Teeth were sectioned using a diamond disc so as to obtain a root length of 14±1 mm. Roots were instrumented using .04 taper Profile rotary system to an apical size of 40 and obturated using .04 taper single cone (size 40 as follows: Group 1: Resilon .04 taper cone and Epiphany Self etching sealer, Group 2: .04 taper gutta-percha cone and AH Plus sealer ,Group 3: .04 taper gutta-percha cone and Roeko Seal Automix sealer, Group 4: .04 taper gutta-percha cone and Zinc oxide Eugenol sealer , Group 5: .04 taper gutta-percha cone without the use of a sealer. Following obturation, teeth were mounted in Poly Vinyl Chloride jigs using self cure acrylic resin such that 9mm of the root remained exposed. Fracture resistance testing was done using Instron testing machine using a vertical load applied perpendicular to the root surface. Statistical analysis was done using ANOVA, Tukey HSD and Student′s ′t′ test. Results: Very highly significant difference was observed between the groups (P=.001. Resilon with Epiphany group demonstrated highest mean fracture resistance value and gutta-percha without sealer displayed the least, comparative results were highly significant. Resilon compared to gutta-percha with Roeko Seal Automix (P=.037 and Zinc Oxide Eugenolsealers (P=.029 showed statistically significant difference. AH plus group showed significantly higher value compared to gutta-percha without sealer. Conclusions: Filling the root canals with Resilon increased the in vitro fracture resistance of endodontically treated roots compared to standard gutta-percha techniques. Adhesive sealers are more beneficial in increasing the fracture resistance of

  1. Evaluation of fracturing process of soft rocks at great depth by AE measurement and DEM simulation

    International Nuclear Information System (INIS)

    Aoki, Kenji; Mito, Yoshitada; Kurokawa, Susumu; Matsui, Hiroya; Niunoya, Sumio; Minami, Masayuki

    2007-01-01

    The authors developed the stress-based evaluation system of EDZ by AE monitoring and Distinct Element Method (DEM) simulation. In order to apply this system to the soft rock site, the authors try to grasp the relationship between AE parameters, stress change and rock fracturing process by performing the high stiffness tri-axial compression tests including AE measurements on the soft rock samples, and its simulations by DEM using bonded particle model. As the result, it is found that change in predominant AE frequency is effective to evaluate fracturing process in sedimentary soft rocks, and the relationship between stress change and fracturing process is also clarified. (author)

  2. Interpretation of hole-to-surface resistivity measurements at Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Daniels, J.J.; Scott, J.H.

    1981-01-01

    Hole-to-surface resistivity measurements at Yucca Mountain indicate the presence of many near-surface geologic inhomogeneities, with no definite indication of deep structural features. A resistive anomaly near drill hole UE25a-6 is interpreted as a thin, vertical, resistive body that nearly intersects the surface, and may be caused by a silicified, or calcified, fracture zone. A resistive anomaly near hole UE25a-7 is probably caused by a near surface, horizontal, lens-shaped body that may represent a devitrified zone in the Tiva Canyon Member. Many conductive anomalies were detected to the southwest of hole UE25a-4. However, these anomalies are interpreted to be caused by variations in the thickness of the surface alluvium

  3. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p enamel (p enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  4. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  5. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  6. In vitro evaluation of fracture resistance of Fiber-Reinforced Composite inlay bridges in upper anterior and lower posterior teeth

    Directory of Open Access Journals (Sweden)

    Jalalian E.

    2007-07-01

    Full Text Available Background and Aim: Considering flexural strength of fiber-reinforced composites (FRC and also the role of conservative cavities in protecting sound tissue of abutments, the aim of this study was to evaluate the fracture resistance of these bridges by handmade samples in vitro.Materials and Methods: In this experimental in vitro study, 44 sound newly extracted teeth were used to make 22 fixed inlay bridges including 11 three unit anterior upper inlay bridges substituting clinical model of upper central and 11 three unit posterior lower inlay bridges substituting clinical model of lower first molar. Specimens were prepared with FRC and mounted with artificial PDL in acryl. Cases were exposed to final load by using Universal Testing Machine (Instron 1195 with the speed of 1 mm/min. Statistical analysis was performed by Kolmogorov- Smirnov, independent sample T and Kaplan-Meier tests with p<0.05 as the level of significance.Results: Based on the statistical tests, the 95% confidence interval of mean was 450-562 N in anterior and  1473- 1761 N in posterior area. Fracture strength was high in the studied groups. Fractures in both groups occurred on composite facing, and the framework remained intact. The highest percentage of fracture in posterior teeth was in the middle of pontic towards the distal connector and in the anterior teeth in the lateral connector, between central pontic and lateral abutment. Using the independent sample T  test a significant statistical difference was observed between two groups (P<0.001. The fracture resistance of anterior samples was lower than the posterior ones.Conclusion: Based on the results of this study regarding the high fracture resistance in both areas FRC inlay bridges could be recommended for upper anterior and lower posterior teeth in clinical dentistry certainly more studies are needed to ascertain this treatment option.

  7. The relationship between diameter and taper of nickel-titanium rotary instruments on the torsional resistance to fracture

    Directory of Open Access Journals (Sweden)

    Erick Miranda Souza

    Full Text Available Objective: To evaluate the resistance to fracture of rotary Ni-Ti files of various diameters and tapers after torsional stress simulation. Methods: Profile (Dentsply Maillerfer, Ballaigues, Suíça instruments sizes 15 to 40, taper 0.04 and 0.06 were used. Ten instruments of each size and taper were tested, totaling 120 files. The maximum torque (Tmax until fracture was determined in accordance with the ANSI / ADA Protocol Nº 28 . The maximum force was converted into maximum torque using the formula: Tmax = Loadmax x RadiusResults: The diameter (p<0.001 and taper (p<0.001 influenced the maximum torque to fracture. With the increase in diameter and taperthere was a gradual increase in the maximum torque. Using the multiple regression method an equation relating the maximum torque to the diameter (D and the taper (T was found: Tmax = -1.4 + 0.08D + 10.5T. Conclusion: The increase in diameter and taper promoted an increase in resistance to torsion. The variation of the taper from 0.04 to 0.06 in instruments with the same diameter increased resistance to fracture by torsion by around 25%.

  8. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    Science.gov (United States)

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P abutment heights.

  9. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods are necessary to facilitate the fracture toughness testing of small disk compact specimens of irradiated candidate materials for first-wall fusion applications. New methods have been developed for both the unloading compliance and potential drop techniques of monitoring crack growth. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hot cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimen 12.7 mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  10. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  11. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  12. Electrical Resistivity Measurements of Downscaled Homogenous ...

    African Journals Online (AJOL)

    Knowledge of electrical resistivity for reservoir rocks is crucial for a number of reservoir engineering tasks such as the determination of oil-in-place and the calibration of resistivity logs. Those properties can now be predicted by numerical calculations directly on micro-CT images taken from rock fragments typically having a ...

  13. Computational area measurement of orbital floor fractures: Reliability, accuracy and rapidity

    International Nuclear Information System (INIS)

    Schouman, Thomas; Courvoisier, Delphine S.; Imholz, Benoit; Van Issum, Christopher; Scolozzi, Paolo

    2012-01-01

    Objective: To evaluate the reliability, accuracy and rapidity of a specific computational method for assessing the orbital floor fracture area on a CT scan. Method: A computer assessment of the area of the fracture, as well as that of the total orbital floor, was determined on CT scans taken from ten patients. The ratio of the fracture's area to the orbital floor area was also calculated. The test–retest precision of measurement calculations was estimated using the Intraclass Correlation Coefficient (ICC) and Dahlberg's formula to assess the agreement across observers and across measures. The time needed for the complete assessment was also evaluated. Results: The Intraclass Correlation Coefficient across observers was 0.92 [0.85;0.96], and the precision of the measures across observers was 4.9%, according to Dahlberg's formula .The mean time needed to make one measurement was 2 min and 39 s (range, 1 min and 32 s to 4 min and 37 s). Conclusion: This study demonstrated that (1) the area of the orbital floor fracture can be rapidly and reliably assessed by using a specific computer system directly on CT scan images; (2) this method has the potential of being routinely used to standardize the post-traumatic evaluation of orbital fractures

  14. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  15. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts

    Directory of Open Access Journals (Sweden)

    Prapaporn PANITIWAT

    Full Text Available Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC, MultiCore Flow (MCF, and LuxaCore Z-Dual (LCZ, and a nanohybrid composite, (Tetric N-Ceram (TNC. Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post cemented with resin cement (Panavia F2.0. Samples were randomly divided into four groups (n=10. Each group was built-up with one of the four core materials following its manufacturers’ instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. Results One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05, but was significantly higher than in those with LCZ and TNC (p<0.05. In terms of the flexural modulus, the ranking from the highest values of the materials was aligned with the same tendency of fracture loads. Conclusion Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  16. 47 CFR 73.54 - Antenna resistance and reactance measurements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna resistance and reactance measurements... measurements. (a) The resistance of an omnidirectional series fed antenna is measured at either the base of the... the point of common radiofrequency input to the directional antenna system after the antenna has been...

  17. High resistance (up to 1014 ohms) measurement using RC networks

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    An application of dynamic measuring techniques of resistances from 10 6 to 10 14 ohms is described. The method has been analyzed with an eye to measuring accuracy, other influences of the actual measuring circuit also being considered. In conclusion, an automatic measuring method with A/D conversion, automatic range selection, and digital output in semilogarithmic form is outlined. It has been experimentally verified that the dynamic method of resistance measurement can be used for testing insulation resistance of materials and resistors. The great advantage of the automatic measuring circuit is that, apart from an easy automatic selection of the measuring range, digital output in semilogarithmic form ensures compatibility with digital computer systems and facilitates the grading in resistor manufacture. The time required for measuring resistances of the known order of magnitude does not exceed 1 s. Automatic selection of the order of magnitude speeds up the measurement of unknown resistances. For resistance measurement over the range of 10 6 to 10 14 ohms, the measuring accuracy of 1 to 2% is usually sufficient. The meter can be designed as an inexpensive attachment to a conventional counter. The principle of integration measurement avoids undesirable interference effects with which the conventional measuring methods are afflicted. Since the measuring voltage can be adjusted continuously, even the voltage dependence of resistance can be measured

  18. Outcome of nonunion fractures in dogs treated with fixation, compression resistant matrix, and recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Massie, Anna M; Kapatkin, Amy S; Fuller, Mark C; Verstraete, Frank J M; Arzi, Boaz

    2017-03-20

    To report the use of compression resistant matrix (CRM) infused with recombinant human bone morphogenetic protein (rhBMP-2) prospectively in the healing of nonunion long-bone fractures in dogs. A longitudinal cohort of dogs that were presented with nonunion fractures were classified and treated with CRM soaked with rhBMP-2 and fracture fixation. They were followed with serial radiographs and evaluated for healing times and complications according to the time frame and definitions previously established for orthopaedic clinical cases. Eleven nonunion fractures in nine dogs were included. Median healing time was 10 weeks (range: 7-20 weeks). Major perioperative complications due to bandage morbidity were encountered in two of 11 limbs and resolved. All other complications were minor. They occurred perioperatively in eight of 11 limbs. Minor follow-up complications included short-term in one of two limbs, mid-term in one of three, and long-term in four of five limbs. Nine limbs returned to full function and two limbs returned to acceptable function at the last follow-up. Nonunion fractures given a poor prognosis via standard-of-care treatment were successfully repaired using CRM with rhBMP-2 accompanying fixation. These dogs, previously at high risk of failure, returned to full or acceptable function.

  19. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  20. The effects of different nutritional measurements on delayed wound healing after hip fracture in the elderly.

    Science.gov (United States)

    Guo, Jiong Jiong; Yang, Huilin; Qian, Haixin; Huang, Lixin; Guo, Zhongxing; Tang, Tiansi

    2010-03-01

    It has been well recognized that malnutrition causes wounds to heal inadequately and incompletely. Malnutrition is often observed in the elderly, and it appears to be more severe in patients with hip fracture than in the general aging population. Few prospective studies give a detailed account of the identification and classification of nutritional status in the elderly. The objective of this study was to evaluate the effects of different nutritional measurements on wound healing status after hip fracture in the elderly. From September 2002 to December 2007, 207 hip fracture patients older than 60 y treated surgically were reviewed for preoperative nutritional status. There were 81 males and 126 females with an average age of 75.93 y (62-91 y); 131 cases with femoral neck fractures, 76 cases with intertrochanteric fractures. Parameters indicative of nutritional status (serum albumin, serum transferrin, serum pre-albumin, and total lymphocyte count levels) at the time of admission were assessed, along with anthropometric measurements, Rainey MacDonald nutritional index, and MNA tool. Suture removal was performed on postoperative day 14. Delayed wound healing complicated 46 (22.2%) of the 207 cases. The preoperative serum transferring total lymphocyte count levels, MNA total score, and Rainey MacDonald nutritional index were significantly lower for patients who subsequently had delayed wound healing. When all variables were subjected to multivariate analysis, only total lymphocyte count levels and MNA total score showed significant value in predicting which patients would have delayed wound healing. Through prophylactic antibiotics and adherence to strict aseptic precautions, on follow-up, wound healing was normal in all patients. Patients at risk for delayed wound healing problems after hip fracture can be identified using relatively inexpensive laboratory test such as TLC and MNA tool. The clinician must be aware of the risk values of both measurements. We believe

  1. Comparison of cutout resistance of dynamic condylar screw and proximal femoral nail in reverse oblique trochanteric fractures: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Gursimrat Singh Cheema

    2012-01-01

    Results: The bending moment of the PFN group was approximately 50% less than that of the DCS group (P<0.0001. The PFN group resisted more number of cycles than the DCS group (P=0.03 and showed lesser number of component failures as compared with the DCS group (P=0.003. Conclusions: The PFN is biomechanically superior to DCS for the fixation of reverse oblique trochanteric fractures of femur.

  2. Determining the fracture resistance of fibre-reinforced glass matrix composites by means of the chevron-notch flexural technique

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A. R.; Kern, H.; Dlouhý, Ivo

    2001-01-01

    Roč. 308, 1/2 (2001), s. 111-117 ISSN 0921-5093 R&D Projects: GA ČR GV101/96/K264 Institutional research plan: CEZ:AV0Z2041904 Keywords : glass matrix composites * fracture toughness * chevron notch test Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.978, year: 2001

  3. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts

    OpenAIRE

    PANITIWAT, Prapaporn; SALIMEE, Prarom

    2017-01-01

    Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2...

  4. Fracture toughness measurements on a glass bonded sodalite high-level waste form

    International Nuclear Information System (INIS)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-01-01

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies

  5. [Comparative study of the fracture resistance of sound upper premolars and upper premolars restored with bonded amalgam].

    Science.gov (United States)

    Minto, André Marcelo Peruchi; Dinelli, Welingtom; Nonaka, Tomio; Thome, Luis Henrique de Camargo

    2002-01-01

    The purpose of this in vitro study was to determine the fracture resistance of upper premolars which had received class II preparations (conservative and extensive) and were restored with bonded amalgam, with two different adhesive systems. Seventy teeth were divided in four groups: group 1 (control), with ten sound teeth; group 2, with twenty prepared teeth (10 teeth received conservative cavities and 10, extensive cavities) restored with amalgam without any kind of liner; groups 3 and 4, similar to group 2, though with linings of glass ionomer cement (Vitrebond - 3M) (group 3) and dental adhesive (Scotchbond Multi-Purpose Plus - 3M) (group 4). The teeth were previously fixed in PVC cylinders with acrylic resin. After being restored and thermocycled, the test specimens were submitted to fracture by means of compression in an EMIC-MEM 2000 universal testing machine. After the application of the analysis of variance and complementary Tukey's test, we concluded that the utilized adhesive systems produced an increase of the fracture resistance of teeth presenting with conventional cavities; the teeth presenting with conservative cavities were more resistant in all experimental situations.

  6. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    Science.gov (United States)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  7. Effects of progressive resistance training on physical disability among older community-dwelling people with history of hip fracture.

    Science.gov (United States)

    Edgren, Johanna; Rantanen, Taina; Heinonen, Ari; Portegijs, Erja; Alén, Markku; Kiviranta, Ilkka; Kallinen, Mauri; Sipilä, Sarianna

    2012-04-01

    Hip fracture is a common trauma in older people, and often leads to decreased muscle strength and increased physical disability. This randomized controlled trial examined whether three months of progressive resistance training (PRT) can reduce physical disability among older people with a history of hip fracture. A population-based sample of 60-85-year-old community- dwelling persons, with hip fractures sustained on average three years earlier, were enrolled in the study. Of 78 people participating in laboratory assessments, those without contraindications for participation in resistance training were randomly assigned to a training group (TG, n=22) or a control group (CG, n=21). TG took part in resistance training for three months twice a week. Training focused on lower limb muscles. Disability was assessed by a validated questionnaire containing six questions on activities of daily living (ADL) and nine on instrumental activities of daily living (IADL). A sum score was calculated separately for both items. High scores indicated more difficulties. Group differences were analysed with the Mann-Whitney and Chi-square tests. The effects of PRT on disability were tested with the McNemar test and by covariance analysis (ANCOVA). TG and CG were comparable with respect to gender, age, chronic diseases, BMI, time since fracture, self-reported health, and level of physical activity at baseline. The ADL sum score in TG was 1.8 (2.0) at baseline and 1.1 (1.3) after follow-up; in CG values were 1.7 (1.8) and 1.5 (1.8) (ANCOVA p=0.034). IADL sum scores in TG were 3.9 (4.6) at baseline and 2.2 (3.8) after follow-up, and in CG 3.4 (3.6) and 2.4 (2.3) (ANCOVA p=0.529). Progressive resistance training reduced self-reported difficulties in ADL, even several years after fracture. More research is still needed on how to prevent physical disability among community-dwelling older people, especially after hip fracture.

  8. Air resistance measurements on actual airplane parts

    Science.gov (United States)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  9. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Maria Estivalete MARCHIONATTI

    2014-10-01

    Full Text Available Objective: Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods: Ninety roots were randomly distributed into 3 groups (n=10 (C-MC: control; P-MC: polyether; AS-MC: addition silicone to test bond strength and 6 groups (n=10 (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline, and the teeth cut into 3 slices (2 mm, which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min performed on all groups. Results: Periodontal ligament simulation did not affect the bond strength (p=0.244 between post and dentin. Simulation of periodontal ligament (p=0.153 and application of mechanical cycling (p=0.97 did not affect fracture resistance. Conclusions: The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study.

  10. Small specimen measurements of dynamic fracture toughness of heavy section steels for nuclear pressure vessel

    International Nuclear Information System (INIS)

    Tanaka, Y.; Iwadate, T.; Suzuki, K.

    1987-01-01

    This study presents the dynamic fracture toughness properties (KId) of 12 heats of RPV steels measured using small specimens and analysed based on the current research. The correlation between the KId test and other engineering small specimen tests such as Charpy test and drop weight test are also discussed and a method to predict the KId value is presented. (orig./HP)

  11. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people

    NARCIS (Netherlands)

    Pluijm, S.M.F.; Graafmans, W.C.; Bouter, L.M.; Lips, P.T.A.M.

    1999-01-01

    In this prospective study we investigated the predictive value of quantitative ultrasound (QUS) measurements and other potential predictors of osteoporotic fractures in the elderly. During a I-year period, 710 participants (132 men and 578 women), aged 70 years and older (mean age ± SD: 82.8 ± 5.9),

  12. Effect of Control Mode and Test Rate on the Measured Fracture Toughness of Advanced Ceramics

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2018-01-01

    The effects of control mode and test rate on the measured fracture toughness of ceramics were evaluated by using chevron-notched flexure specimens in accordance with ASTM C1421. The use of stroke control gave consistent results with about 2% (statistically insignificant) variation in measured fracture toughness for a very wide range of rates (0.005 to 0.5 mm/min). Use of strain or crack mouth opening displacement (CMOD) control gave approx. 5% (statistically significant) variation over a very wide range of rates (1 to 80 µm/m/s), with the measurements being a function of rate. However, the rate effect was eliminated by use of dry nitrogen, implying a stress corrosion effect rather than a stability effect. With the use of a nitrogen environment during strain controlled tests, fracture toughness values were within about 1% over a wide range of rates (1 to 80 micons/m/s). CMOD or strain control did allow stable crack extension well past maximum force, and thus is preferred for energy calculations. The effort is being used to confirm recommendations in ASTM Test Method C1421 on fracture toughness measurement.

  13. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    Science.gov (United States)

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  14. The measurement of density distribution of bentonite buffer extruded into fractures

    International Nuclear Information System (INIS)

    Matsumoto, Kazuhiro; Tanai, Kenji

    2008-01-01

    For the geological disposal of the high-level radioactive waste, it is important to develop the model to evaluate the long-term stability of the engineered barrier system. The increase in the reliability of the evaluation model may reduce the uncertainty of the safety assessment. In this study, the density distribution of the bentonite buffer extruded into the artificial fractures was measured by using a X-ray CT scanner to promote understanding of the extrusion phenomenon of the bentonite into fractures. (author)

  15. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  16. Optimization of Drilling Resistance Measurement (DRM) user-controlled variables

    OpenAIRE

    Tudor, Dumitrescu; Pesce, Giovanni; Ball, Richard

    2017-01-01

    Drilling Resistance Measurement (DRM) is recognised as an important on-site micro-invasive procedure for assessment of construction materials. This paper presents a detailed investigation of user-controlled variables and their influence on drilling resistance. The study proves that the ratio of penetration rate/rotational speed (PR/RPM) is proportional to drilling resistance. Data from Bath stone and an artificial reference stone demonstrates how different materials can be compared using thei...

  17. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study.

    Science.gov (United States)

    Vergnaud, P; Garnero, P; Meunier, P J; Bréart, G; Kamihagi, K; Delmas, P D

    1997-03-01

    Increased levels of circulating undercarboxylated osteocalcin (ucOC), measured indirectly with the hydroxyapatite (HAP) binding assay, have been shown to predict hip fracture risk in a small group of elderly institutionalized women. The aim of this study was to confirm these findings in a prospective cohort study (EPIDOS prospective study) of 7598 healthy, independently living women over 75 yr of age. One hundred and four women who sustained a hip fracture during a 22-month follow-up period were age matched with 255 controls who did not fracture. Baseline samples were collected before hip fracture for measurement of total OC and ucOC, assessed either with the HAP binding assay or directly with a new enzyme-linked immunosorbent assay (ELISA). This direct ELISA uses human recombinant noncarboxylated OC as a standard and two monoclonal antibodies, one of which was raised against the 14-30 Glu synthetic peptide. We found that the intra- and interassay variations are less than 11%, and this assay exhibits a 5% cross-reactivity with purified human bone OC, used as a source of carboxylated OC. ucOC levels measured with this ELISA correlated well with the HAP binding assay in the population of 359 elderly women (r = 0.82; P < 0.0001). We estimated the risk of hip fracture for women with levels of ucOC in the highest quartile of values for the 255 controls. We found that increased levels of ucOC measured by ELISA were associated with increased hip fracture risk with an odds ratio (OR) of 1.9 (95% confidence interval, 1.2-3.0), and the ELISA had a greater sensitivity than the HAP assay. In contrast, total OC was not associated with hip fracture risk. After adjustment for femoral neck bone mineral density (BMD) and mobility status assessed by gait speed, ucOC still predicted hip fracture with an OR of 1.8 (1.0-3.0). Women with both femoral neck BMD in the lowest quartile and ucOC in the highest quartile were at higher risk of hip fracture, with an OR of 5.5 (2.7-11.2), than

  18. Measurement of microchannel fluidic resistance with a standard voltage meter

    International Nuclear Information System (INIS)

    Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.

    2013-01-01

    Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

  19. Measuring Resistance to Change at the Within-Session Level

    Science.gov (United States)

    Tonneau, Francois; Rios, Americo; Cabrera, Felipe

    2006-01-01

    Resistance to change is often studied by measuring response rate in various components of a multiple schedule. Response rate in each component is normalized (that is, divided by its baseline level) and then log-transformed. Differential resistance to change is demonstrated if the normalized, log-transformed response rate in one component decreases…

  20. Combined resistance and balance-jumping exercise reduces older women's injurious falls and fractures: 5-year follow-up study.

    Science.gov (United States)

    Karinkanta, Saija; Kannus, Pekka; Uusi-Rasi, Kirsti; Heinonen, Ari; Sievänen, Harri

    2015-09-01

    previously, a randomised controlled exercise intervention study (RCT) showed that combined resistance and balance-jumping training (COMB) improved physical functioning and bone strength. The purpose of this follow-up study was to assess whether this exercise intervention had long-lasting effects in reducing injurious falls and fractures. five-year health-care register-based follow-up study after a 1-year, four-arm RCT. community-dwelling older women in Finland. one hundred and forty-five of the original 149 RCT participants; women aged 70-78 years at the beginning. participants' health-care visits were collected from computerised patient register. An injurious fall was defined as an event in which the subject contacted the health-care professionals or was taken to a hospital, due to a fall. The rate of injured fallers was assessed by Cox proportional hazards model (hazard ratio, HR), and the rate of injurious falls and fractures by Poisson regression (risk ratio, RR). eighty-one injurious falls including 26 fractures occurred during the follow-up. The rate of injured fallers was 62% lower in COMB group compared with the controls (HR 0.38, 95% CI 0.17 to 0.85). In addition, COMB group had 51% less injurious falls (RR 0.49, 95% CI 0.25 to 0.98) and 74% less fractures (RR 0.26, 95% CI 0.07 to 0.97). home-dwelling older women who participated in a 12-month intensive multi-component exercise training showed a reduced incidence for injurious falls during 5-year post-intervention period. Reduction in fractures was also evident. These long-term effects need to be confirmed in future studies. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A computer aided measurement method for unstable pelvic fractures based on standardized radiographs

    International Nuclear Information System (INIS)

    Zhao, Jing-xin; Zhao, Zhe; Zhang, Li-cheng; Su, Xiu-yun; Du, Hai-long; Zhang, Li-ning; Zhang, Li-hai; Tang, Pei-fu

    2015-01-01

    To set up a method for measuring radiographic displacement of unstable pelvic ring fractures based on standardized X-ray images and then test its reliability and validity using a software-based measurement technique. Twenty-five patients that were diagnosed as AO/OTA type B or C pelvic fractures with unilateral pelvis fractured and dislocated were eligible for inclusion by a review of medical records in our clinical centre. Based on the input pelvic preoperative CT data, the standardized X-ray images, including inlet, outlet, and anterior-posterior (AP) radiographs, were simulated using Armira software (Visage Imaging GmbH, Berlin, Germany). After representative anatomic landmarks were marked on the standardized X-ray images, the 2-dimensional (2D) coordinates of these points could be revealed in Digimizer software (Model: Mitutoyo Corp., Tokyo, Japan). Subsequently, we developed a formula that indicated the translational and rotational displacement patterns of the injured hemipelvis. Five separate observers calculated the displacement outcomes using the established formula and determined the rotational patterns using a 3D-CT model based on their overall impression. We performed 3D reconstruction of all the fractured pelvises using Mimics (Materialise, Haasrode, Belgium) and determined the translational and rotational displacement using 3-matic suite. The interobserver reliability of the new method was assessed by comparing the continuous measure and categorical outcomes using intraclass correlation coefficient (ICC) and kappa statistic, respectively. The interobserver reliability of the new method for translational and rotational measurement was high, with both ICCs above 0.9. Rotational outcome assessed by the new method was the same as that concluded by 3-matic software. The agreement for rotational outcome among orthopaedic surgeons based on overall impression was poor (kappa statistic, 0.250 to 0.426). Compared with the 3D reconstruction outcome, the

  2. Measurement of the fracture toughness of polycrystalline bubbly ice from an Antarctic ice core

    Directory of Open Access Journals (Sweden)

    J. Christmann

    2015-05-01

    Full Text Available The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter for simulating and predicting the breakup behavior of ice shelves from the calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic bubbly ice samples with densities between 840 and 870 kg m−3 has been determined by applying a four-point bending technique on single-edge v-notched beam samples. The examined ice core was drilled 70 m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E; 2882 m. Supplementary data are available at doi:10.1594/PANGAEA.835321.

  3. In vitro resistance to fracture of two nickel-titanium rotary instruments made with different thermal treatments.

    Science.gov (United States)

    Miccoli, Gabriele; Gaimari, Gianfranco; Seracchiani, Marco; Morese, Antonio; Khrenova, Tatyana; Di Nardo, Dario

    2017-01-01

    Aim of the study was to evaluate effectiveness of different heat treatments in improving Ni-Ti endodontic rotary instruments' resistance to fracture. 24 new NiTi instruments similar in length and shape: 12 M3 instruments, tip size 25 and .06 taper (United Dental, Shanghai, China), and 12 M3 Pro Gold instruments tip size 25 and .06 taper (United Dental, Shanghai, China), were tested in a 60° curved artificial root canal. Each group received a different heat treatment. Cycles to fracture were calculated for each instrument. Differences among groups were evaluated with an analysis of variance test (significance level was set at Pinstruments were significantly more resistant to fatigue (mean values = 1012, SD +/- 77) than M3 instruments (mean values = 748, SD +/- 62). No statistically significant differences were found between fragments' lengths (p>0,05). An increased flexibility and the reduction of internal defects produced by heat treatments during or after manufacturing processes, may be responsible for improving resistance to cyclic fatigue and flexural stresses.

  4. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  5. Concurrent and predictive evaluation of malnutrition diagnostic measures in hip fracture inpatients: a diagnostic accuracy study.

    Science.gov (United States)

    Bell, J J; Bauer, J D; Capra, S; Pulle, R C

    2014-03-01

    Differences in malnutrition diagnostic measures impact malnutrition prevalence and outcomes data in hip fracture. This study investigated the concurrent and predictive validity of commonly reported malnutrition diagnostic measures in patients admitted to a metropolitan hospital acute hip fracture unit. A prospective, consecutive level II diagnostic accuracy study (n=142; 8 exclusions) including the International Classification of Disease, 10th Revision, Australian Modification (ICD10-AM) protein-energy malnutrition criteria, a body mass index (BMI) Patients were predominantly elderly (median age 83.5, range 50-100 years), female (68%), multimorbid (median five comorbidities), with 15% 4-month mortality. Malnutrition prevalence was lowest when assessed by BMI (13%), followed by MNA-SF (27%), ICD10-AM (48%), albumin (53%) and geriatrician assessment (55%). Agreement between measures was highest between ICD10-AM and geriatrician assessment (κ=0.61) followed by ICD10-AM and MNA-SF measures (κ=0.34). ICD10-AM diagnosed malnutrition was the only measure associated with 48-h mobilisation (35.0 vs 55.3%; P=0.018). Reduced likelihood of home discharge was predicted by ICD-10-AM (20.6 vs 57.1%; P=0.001) and MNA-SF (18.8 vs 47.8%; P=0.035). Bivariate analysis demonstrated ICD10-AM (relative risk (RR)1.2; 1.05-1.42) and MNA-SF (RR1.2; 1.0-1.5) predicted 4-month mortality. When adjusted for age, usual place of residency, comorbidities and time to surgery only ICD-10AM criteria predicted mortality (odds ratio 3.59; 1.10-11.77). Albumin, BMI and geriatrician assessment demonstrated limited concurrent and predictive validity. Malnutrition prevalence in hip fracture varies substantially depending on the diagnostic measure applied. ICD-10AM criteria or the MNA-SF should be considered for the diagnosis of protein-energy malnutrition in frail, multi-morbid hip fracture inpatients.

  6. Surface Resistance Measurements of LHC Dipole Beam Screen Samples

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J; Tsutsui, H

    2000-01-01

    An estimate of the resistive losses in the LHC dipole beam screen is given from cold surface resistance measurements using the shielded pair technique. Several beam screen samples have been evaluated, with different copper coating methods, including a sample with ribbed surface envisaged to reduce electron cloud losses thanks to its low reflectivity. Experimental data, derived by a proper analysis of the measured Q-factors and including error estimates are compared with theoretical predictions of the anomalous skin effect.

  7. Noncontact sheet resistance measurement technique for wafer inspection

    Science.gov (United States)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  8. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R. [Fermilab; Adamson, P. [Fermilab; Burov, A. [Fermilab; Kourbanis, I. [Fermilab

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  9. A passive quantitative measurement of airway resistance using depth data.

    Science.gov (United States)

    Ostadabbas, Sarah; Bulach, Christoph; Ku, David N; Anderson, Larry J; Ghovanloo, Maysam

    2014-01-01

    The Respiratory Syncytial Virus (RSV) is the most common cause of serious lower respiratory tract infections in infants and young children. RSV often causes increased airway resistance, clinically detected as wheezing by chest auscultation. In this disease, expiratory flows are significantly reduced due to the high resistance in patient's airway passages. A quantitative method for measuring resistance can have a great benefit to diagnosis and management of children with RSV infections as well as with other lung diseases. Airway resistance is defined as the lung pressure divided by the airflow. In this paper, we propose a method to quantify resistance through a simple, non-contact measurement of chest volume that can act as a surrogate measure of the lung pressure and volumetric airflow. We used depth data collected by a Microsoft Kinect camera for the measurement of the lung volume over time. In our experimentation, breathing through a number of plastic straws induced different airway resistances. For a standard spirometry test, our volume/flow estimation using Kinect showed strong correlation with the flow data collected by a commercially-available spirometer (five subjects, each performing 20 breathing trials, correlation coefficient = 0.88, with 95% confidence interval). As the number of straws decreased, emulating a higher airway obstruction, our algorithm was sufficient to distinguish between several levels of airway resistance.

  10. A TECHNIQUE OF MEASURING OF RESISTANCE OF A GROUNDING DEVICE

    Directory of Open Access Journals (Sweden)

    I.V. Nizhevskyi

    2016-06-01

    Full Text Available Introduction. Measurement of resistance of the grounding device (GD by means of a three-electrode system. This requires not only the right choice of installation locations of measuring electrodes, but also the determination of the point of zero potential. Implementation of these requirements quite time-consuming, and in some cases impossible. Aim. Develop a new technique for measuring the electrical resistance of the GD. Task. The method of measuring the resistance of the GD with the help of a three-electrode setup is necessary to exclude the determination of the point of zero potential. Method. Mathematical modeling and calculation engine. Results. A three-electrode system for measuring the resistance of grounding devices (GD for various purposes is considered. On the basis of Maxwell equations a theoretical substantiation of a new technique for measuring the resistance of any GD of any construction in random soil structure has been proposed. An equation system of the sixth order has been obtained, its solution makes it possible to measure its own mutual resistance in the three-electrode installation with sufficiently high accuracy. Peculiarities of drawing up a calculation scheme of substitution of a three-electrode installation with lumped parameters: self and mutual impedance. Use of the principle of reciprocity eliminates the need of finding a point of zero potential which is a rather difficult task. The technique allows to minimize the spacing of measuring electrodes outside the GD, which substantially reduces the length of wiring of the measurement circuit and increases the «signal-to-interference» ratio and also removes the restrictions on the development of the territory outside the GD being tested. Conclusion. The procedure allows to evaluate the self and mutual impedance grounding all the electrodes in a three-electrode measuring installation of the grounding resistance of the device without finding the point of zero potential.

  11. Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation

    Science.gov (United States)

    Cao, Wenzhuo; Lei, Qinghua

    2018-01-01

    Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.

  12. Fracture resistance of zirconia-based implant abutments after artificial long-term aging.

    Science.gov (United States)

    Alsahhaf, Abdulaziz; Spies, Benedikt Christopher; Vach, Kirstin; Kohal, Ralf-Joachim

    2017-02-01

    To investigate the survival rate, fracture strength, bending moments, loading to fracture and fracture modes of different designs of zirconia abutments after dynamic loading with thermocycling, and compare these values to titanium abutments. A total of 80 abutment samples were divided into 5 test groups of 16 samples in each group. The study included the following groups, "Group 1" CAD/CAM produced all-zirconia abutments, "Group 2" titanium abutments, "Group 3" zirconia-abutments adhesively luted to a titanium base, "Group 4" prefabricated all-zirconia abutments and "Group 5" zirconia-abutments glass soldered to a titanium base. Half the number of samples in each group was exposed to 1.2 million loading cycles (5-years simulation) in the chewing simulator. The samples that survived the artificial aging were later tested for fracture strength in a universal testing machine. The remaining 8 samples of the group were directly tested for fracture strength. All samples exposed to the 5-years artificial aging survived except of six samples in one group (Group 1). The surviving samples were later fracture tested in the universal testing machine. The bending moments (Ncm) values were as follow: Exposed groups: "Group 1" 94.5Ncm; "Group 2" 599.2Ncm; "Group 3" 477.5Ncm; "Group 4" 314.4Ncm; "Group 5" 509.4Ncm. Non-exposed groups: "Group 1" 269.3Ncm; "Group 2" 474.2Ncm; "Group 3" 377.6Ncm; "Group 4" 265.4Ncm; "Group 5" 372.4Ncm. Except in Group 1, the values were higher in the exposed groups, although, statistically there was no difference (p>0.05). The one-piece ZrO2-abutment group (Group 1 and Group 4) exhibited lower values, while the two-piece ZrO2-abutment groups (Group 3 and Group 5) showed similar values and fracture modes like the titanium abutment group. The titanium abutment group showed the highest values of bending moments among all groups. The implant-abutment connection area appeared to influence the bending moment value and the fracture mode of the tested

  13. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  14. All-Ceramic Single Crown Restauration of Zirconia Oral Implants and Its Influence on Fracture Resistance: An Investigation in the Artificial Mouth

    Directory of Open Access Journals (Sweden)

    Ralf-Joachim Kohal

    2015-04-01

    Full Text Available The aim of the current investigation was to evaluate the fracture resistance of one-piece zirconia oral implants with and without all-ceramic incisor crowns after long-term thermomechanical cycling. A total of 48 implants were evaluated. The groups with crowns (C, 24 samples and without crowns (N, 24 samples were subdivided according to the loading protocol, resulting in three groups of 8 samples each: Group “0” was not exposed to cyclic loading, whereas groups “5” and “10” were loaded with 5 and 10 million chewing cycles, respectively. This resulted in 6 different groups: C0/N0, C5/N5 and C10/N10. Subsequently, all 48 implants were statically loaded to fracture and bending moments were calculated. All implants survived the artificial aging. For the static loading the following average bending moments were calculated: C0: 326 Ncm; C5: 339 Ncm; C10: 369 Ncm; N0: 339 Ncm; N5: 398 Ncm and N10: 355 Ncm. To a certain extent, thermomechanical cycling resulted in an increase of fracture resistance which did not prove to be statistically significant. Regarding its fracture resistance, the evaluated ceramic implant system made of Y-TZP seems to be able to resist physiological chewing forces long-term. Restauration with all-ceramic single crowns showed no negative influence on fracture resistance.

  15. How to measure and monitor antimicrobial consumption and resistance.

    Science.gov (United States)

    Grau, Santiago; Bou, Germán; Fondevilla, Esther; Nicolás, Jordi; Rodríguez-Maresca, Manuel; Martínez-Martínez, Luis

    2013-09-01

    Collateral damage caused by antibiotic use includes resistance, which could be reduced if the global inappropriate use of antibiotics, especially in low-income countries, could be prevented. Surveillance of antimicrobial consumption can identify and target practice areas for quality improvement, both in the community and in healthcare institutions. The defined daily dose, the usual adult dose of an antimicrobial for treating one patient for one day, has been considered useful for measuring antimicrobial prescribing trends within a hospital. Various denominators from hospital activity including beds, admissions and discharges have been used to obtain some standard ratios for comparing antibiotic consumption between hospitals and countries. Laboratory information systems in Clinical Microbiology Services are the primary resource for preparing cumulative reports on susceptibility testing results. This information is useful for planning empirical treatment and for adopting infection control measures. Among the supranational initiatives on resistance surveillance, the EARS-Net provides information about trends on antimicrobial resistance in Europe. Resistance is the consequence of the selective pressure of antibiotics, although in some cases these agents also promote resistance by favouring the emergence of mutations that are subsequently selected. Multiple studies have shown a relationship between antimicrobial use and emergence or resistance. While in some cases a decrease in antibiotic use was associated with a reduction in resistance rates, in many other situations this has not been the case, due to co-resistance and/or the low biological cost of the resistance mechanisms involved. New antimicrobial agents are urgently needed, which coupled with infection control measures will help to control the current problem of antimicrobial resistance. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  16. Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin.

    Science.gov (United States)

    Ehrnford, L E; Fransson, H

    1994-01-01

    Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.

  17. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems.

    Science.gov (United States)

    Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim

    2016-01-01

    The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (pmetal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  19. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  20. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study.

    Science.gov (United States)

    Eapen, Ashly Mary; Amirtharaj, L Vijay; Sanjeev, Kavitha; Mahalaxmi, Sekar

    2017-09-01

    The purpose of this in vitro study was to comparatively evaluate the fracture resistance of endodontically treated teeth restored with 2 fiber-reinforced composite resins and 2 conventional composite resin core buildup materials. Sixty noncarious unrestored human maxillary premolars were collected, endodontically treated (except group 1, negative control), and randomly divided into 5 groups (n = 10). Group 2 was the positive control. The remaining 40 prepared teeth were restored with various direct core buildup materials as follows: group 3 teeth were restored with dual-cure composite resin, group 4 with posterior composite resin, group 5 with fiber-reinforced composite resin, and group 6 with short fiber-reinforced composite resin. Fracture strength testing was performed using a universal testing machine. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test. Fracture patterns for each sample were also examined under a light microscope to determine the level of fractures. The mean fracture resistance values (in newtons) were obtained as group 1 > group 6 > group 4 > group 3 > group 5 > group 2. Group 6 showed the highest mean fracture resistance value, which was significantly higher than the other experimental groups, and all the fractures occurred at the level of enamel. Within the limitations of this study, a short fiber-reinforced composite can be used as a direct core buildup material that can effectively resist heavy occlusal forces against fracture and may reinforce the remaining tooth structure in endodontically treated teeth. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Friction coefficient determination by electrical resistance measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  2. Role of large-scale permeability measurements in fractured rock and their application at Stripa

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Wilson, C.R.; Long, J.C.S.; DuBois, A.O.; Gale, J.E.; McPherson, M.

    1979-10-01

    Completion of the macropermeability experiment will provide: (i) a direct, in situ measurement of the permeability of 10 5 to 10 6 m 3 of rock; (ii) a potential method for confirming the analysis of a series of small scale permeability tests performed in surface and underground boreholes; (iii) a better understanding of the effect to open borehole zone length on pressure measurement; (iv) increased volume in fractured rock; (v) a basis for evaluating the ventilation technique for flow measurement in large scale testing of low permeability rocks

  3. Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (Southern Italy) with an adjustable large ring infiltrometer

    Science.gov (United States)

    Caputo, Maria C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.

    2010-01-01

    Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.

  4. Development plates for stable internal fixation: Study of mechanical resistance in simulated fractures of the mandibular condyle.

    Science.gov (United States)

    Celegatti Filho, Tóride Sebastião; Rodrigues, Danillo Costa; Lauria, Andrezza; Moreira, Roger William Fernandes; Consani, Simonides

    2015-01-01

    To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance

    Directory of Open Access Journals (Sweden)

    Juventino López-Barroso

    2018-03-01

    Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

  6. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  7. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2014-01-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. ...... simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.......We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...

  8. Targeting Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone

    Science.gov (United States)

    2013-01-01

    determined by a two-sided Student’s t-test. (mean ± SD) 3 (22 months) male, Fischer F344 rats from the National Institute on Aging ( NIA ) were treated...Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495– 505 . 2

  9. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate

    DEFF Research Database (Denmark)

    Hatibovic-Kofman, S.; Raimundo, L.; Zheng, L.

    2008-01-01

    The objective of the present study was to test the hypothesis that the fracture strength of calcium hydroxide and mineral trioxide aggregate (MTA)-filled immature teeth decreased over time. Immature mandibular incisors from sheep were extracted and the pulps were extirpated using an apical approach...

  10. Measuring health-related quality of life in men with osteoporosis or osteoporotic fracture

    Directory of Open Access Journals (Sweden)

    Solà Silvia

    2011-10-01

    Full Text Available Abstract Background Osteoporosis is a serious health problem that worsens the quality of life and the survival rate of individuals with this disease on account the osteoporotic fractures. Studies have long focused on women, and its presence in men has been underestimated. While many studies conducted in different countries mainly assess health-related quality of life and identify fracture risks factors in women, few data are available on a Spanish male population. Methods/Design Observational study. Study population Men ≥ 40 years of age with/without diagnosed osteoporosis and with/without osteoporotic fracture included by their family doctor. Measurements The relationship between customary clinical risk factors for osteoporotic fracture and health-related quality of life in a Spanish male population. A telephone questionnaire on health-related quality of life is made. Statistical analysis The association between qualitative variables will be assessed by the Chi-square test. The distribution of quantitative variables by Student's t-test. If the conditions for using this test are not met, the non-parametric Mann-Whitney's U test will be used. The validation of the results obtained by the FRAX™ tool will be performed by way of the Hosmer-Lemeshow test and by calculating the area under the Receiver Operating Characteristic (ROC curve (AUC. All tests will be performed with a confidence intervals set at 95%. Discussion The applicability and usefulness of Health-related quality of life (HRQOL studies are well documented in many countries. These studies allow implementing cost-effective measures in cases of a given disease and reducing the costly consequences derived therefrom. This study attempts to provide objective data on how quality of life is affected by the clinical aspects involved in osteoporosis in a Spanish male population and can be useful as well in cost utility analyses conducted by health authorities. The sample selected is not based

  11. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  12. Fracture Analysis of CNG High Pressure Container using Fractography and Measurement of Property

    Directory of Open Access Journals (Sweden)

    Kim Eui-Soo

    2017-01-01

    Full Text Available Bursting accidents of pressure containers due to design and manufacturing defects are frequently occurring. Due to high-pressure gas or harmful substances, when this vessel is fractured, it can lead to catastrophic disasters. Especially, in the event of bursting accident of composite pressure vessel for CNG bus, many unspecified people can be damaged. Most of the accidents were caused by problems in the manufacturing process. The manufacturing process for TYPE2 pressure vessel is very complicated such as three drawing processes, two ironing processes and one spinning process. In the middle of process, various heat treatments are performed for imparting toughness and removing residual stresses. It should cause a serious problem such as bursting and fragmentation of the pressure container due to defects of this process. In this research, the fracture cause of CNG vessel is evaluated through fractography and measuring material property using IIT and analysis of chemical composition.

  13. Measurement of resistivity changes in irradiated microscopy discs

    International Nuclear Information System (INIS)

    Sagisaka, M.; Isobe, Y.; Edwards, D.J.; Garner, F.; Okita, T.

    2007-01-01

    Full text of publication follows: The successful operation of next generation fusion or fission devices will require the development of new inspection tools to allow in-situ, non-destructive examination of structural components which experience the deleterious effects of neutron irradiation. Such development requires that an understanding of how radiation-induced microstructural alteration contributes to macroscopic changes in physical properties such as electrical resistivity. This in turn requires test specimens spanning a range of microstructural alteration. Frequently such specimens are very small and available test techniques are not suitable for their examination. An example is the use of thin TEM specimens (3 mm diameter, 0.3 mm thick) used for electron microscopy. A unique four probe electrical resistivity measurement system suitable for examining I EM specimens was developed for investigating small resistivity changes due to void swelling and other microstructural features. Since this system uses momentarily-high electrical currents (0.5 A maximum), electrical resistivity changes can be measured rather precisely. This paper reports results of resistivity change measurements made on model Fe-Cr-Ni-Zr austenitic alloys irradiated in the Fast Flux Test Facility in the Materials Open Test Assembly to doses ranging from 0.38 to 19.2 dpa. Microscopy was used to determine the radiation-induced microstructure. A correlation is presented for resistivity changes arising primarily from void swelling. (authors)

  14. The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures.

    Science.gov (United States)

    Varga, Peter; Grünwald, Leonard; Windolf, Markus

    2018-02-22

    Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2  = 0.53) compared to a previously proposed clinical density measure (R 2  = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2  = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Automatic control and detector for three-terminal resistance measurement

    Science.gov (United States)

    Fasching, George E.

    1976-10-26

    A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.

  16. Resistivity measurements using a direct current induction method (1963)

    International Nuclear Information System (INIS)

    Delaplace, J.; Hillairet, J.

    1964-01-01

    The conventional methods for measuring electrical resistivities necessitate the fixing of electrical contacts on the sample either mechanically or by soldering. Furthermore it is also necessary to carry,out the measurements on low cross-section samples which are not always easy to obtain. Our direct-current induction method on the other hand requires no contacts and can easily be applied to samples of large cross-section. The sample is placed in a uniform magnetic field; at the moment when the current is cut, eddy currents appear in the sample which tend to oppose the disappearance of the field. The way in which the magnetic flux decreases in the sample makes it possible to determine the resistivity of the material. This method has been applied to samples having diameters of between 1 and 30 mm in the case of metals which are good conductors. It gives a value for the local resistivity and makes it possible to detect any variation along a sample. The measurements can be carried out at all temperature from a few degrees absolute to 500 deg. C. We have used the induction method to follow the purification of beryllium by zone-melting; it is in effect possible to estimate the purity of a material by resistivity measurements. We have measured the resistivity along each bar treated by the zone-melting technique and have thus, localised the purest section. High temperature measurements have been carried out on uranium carbide and on iron-aluminium alloys. This method constitutes an interesting means of investigation the resistivity of solid materials. Its accuracy and rapidity make it particularly adapted both to fundamental research and to production control. (authors) [fr

  17. Measurement by a cylinder test stand and tyre rolling resistance

    Directory of Open Access Journals (Sweden)

    A. Dávid

    2006-03-01

    Full Text Available Sometimes it is necessary to test how repair affects the properties of the car. These tests are carried out using a cylinder test stand. During the test the tyre is rolling between two cylinders of a small diameter. The question arises whether the rolling resistance of the tyre is the same as the rolling resistance when the wheel is rolling on the plane. If it is not the same what is the reliation between tyre resistances in these two cases? It is an important answer because the change of rolling resistance can affect consumption, the highest speed, engine power and other results of measurement. The paper gives the answer to these questions and describes the method of getting this information.

  18. Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Minyue Zhou

    2018-05-01

    Full Text Available The mechanical properties and fracture propagation of Longmaxi shale loading under uniaxial compression were measured using eight cylindrical shale specimens (4 mm in diameter and 8 mm in height, with the bedding plane oriented at 0° and 90° to the axial loading direction, respectively, by micro computed tomography (micro-CT. Based on the reconstructed three-dimensional (3-D CT images of cracks, different stages of the crack growth process in the 0° and 90° orientation specimen were revealed. The initial crack generally occurred at relatively smaller loading force in the 0° bedding direction specimen, mainly in the form of tensile splitting along weak bedding planes. Shear sliding fractures were dominant in the specimens oriented at 90°, with a small number of parallel cracks occurring on the bedding plane. The average thickness and volume of cracks in the 90° specimen is higher than those for the specimen oriented at 0°. The geometrical characterization of fractures segmented from CT scan binary images shows that a specific surface area correlates with tortuosity at the different load stages of each specimen. The 3-D box-counting dimension (BCD calculations can accurately reflect crack evolution law in the shale. The results indicate that the cracks have a more complex pattern and rough surface at an orientation of 90°, due to crossed secondary cracks and shear failure.

  19. Methodology to predict the initiation of multiple transverse fractures from horizontal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, D. G.; Yang, Z.; Rahman, S. S. [Univ. of New South Wales (Australia)

    2001-10-01

    The criterion based on Drucker and Prager which is designed to predict the pressure required to initiate secondary multiple transverse fractures in close proximity to primary fractures is discussed. Results based on this criterion compare favorably with those measured during a series of laboratory-scale hydraulic fracture interaction tests. It is concluded that the multiple fracture criterion and laboratory results demonstrate that transversely fractured horizontal wellbores have a limited capacity to resist the initiation of multiple fractures from adjacent perforations, or intersecting induced and natural fractures. 23 refs., 1 tab., 9 figs.

  20. Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Enfedaque, A.

    2014-03-01

    Full Text Available The current standards that regulate use of structural concrete have highlighted the durability of concrete. However, how the fracture energy of concrete evolves under the action of freeze-thaw cycles is not well known. The fracture energy of two types of concrete, one with an air-entraining additive and the other with silica fume addition, is studied after four, 14 and 28 freeze-thaw cycles. The results obtained show that the concrete with an air-entraining additive was undamaged and that fracture energy grew slightly. In addition to this, they also showed that the concrete with silica fume addition suffered severe surface scaling and its fracture energy changed due to the greater fracture areas generated.La actual normativa que rige el empleo de hormigón estructural ha puesto enfásis en la durabilidad del hormigón. Sin embargo, no se conoce cómo evoluciona la energía de fractura del hormigón sometido a ciclos hielo- deshielo, lo cual es de vital importancia para asegurar la durabilidad y el correcto comportamiento mecánico de las estructuras de hormigón en entornos con heladas durante su vida útil. Se ha estudiado la evolución de la energía de fractura de un hormigón con aireante y de un hormigón con humo de sílice después de 4, 14 y 28 ciclos hielo-deshielo realizando ensayos de fractura. Los resultados muestran cómo el hormigón con aireante no sufre daño por los ciclos hielo-deshielo y cómo la energía de fractura del mismo aumenta ligeramente. El hormigón con humo de sílice se daña por los ciclos hielo-deshielo y reduce su energía de fractura al aumentar el area fracturada.

  1. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  3. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  4. Pathologic femur fracture due to a brown tumor in a patient with secondary hyperparathyroidism and vitamin D-resistant rickets.

    Science.gov (United States)

    Wallace, Eric; Day, Matthew; Fadare, Oluwole; Schaefer, Heidi

    2013-02-01

    Vitamin D-resistant rickets is the common clinical outcome of multiple genetic mutations that alter the regulation of phosphorus and vitamin D metabolism, mainly through their effects on fibroblast growth factor 23 (FGF-23). These diseases typically present in childhood with the classic physical examination finding of nutritional rickets, such as genu varum/valgum and rachitic rosary. Treatment, which is aimed at improving severe bone disease with vitamin D and phosphorus supplementation, can cause secondary hyperparathyroidism and/or kidney failure from nephrocalcinosis over the life of the patient. Although FGF-23 has been shown to downregulate parathyroid hormone in vitro, its effect on parathyroid secretion in disease states such as chronic kidney disease and X-linked hypophosphatemic rickets is unclear because elevations in FGF-23 and parathyroid hormone levels characterize both of these disease states. We describe a case of vitamin D-resistant rickets that presented with a femur fracture through a brown tumor. Radiographs show the combination of severe bony abnormalities associated with both long-standing hyperparathyroidism and vitamin D-resistant rickets. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Methods for estimation and enhancing of resistance of pressure vessel materials to fracture at different stages of service taking into account actual dimensions of the construction

    International Nuclear Information System (INIS)

    Pokrovsky, V.V.; Ivanchenko, A.G.

    1998-01-01

    In the present report a method is proposed for assessment of cracked materials fracture toughness over a wide range of temperatures taking into account the size-effect of structural elements. The procedure proposed was evaluated on specimens of different thicknesses (25... 150 mm) and geometries from the parent metal and welded joint metal of the WWER-Type nuclear reactor pressure vessels of different classes of strength. The method of enhancing of fracture resistance of pressure vessel materials has been develop which is based on warm prestressing of materials with cracks. The stability of the favourable effect of the warm prestressing has been, investigated and shown for the above steels after their long term (to 24000 hours) keeping under static loading and temperature of 350 deg C, under different conditions of cyclic loading, corrosive action. A model and calculation procedure are proposed for predicting the influence of thermomechanical loading conditions on the resistance of reactor steels to brittle fracture. (authors)

  6. Plethysmographic measurements of specific airway resistance in young children

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Nielsen, Kim G

    2005-01-01

    allowed discrimination of young children with respiratory disease. Bronchial hyperresponsiveness can be determined with acceptable short-term and long-term repeatability and provides good discrimination between asthmatics and healthy young children. The effects of the major antiasthmatic therapies have......Validated methods for lung function measurements in young children are lacking. Plethysmographic measurement of specific airway resistance (sRaw) provides such a method applicable from 2 years of age. sRaw gauges airway resistance from the measurements of the pressure changes driving the airflow...... during tidal breathing. These measurements require no active cooperation and are therefore feasible in children from 2 years of age. The within-observer and between-observer variability of sRaw in young children compare favorably with alternative methods. Reference values are available for sRaw and have...

  7. Fracture resistance of cracked duplex stainless steel elbows under bending with or without internal pressure

    International Nuclear Information System (INIS)

    Semete, P.; Le Delliou, P.; Ignaccolo, S.

    1997-12-01

    EDF, in co-operation with Framatome, has conducted a research program on the fracture behaviour of aged cast duplex stainless steel elbows. One important task of this program consisted of testing three large diameter (580 mm O.D.) aged cast elbows, which are 2/3-scale models of PWR primary loop elbows. Furthermore, detailed finite element analyses of those three tests were conducted in order to be compared with experimental results. The results of this research program are presented. (K.A.)

  8. Fracture resistance of endodontically treated teeth restored with Zirconia filler containing composite core material and fiber posts.

    Science.gov (United States)

    Jeaidi, Zaid Al

    2016-01-01

    To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (pcomposite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures.

  9. [Measurement of screw length through drilling technique in osteosynthesis of the proximal humerus fractures].

    Science.gov (United States)

    Avcı, Cem Coşkun; Gülabi, Deniz; Sağlam, Necdet; Kurtulmuş, Tuhan; Saka, Gürsel

    2013-01-01

    This study aims to investigate the efficacy of screw length measurement through drilling technique on the reduction of intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures. Between January 2008 and June 2012, 98 patients (34 males, 64 females; mean age 64.4 years; range 35 to 81 years) who underwent osteosynthesis using locking anatomical proximal humerus plates (PHILOS) in our clinic with the diagnosis of Neer type 2, 3 or 4 were included. Two different surgical techniques were used to measure proximal screw length in the plate and patients were divided into two groups based on the technique used. In group 1, screw length was determined by a 3 mm blunt tipped Kirschner wire without fluoroscopic control. In group 2, bilateral fluoroscopic images for each screw at least were obtained. Intraarticular screw penetration was detected in five patients (10.6%) in group 1, and in 19 patients (37.3%) in group 2. The mean fluoroscopic imaging time was 10.6 seconds in group 1 and 24.8 seconds in group 2, indicating a statistically significant difference. Screw length measurement through the drilling technique significantly reduces the intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures using PHILOS plates.

  10. In vivo measurement of vocal fold surface resistance.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard

    2017-10-01

    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Evolution of structure and mechanical properties of hard yet fracture resistant W-B-C coatings with varying C/W ratio

    Czech Academy of Sciences Publication Activity Database

    Alishahi, M.; Mirzaei, S.; Souček, P.; Zábranský, L.; Buršíková, V.; Stupavska, M.; Peřina, Vratislav; Balázsi, K.; Czigany, Z.; Vašina, P.

    2018-01-01

    Roč. 340, č. 4 (2018), s. 103-111 ISSN 0257-8972 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : magnetron sputtering * W-B-C * microstructure * hardness * fracture resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016

  12. A comparison between the effect of zirconia-coated FRC and glass fiber posts on the fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2014-04-01

    Full Text Available   Background and Aims : The root fracture resistance of endodontically treated teeth depends on the types of posts. The aim of this study was to compare the effect of two types of bonded non-metallic posts with different elasticity modulus on the fracture resistance of endodontically treated teeth under compressive loads.   Materials and Methods: In this in vitro experimental study, 20 fresh extracted mandibular premolars were selected and sectioned adjacent to the CEJ and then were endodontically treated. The specimens were randomly divided into two groups (n=10. After post space preparations, the fiber RTD Light posts (R.T.D, France and zirconia coated fiber posts (ICE light, Danville were cemented into the root canals. Composite resin (Lumiglass R.T.D, France cores were built up. Aluminium foil was used to mimic the PDL, and the specimens were embedded in acrylic resin and tested in a Universal Testing Machine. A compressive load was applied at a 90 degree angle until fracture at a crosshead speed of 1mm/min. Data were analyzed using one-way ANOVA and T test .   Results: The mean fracture resistance of R.T.D group was (1083.11 ± 156.74 (N and the mean of ICE light group was (865.18 ± 106.24 (N. The highest mean fracture resistance was observed in RTD fiberglass and a statistically significant difference was observed between the two groups (P<0.001.   Conclusion: FRC posts with zirconia coating due to unfavorable fractures of the teeth should be used with caution, and thus, fiber posts are preferred.

  13. Fracture Resistance of 14Cr ODS Steel Exposed to a High Temperature Gas

    Directory of Open Access Journals (Sweden)

    Anna Hojna

    2017-12-01

    Full Text Available This paper studies the impact fracture behavior of the 14%Cr Oxide Dispersion Strengthened (ODS steel (ODM401 after high temperature exposures in helium and air in comparison to the as-received state. A steel bar was produced by mechanical alloying and hot-extrusion at 1150 °C. Further, it was cut into small specimens, which were consequently exposed to air or 99.9% helium in a furnace at 720 °C for 500 h. Impact energy transition curves are shifted towards higher temperatures after the gas exposures. The transition temperatures of the exposed states significantly increase in comparison to the as-received steel by about 40 °C in He and 60 °C in the air. Differences are discussed in terms of microstructure, surface and subsurface Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM observations. The embrittlement was explained as temperature and environmental effects resulting in a decrease of dislocation level, slight change of the particle composition and interface/grain boundary segregations, which consequently affected the nucleation of voids leading to the ductile fracture.

  14. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    Science.gov (United States)

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  15. Status report on the use of the CRB for the measurement of fracture toughness of RPV steels

    International Nuclear Information System (INIS)

    Scibetta, M.; Chaouadi, R.; Van Walle, E.

    1998-02-01

    A large number of fracture toughness tests were performed in order to assess the use of the circumferentially-Cracked Round Bar (CRB) as a potential method for the measurement of fracture toughness of Reactor Pressure Vessel steels. Test conditions were selected to: (1) characterise fracture toughness in the transition region; (2) study the size effect and loss of constraint; (3) establish the limit of validity of this geometry; (4) investigate the ductile fracture at the upper shelf. In the transition region, the fracture toughness obtained from the CRB over-estimates the actual value as long as the loss of constraint and size effect were not taken into account. In addition, the B1/4 size correction is verified and gives a very good description of the size effect. The application of these corrections allows a good prediction of the normalised fracture toughness up to high levels of fracture toughness.In the upper shelf region, promising results were obtained with this geometry to characterise the ductile crack initiation and propagation

  16. Plasma resistivity measurements in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Brouchous, D.A.

    1980-11-01

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10 9 cm -3 to 10 1 parallelcm -3 in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10 9 cm -3 plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = √T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10 12 cm -3 plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/

  17. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    Science.gov (United States)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  18. A study on the radionuclide transport through fractured porous media based on the network resistance model

    International Nuclear Information System (INIS)

    Hwang, Ki Ha

    2000-02-01

    Before the actual construction of radioactive waste repository, analysis of radionuclide transport is required to predict the radiological effect on public and environment. Many models have been developed to predict the realistic radionuclide transport through the repository. In this study, Network Resistance Model (NRM) that is similar to electrical circuit network is adopted to simulate the radionuclide transport. NRM assume the media of repository as the resistance of the radionuclide transport and describes the transport phenomena of radionuclide by connecting the resistance as network. NRM is easy to apply to describe complex system and take less calculation time compared to the other model. The object of this study is to develop the fast, simple and efficient calculation method to simulate the radionuclide with the newly adopted concept using network resistance. New system configuration specially focused on rock edge region is introduced by dividing the rock matrix. By dividing the rock edge from the main rock matrix region, the rock edge region is more carefully analyzed and compared. Rock edge region can accelerate radionuclide transport due to the reducing effect on the total resistivity of rock matrix. Therefore, increased radioactive dose is expected when we apply NRM methodology in the performance assessment of the repository. Result of the performance assessment can be more conservative and reliable. NRM can be applied to other system configuration and for more complex pathways. NRM is simple to us e and easy to modify than any other modeling method

  19. Criteria of validity in the measurement of shearing fracture toughness; Gueltigkeitskriterien zur Bestimmung von Scherbruchzaehigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Hiese, W

    2000-01-01

    The investigations aimed at the development of criteria for measuring valid shearing fracture toughness data K{sub IIc} in analogy to the measurement of mode-I fracture toughness K{sub Ie}. Details are presented, and practical recommendations are given. [German] Die Brucheigenschaften von Werkstoffen werden ueblicherweise unter Zugbeanspruchungsbedingungen (Mode-I) bestimmt. Im Anwendungsbereich der linear-elastischen Bruchmechanik bzw. des Kleinbereichsfliessens geschieht dieses in Form der Bruchzaehigkeit K{sub Ic}. Es existieren entsprechende Richtlinien zur Durchfuehrung des Tests sowie zur Registrierung und Auswertung der Daten. Diese Kriterien sind in Standards festgelegt. Empfehlungen zur Bestimmung der Bruchzaehigkeit K{sub IIc} unter ebener Scherbelastung (Mode-II) fuer Werkstoffe mit im wesentlichen linear-elastischem Verhalten existieren nicht. Im Rahmen dieser Arbeit werden durch den Vergleich der Groesse der plastischen Rissspitzenzonen im Verhaeltnis zu den Abmessungen von Probe bzw. Bauteil Kriterien zur Messung gueltiger Scherbruchzaehigkeiten K{sub IIc} analog zur Messung der Mode-I-Bruchzaehigkeit K{sub Ic} entwickelt. Der Groessenvergleich der plastischen Rissspitzenzonen fuer beide Beanspruchungsarten zeigt unter aequivalenten Beanspruchungen, d.h. K{sub II}=K{sub I}, dass bei Mode-II beanspruchten Rissen die plastischen Zonen groesser, aber die Differenzen in der Groesse der plastischen Zonen fuer die Zustaende ebener Spannung und ebener Dehnung kleiner sind als unter entsprechenden Mode-I-Beanspruchungen.

  20. Evaluation of pavement skid resistance using high speed texture measurement

    Directory of Open Access Journals (Sweden)

    Jay N. Meegoda

    2015-12-01

    Full Text Available Skid resistance is an important parameter for highway designs, construction, management, maintenance and safety. The purpose of this manuscript is to propose the correlation between skid resistance, which is measured as skid resistance trailer, and mean profile depth (MPD or the macro surface texture, which is measured by vehicle mounted laser, so that highway agencies can predict the skid resistance of pavement without the use of expensive and time consuming skid resistance trailer, which also causes disruption of traffic in use. In this research skid numbers and MPD from 5 new asphalt pavements and 4 old asphalt pavements were collected using a locked wheel skid trailer and a vehicle mounted laser. Using the data collected, a correlation between the skid number (SN40R collected by locked wheel skid tester and the texture data or MPD collected by a vehicle mounted laser operating at highway speeds was developed. The proposed correlation for new pavements was positive for MPD values less than 0.75 mm to reach a peak SN40R value, then there was a negative correlation as the MPD increases until the MPD value was equal to 1.1 mm and beyond the MPD value of 1.1 mm to the maximum value of 1.4 mm, SN40R value remained almost constant. There were significant data scatter for the MPD value of 0.8 mm. To explain these results, water film thickness during the friction test was calculated and the critical MPD was defined. The effect of sealed water pool on the SN40R was discussed. The test result showed a similar trend for older asphalt pavements, but with lower SN40R values due to the polishing of pavement micro-texture by traffic. Hence, a reduction factor was proposed for older pavements based on cumulative traffic volume for the above correlation to predict the skid resistance of older pavements.

  1. Use of miniaturized compact tension specimens for fracture toughness measurements in the upper shelf regime. Electrabel/Tractebel-SCK-CEN Convention 2004 Task 1.1.4/2

    International Nuclear Information System (INIS)

    Lucon, E.; Scibetta, M.; Chaouadi, R.; Walle, E. van

    2005-04-01

    In the nuclear field, the importance of direct fracture toughness measurements on RPV materials has been nowadays widely recognized, as opposed to Charpy-based estimations. However, sample dimensions have to be kept small in order to optimize the use of available material (often in the form of previously broken Charpy specimens) or, in the case of new irradiations, make effective use of the limited space available inside irradiation facilities. One of the most appealing geometries for fracture toughness measurements is the miniature Compact Tension specimen, MC(T), which has the following dimensions: B = 4.15 mm, W = 8.3 mm, cross section 10 x 10 mm 2 . Four MC(T) specimens can be machined out of a broken half Charpy, and in the case of irradiation ten MC(T) samples occupy approximately the same volume as a full-size Charpy specimen. The MC(T) geometry was already successfully applied and qualified for fracture toughness assessments in the ductile-to-brittle transition regime, using the Master Curve method (ASTM E1921-03). A further, comprehensive investigation is presented in this report, aimed at assessing the applicability of MC(T) specimens to measure fracture toughness in fully ductile (upper shelf) conditions. In this study, 18 1TC(T) and 20 MC(T) specimens have been tested at different temperatures from three RPV steels and one low-alloy C-Mn steel. The results obtained clearly show that MC(T) samples exhibit lower fracture toughness properties, both in terms of initiation of ductile tearing (according to various test standards) and resistance to ductile crack propagation (J-R curve). The reduction of tearing resistance might be attributed to work hardening prevailing over loss of constraint in the uncracked ligament in a side-grooved specimen, or to the inadequacy of J-integral to represent ductile crack extension in very small specimens. Both arguments will have to be verified with further investigations. (author)

  2. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  3. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  4. Anatomical predisposition of the ankle joint for lateral sprain or lateral malleolar fracture evaluated by radiographic measurements.

    Science.gov (United States)

    Lee, Kyoung Min; Chung, Chin Youb; Sung, Ki Hyuk; Lee, SeungYeol; Kim, Tae Gyun; Choi, Young; Jung, Ki Jin; Kim, Yeon Ho; Koo, Seung Bum; Park, Moon Seok

    2015-01-01

    Injury mechanism and the amount of force are important factors determining whether a fracture or sprain occurs at the time of an ankle inversion injury. However, the anatomical differences between the ankle fracture and sprain have not been investigated sufficiently. This study was performed to investigate whether an anatomical predisposition of the ankle joint results in a lateral malleolar fracture or lateral ankle sprain. Two groups of consecutive patients, one with lateral malleolar fracture (274 patients, mean age 49.0 years) and the other with lateral ankle sprain (400 patients, mean age 38.4 years), were evaluated. Ankle radiographs were examined for 7 measures: distal tibial articular surface (DTAS) angle, bimalleolar tilt (BT), medial malleolar relative length (MMRL), lateral malleolar relative length (LMRL), medial malleolar slip angle (MMSA), anterior inclination of tibia (AI), and fibular position (FP). After an interobserver reliability test, the radiographic measurements were compared between the 2 groups. Linear regression analysis was performed to correct for age and sex effects between the groups. The fracture group and the sprain group showed significant differences in BT (P = .001), MMSA (P sprain groups showed a significant difference in BT (P = .001), MMRL (P ankle sprain group. Further 3-dimensional assessment of the bony structure and subsequent biomechanical studies are needed to elucidate the mechanism of injury according to the various types of ankle fractures and ankle sprain. Level III, retrospective comparative study. © The Author(s) 2014.

  5. Use of fracture mechanics for estimation of cold resistance of structural steels

    International Nuclear Information System (INIS)

    Vikulin, A.V.; Solntsev, Yu.P.

    1988-01-01

    Structural steel cold resistance diagrams are developed and constructed in the form of testing temperature dependences on critical length of crack in endless plate. The diagrams allow one to determine critical temperature using steel samples without conducting complex and labour-consuming testings

  6. Relationship between the electric resistivity and the rain fall in discontinuity zone of rock slope by the continuous measurement; Renzoku tokei ni yoru ganban shamen no furenzokutaibu ni okeru mikake hiteiko henka to kou tono kankei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, H; Nishida, K [Kansai University, Osaka (Japan). Faculty of Engineering; Nakamura, M [Newjec Inc., Osaka (Japan)

    1996-10-01

    The relationship between change in resistivity and rainfall was studied by continuously measuring resistivities of fracture zone and stratum boundary along the measuring line of 95m long from the top to bottom of rock slope. The measurement field was located on a hill of 150-200m high at the northern part of Arima-Takatsuki tectonic line. Electrodes of 30m in maximum measuring depth were arranged at 289 points by dipole-dipole method. Resistivity was continuously measured at time intervals of 6 hours. Apparent resistivity was hardly affected by rainfall at points with less infiltration of stormwater from the ground surface, while it decreased by rainfall at points on fracture zone, stratum boundary or bleeding channel. The change rate of apparent resistivity could be approximated with the exponential function of rainfall. In such case, the apparent resistivity under most dried condition at the concerned point should be used as reference maximum apparent resistivity. The change rate of apparent resistivity due to rainfall in fracture zone reflects infiltration of stormwater, suggesting to be useful for disaster prevention of slopes. 5 refs., 6 figs.

  7. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  8. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  9. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  10. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Suojaervi, Nora; Lindfors, N. [Helsinki University Central Hospital, Department of Hand Surgery, Helsinki (Finland); Sillat, T.; Koskinen, S.K. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, Department of Radiology, Helsinki (Finland)

    2015-12-15

    Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities. (orig.)

  11. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images.

    Science.gov (United States)

    Suojärvi, Nora; Sillat, T; Lindfors, N; Koskinen, S K

    2015-12-01

    Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities.

  12. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response

    Science.gov (United States)

    Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping

    2018-05-01

    To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.

  13. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  14. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  15. Biomechanical study: resistance comparison of posterior antiglide plate and lateral plate on synthetic bone models simulating Danis-Weber B malleolar fractures

    Directory of Open Access Journals (Sweden)

    Bruna Buscharino

    2013-06-01

    Full Text Available OBJECTIVE : The purpose of this study was to compare different positions of plates in lateral malleolar Danis-Weber B fractures on synthetic bone: a lateral plate and a posterior antiglide plate. METHODS : Short oblique fractures of distal fibula at the level of the syndesmosys were simulated with a fibular osteotomy in sixteen synthetic fibula bones (Synbone®. Eight fractures were fixed with lateral plating associated with an independent lag screw, and the other eight were fixed with posterior antiglide plating with a lag screw through the plate. A strain gage was installed at the center of each plate at the osteotomy site. Supination and external rotation forces were applied to each of the two groups at the bend. RESULTS : The lateral position plate group suffered more deformity in response to supination forces compared to the group with the posterior antiglide plate, but this result was not statistically significant. In the tests with external rotation forces, the posterior antiglide plating group had significantly higher resistance (p < 0.05. CONCLUSION : When subjected to external rotation forces, osteosynthesis with posterior antiglide plate models simulating type B fractures of the lateral malleolus of the ankle is more resistant than that of the neutralization plate.

  16. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  17. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2013-01-01

    We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four-point...... probe measurements on an infinite plane and to symmetric, circular van der Pauw discs, obtaining functions consistent with published results. These new expressions speed up calculation of the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace equation boundary......-value problems of the order of N3 calculations, rather than N2 problems of total order N5, and in a few cases produces an analytic expression for the sensitivity. These functions provide an intuitive, visual explanation of how, for example, measurements can predict the wrong carrier type in n-type ZnO....

  18. RESISTANCE TO INNOVATION: ESSENCE, PREVENTIVE MEASURES AND WAYS OUT

    Directory of Open Access Journals (Sweden)

    V. I. Zagvyazinsky

    2014-01-01

    Full Text Available The paper raises the issue of school teachers’ resistance to innovations related to modernization procedures, updates of educational content, methods and forms. The rejection of innovations is regarded by the authors as a psychological and pedagogical phenomenon; its roots and causes being analyzed including the consequences of some ineffective, poorly developed and even harmful innovations introduced or proposed by the Russian Ministry of Education and Science. The research findings demonstrate different innovation barriers along with the resulting inner skepticism and its external manifestation. However, in spite of partially justified skepticism, the authors maintain that the firm resistance to any innovation adversely affects both the education quality and teachers’ personal and professional characteristics. In conclusion, the paper suggests some preventive measures for overcoming teachers’ resistance to positive innovations in educational practices, and describes a successful experience of one of the rural schools applying a psychological mechanism of internalization of innovations. Additionally, the role of the school principal in developing teachers’ motivation for innovations is emphasized.

  19. SEM based overlay measurement between resist and buried patterns

    Science.gov (United States)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  20. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  1. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  2. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  3. A Feasibility Study on the Worn Area Estimation by Measuring a Contact Resistance (I)

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    In order to improve the fretting wear resistance of the nuclear fuel rod with considering the effect of the contacting spring shape, it is necessary to examine the formation procedure of the worn area during the fretting wear experiments with including its shape, size and the debris removal path. This is because the wear volume and the maximum wear depth are dominantly affected by the worn area and the wear resistance of the nuclear fuel rod was dominantly affected by the spring shape rather than the test environment and the contact mode (i.e. impact, sliding, rubbing, etc.). Unfortunately, it is almost impossible to archive the size and shape of the worn area on real-time basis because the contact surfaces are always hidden. If we could measure the worn area properties during fretting wear tests, it enables us to promptly estimate the wear resistance or behavior with various contacting spring shapes. Generally, fretting wear degradation is generated by the localized plastic deformation, fracture and finally detachment of wear debris. Generally, wear debris easily oxidized by frictional heat, test environment, etc. From the previous studies, most of the wear debris was detached from the worn surface in the distilled water condition while the wear debris in the dry condition remained on or adhered to the worn surface. At this time, it is reasonable that the accumulated wear debris on the worn surface is existed in the form of oxide. If small amount of electric current was applied between the contacting surfaces, wear debris could be an obstacle to flow the electric current. This means that the variation of the contact resistance under constant electric current during the fretting wear tests has much information on the formation of the worn area even though the applying current could accelerate the oxidation of the generated wear debris. So, in this study, fretting wear tests have been performed with applying an electric current in room temperature air in order to

  4. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material-An in vitro study.

    Science.gov (United States)

    Garlapati, Tejesh Gupta; Krithikadatta, Jogikalmat; Natanasabapathy, Velmurugan

    2017-10-01

    This in-vitro study tested the fracture resistance of endodontically treated molars with Mesial-Occluso-Distal (MOD) cavities restored with fibre reinforced composite material everX posterior in comparision with hybrid composite and ribbond fiber composite. Fifty intact freshly extracted human mandibular first molars were collected and were randomly divided into five groups (n=10). Group 1: positive control (PC) intact teeth without any endodontic preparation. In groups 2 through 6 after endodontic procedure standard MOD cavities were prepared and restored with their respective core materials as follows: group 2, negative control (NC) left unrestored or temporary flling was applied. Group 3, Hybrid composite (HC) as a core material (Te-Econom Plus Ivoclar Vivadent Asia) group 4, Ribbond (Ribbond; Seattle, WA, USA)+conventional composite resin (RCR) group 5, everX posterior (everX Posterior GC EUROPE)+conventional composite resin (EXP) after thermocycling fracture resistance for the samples were tested using universal testing machine. The results were analysed using ANOVA and Tukey's HSD post hoc tests. Mean fracture resistance (in Newton, N) was group 1: 1568.4±221.71N, group 2: 891.0±50.107N, group 3: 1418.3±168.71N, group 4:1716.7±199.51N and group 5: 1994.8±254.195N. Among the materials tested, endodontically treated teeth restored with everX posterior fiber reinforced composite showed superior fracture resistance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Measurement of spinal canal narrowing, interpedicular widening, and vertebral compression in spinal burst fractures: plain radiographs versus multidetector computed tomography

    International Nuclear Information System (INIS)

    Bensch, Frank V.; Koivikko, Mika P.; Koskinen, Seppo K.; Kiuru, Martti J.

    2009-01-01

    To assess the reliability of measurements of spinal canal narrowing, vertebral body compression, and interpedicular widening in burst fractures in radiography compared with multidetector computed tomography (MDCT). Patients who had confirmed acute vertebral burst fractures over an interval of 34 months underwent both MDCT and radiography. Measurements of spinal canal narrowing, vertebral body compression, and interpedicular widening from MDCT and radiography were compared. The 108 patients (30 female, 78 male, aged 16-79 years, mean 39 years) had 121 burst fractures. Eleven patients had multiple fractures, of which seven were not contiguous. Measurements showed a strong positive correlation between radiography and MDCT (Spearman's rank sum test: spinal canal narrowing k = 0.50-0.82, vertebral compression k = 0.55-0.72, and interpedicular widening k = 0.81-0.91, all P 0.25) and for interpedicular widening in the thoracic spine (k = 0.35, P = 0.115). The average difference in measurements between the modalities was 3 mm or fewer. Radiography demonstrates interpedicular widening, spinal canal narrowing and vertebral compression with acceptable precision, with the exception of those of the cervical spine. (orig.)

  6. Application of FIB technique to introduction of a notch into a carbon fiber for direct measurement of fracture toughness

    International Nuclear Information System (INIS)

    Ogihara, S; Imafuku, Y; Yamamoto, R; Kogo, Y

    2009-01-01

    For the direct measurement of the fracture toughness of the carbon fiber, a new technique was proposed and examined its applicability. At first, machining condition of the notch was examined. The notch was introduced using focused ion beam (FIB). The ion beam can be electronically scanned to introduce a sharp notch on the carbon fiber. Notches with various notch width and length were introduced by changing beam and scanning conditions. Tensile tests on notched carbon fibers were carried out following the test method for carbon fiber monofilaments. Fractured specimens were successfully corrected without secondary damage using protection films. SEM observations revealed that a crack propagated from a notch-tip, and notch size was able to be determined successfully. Effect of notch root radius was also examined to investigate the validity of the fracture toughness obtained by this method.

  7. A comparative evaluation of fracture resistance of endodontically treated teeth, with variable marginal ridge thicknesses, restored with composite resin and composite resin reinforced with Ribbond: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vaishali Kalburge

    2013-01-01

    Full Text Available Background: The anatomic shape of maxillary premolars show a tendency towards separation of their cusps during mastication after endodontic treatment. Preservation of the marginal ridge of endodontically treated and restored premolars can act as a strengthening factor and improve the fracture resistance. Objectives: To evaluate the effect of varying thickness of marginal ridge on the fracture resistance of endodontically treated maxillary premolars restored with composite and Ribbond reinforced composites. Materials and Methods: One hundred and twenty, freshly extracted, non carious human mature maxillary premolars were selected for this experimental in vitro study. The teeth were randomly assigned in to twelve groups ( n = 10. Group 1 received no preparation. All the premolars in other groups were root canal treated. In subgroups of 3 and 4, DO cavities were prepared while MOD cavities were prepared for all subgroups of group 2, the dimensions of the proximal boxes were kept uniform. In group 3 and 4 the dimensions of the mesial marginal ridge were measured using a digital Vernier caliper as 2 mm, 1.5 mm, 1 mm and 0.5 mm in the respective subgroups. All samples in groups 2.2 and all the subgroups of 3 were restored with a dentin bonding agent and resin composite. The teeth in group 2.3 and all subgroups of 4 were restored with composite reinforced with Ribbond fibers. The premolars were submitted to axial compression up to failure at 45 degree angle to a palatal cusp in universal testing machine. The mean load necessary to fracture was recorded in Newtons and the data was analysed. Results: There was a highly significant difference between mean values of force required to fracture teeth in group 1 and all subgroups of group 2, 3 and 4 (i.e., P < 0.01 Conclusion: On the basis of static loading, preserving the mesial marginal ridge with thicknesses of mm, 1.5 mm, 1 mm and 0.5 mm, composite restored and Ribbond reinforced composite restored

  8. A direct method to measure the fracture toughness of indium tin oxide thin films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Chang, Rwei-Ching; Tsai, Fa-Ta; Tu, Chin-Hsiang

    2013-01-01

    This work presents a straightforward method to measure the fracture toughness of thin films deposited on flexible substrates. A 200 nm thick indium tin oxide (ITO) thin film is deposited on a 188 μm thick terephthalate (PET) substrate by a radio frequency magnetron sputtering machine. Using nanoindentation to induce brittle fracture on the ITO thin films, the energy release is calculated from integrating the resulting load–depth curve. An approach that directly measures the fracture toughness of thin films deposited on flexible substrates is proposed. A comparison shows that the results of the proposed method agree well with those of other reports. Furthermore, in order to improve the toughness of the ITO thin films, a copper interlayer is added between the ITO thin film and PET substrate. It shows that the fracture toughness of the ITO thin film deposited on the copper interlayer is higher than that of the one without the interlayer, which agrees well with the critical load tested by micro scratch. Further observations on optical and electric performances are also discussed in this work. - Highlights: • A straightforward method to measure the film's toughness • Directly using the load-depth curve of nanoindentation • The toughness is consistent with the critical load tested by micro scratch. • Interlayers can improve the film's toughness. • Optical and electric performances are also discussed

  9. Experimental comparative study and fracture resistance simulation with irrigation solution of 0.2% chitosan, 2.5% NaOCl and 17% EDTA

    Directory of Open Access Journals (Sweden)

    Ernani Ernani

    2015-09-01

    Full Text Available Background: Preparation in endodontic need irrigation materials as root canal debridement and disinfectant. However, irrigation materials is one of the factors that influence the tendency of fracture. Purpose: This study was aimed to see the resistance and fracture distribution if teeth irrigated with high molecular horseshoe crab chitosan at 0.2% concentration, 2.5% NaOCl solution and 17% EDTA solution in endodontic treatment with finite element method (FEM simulation study and experimental studies. Method: Endodontic treatment performed on 28 maxillary premolars with group A: irrigation solution of 17% EDTA and 2.5% NaOCl solution; group B: 2.5% NaOCl irrigation solution; group C: 2.5% NaOCl irrigation solution and 0.2% chitosan solution; group D: 0.2% chitosan solution irrigation. Final restoration was done using prefabricated glass fiber post. Cementation of post using resin cement then restored with direct composite resin restorations. Pressure test was performed with a Universal Testing Machine with a speed of 0.5 mm/min until fracture occurred. A three dimensional finite element analysis was performed for total deformation, equivalent (von-mises stress, and equivalent elastic strains. Result: Anova test showed significant differences in fracture resistance (p0.05. Statistical analysis showed no significant difference (p>0.05 between the results of experiment and FEM analysis results using the t-test. Conclusion: The results of this study demonstrated that there was effect of the use of high molecular 0.2% chitosan as a combined irrigation with NaOCl, but did not affect the fracture pattern distribution of endodontically treated teeth both experimentally and FEM analysis test.

  10. Computer-aided, single-specimen controlled bending test for fracture-kinetics measurement in ceramics

    International Nuclear Information System (INIS)

    Borovik, V.G.; Chushko, V.M.; Kovalev, S.P.

    1995-01-01

    Fracture testing of ceramics by using controlled crack growth is proposed to allow study of crack-kinetics behavior under a given loading history. A computer-aided, real-time data acquisition system improves the quality of crack-growth parameters obtained in a simple, single-specimen bend test. Several ceramic materials were tested in the present study: aluminum nitride as a linear-elastic material; and alumina and yttria-stabilized zirconia, both representative of ceramics with microstructure-dependent nonlinear fracture properties. Ambiguities in the crack-growth diagrams are discussed to show the importance of accounting for crack-growth history in correctly describing nonequilibrium fracture behavior

  11. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  12. Physical Properties of Fractured Porous Media

    Science.gov (United States)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  13. Compliance of an elderly hip fracture population with secondary preventative measures. Efficacy of a simple clinical practice intervention.

    LENUS (Irish Health Repository)

    Street, John

    2012-02-03

    Secondary pharmaceutical measures are effective in all age groups for the prevention of osteoporotic fractures. This prospective study determines the demographics of 566 consecutive osteoporotic hip fractures presenting to a Level 1 Trauma Center. We examine the efficacy of simple treatment recommendations for pharmaceutical treatment of osteoporosis and the factors determining general practitioner and patient compliance with these recommendations in a community setting. One out of four patients (24.5%) had sustained a previous fragility fracture. Mean age was 80 years. Twenty five percent were resident in a nursing home and only 10% were taking anti-resorptive therapy preoperatively. In hospital mortality was 6%, and 39% of recruited patients were dead at 12 months. By this time more than half the survivors were resident in a nursing home. The compliance with anti-resorptive therapy had increased to over 70% consequent to our simple recommendations. Significant differences in GP and patient compliance were observed between nursing home and own residence dwellers. This study demonstrates the efficacy of a simple clinical practice intervention in increasing patient and GP compliance with secondary fracture prevention measures. We also discuss many of the confounding issues determining this compliance.

  14. Notching of samples for fracture toughness' measurements via SEVNB Method of brittle ceramics

    International Nuclear Information System (INIS)

    Ribeiro, S.; Atilio, I.; Oliveira, M.R.; Garcia, G.C.R.; Rodrigues, J.A.

    2012-01-01

    The goal of this work is to present a notching machine to produce notches in ceramic bodies as well the choice and how to make the notches, using SiC produced by liquid phase sintering as experimental material. For the liquid sintering a mixture of Al 2 O 3 and Yb 2 O 3 as additive was applied. It was developed and built by an enterprise sited in Sao Carlos-SP an equipment, which permits to obtain polished notches in ceramic specimens to be fractured afterwards. That is to facilitate the measurement of K IC via the SEVNB method. Specimens of 10% of (Al 2 O 3 +Yb 2 O 3 ) containing SiC were sintered at 1950 deg C. Those specimens were machined and notched using razor blades and diamond pastes of 15, 9, 6, 3, 1 and 0.25 μm of particle size. The built machine to notch specimens is installed at DEMAR-EEL-USP, and it is said to be the first of that type in Brazil. The results showed that depending on the thickness of the razor blade and the size of the diamond particles, it can be curried out notches with distinct tip radius and notch depth values. (author)

  15. Measuring the initial earth pressure of granite using hydraulic fracturing test; Goseong and Yuseong areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Won, Kyung Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report provides the initial earth pressure of granitic rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are obtained by hydraulic fracturing test in three boreholes drilled up to 350{approx}500 m depth at the Yuseong and Goseong sites. These sites were selected based on the result of preliminary site evaluation study. The boreholes are NX-size (76 mm) and vertical. The procedure of hydraulic fracturing test is as follows: - Selecting the testing positions by preliminary investigation using BHTV logging. - Performing the hydraulic fracturing test at each selected position with depth.- Estimating the shut-in pressure by the bilinear pressure-decay-rate method. - Estimating the fracture reopening pressure from the pressure-time curves.- Estimating the horizontal principal stresses and the direction of principal stresses. 65 refs., 39 figs., 12 tabs. (Author)

  16. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  17. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  18. Fracture mechanics behavior of a Ni-Fe superalloy sheath for superconducting fusion magnets. Pt. 1. Property measurements

    International Nuclear Information System (INIS)

    Tobler, R.L.; Hwang, I.S.; Steeves, M.M.

    1997-01-01

    For pt.2 see ibid., p.269-79 (1997). A seamless extruded conduit for superconductor cabling was fabricated and subjected to mechanical tests. The conduit is made of a nickel-iron alloy having aging and thermal contraction characteristics comparable with Nb 3 Sn conductors. The conduit in liquid helium at 4 K retains its ductility and offers high strength, toughness, and fatigue resistance. Specimens with surface cracks in tension offer substantial fracture resistance for the practical case of crack propagation in the through-wall direction. Fatigue tests indicate that surface cracks adopt a nearly semicircular shape as they grow through the conduit wall (L-S orientation) at rates in the power-law region that are no faster than rates in the transverse direction (L-T orientation). The serviceability of this material is discussed. (orig.)

  19. Innovative use of a microbial tracer for measuring groundwater through a fractured matrix

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1995-01-01

    Site characterization for ground water remediation activities is limited by the one's ability to visualize the complexity of the subsurface environment. Currently, a variety of dyes, colloids, gases, etc., are used to monitor and estimate ground water flow and contaminant transport. The author has recently identified a new, innovative colloidal tracer that is a non-hazardous bacterium that is detectable at very low concentrations (ng/kg), and can provide real-time analysis (3--5 min) for measuring colloid transport. The tracer is the ice nucleating active (INA) bacterium Pseudomonas syringae. The assay conditions require measuring the freezing point of the sample (e.g., ground water and soil slurries). Typically, 10--100 microL drops of water will not freeze until -15 to -20 C. However, if the tracer is present the water will freeze at -3 to -7 C. This increase in the freezing point can only be due to the presence of the tracer and this phenomenon is well documented in the plant pathology and low-temperature biology literature but has only now been applied to site characterization and remediation activities. Laboratory experiments have identified the stability of the tracer in the presence of a variety of ground water contaminants (> 100 ppm) and it is stable over a pH range of 2.3--10.0. The tracer has been demonstrated in conjunction with other commonly used tracers at a variety of field sites: (1) a drilling tracer to identify potential cross contamination, and as a colloid/bacterial tracer in (2) a hydrofracturing demonstration, (3) a horizontal recirculation well system, (4) a fractured karst matrix, and (5) a radioactive contaminated site. The data from these demonstrations have provided additional information about site characteristics including faster ground water flow rates than previously identified and due to its low sensitivities better distribution into a clay matrix than estimated by the bromide tracer

  20. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ...) The insulation resistance test set should have an output voltage not to exceed 500 volts dc and may be... 7 Agriculture 11 2010-01-01 2010-01-01 false Shield or armor ground resistance measurements. 1755... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.406 Shield or armor ground resistance measurements. (a) Shield...

  1. Measurement of clavicular length and shortening after a midshaft clavicular fracture: Spatial digitization versus planar roentgen photogrammetry.

    Science.gov (United States)

    Stegeman, Sylvia A; de Witte, Pieter Bas; Boonstra, Sjoerd; de Groot, Jurriaan H; Nagels, Jochem; Krijnen, Pieta; Schipper, Inger B

    2016-08-01

    Clavicular shortening after fracture is deemed prognostic for clinical outcome and is therefore generally assessed on radiographs. It is used for clinical decision making regarding operative or non-operative treatment in the first 2weeks after trauma, although the reliability and accuracy of the measurements are unclear. This study aimed to assess the reliability of roentgen photogrammetry (2D) of clavicular length and shortening, and to compare these with 3D-spatial digitization measurements, obtained with an electromagnetic recording system (Flock of Birds). Thirty-two participants with a consolidated non-operatively treated two or multi-fragmented dislocated midshaft clavicular fracture were analysed. Two observers measured clavicular lengths and absolute and proportional clavicular shortening on radiographs taken before and after fracture consolidation. The clavicular lengths were also measured with spatial digitization. Inter-observer agreement on the radiographic measurements was assessed using the Intraclass Correlation Coefficient (ICC). Agreement between the radiographic and spatial digitization measurements was assessed using a Bland-Altman plot. The inter-observer agreement on clavicular length, and absolute and proportional shortening on trauma radiographs was almost perfect (ICC>0.90), but moderate for absolute shortening after consolidation (ICC=0.45). The Bland-Altman plot compared measurements of length on AP panorama radiographs with spatial digitization and showed that planar roentgen photogrammetry resulted in up to 37mm longer and 34mm shorter measurements than spatial digitization. Measurements of clavicular length on radiographs are highly reliable between observers, but may not reflect the actual length and shortening of the clavicle when compared to length measurements with spatial digitization. We recommend to use proportional shortening when measuring clavicular length or shortening on radiographs for clinical decision making. Copyright

  2. A Study of Hydraulic Properties in a Single Fracture with In-plane Heterogeneity: An Evaluation Using Optical Measurements of a Transparent Replica

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Atsushi; Ssto, Hisashi [Japan Atomic Energy Agency, Ibaraki (Japan)

    2010-02-15

    Experimental examinations for evaluating fractures were conducted by using transparent replicas of a single fracture in order to obtain the fracture data to contribute to the methodology on how to improve the definition of representative parameter values used for a parallel plate fracture model. Quantitative aperture distribution and quantitative tracer concentration data at each point in time were obtained by measuring the attenuation of transmitted light through the fracture in high spatial resolution. The representative aperture values evaluated from the multiple different measurement methods, such as arithmetic mean of aperture distribution measured by the optical method, transport aperture evaluated from the tracer test, and average aperture evaluated from the fracture void volume measurement converged to a unique value that indicates the accuracy of this experimental study. The aperture data was employed for verifying the numerical simulation under the assumption of Local Cubic Law and showed that the calculated flow rate through the fracture is 10% . 100% larger than hydraulic test results. The quantitative tracer concentration data is also very valuable for validating existing numerical code for advection dispersion transport in-plane heterogeneous fractures

  3. A Study of Hydraulic Properties in a Single Fracture with In-plane Heterogeneity: An Evaluation Using Optical Measurements of a Transparent Replica

    International Nuclear Information System (INIS)

    Sawada, Atsushi; Ssto, Hisashi

    2010-01-01

    Experimental examinations for evaluating fractures were conducted by using transparent replicas of a single fracture in order to obtain the fracture data to contribute to the methodology on how to improve the definition of representative parameter values used for a parallel plate fracture model. Quantitative aperture distribution and quantitative tracer concentration data at each point in time were obtained by measuring the attenuation of transmitted light through the fracture in high spatial resolution. The representative aperture values evaluated from the multiple different measurement methods, such as arithmetic mean of aperture distribution measured by the optical method, transport aperture evaluated from the tracer test, and average aperture evaluated from the fracture void volume measurement converged to a unique value that indicates the accuracy of this experimental study. The aperture data was employed for verifying the numerical simulation under the assumption of Local Cubic Law and showed that the calculated flow rate through the fracture is 10% . 100% larger than hydraulic test results. The quantitative tracer concentration data is also very valuable for validating existing numerical code for advection dispersion transport in-plane heterogeneous fractures

  4. 3D electric resistivity tomography (ERT) methodologies applied on selected heavily urbanized areas of the basin of Mexico to detect buried fractures and subsidence problems

    Science.gov (United States)

    Chavez Segura, R. E.; Cifuentes-Nava, G.; Tejero, A.; Hernandez, E.

    2012-12-01

    Urban development in modern cities require of a more integral knowledge of the subsurface, mainly on those areas, where human concentrations increase. Mexico City is one of such an example, where it constitutes one of the largest concentrations of human activities in the world. Most of the urban area is underlain by lacustrine sediments of the former lakes, and confined by important volcanic ranges. Such sediments offer poor foundation conditions for constructive purposes. Therefore, high risk areas have to be identified to prevent accidents and disastrous events. Geophysical techniques can be employed to understand the physical characteristics of the subsurface. Two examples are presented in this investigation. A residential complex named La Concordia is located towards the central portion of the basin that consists of six four storey buildings in an area of 33x80 m2. Finally, a block of small houses (50x50 m2) is found to the southern limit of the basin; close to the Chichinautzin range within the town of Tecomitl. Both zones suffer of strong damage in their structures due to fractures and subsidence within the subsoil. Therefore, Electric Resistivity Tomography (ERT) was carried out to characterize the subsoil beneath these urban complexes. A special array ('horse-shoe' geometry) 'L' employing Wenner-Schlumberger techniques, in addition to equatorial-dipole and minimum-coupling arrays were carried out to fully 'illuminate' beneath the constructions. Computed resistivity models for both examples depicted the buried fracture pattern affecting the urban complexes. Such patterns seem to extend beyond the limits of the surveyed areas, and are probably part of a more complex fracture system. It is very likely that fractures have been produced due to the poorly consolidated clays that cover most of the central part of the Valley of Mexico; the intense water extraction, that form 'voids' in the subsoil causing subsidence effects and finally the existence of regional

  5. Evaluation of the measurement uncertainty when measuring the resistance of solid isolating materials to tracking

    Science.gov (United States)

    Stare, E.; Beges, G.; Drnovsek, J.

    2006-07-01

    This paper presents the results of research into the measurement of the resistance of solid isolating materials to tracking. Two types of tracking were investigated: the proof tracking index (PTI) and the comparative tracking index (CTI). Evaluation of the measurement uncertainty in a case study was performed using a test method in accordance with the IEC 60112 standard. In the scope of the tests performed here, this particular test method was used to ensure the safety of electrical appliances. According to the EN ISO/IEC 17025 standard (EN ISO/IEC 17025), in the process of conformity assessment, the evaluation of the measurement uncertainty of the test method should be carried out. In the present article, possible influential parameters that are in accordance with the third and fourth editions of the standard IEC 60112 are discussed. The differences, ambiguities or lack of guidance referring to both editions of the standard are described in the article 'Ambiguities in technical standards—case study IEC 60112—measuring the resistance of solid isolating materials to tracking' (submitted for publication). Several hundred measurements were taken in the present experiments in order to form the basis for the results and conclusions presented. A specific problem of the test (according to the IEC 60112 standard) is the great variety of influential physical parameters (mechanical, electrical, chemical, etc) that can affect the results. At the end of the present article therefore, there is a histogram containing information on the contributions to the measurement uncertainty.

  6. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  7. Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lan Chun; Srisungsitthisunti, Pornsak; Amama, Placidus B; Fisher, Timothy S; Xu Xianfan; Reifenberger, Ronald G [Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: lan0@physics.purdue.edu

    2008-03-26

    A technique of measuring contact resistance between an individual nanotube and a deposited metallic film is described. Using laser ablation to sequentially shorten the contact length between a nanotube and the evaporated metallic film, the linear resistivity of the nanotube as well as the specific contact resistivity between the nanotube and metallic film can be determined. This technique can be generally used to measure the specific contact resistance that develops between a metallic film and a variety of different nanowires and nanotubes.

  8. The malnutrition screening tool versus objective measures to detect malnutrition in hip fracture.

    Science.gov (United States)

    Bell, J J; Bauer, J D; Capra, S

    2013-12-01

    The Malnutrition Screening Tool (MST) is the most commonly used screening tool in Australia. Poor screening tool sensitivity may lead to an under-diagnosis of malnutrition, with potential patient and economic ramifications. The present study aimed to determine whether the MST or anthropometric parameters adequately detect malnutrition in patients who were admitted to a hip fracture unit. Data were analysed for a prospective convenience sample (n = 100). MST screening was independently undertaken by nursing staff and a nutrition assistant. Mid upper arm circumference (MUAC) was measured by a trained nutrition assistant. Nutritional risk [MST score ≥ 2, body mass index (BMI) malnutrition diagnosed by accredited practicing dietitians using International Classification of Diseases version 10-Australian Modification (ICD10-AM) coding criteria. Malnutrition prevalence was 37.5% using ICD10-AM criteria. Delirium, dementia or preadmission cognitive impairment was present in 65% of patients. The BMI as a nutrition risk screen was the most valid predictor of malnutrition (sensitivity 75%; specificity 93%; positive predictive value 73%; negative predictive value 84%). Nursing MST screening was the least valid (sensitivity 73%; specificity 55%; positive predictive value 50%; negative predictive value 77%). There was only fair agreement between nursing and nutrition assistant screening using the MST (κ = 0.28). In this population with a high prevalence of delirium and dementia, further investigation is warranted into the performance of nutrition screening tools and anthropometric parameters such as BMI. All tools failed to predict a considerable number of patients with malnutrition. This may result in the under-diagnosis and treatment of malnutrition, leading to case-mix funding losses. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  9. Development of autoradiographic method for measuring sorption of radionuclides on natural fracture surfaces

    International Nuclear Information System (INIS)

    Muuronen, S.

    1983-11-01

    On the basis of positive results about sorption of radionuclides in rock thin sections an autoradiographic method applicable for measurement sorption of radionuclides on rough rock surfaces was developed. There is no method available because 1) a plane film cannot be used because due to the roughness of rock surfaces 2) rock samples used in this investigation cannot be studied with microscopes and 3) autoradiogram cannot be studied fixed on the surface of a rock sample because the colours of the minerals in the sample will interfere with the interpretation. This report discusses experimental work done to find an useful proedure. In the development of the method main emphasis was put on investigation of the following steps: 1) preparation of the sample for equilibration and spiking; 2) properties of the covering paint for the rock surface and 3) testing of autoradiographic methods using different nuclear emulsions. As the result of these experiments promising autoradiograms with gel emulsion for sawed rock surfaces and with stripping film for rough rock surfaces were obtained. The mineralogic disribution of sorbed activity is easily seen in autoradiograms. Much work must still be done to get reliable quantitative information from autoradiograms. For developing of the autoradiographic method sawed plane rock samples of quartz feldspar intergrowth, pegmatite and limestone were used. In addition core samples of tonalite and mica gneiss from Olkiluoto were utilized. The distribution coefficients (Ksub(a)) obtained for cesium were 560 x 10 -4 and 620 x 10 -4 m 3 /m 2 for tonalite and mica gneiss, respectively. The results are little higher but of the same order of magnitude as obtained by the autoradiographic method using rock thin sections and by the batch method using crused samples. The natural fracture surface sorption study is a logical step in determining the scaling factor from laboratory to field studies. Field data will be needed to determine whether laboratory

  10. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    Science.gov (United States)

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  11. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  12. Sensitiveness of the Constant-Murley’s Shoulder and Quick DASH as an Outcome Measure for Midshaft Clavicle Fracture

    Directory of Open Access Journals (Sweden)

    R Magetsari

    2010-03-01

    Full Text Available BACKGROUND: Quick DASH and Constant-Murley’s Shoulder are two valid measuring tools for health status and are useful for patients with a wide variety of upper-extremity complaints; it is sufficiently sensitive to reveal even small changes in function. Objective: To evaluate the sensitivity of Quick DASH and Constant-Murley’s Shoulder as an outcome measurement for midshaft clavicle fracture. METHOD: The study population consisted of 64 patients with a diagnosis of midshaft clavicle fracture based on clinical and radiological criteria. Study design was that of a classic prospective cohort study with measurements at 3 and 6 months following the injury. Evaluation was based on effect size (ES and standardized response means (SRM. RESULT: Both Quick DASH and Constant-Murley’s Shoulder showed high sensitivity (ES: 0.711; SRM: 1.46 and ES: 0.628; SRM: 1.45, respectively. CONCLUSION: Quick DASH was more sensitive than Constant-Murley’s Shoulder in detecting clinical changes on midshaft clavicle fractures at 3 and 6 month following treatment.

  13. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  14. Reliability of internal oblique elbow radiographs for measuring displacement of medial epicondyle humerus fractures: a cadaveric study.

    Science.gov (United States)

    Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W

    2013-01-01

    Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good

  15. Database for hydraulically conductive fractures. Update 2009

    International Nuclear Information System (INIS)

    Palmen, J.; Tammisto, E.; Ahokas, H.

    2010-03-01

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  16. Comparative measurements of mineral salt concentrations in the calcaneus by 125I γ-absorption measurement in the course of fractures of the lower extremities

    International Nuclear Information System (INIS)

    Mehrlich, P.

    1979-01-01

    In a group of 52 patients aged between 16 and 78 years, all with fractures of the lower extremities, BMC concentrations were determined in a period from 10 weeks to 50 month after the accident in both calcaneal bones and the right ulna. The gamma absorption measurements were carried out in a single-isotope technique in a water bath, using a 125 I source as radionuclides. The results were evaluated by planimetrisation of the absorption curve. The patients were divided in groups according to clinically complicated, clinically uncomplicated, radiologically demineralized, and radiologically and clinically uncomplicated healing. In 11 patients, up to 4 measurements were also carried out as course control measures. The results differed in dependence of the patients' age. The localisation of the fracture had no effect on the degree of demineralisation. (orig./MG) [de

  17. Measurement of tensile and fracture toughness properties using small punch test

    International Nuclear Information System (INIS)

    Chatterjee, S.; Shah Priti Kotak

    2005-05-01

    Small punch test wu carried out at room temperature on five different steels using 10 mm by 10 mm specimens of 0.4 mm thickness in a univesal testing machine. The tensile and fracture toughness properties of the five steels obtained from small punch test were compared with those obtained from the standard test method. The results (except in one steel) show that the tensile properties obtained from small punch test are in close proximity to those obtained ftom uni-axial tension test. The results also show that fracture toughness (Jic) properties obtained ftom small punch test are within ±20% of the corresponding values obtained using standard test procedures. (author)

  18. Retraction notice to: influence of post fit and post length on fracture resistance: an in vitro study. J Contemp Dent Pract 2013;14(3):496-500.

    Science.gov (United States)

    2013-09-01

    It has been notified to the Editorial Board, The Journal of Contemporary Dental Practice (JCDP), that considerable script of the aforementioned article has been plagiarized from the article: Büttel L, Krastl G, Lorch H, Naumann M, Zitzmann NU, Weiger R. Influence of Post Fit and Post Length on Fracture Resistance. Int Endod J 2009;42(1):47-53. The same was confirmed after thorough evaluation and interpretation. In accordance to observe serious view in case of plagiarism, the Editorial Board, JCDP decided to take appropriate action against the act. Thus, it is herewith decided by the Editorial Board, JCDP to retract the title as addressed from the assigned issue.

  19. Deformation and velocity measurements at elevated temperature in a fractured 0.5 M block of tuff

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1996-01-01

    This paper presents preliminary results of laboratory tests conducted on small block samples of Topopah Spring tuff, in support of the Yucca Mountain Site Characterization Project. The overall objective of these tests is to investigate the thermal-mechanical, thermal-hydrological, and thermal-chemical response of the rock to conditions similar to the near-field environment (NFE) of a potential nuclear waste repository. We present preliminary results of deformation and elastic wave velocity measurements on a 0.5-m-scale block of Topopah Spring tuff tested in uniaxial compression to 8.5 MPa and at temperatures to 85 degree C. The Young's modulus was found to be about 7 to 31 GPa for vertical measurements parallel to the stress direction across parts of the block containing no fractures or a few fractures, and 0.5 to 0.9 GPA for measurements across individual fractures, at ambient temperature and 8.5 MPa maximum stress. During stress cycles between 5 and 8.5 MPa, the deformation modulus values for the matrix with fractures were near 15-20 GPa at ambient temperature but dropped to about 10 GPa at 85 degree C. Compressional wave velocities were found to be about 3.6 to 4.7 km/s at ambient temperature and stress. After the stress was cycled, velocities dropped to values as low as 2.6 km/s in the south end of the block where vertical cracks developed. Heating the block to about 85 degree C raised velocities to as much as 5.6 km/s in the upper third of the block

  20. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    Science.gov (United States)

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  1. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  2. Report on achievements in research and development in fiscal 1982 commissioned from the Sunshine Project. Development of a pit condition measuring technology (Development of a fracturing technology); 1982 nendo koseinai sokutei gijutsu no kaihatsu seika hokokusho. Fracturing gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Development was made on a measuring instrument intended of acquiring information inside geothermal wells under high temperature and pressure. Research and development was performed on a fracturing technology to enhance characteristics of wells. What have been performed as a result of the development of the in-pit measuring instrument are application of high temperature logging cables as a result of development of logging devices, and the fabrication of a digital data analyzer. In developing the logging and reservoir evaluating technologies, field test were performed by using a logger that uses neutrons, installed with a radiation source. In developing the fracturing technology, discussions were given on the equation of relationship proposed from the standpoint of fracture dynamics, and investigations were made on examples of values, in order to anticipate hydraulic fracturing pressure applied in fracturing. In the research of fracturing additives, discussions were given on gelling agents supported by use of water glass, and alumina prop agents. For the preliminary observation devices, a high-pressure low flow rate control device was installed on the high-pressure plunger pump, improvement was made on the composite centrifugal multi-stage pump. (NEDO)

  3. Report on research and development achievements in fiscal 1980 in Sunshine Project. Development of a technology to measure inside of wells (Development of a fracturing technology); 1980 nendo koseinai sokutei gijutsu no kaihatsu seika hokokusho. Fracturing gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes the achievements in fiscal 1980 in developing a technology to measure inside of geothermal wells, and of fracturing (to achieve enhancement and regeneration of well performance). Design and fabrication were completed on the in-tunnel sensor for a neutron/density logger. The sensor withstood use at a temperature as high as 275 degrees C. In logging and reservoir evaluation field tests, reliable data were derived even at a depth of 1,800 m and a temperature of 250 degrees C. Characteristics of response of radioactivity logging (neutron and density logging) to different igneous rocks were investigated by using rock blocks. For the fracturing facilities, improvements were given on transportation performance and installation workability of the preliminary observation device, by utilizing the experience obtained in the previous fiscal year. A composite (divided into two units) centrifugal multi-stage pumping device was developed so that a water injection test can be performed in a wide capacity range according to the intended wells, where nearly satisfying performance was derived. For the fracturing technology, in order for even small test pieces to be capable of evaluating fracture tenacity accurately with consideration on nonlinear behavior of rocks, elasto-plastic fracture tenacity tests were carried out with AE measurement being performed simultaneously. The paper also describes studies on fracturing fluids. (NEDO)

  4. Comparative evaluation of the vertical fracture resistance of endodontically treated roots filled with Gutta-percha and Resilon: a meta-analysis of in vitro studies.

    Science.gov (United States)

    Tan, Minmin; Chai, Zhaowu; Sun, Chengjun; Hu, Bo; Gao, Xiang; Chen, Yunjia; Song, Jinlin

    2018-06-13

    Teeth treated endodontically are more susceptible to vertical root fracture (VRF). Some studies have suggested that obturating the root canals with Gutta-percha or Resilon can reinforce endodontically treated teeth, but a few others have presented conflicting results. These inconsistent results cannot guide clinicians in determining clinical approaches. The objective of this meta-analysis is to evaluate and compare the vertical fracture resistance of endodontically treated root canals obturated with Gutta-percha/AH plus and the Resilon system. Comprehensive literature searches were performed in the PubMed, Cochrane Library, ScienceDirect, Web of Science and Embase databases. The titles and abstracts of all of the retrieved articles were independently assessed by two authors according to predefined selection criteria. Data in the included articles were independently extracted. Statistical analyses were conducted using Review Manager 5.3 and Stata 12.0 software. The pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated for the outcome indicators. The level of statistical significance was set at p < 0.05. The Cochran Q test (I 2 test) was used to test for heterogeneity among studies. Fourteen randomized controlled in vitro trials were included in the meta-analysis. The results demonstrated that the vertical root fracture resistance of unprepared and unfilled roots was significantly higher than that of roots obturated with Gutta-percha/AH plus (SMD = - 0.69, 95% CI = - 1.34 to - 0.04, p = 0.04) or the Resilon system (SMD = - 0.54, 95% CI = - 1.07 to - 0.00, p = 0.05). The differences in fracture resistance between the roots filled with Gutta-percha/AH plus and the prepared unfilled root canals was not significant (SMD = 0.59, 95% CI = - 0.02 to 1.21, p = 0.06). Roots obturated with Resilon had higher fracture resistance than instrumented unfilled roots (SMD = 0.83, 95

  5. Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties

    Czech Academy of Sciences Publication Activity Database

    Cifuentes, H.; Lozano, M.; Holušová, Táňa; Medina, F.; Seitl, Stanislav; Fernández-Canteli, A.

    2017-01-01

    Roč. 11, č. 2 (2017), s. 215-228 ISSN 1976-0485 R&D Projects: GA ČR(CZ) GA16-18702S Institutional support: RVO:68081723 Keywords : Concrete * Fracture behaviour * Experimental techniques Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.031, year: 2016

  6. Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures

    DEFF Research Database (Denmark)

    Sheu, Y; Marshall, L M; Holton, K F

    2013-01-01

    The effect of abdominal adiposity and muscle on fracture is unclear in older men; therefore, we examined the association among 749 men aged 65+. Among various adipose tissues and muscle groups, lower psoas muscle volume and higher fatty infiltration of abdominal muscle contribute to higher fractu...

  7. Determination of nonlinear resistance voltage-current relationships by measuring harmonics

    Science.gov (United States)

    Stafford, J. M.

    1971-01-01

    Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.

  8. A new measurement for posterior tilt predicts reoperation in undisplaced femoral neck fractures: 113 consecutive patients treated by internal fixation and followed for 1 year

    DEFF Research Database (Denmark)

    Palm, Henrik; Gosvig, Kasper; Krasheninnikoff, Michael

    2009-01-01

    BACKGROUND AND PURPOSE: Preoperative posterior tilt in undisplaced (Garden I-II) femoral neck fractures is thought to influence rates of reoperation. However, an exact method for its measurement has not yet been presented. We designed a new measurement for posterior tilt on preoperative lateral...... radiographs and investigated its association with later reoperation. PATIENTS AND METHODS: A consecutive series of 113 patients, > or = 60 years of age with undisplaced (Garden I-II) femoral neck fractures treated with two parallel implants, was assessed regarding patient characteristics, radiographs...... and able to predict reoperation in patients with undisplaced (Garden I-II) femoral neck fractures....

  9. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.

    2012-11-19

    The Tjörnes Fracture Zone (TFZ), North Iceland, is a 120 km transform offset of the Mid-Atlantic-Ridge that accommodates 18 mm yr−1 plate motion on two parallel transform structures and connects the offshore Kolbeinsey Ridge in the north to the on-shore Northern Volcanic Zone (NVZ) in the south. This transform zone is offshore except for a part of the right-lateral strike-slip Húsavík-Flatey fault (HFF) system that lies close to the coastal town of Húsavík, inducing a significant seismic risk to its inhabitants. In our previous work we constrained the locking depth and slip-rate of the HFF using 4 yr of continuous GPS measurements and found that the accumulated slip-deficit on the fault is equivalent to a Mw6.8 ± 0.1 earthquake, assuming a complete stress release in the last major earthquakes in 1872 and a steady accumulation since then. In this paper we improve our previous analysis by adding 44 campaign GPS (EGPS) data points, which have been regularly observed since 1997. We extract the steady-state interseismic velocities within the TFZ by correcting the GPS data for volcanic inflation of Theistareykir—the westernmost volcano of the NVZ—using a model with a magma volume increase of 25 × 106 m3, constrained by InSAR time-series analysis results. The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  10. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Directory of Open Access Journals (Sweden)

    Sevim, Ibrahim

    2016-09-01

    Full Text Available The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW Dual Phase (DP steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness.El objetivo de este estudio es determinar la tenacidad de fractura de los aceros dual (DP soldados por puntos de resistencia (RSW. En la máquina de soldadura por puntos se realizó la soldadura de láminas de acero DP 450 galvanizado y sin galvanizar. A partir de los ensayos de tracción-cizallamiento, se calculó la tenacidad a la fractura de las uniones del acero DP 450 galvanizado y sin galvanizar. Aplicando el método de mínimos cuadrados (LSM se desarrollaron nuevas ecuaciones empíricas entre el porcentaje de energía liberada, la tenacidad de fractura y el tamaño de grieta crítica en función de la relación entre los valores de tenacidad de fractura y de dureza. Los resultados indicaron que la tenacidad de fractura de las uniones soldadas por RSW aumentó exponencialmente, mientras que la dureza disminuyó. Además, el porcentaje de energía liberada de las láminas de acero DP 450 galvanizadas y soldadas fueron menores que en el caso de las láminas sin galvanizar a valores iguales de dureza.

  11. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study.

    Science.gov (United States)

    Wafaie, Ramy Ahmed; Ibrahim Ali, Ashraf; Mahmoud, Salah Hasab

    2018-01-25

    To assess the influence of new light curing lab composite, lithium-disilicate glass-ceramic and yttrium-stabilized zirconia-based ceramic on the fracture resistance of maxillary premolars with class II inlay and onlay preparations. Seventy sound maxillary premolars were divided randomly into seven main groups. The first group was left intact (control group). The remaining six groups were prepared with inlay and onlay cavities and restored with lab composite (SR Nexco), lithium-disilicate glass-ceramic (IPS e.max Press) and yttrium-stabilized zirconia-based ceramic (ICE Zirkon). The restorations were cemented with luting resin composite (Variolink N). All specimens were thermocycled 5000 cycles between 5°C ± 2°C and 55°C ± 2°C and were then cyclic loaded for 500 000 cycles. The specimens were subjected to a compressive load in a universal testing machine using a metal sphere until fracture occurred. The results were analyzed by 2-way ANOVA and Tukey HSD post hoc tests. The level of significance was set at P  .05). However, statistically significant differences were found among the means of control group and the groups restored with lab composite inlays, lab composite onlays, pressable glass ceramic inlays and pressable glass ceramic onlays (P lab composite is used. Conversely, when a ceramic material being used, the prepared teeth for inlay and onlay restorations showed a comparable strength to the intact teeth especially zirconia ceramic. Premolar teeth restored with zirconia ceramic inlays and onlays exhibited fracture resistance comparable to intact teeth. © 2018 Wiley Periodicals, Inc.

  12. Measurement of components of load parallel to cracks in a proof of safety against fracture

    International Nuclear Information System (INIS)

    Amstutz, H.; Seeger, T.

    1992-01-01

    Largely standardized processes are now available in the R6 concept, the engineering approach and the engineering treatment model (ETM) according to Schwalbe, which make judgment and quantitative assessment of the fracture and failure behaviour of components with cracks and faults similar to cracks possible. When using the process on components with a multi-axial basic stress state, the question arises for pure mode I stresses, to what extent and in what form the effect of the load parallel to the cracks can be included in the concepts. Based on a numerical study with finite elements, the connections between global bi-axial load and local stress conditions are shown in the article, using the example of the J integral, and are discussed regarding taken them into account in the proof of safety against fracture. (orig.) [de

  13. Study of Aging-Induced Degradation of Fracture Resistance of Alloy 617 Toward High-Temperature Applications

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Sasikala, G.; Dasgupta, Arup; Bhaduri, A. K.

    2017-07-01

    For the Alloy 617, the effect of aging on the fracture energy degradation has been investigated after aging for different time periods at 1023 K (750 °C). A sharp reduction in impact energy (by 55 pct vis-à-vis the as-received material) after 1000 hours of aging, as evaluated from room-temperature Charpy impact tests, has been observed. Further aging up to 10,000 hours has led to a degradation of fracture energy up to 78 pct. Fractographic examinations using scanning electron microscopy (SEM) have revealed a change in fracture mode from fibrous-ductile for the un-aged material to intergranular mode for the aged one. The extent of intergranular fracture increases with the increasing aging time, indicating a tendency of the material to undergo grain boundary embrittlement over long-term aging. Analysis of the transmission electron microscopy (TEM) micrographs along with selected area diffraction (SAD) patterns for the samples aged at 10,000 hours revealed finely dispersed γ' precipitates of size 30 to 40 nm, rich in Al and Ti, along with extensive precipitation of M23C6 at the grain boundaries. In addition, the presence of Ni3Si of size in the range of 110 to 120 nm also has been noticed. The extensive precipitation of M23C6 at the grain boundaries have been considered as a major reason for aging-induced embrittlement of this material.

  14. Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios

    DEFF Research Database (Denmark)

    Jørgensen, Henrik L; Kusk, Philip; Madsen, Bente Elmfelt

    2004-01-01

    66 women with lower forearm fracture, 41 women with hip fracture, and 206 age-matched controls. All had broadband ultrasound attenuation (BUA) and speed of sound (SOS) measured at the heel as well as bone mineral density (BMD) measured by DXA at the distal forearm. S-OPG was measured by ELISA. The A......163G genotypes were determined by PCR-RFLP analysis. S-OPG levels correlated positively with age ( r = 0.45; P heel BUA ( r = -0.23; P heel SOS ( r = -0.22; P ...-OPG to the lowest, the odds ratio for osteoporotic fracture was 2.5 (95% CI, 1.3-4.7; P = 0.006). The G allele of the A163G was associated with significantly lower t-scores of both lower forearm BMD, heel BUA, and heel SOS as well as being significantly more frequent in the fracture patients compared...

  15. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  16. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  17. ESTUDIO PRELIMINAR DE LA RESISTENCIA MECÁNICA A LA FRACTURA Y FUERZA DE FIRMEZA PARA FRUTA DE UCHUVA (Physalis peruviana L. PRELIMINARY STUDY OF MECHANICAL RESISTANCE TO FRACTURE AND FIRMNESS FORCE FOR UCHUVA (Physalis peruviana L FRUITS

    Directory of Open Access Journals (Sweden)

    Héctor José Ciro Velasquez

    2007-06-01

    Full Text Available Se hizo la caracterización reológica de la uchuva (Physalis peruviana L. a través de la respuesta mecánica bajo ensayos de compresión unidireccional a pruebas de firmeza y fractura, para 3 grados de madurez (verde, pintón y maduro y los días transcurridos después de la cosecha (1, 3, 5, 7, 9 días. Los resultados indicaron que la fuerza de firmeza y la resistencia mecánica a la fractura en dos sentidos de carga longitudinal y transversal disminuyen con el tiempo de poscosecha de la fruta, indicando que el fruto maduro es mas susceptible al daño mecánico con respecto al verde y pintón.A rheological characterization under unidirectional compression of uchuva fruits (Physalis peruviana L. was undertaken measuring the flesh firmness force and the fracture force according to three specifc developmental stages unripe, ripenning, ripe and five postharvest times (1,3,5,7 and 9 days. The results showed that the flesh firmness and the mechanical resistance to the fracture in two loading directions longitudinal and transversal diminish with the postharvest time. Moreover, the ripe fruit is more susceptible to mechanical damage with respect to unripe and ripening fruit.

  18. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  19. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J

    1999-01-01

    An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.

  20. Mathematical modeling for corrosion environment estimation based on concrete resistivity measurement directly above reinforcement

    International Nuclear Information System (INIS)

    Lim, Young-Chul; Lee, Han-Seung; Noguchi, Takafumi

    2009-01-01

    This study aims to formulate a resistivity model whereby the concrete resistivity expressing the environment of steel reinforcement can be directly estimated and evaluated based on measurement immediately above reinforcement as a method of evaluating corrosion deterioration in reinforced concrete structures. It also aims to provide a theoretical ground for the feasibility of durability evaluation by electric non-destructive techniques with no need for chipping of cover concrete. This Resistivity Estimation Model (REM), which is a mathematical model using the mirror method, combines conventional four-electrode measurement of resistivity with geometric parameters including cover depth, bar diameter, and electrode intervals. This model was verified by estimation using this model at areas directly above reinforcement and resistivity measurement at areas unaffected by reinforcement in regard to the assessment of the concrete resistivity. Both results strongly correlated, proving the validity of this model. It is expected to be applicable to laboratory study and field diagnosis regarding reinforcement corrosion. (author)

  1. Designing tough and fracture resistant polypropylene/multi wall carbon nanotubes nanocomposites by controlling stereo-complexity and dispersion morphology

    International Nuclear Information System (INIS)

    Das, Dibyendu; Satapathy, Bhabani K.

    2014-01-01

    Highlights: • New pathway to improve dispersion and toughness by tacticity modification. • >330% toughness enhancement in PP/MWCNT nanocomposites with stereo-complex PP. • Prominent dispersion and distribution morphology due to matrix stereocomplexity. • Tacticity induced “Semi-ductile-to-tough-to-quasi-brittle” transitions in the PP/MWCNT. • Two-fold reduced steady state CTOD rate in i-PP+s-PP/ MWCNT nanocomposites. - Abstract: A remarkable toughness enhancement (>330%) of multi wall carbon nanotubes (MWCNT) filled stereo-complex polypropylene (PP) matrix i.e. blend of isotactic-PP and syndiotactic-PP (70:30) with differences in stereo-regularity has been observed. The enhancement has been correlated to quantifiable morphological parameters such as free-space lengths concerning dispersion and relatively greater reduction in crystallite size/lamellar thickness. Systematic analysis of glass transition data and estimation of multi wall carbon nanotubes induced reduction in interfacial polymer chain immobilization reiterates susceptibility of polymer segments to ready-mobility. The extent of toughening has quantitatively been analyzed by fracture-energy partitioning, essential work of fracture (EWF), approach enabling the detection of a “semi-ductile-to-tough-to-quasi-brittle” transition in the MWCNT filled stereo-complex polypropylene. Real-time fracture kinetics analysis revealed toughening mechanism to be primarily blunting-assisted; an aspect also corroborated by extensive plastic flow without much energy dissipation in the inner fracture process zone. Thus the study establishes a new pathway of tacticity-defined matrix modification to toughen nanocomposites

  2. Lower Lean Mass Measured by Dual-Energy X-ray Absorptiometry (DXA) is Not Associated with Increased Risk of Hip Fracture in Women: The Framingham Osteoporosis Study.

    Science.gov (United States)

    McLean, Robert R; Kiel, Douglas P; Berry, Sarah D; Broe, Kerry E; Zhang, Xiaochun; Cupples, L Adrienne; Hannan, Marian T

    2018-01-05

    Although muscle mass influences strength in older adults, it is unclear whether low lean mass measured by dual-energy X-ray absorptiometry (DXA) is an independent risk factor for hip fracture. Our objective was to determine the association between DXA lean mass and incident hip fracture risk among 1978 women aged 50 years and older participating in the Framingham Study Original and Offspring cohorts. Leg and total body lean mass (kg) were assessed from whole-body DXA scans collected in 1992-2001. Hip fracture follow-up extended from DXA assessment to the occurrence of fracture, death, drop-out, or end of follow-up in 2007. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI) estimating the relative risk of hip fracture associated with a 1-kg increase in baseline lean mass. Mean age was 66 years (range 50-93). Over a median of 8 years of follow-up, 99 hip fractures occurred. In models adjusted for age, height, study cohort, and percent total body fat, neither leg (HR 1.11; 95% CI 0.94, 1.31) nor total body (HR 1.06; 95% CI 0.99, 1.13) lean mass were associated with hip fracture. After further adjustment for femoral neck bone mineral density, leg lean mass results were similar (HR 1.10; 95% CI 0.93, 1.30). In contrast, 1 kg greater total body lean mass was associated with 9% higher hip fracture risk (HR 1.09; 95% CI 1.02, 1.18). Our findings suggest that in women, lower lean mass measured by DXA is not associated with increased risk of hip fracture.

  3. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  4. Measured anisotropic air flow resistivity and sound attenuation of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Department of Mechanical Engineering, Technical University of Denmark, Bygning 358, DK 2800 Lyngby, Denmark The air flow resistivity of glass wool has been measured in different directions. The glass wool was delivered from the manufacturer as slabs measuring 100×600×900 mm3, where the surface 600...... 7.75 kPa s m**2. A formula for prediction of resistivity for other densities is given. By comparing measured values of sound attenuation with results calculated from resistivity data, it is demonstrated that the measured attenuation can be predicted in a simple manner. ©2002 Acoustical Society...

  5. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  6. The Relationship Between Fractures and DXA Measures of BMD in the Distal Femur of Children and Adolescents With Cerebral Palsy or Muscular Dystrophy

    Science.gov (United States)

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-01-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research PMID:19821773

  7. A measurement method for determination of dc internal resistance of batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuhong; Wu, Feng [Department of Materials Science, Beijing Science and Technology University, Beijing 100081 (China); Yang, Liuxiang; Gao, Lijun [Department of Chemistry, NanChang University, JiangXi 330031 (China); Burke, Andrew F. [Institute of Transportation, University of California, Davis, CA 95616 (United States)

    2010-02-15

    Internal resistance is an importance parameter determining the power performance of a battery or supercapacitor. An 8.5 Ah Li-ion battery and a 350 F supercapacitor were tested as examples to validate the measurement method of dc internal resistance. Voltage data were taken at 10 ms, 2 s and 30 s after the current interruption or pulse. The ac resistances at 1 kHz of the battery and supercapacitor were also measured for comparison with the dc values. Based on these tests, it is proposed that the dc internal resistance of the battery and supercapacitor be obtained from {delta}V/{delta}I where the {delta}V is the voltage change after the current interruption, and {delta}I means current change from I to 0. When the voltage change at 10 ms or less is selected, the resistance corresponds to the Ohmic resistance of the device. (author)

  8. Combined vertebral fracture assessment and bone mineral density measurement : a new standard in the diagnosis of osteoporosis in academic populations

    NARCIS (Netherlands)

    Jager, P. L.; Jonkman, S.; Koolhaas, W.; Stiekema, A.; Wolffenbuttel, B. H. R.; Slart, R. H. J. A.

    Vertebral Fracture Analysis enables the detection of vertebral fractures in the same session as bone mineral density testing. Using this method in 2,424 patients, we found unknown vertebral fractures in approximately one out of each six patients with significant impact on management. The presence of

  9. Irreversibility in transformation behavior of equiatomic nickel-titanium alloy by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Matsumoto, Hitoshi

    2004-01-01

    Measurements of the electrical resistivity were precisely performed on shape memory Ni 50 Ti 50 alloy in order to reveal the irreversible behavior of the thermoelastic martensitic transformation with thermal cycling. The hump in the electrical resistivity during cooling is enhanced with increasing the number of complete thermal cycles to result in a peak, although no peak in the electrical resistivity is observed on the reverse transformation during heating. The electrical resistivity in the low-temperature phase, of which the temperature dependence is linear, increases with increasing the number of complete thermal cycles. The temperature coefficient of the electrical resistivity in the temperature region of the high-temperature phase increases with elevating the temperature. The transformation is strongly influenced by incomplete thermal cycles to result in a peak in the resistivity even on the reverse transformation after incomplete thermal cycling. It is thought that the anomalous behavior such as enhancement of a resistivity-peak, the increase in the electrical resistivity of the low-temperature phase, and the nonlinear relation between the resistivity and the temperature in the high-temperature phase are attributable to the appearance of an intermediate phase stabilized by transformation-induced defects, the accumulation of the transformation-induced defects, and the electron scattering due to the softening of a phonon mode in the high-temperature phase, respectively. It proved useful to make more accurate measurements of the electrical resistivity in order to investigate the intrinsic behavior of the transformation in NiTi

  10. Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures

    DEFF Research Database (Denmark)

    Clarysse, T.; Moussa, A.; Parmentier, B.

    2010-01-01

    on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have...... recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser...

  11. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ravelo Arias, S. I.; Ramírez Muñoz, D. [Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100-Burjassot (Spain); Cardoso, S. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); Ferreira, R. [INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal); Freitas, P. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal)

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  12. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    International Nuclear Information System (INIS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-01-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others

  13. Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2009-08-15

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  14. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  15. The association between measurements of antimicrobial use and resistance in the faeces microbiota of finisher batches

    DEFF Research Database (Denmark)

    Dalhoff Andersen, Vibe; de Knegt, Leonardo; Munk, Patrick

    2017-01-01

    The objectives were to present three approaches for calculating antimicrobial (AM) use in pigs that take into account the rearing period and rearing site, and to study the association between these measurements and phenotypical resistance and abundance of resistance genes in faeces samples from 10...

  16. Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it

    Science.gov (United States)

    Hoffman, Robert A.

    1980-01-01

    The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.

  17. Slipping on pedestrian surfaces: methods for measuring and evaluating the slip resistance.

    Science.gov (United States)

    Wetzel, Christoph; Windhövel, Ulrich; Mewes, Detlef; Ceylan, Orhan

    2015-01-01

    Tripping, slipping and falling accidents are among the types of accident with a high incidence. This article describes the requirements concerning slip resistance, as well as the state of the art of slip resistance measurement standards in the European Community and the USA. The article also describes how risk assessment can be performed in the field.

  18. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Ghoneim, Mohamed T.; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-01-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  19. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  20. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method.

    Science.gov (United States)

    Hayashi-Sakai, Sachiko; Sakai, Jun; Sakamoto, Makoto; Endo, Hideaki

    2012-09-01

    The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.

  1. Fracture resistance of the VNC-2USh steel with different content of diffusion-mobile hydrogen at low temperature

    International Nuclear Information System (INIS)

    Yablonskij, I.S.; Sankho, K.

    1979-01-01

    Presented are the investigation results for the diffusible hydrogen (DH) content effect on cracking resistance and mechanical properties of the VNC-2USh steel in the temperature range from -75-100 deg C. In this range σsub(B), σsub(0.2) and σ are not practically sensitive to the DH content change from 0.27 to 3 cm 3 /100g. At room temperature the increase of DH content in the above concentration range results in 45 % decrease of cracking resistance under static loading. At -75 deg C the cracking resistance does not depend on DH content. Within the temperature range from -40-75 deg C placed is a temperature boundary, separating the regions of predominant effects of hydrogen and low temperature embrittlement on repture strength of the VNC-2 steel at moderated rates of deformation

  2. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  3. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    OpenAIRE

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  4. A fully automated temperature-dependent resistance measurement setup using van der Pauw method

    Science.gov (United States)

    Pandey, Shivendra Kumar; Manivannan, Anbarasu

    2018-03-01

    The van der Pauw (VDP) method is widely used to identify the resistance of planar homogeneous samples with four contacts placed on its periphery. We have developed a fully automated thin film resistance measurement setup using the VDP method with the capability of precisely measuring a wide range of thin film resistances from few mΩ up to 10 GΩ under controlled temperatures from room-temperature up to 600 °C. The setup utilizes a robust, custom-designed switching network board (SNB) for measuring current-voltage characteristics automatically at four different source-measure configurations based on the VDP method. Moreover, SNB is connected with low noise shielded coaxial cables that reduce the effect of leakage current as well as the capacitance in the circuit thereby enhancing the accuracy of measurement. In order to enable precise and accurate resistance measurement of the sample, wide range of sourcing currents/voltages are pre-determined with the capability of auto-tuning for ˜12 orders of variation in the resistances. Furthermore, the setup has been calibrated with standard samples and also employed to investigate temperature dependent resistance (few Ω-10 GΩ) measurements for various chalcogenide based phase change thin films (Ge2Sb2Te5, Ag5In5Sb60Te30, and In3SbTe2). This setup would be highly helpful for measurement of temperature-dependent resistance of wide range of materials, i.e., metals, semiconductors, and insulators illuminating information about structural change upon temperature as reflected by change in resistances, which are useful for numerous applications.

  5. Evaluation of sugar yeast consumption by measuring electrical medium resistance

    Directory of Open Access Journals (Sweden)

    Martin Lucas Zamora

    2013-12-01

    Full Text Available The real-time monitoring of alcoholic fermentation (sugar consumption is very important in industrial processes. Several techniques (i.e., using a biosensor have been proposed to realize this goal. In this work, we propose a new method to follow sugar yeast consumption. This novel method is based on the changes in the medium resistance (Rm that are induced by the CO2 bubbles produced during a fermentative process. We applied a 50-mV and 700-Hz signal to 75 ml of a yeast suspension in a tripolar cell. A gold electrode was used as the working electrode, whereas an Ag/AgCl electrode and a stainless-steel electrode served as the reference and counter electrodes, respectively. We then added glucose to the yeast suspension and obtained a 700% increase in the Rm after 8 minutes. The addition of sucrose instead of glucose as the carbon source resulted in a 1200% increase in the Rm. To confirm that these changes are the result of CO2 bubbles in the fermentation medium, we designed a tetrapolar cell in which CO2 gas was insufflated at the bottom of the cell and concluded that the changes were due to CO2 bubbles produced during the fermentation. Consequently, this new method is a low-cost and rapid technology to follow the sugar consumption in yeast.

  6. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva

    2011-08-01

    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  7. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  8. Automation for measuring the surface resistivity of RPC by Arduino motor shield

    International Nuclear Information System (INIS)

    Pandey, A.; Kumar, A.; Singh, M.K.; Marimuthu, N.; Singh, V.

    2016-01-01

    India Based Neutrino Observatory (INO) is planning to use ∼ 30,000 Resistive Plate Chamber (RPC) detectors of size 2m x 2m. Each resistive plate chamber is made up of glass or Bakelite whose resistance is of the order 10 12 Ω/cm 2 , and two pick-up panels. Both glass electrodes of the detector have one side (outer) painted with thin and uniform coating of graphite paint. This provides the resistivity of range 100 - 300 kΩ per square. This range of resistivity provides distribution of voltage over the surface of glass electrodes. Uniform coating will provide uniform electric field inside the glass plate chamber and high resistivity value will help in confining the induced charge on the surface. It is one of the necessary criteria for good RPC detector that the coating of graphite paint should be uniform. Therefore it is required to measure the resistivity for the verification of uniformity. Last few years we have been focusing our efforts in this direction. In this connection, we made sequential improvement from the previous work. The present system is cost effective, automatically recording measurement in the computer, fast and accurate. Earlier MOTOR BEE ver. 5.0 microcontroller was used which was an imported and costly material. After massive search in the local market Arduino microcontroller was discovered, which controls the movement of all motors and it also saves the value of resistivity in the computer automatically

  9. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  10. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  11. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  12. The Analysis Of Accuracy Of Selected Methods Of Measuring The Thermal Resistance Of IGBTs

    Directory of Open Access Journals (Sweden)

    Górecki Krzysztof

    2015-09-01

    Full Text Available In the paper selected methods of measuring the thermal resistance of an IGBT (Insulated Gate Bipolar Transistor are presented and the accuracy of these methods is analysed. The analysis of the measurement error is performed and operating conditions of the considered device, at which each measurement method assures the least measuring error, are pointed out. Theoretical considerations are illustrated with some results of measurements and calculations.

  13. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  14. The Measurement of the Sensory Recovery Period in Zygoma and Blow-Out Fractures with Neurometer Current Perception Threshold.

    Science.gov (United States)

    Oh, Daemyung; Yun, Taebin; Kim, Junhyung; Choi, Jaehoon; Jeong, Woonhyeok; Chu, Hojun; Lee, Soyoung

    2016-09-01

    Facial hypoesthesia is one of the most troublesome complaints in the management of facial bone fractures. However, there is a lack of literature on facial sensory recovery after facial trauma. The purpose of this study was to evaluate the facial sensory recovery period for facial bone fractures using Neurometer. Sixty-three patients who underwent open reduction of zygomatic and blowout fractures between December 2013 and July 2015 were included in the study. The facial sensory status of the patients was repeatedly examined preoperatively and postoperatively by Neurometer current perception threshold (CPT) until the results were normalized. Among the 63 subjects, 30 patients had normal Neurometer results preoperatively and postoperatively. According to fracture types, 17 patients with blowout fracture had a median recovery period of 0.25 months. Twelve patients with zygomatic fracture had a median recovery period of 1.00 month. Four patients with both fracture types had a median recovery period of 0.625 months. The median recovery period of all 33 patients was 0.25 months. There was no statistically significant difference in the sensory recovery period between types and subgroups of zygomatic and blowout fractures. In addition, there was no statistically significant difference in the sensory recovery period according to Neurometer results and the patients' own subjective reports. Neurometer CPT is effective for evaluating and comparing preoperative and postoperative facial sensory status and evaluating the sensory recovery period in facial bone fracture patients.

  15. Influence of bone mineral density measurement on fracture risk assessment tool® scores in postmenopausal Indian women.

    Science.gov (United States)

    Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram

    2016-03-01

    Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P Indian women. © The Author(s) 2016.

  16. Measurement of Resistive Torques in Major Human Joints

    Science.gov (United States)

    1979-04-01

    was assisted by the following graduate students whose names, in the order of the magnitude of their contributions, are: Richard D. Peindl, Manssour...acknowledged by the author, a considerable addi- tional time investment was made by the principal investigator and several graduate students to complete the...Conaill, M.A., "Joint Movement," Physiotherapy (50), 359, 1964. 17. Murphy, W.W., Garcia, D.H. and Bird, R.G., "Measurement of Body Motion," ASME

  17. Measurement of tritium permeation through resistant materials near room temperature

    International Nuclear Information System (INIS)

    Maienschein, J.; DuVal, V.; McMurphy, F.; Uribe, F.; Musket, R.; Brown, D.

    1985-01-01

    To measure tritium permeation through low-permeability materials at 50 to 170 0 C, we use highly-sensitive liquid scintillation counting to detect the permeating tritium. To validate our method, we conducted extensive experiments with copper, for which much data exists for comparison. We report permeability of tritium through copper at 50, 100, and 170 0 C, and discuss details of the experimental technique. Further plans are outlined. 15 refs., 5 figs., 1 tab

  18. Fracture Network and Fluid Flow Imaging for Enhanced Geothermal Systems Applications from Multi-Dimensional Electrical Resistivity Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, Philip E. [Univ. of Utah, Salt Lake City, UT (United States)

    2016-03-26

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problem and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.

  19. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  20. Comparison of 2D radiography and a semi-automatic CT-based 3D method for measuring change in dorsal angulation over time in distal radius fractures

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, Albert; Larsson, Sune [Uppsala University, Department of Orthopaedics, Uppsala (Sweden); Nysjoe, Johan; Malmberg, Filip; Sintorn, Ida-Maria; Nystroem, Ingela [Uppsala University, Centre for Image Analysis, Uppsala (Sweden); Berglund, Lars [Uppsala University, Uppsala Clinical Research Centre, UCR Statistics, Uppsala (Sweden)

    2016-06-15

    The aim of the present study was to compare the reliability and agreement between a computer tomography-based method (CT) and digitalised 2D radiographs (XR) when measuring change in dorsal angulation over time in distal radius fractures. Radiographs from 33 distal radius fractures treated with external fixation were retrospectively analysed. All fractures had been examined using both XR and CT at six times over 6 months postoperatively. The changes in dorsal angulation between the first reference images and the following examinations in every patient were calculated from 133 follow-up measurements by two assessors and repeated at two different time points. The measurements were analysed using Bland-Altman plots, comparing intra- and inter-observer agreement within and between XR and CT. The mean differences in intra- and inter-observer measurements for XR, CT, and between XR and CT were close to zero, implying equal validity. The average intra- and inter-observer limits of agreement for XR, CT, and between XR and CT were ± 4.4 , ± 1.9 and ± 6.8 respectively. For scientific purpose, the reliability of XR seems unacceptably low when measuring changes in dorsal angulation in distal radius fractures, whereas the reliability for the semi-automatic CT-based method was higher and is therefore preferable when a more precise method is requested. (orig.)

  1. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu

    2007-01-01

    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  2. A multi-packer completion to measure hydraulic heads in a lightly fractured area in the Oxfordian limestone

    International Nuclear Information System (INIS)

    Scholz, E.; Cruchaudet, M.; Delay, J.; Piedevache, M.

    2010-01-01

    Document available in extended abstract form only. Andra has designed a new type of borehole completion in order to monitor simultaneously hydraulic heads. This completion is installed in a 420 m deep borehole drilled in the Oxfordian limestone formation. The borehole is located in the South-West of Andra's Underground Research Laboratory (URL) in a lightly fractured area. The multi-packer completion is built and installed by Solexperts. This device is composed of five measurement intervals isolated with rubber expandable packers and supported by stainless steel tubing. The packers are inflated with water at a pressure of 10 bars above the water pressure at that depth. Each measurement interval comprises an interval module embedding a pressure / temperature gauge connected to the interval through a filter. The gauges are connected through one cable to a data acquisition system on surface. This completion is removable. The packers can be deflated and the completion can be installed in another borehole. The packers are positioned in the EST461 borehole according to the caliper logging and the results of permeability tests. The hydraulic head measurements are compared with the local rainfall. Interval 1 (the deepest) shows a stable hydraulic head whereas intervals 2 to 5 show hydraulic head variations. The amplitude of the hydraulic head variations are closely related to the interval depth: the deepest the interval, the lowest the hydraulic head variation. Hydraulic heads in intervals 4 and 5 are similar. These intervals are probably connected. (authors)

  3. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  4. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  5. Identification method of fracture mode based on measurement of microscopic plastic deformation in a Mg cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Naoya [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Higuchi, Yu-ki [Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Narita, Ichihito, E-mail: i-narita@live.jp [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Miyahara, Hirofumi, E-mail: miyahara@zaiko.kyushu-u.ac.jp [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Matsumoto, Toshiharu [Tobata Seisakusho Co., Ltd., 8-21 Shinsone, Kokuraminami-ku, Kitakyushu 800-0211 (Japan); Noguchi, Hiroshi, E-mail: noguchi.hiroshi.936@m.kyushu-u.ac.jp [Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-08-26

    Plastic deformation under fracture surface in non-combustible magnesium alloy was investigated using electron backscatter diffraction analysis after tensile tests of specimens having a fatigue pre-crack or shrinkage porosity, so that it revealed that the fracture mode of shrinkage porosity of the magnesium alloy can be treated as a crack.

  6. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  7. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  8. Online junction temperature measurement via internal gate resistance during turn-on

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Liserre, Marco

    2014-01-01

    A new method for junction temperature measurement of power semiconductor switches is presented. The measurement exploits the temperature dependent resistance of the temperature sensitive electrical parameter (TSEP): the internal gate resistance. This dependence can be observed during the normal...... switching transitions of an IGBT or MOSFET, and as a result the presented method uses the integral of the gate voltage during the turn-on delay. A measurement circuit can be integrated into a gate driver with no modification to converter or gate driver operation and holds significant advantages over other...

  9. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    International Nuclear Information System (INIS)

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  10. Increasing the brittle fracture resistance in manual arc welding and heat treatment of type 12KhM steels

    International Nuclear Information System (INIS)

    Tikhonov, V.P.; Bychenkova, G.A.; Gordeev, Y.V.; Ilyuhov, C.V.

    1984-01-01

    The extensive application of heat-resisting steels is delayed by their poor weldability. Optimum technology has been developed for manual arc welding and heat treatment of structures of type 12KhM steels resulting in high cracking resistance. Trials were conducted to evaluate the efficiency of removing the structural stresses in tempering the structures. On the basis of the experimental results, it may be assumed that the toughness properties of the welded joints produced by manual arc welding can be improved by optimizing the alloying system of the weld metal, with the parent metal treated in the optimum heat treatment conditions. The aim of subsequent investigations was to assess the properties of the weld metal made with vanadium-free electrodes. It was found that the impact toughness increased two to three times; the mean hardness and the maximum hardness were both less than 220. The reduction in hardness and increase of the toughness properties of the metal are caused by the lower degree of hardening of the bulk of the grain and, consequently, by the lower concentration of plastic strain at the grain boundaries

  11. A novel voltage clamp circuit for the measurement of transistor dynamic on-resistance

    NARCIS (Netherlands)

    Gelagaev, R.; Jacqmaer, P.; Everts, J.; Driesen, Johan

    2012-01-01

    For determining the dynamic on-resistance Rdyn,on of a power transistor, the voltage and current waveforms have to be measured during the switching operation. In measurements of voltage waveforms, using an oscilloscope, the characteristics of an amplifier inside the oscilloscope are distorted when

  12. Direct measurement of resistance of multiwalled carbon nanotubes using micro four-point probes

    DEFF Research Database (Denmark)

    Dohn, Søren; Mølhave, Kristian; Bøggild, Peter

    2005-01-01

    -point resistance at specific positions along the nanotubes, was measured by microprobes with different microelectrocle spacings. Individual nanotubes were investigated in more detail by measuring current as a function of bias voltage until the point of failure and the results are compared to previously reported...

  13. Cross-bidge Kelvin resistor (CBKR) structures for measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Boksteen, B.K.; Boksteen, B.K.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2007-01-01

    A convenient test structure for measurement of the specific contact resistance (�?c) of metal-semiconductor junctions is the CBKR structure. During last few decades the parasitic factors which may strongly affect the measurements accuracy for �?c < 10-6 Ω • cm2 have been sufficiently discussed and

  14. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    Science.gov (United States)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  15. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Science.gov (United States)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  16. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    Myer, L.R.; Hopkins, D.; Cook, N.G.W.; Pyrak-Nolte, L.J.

    1990-01-01

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  17. Introduction of an alternative standardized radiographic measurement method to evaluate volar angulation in subcapital fractures of the 5th metacarpal

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, Thomas; Resch, Herbert; Moroder, Philipp; Korn, Gundobert; Steinhauer, Felix [University of Salzburg, Department of Traumatology and Sports Injuries, Salzburg (Austria); Atzwanger, Joerg [University of Salzburg, Department of Radiology, Salzburg (Austria); Minnich, Bernd [University of Salzburg, Department of Organismic Biology, Salzburg (Austria); Tauber, Mark [Shoulder and Elbow Surgery ATOS Clinic Munich, Munich (Germany)

    2012-10-15

    The purpose of the present study was to compare the intra- and interobserver reliability of two different measurement methods for volar angulation of the 5th metacarpal (MC) in an attempt to establish a new standard measurement method to reduce interobserver discrepancies for therapeutic decisions. Twenty patients with subcapital fractures of the 5th MC were radiologically investigated. Imaging consisted of a radiographs in antero-posterior and precise lateral view in addition to a CT scan of the 5th MC. Measurement of volar angulation was accomplished using the conventional and the shaft articular surface (SAS) method. The measurements of five investigators were exported to a spreadsheet for statistical analysis to evaluate the intra-and interobserver reliability. The conventional technique showed large differences among the investigators and poor interobserver reliability (W = 0.328 and 0.307) both at injury (p = 0.001) and at follow-up (p = 0.189). The intraobserver concordance of all investigators showed better results with the SAS than with the conventional technique. With the SAS technique, no statistically significant difference among the investigators could be detected at either the time of injury (p = 0.418) or at follow-up (p = 0.526) with excellent interobserver reliability (W = 0.051 and W = 0.041). Evaluation of volar angulation at follow-up using CT scans did not show any statistically significant difference between the techniques with better correlation among the observers with the SAS technique (p = 0.838). The interobserver correlation of volar angulation with lateral radiographs using the conventional technique was insufficient. Therefore, we recommend the use of the novel SAS technique as standardized measurement method which showed higher accuracy and interobserver reliability in order to facilitate the choice of adequate treatment option. (orig.)

  18. Introduction of an alternative standardized radiographic measurement method to evaluate volar angulation in subcapital fractures of the 5th metacarpal

    International Nuclear Information System (INIS)

    Hoffelner, Thomas; Resch, Herbert; Moroder, Philipp; Korn, Gundobert; Steinhauer, Felix; Atzwanger, Joerg; Minnich, Bernd; Tauber, Mark

    2012-01-01

    The purpose of the present study was to compare the intra- and interobserver reliability of two different measurement methods for volar angulation of the 5th metacarpal (MC) in an attempt to establish a new standard measurement method to reduce interobserver discrepancies for therapeutic decisions. Twenty patients with subcapital fractures of the 5th MC were radiologically investigated. Imaging consisted of a radiographs in antero-posterior and precise lateral view in addition to a CT scan of the 5th MC. Measurement of volar angulation was accomplished using the conventional and the shaft articular surface (SAS) method. The measurements of five investigators were exported to a spreadsheet for statistical analysis to evaluate the intra-and interobserver reliability. The conventional technique showed large differences among the investigators and poor interobserver reliability (W = 0.328 and 0.307) both at injury (p = 0.001) and at follow-up (p = 0.189). The intraobserver concordance of all investigators showed better results with the SAS than with the conventional technique. With the SAS technique, no statistically significant difference among the investigators could be detected at either the time of injury (p = 0.418) or at follow-up (p = 0.526) with excellent interobserver reliability (W = 0.051 and W = 0.041). Evaluation of volar angulation at follow-up using CT scans did not show any statistically significant difference between the techniques with better correlation among the observers with the SAS technique (p = 0.838). The interobserver correlation of volar angulation with lateral radiographs using the conventional technique was insufficient. Therefore, we recommend the use of the novel SAS technique as standardized measurement method which showed higher accuracy and interobserver reliability in order to facilitate the choice of adequate treatment option. (orig.)

  19. A Modified Edge Crack Torsion Test for Measurement of Mode III Fracture Toughness of Laminated Tape Composites

    Science.gov (United States)

    Czabaj, Michael W.; Davidson, Barry D.; Ratcliffe, James G.

    2016-01-01

    Modifications to the edge crack torsion (ECT) test are studied to improve the reliability of this test for measuring the mode-III fracture toughness, G (sub IIIc), of laminated tape fiber-reinforced polymeric (FRP) composites. First, the data reduction methods currently used in the ECT test are evaluated and deficiencies in their accuracy are discussed. An alternative data reduction technique, which uses a polynomial form to represent ECT specimen compliance solution, is evaluated and compared to FEA (finite element analysis) results. Second, seven batches of ECT specimens are tested, each batch containing specimens with a preimplanted midplane edge delamination and midplane plies with orientations of plus theta divided by minus theta, with theta ranging from 0 degrees to 90 degrees in 15-degree increments. Tests on these specimens show that intralaminar cracking occurs in specimens from all batches except for which theta = 15 degrees and 30 degrees. Tests on specimens of these two batches are shown to result in mode-III delamination growth at the intended ply interface. The findings from this study are encouraging steps towards the use of the ECT test as a standardized method for measuring G (sub IIIc), although further modification to the data reduction method is required to make it suitable for use as part of a standardized test method.

  20. Detection of gas in landfills using resistivity measurements; Detektering av gas i deponier med resistivitet

    Energy Technology Data Exchange (ETDEWEB)

    Rosqvist, Haakan; Leroux, Virginie; Lindsjoe, Magnus (NSR AB, Helsingborg (Sweden)); Dahlin, Torleif (Lund Univ., LTH (Sweden)); Svensson, Mats; Maansson, Carl-Henrik (Tyrens AB, Stockholm (Sweden))

    2009-05-15

    The main objective with the research project was to develop a methodology to improve the understanding of landfill gas migration in landfills, based on measurements with electrical resistivity. Consequently, the project aimed at an improvement of the utilisation of the energy potential in landfill gas, and to reduce the environmental impact to the atmosphere. Further more, the objective was to improve techniques for investigations of internal structures in landfills. The project also aimed at better understanding of gas migration in the waste body and the mitigation through a landfill cover. Measurements were performed at four landfills; the Biocell reactor (NSR, Helsingborg), the Filborna landfill (NSR, Helsingborg), the Hyllstofta landfill (Naarab, Klippan) and the Flishult landfill (Vetab, Vetlanda). Three dimensional (3D) measurements and analysis were performed. The measurements were repeated in time in order to study changes with time for the resistivity. Supplementary information was created by measurement of other parameters, such as, groundwater table and soil temperature. The results from the resistivity measurements agreed with previous measurements performed at landfills, and thus, the results are therefore regarded as reliable. The measurements showed large temporal and spatial variations, and all of the measurements showed the highest variability near the surface. The results show that the resistivity technique is a powerful tool for investigations of the internal of landfills. Water and gas migration are important features in landfill management and both processes can be detected by using resistivity. Degradation of organic waste results in process with high variability in time and space. Also the degradation rate varies in a landfill and high variability was registered during the resistivity measurements. The high variability in resistivity is likely to be explained by changes in gas pressure and thus indicating gas migration. Therefore, the project

  1. Fracture-resistant ultralloys for space-power systems: nuclear-thermionic-conversion implications of W,27Re

    International Nuclear Information System (INIS)

    Moraga, N.O.; Jacobsen, D.L.; Morris, J.F.

    1989-01-01

    Rhenium (Re) added to tungsten (W) improves the creep strength, recrystallization resistance and ductility. W,27Re is a good workable ultra alloy for use in space nuclear reactor (SNR) systems and perhaps its most practical processing procedure is sintering. A promising SNR application for such ultralloys is very-high-temperature thermionic energy conversion. Therefore determinations of thermionic and thermal emissive characteristics for sintered W,27Re at temperatures near and above 2000 K in hard vacuum enable both scientific and pragmatic progress. Such research results comprise the data and interpretive presentations in this paper. These findings emphasize the fallacy of characterizing ultralloys similar to W,27Re with single-valued thermophysicochemical properties - such as the work function. They further stress the necessity for investigations of this type to determine and demonstrate effective prototypic ultralloy compositions and processing methods. (author)

  2. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  3. The association between measurements of antimicrobial use and resistance in the faeces microbiota of finisher batches.

    Science.gov (United States)

    Andersen, V D; DE Knegt, L V; Munk, P; Jensen, M S; Agersø, Y; Aarestrup, F M; Vigre, H

    2017-10-01

    The objectives were to present three approaches for calculating antimicrobial (AM) use in pigs that take into account the rearing period and rearing site, and to study the association between these measurements and phenotypical resistance and abundance of resistance genes in faeces samples from 10 finisher batches. The AM use was calculated relative to the rearing period of the batches as (i) 'Finisher Unit Exposure' at unit level, (ii) 'Lifetime Exposure' at batch level and (iii) 'Herd Exposure' at herd level. A significant effect on the occurrence of tetracycline resistance measured by cultivation was identified for Lifetime Exposure for the AM class: tetracycline. Furthermore, for Lifetime Exposure for the AM classes: macrolide, broad-spectrum penicillin, sulfonamide and tetracycline use as well as Herd Unit Exposure for the AM classes: aminoglycoside, lincosamide and tetracycline use, a significant effect was observed on the occurrence of genes coding for the AM resistance classes: aminoglycoside, lincosamide, macrolide, β-lactam, sulfonamide and tetracycline. No effect was observed for Finisher Unit Exposure. Overall, the study shows that Lifetime Exposure is an efficient measurement of AM use in finisher batches, and has a significant effect on the occurrence of resistance, measured either by cultivation or metagenomics.

  4. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  5. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    Science.gov (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  6. A Comparison of Proliferation Resistance Measures of Misuse Scenarios Using a Markov Approach

    International Nuclear Information System (INIS)

    Yue, M.; Cheng, L.-Y.; Bari, R.

    2008-01-01

    Misuse of declared nuclear facilities is one of the important proliferation threats. The robustness of a facility against these threats is characterized by a number of proliferation resistance (PR) measures. This paper evaluates and compares PR measures for several misuse scenarios using a Markov model approach to implement the pathway analysis methodology being developed by the PR and PP (Proliferation Resistance and Physical Protection) Expert Group. Different misue strategies can be adopted by a proliferator and each strategy is expected to have different impacts on the proliferator's success. Selected as the probabilistic measure to represent proliferation resistance, the probabilities of the proliferator's success of misusing a hypothetical ESFR (Example Sodium Fast Reactor) facility system are calculated using the Markov model based on the pathways constructed for individual misuse scenarios. Insights from a comparison of strategies that are likely to be adopted by the proliferator are discussed in this paper.

  7. Effect of the interface resistance in non-local Hanle measurements

    International Nuclear Information System (INIS)

    Villamor, Estitxu; Hueso, Luis E.; Casanova, Fèlix

    2015-01-01

    We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements

  8. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  9. Joint resistance measurements of pancake and terminal joints for JT-60SA EF coils

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2013-11-15

    Highlights: • To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted with a joint sample. • The joint sample was composed of pancake and terminal joints. • The measurements demonstrated that both joints fulfilled the design requirement. • Considering the measurements, the characteristics of both joints were investigated using an analytical model that represents the joints. -- Abstract: To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted using a sample consisting of pancake and terminal joints. Both joints are shake-hands lap joints composed of cable-in-conduit conductors and a pure copper saddle-shaped spacer. The measurements demonstrated that both joints fulfilled the design requirement. Considering these measurements, the characteristics of both joints were investigated using analytical models that represent the joints. The analyses indicated that the characteristics of the conductors used in the joints affect the characteristics of the joints.

  10. Management of osteoporotic vertebral fractures

    OpenAIRE

    Dionyssiotis, Yannis

    2010-01-01

    Yannis DionyssiotisRhodes General Hospital, Rhodes, GreeceAbstract: Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature.Keywords: vertebral fracture...

  11. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements.

    Science.gov (United States)

    Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella

    2015-12-01

    To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state

  12. Inter-strand resistance measurements in the termination of the ITER SULTAN samples

    International Nuclear Information System (INIS)

    Cau, F; Bruzzone, P

    2009-01-01

    In cabled conductors a perfect uniformity of the current among the strands is hardly reached, due to the non-homogeneity of the contact resistance distribution between the strands and the copper of the electrical terminations. In the case of large current unbalance, the overloaded strands hit the critical surface at high field early, developing a current sharing voltage, which drives the redistribution of the current, mainly in the electrical terminations where the inter-strand resistance is lower than in the high field conductor. If the inter-strand resistance in the termination is low, the voltage levels are sufficiently low to allow an effective redistribution of the current to the less loaded strands. The inter-strand resistance of three different termination layouts of ITER short length samples is measured to make a database available which can be used to qualify the layout of the joints and their capability of redistributing the current among the strands.

  13. Polarization and resistivity measurements of post-crystallization changes in amorphous Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Chattoraj, I.; Bhattamishra, A.K.; Mitra, A.

    1993-01-01

    The effects of grain growth and compositional changes on the electrochemical behavior and the resistivity of amorphous iron-boron-silicon (Fe 77.5 B 15 Si 7.5 ) alloys after crystallization were studied. Deterioration of the protective passive film was observed, along with increased annealing. Potentiodynamic polarization provided excellent information about microstructural and chemical changes. It was concluded that electrochemical measurements could be used in conjunction with resistivity measurements in direct studies of grain growth and chemical changes occurring in different phases of the devitrified alloy

  14. Acoustic emission measurements on real reactor components with fracture mechanical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Deuster, G

    1988-12-31

    This document presents acoustic emission measurements carried out on a reactor pressure vessel during different loadings: thermal shocking, hydro-test, cyclic loading. The acoustic emission system is described and results are provided. It appears that signals from crack border friction and crack propagation can be separated by the analysis of the signal parameters. During thermal shock, crack propagation can be detected very sensitively, together with crack border friction. During hydro-test, it appears that defects which do not grow during the experiment are not indicated, and no border friction appears. (TEC). 6 refs.

  15. Acoustic emission measurements on real reactor components with fracture mechanical interpretation

    International Nuclear Information System (INIS)

    Deuster, G.

    1988-01-01

    This document presents acoustic emission measurements carried out on a reactor pressure vessel during different loadings: thermal shocking, hydro-test, cyclic loading. The acoustic emission system is described and results are provided. It appears that signals from crack border friction and crack propagation can be separated by the analysis of the signal parameters. During thermal shock, crack propagation can be detected very sensitively, together with crack border friction. During hydro-test, it appears that defects which do not grow during the experiment are not indicated, and no border friction appears. (TEC)

  16. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  17. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  18. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz; Floresca, Carlo; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Weiß , Nelli; Eychmü ller, Alexander; Amassian, Aram; Mü ller-Meskamp, Lars; Leo, Karl

    2016-01-01

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  19. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz

    2016-04-19

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  20. Design of a horizontal penetrometer for measuring on-the-go soil resistance.

    Science.gov (United States)

    Topakci, Mehmet; Unal, Ilker; Canakci, Murad; Celik, Huseyin Kursat; Karayel, Davut

    2010-01-01

    Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System). The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on-line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications.

  1. Design of a Horizontal Penetrometer for Measuring On‑the‑Go Soil Resistance

    Directory of Open Access Journals (Sweden)

    Davut Karayel

    2010-10-01

    Full Text Available Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System. The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on‑line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications.

  2. Measurements of colloid concentrations in the fracture zone, Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ledin, A.; Dueker, A.; Karlsson, Stefan; Allard, B.

    1995-06-01

    The applicability of light scattering in combination with photon correlation spectroscopy (PCS) for determination of concentration and size distribution of colloidal matter in a deep groundwater was tested in situ and on-line. Well-defined reference colloids of Fe 2 O 3 , Al(OH) 3 , SiO 2 , kaolinite, illite and a high molecular humic acid in aqueous media were used as model substances for calibration of the PCS instrument. The intensity of scattered light was found to be dependent on the composition of the colloids. The colloid concentration in the rather saline groundwater was below the detection limit for the PCS equipment used, which corresponds to a colloid concentration not higher than 0.5 mg/l and probably below 0.1 mg/l according to the measurements on-line and in situ at Aespoe and in comparison to the calibrations performed with reference colloids. The results clearly demonstrated that the stability, concentration and composition of a colloid-size suspended phase in the anoxic groundwater with high content of Fe(II), like the one in Aespoe, is extremely sensitive to exposure to atmospheric conditions during sample handling and preparation. Diffusion of air into the closed measuring cuvette was enough to alter the colloid content significantly within 6 hours. A particle fraction with the size distribution in the range 170-700 nm was formed within 45 min when air was allowed to diffuse into the aqueous phase from the air filled upper part of the cuvette. The corresponding time to generate a significant colloid precipitate was less than 1 min when a stream of air was bubbled through the water samples. The precipitated colloid phase consisted of a mixture of ferric (hydr)oxide and calcium carbonate in all three cases. 53 refs, 8 figs, 2 tabs

  3. Fracture, aging and disease in bone

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-02-01

    From a public health perspective, developing a detailed mechanistic understanding of the well-known increase in fracture risk of human bone with age is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nano-structural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nanodimensions using pico-force atomic-force microscopy, nanoindentation and vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size-scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its

  4. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  5. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    Full Text Available Fixation with a dynamic hip screw (DHS is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw' to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03. Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12. However, the patient's implanted with a DHS did display significantly greater migration (P<0.001 than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  6. Standard test method for measurement of soil resistivity using the two-electrode soil box method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the equipment and a procedure for the measurement of soil resistivity, for samples removed from the ground, for use in the control of corrosion of buried structures. 1.2 Procedures allow for this test method to be used n the field or in the laboratory. 1.3 The test method procedures are for the resistivity measurement of soil samples in the saturated condition and in the as-received condition. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Soil resistivity values are reported in ohm-centimeter. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  7. Pedestrian fall safety assessments improved understanding on slip resistance measurements and investigations

    CERN Document Server

    Kim, In-Ju

    2017-01-01

    This book examines pedestrian shoe-floor slip resistance from an engineering standpoint in order to better understand friction and wear behavior. This analysis includes an extensive investigation into the surface properties of shoes and flow, and the measurement of dynamic friction and other mechanical and physical aspects of shoe-floor tribology. Lastly, the book proposes a measurement concept for the identification and classification of operational floor surfaces under a range of different conditions. Novel techniques and methods are proposed that can improve the reliability of slip resistance assessments. The current state of knowledge is critically examined and discussed from a tribological perspective, including aspects like friction, wear, lubrication and the mechanical behavior of shoes, floors and their wider environment. Further, the book reports on extensive experimental investigations into the topographical characteristics of shoe and floor surfaces and how they affect slip resistance. Slips result...

  8. Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of critical crack-tip opening displacement (CTOD) values at one or more of several crack extension events, and may be used to measure cleavage crack initiation toughness for materials that exhibit a change from ductile to brittle behavior with decreasing temperature, such as ferritic steels. This test method applies specifically to notched specimens sharpened by fatigue cracking. The recommended specimens are three-point bend [SE(B)], compact [C(T)], or arc-shaped bend [A(B)] specimens. The loading rate is slow and influences of environment (other than temperature) are not covered. The specimens are tested under crosshead or clip gage displacement controlled loading. 1.1.1 The recommended specimen thickness, B, for the SE(B) and C(T) specimens is that of the material in thicknesses intended for an application. For the A(B) specimen, the recommended depth, W, is the wall thickness of the tube or pipe from which the specimen is obtained. Superficial surface machini...

  9. Recommendation for measuring clinical outcome in distal radius fractures: a core set of domains for standardized reporting in clinical practice and research.

    Science.gov (United States)

    Goldhahn, Jörg; Beaton, Dorcas; Ladd, Amy; Macdermid, Joy; Hoang-Kim, Amy

    2014-02-01

    Lack of standardization of outcome measurement has hampered an evidence-based approach to clinical practice and research. We adopted a process of reviewing evidence on current use of measures and appropriate theoretical frameworks for health and disability to inform a consensus process that was focused on deriving the minimal set of core domains in distal radius fracture. We agreed on the following seven core recommendations: (1) pain and function were regarded as the primary domains, (2) very brief measures were needed for routine administration in clinical practice, (3) these brief measures could be augmented by additional measures that provide more detail or address additional domains for clinical research, (4) measurement of pain should include measures of both intensity and frequency as core attributes, (5) a numeric pain scale, e.g. visual analogue scale or visual numeric scale or the pain subscale of the patient-reported wrist evaluation (PRWE) questionnaires were identified as reliable, valid and feasible measures to measure these concepts, (6) for function, either the Quick Disability of the arm, shoulder and hand questionnaire or PRWE-function subscale was identified as reliable, valid and feasible measures, and (7) a measure of participation and treatment complications should be considered core outcomes for both clinical practice and research. We used a sound methodological approach to form a comprehensive foundation of content for outcomes in the area of distal radius fractures. We recommend the use of symptom and function as separate domains in the ICF core set in clinical research or practice for patients with wrist fracture. Further research is needed to provide more definitive measurement properties of measures across all domains.

  10. Root resistance to cavitation is accurately measured using a centrifuge technique.

    Science.gov (United States)

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Science.gov (United States)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  12. Measuring the thermal insulation and evaporative resistance of sleeping bags using a supine sweating fabric manikin

    International Nuclear Information System (INIS)

    Wu, Y S; Fan, Jintu

    2009-01-01

    For testing the thermal insulation of sleeping bags, standard test methods and procedures using heated manikins are provided in ASTM F1720-06 and EN 13537:2002. However, with regard to the evaporative resistance of sleeping bags, no instrument or test method has so far been established to give a direct measurement. In this paper, we report on a novel supine sweating fabric manikin system for directly measuring the evaporative resistance of sleeping bags. Eleven sleeping bags were tested using the manikin under the isothermal condition, namely, both the mean skin temperature of the manikin and that of the environment were controlled to be the same at 35 °C, with the wind speed and ambient relative humidity at 0.3 m s −1 and 50%, respectively. The results showed that the novel supine sweating fabric manikin is reproducible and accurate in directly measuring the evaporative resistance of sleeping bags, and the measured evaporative resistance can be combined with thermal insulation to calculate the moisture permeability index of sleeping bags

  13. Airway resistance measurements in pre-school children with asthmatic symptoms : The interrupter technique

    NARCIS (Netherlands)

    Kooi, EMW; Schokker, S; van der Molen, T; Duiverman, EJ

    Measuring airway resistance in pre-school children with the interrupter technique has proven to be feasible and reliable in daily clinical practice and research settings. Whether it contributes to diagnosing asthma in pre-schoot children still remains uncertain. From the results of previous studies

  14. A study of cross-bridge kelvin resistor structures for reliable measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?c) have been extensively discussed during last few decades and the minimum of the �?c value, which could be accurately extracted, was

  15. Dispositional resistance to change: Measurement equivalence and the link to personal values across 17 nations

    Czech Academy of Sciences Publication Activity Database

    Oreg, S.; Bayazit, M.; Vakola, M.; Arciniega, L.; Armenakis, A.; Barkauskiene, R.; Bozionelos, N.; Ferič, I.; Fujimoto, Y.; Gonzáles, L.; Han, J.; Hetland, H.; Hřebíčková, Martina; Jimmieson, N.; Kordačová, J.; Kotrla Topič, M.; Mitsuhashi, H.; Mlacić, B.; Ohly, S.; Saksvik, I.; Saksvik, P.O.; van Dam, K.

    2008-01-01

    Roč. 93, č. 4 (2008), s. 935-944 ISSN 0021-9010 R&D Projects: GA AV ČR IAA700250702 Institutional research plan: CEZ:AV0Z70250504 Keywords : resistance to change * personal values * measurement equivalence Subject RIV: AN - Psychology Impact factor: 3.769, year: 2008

  16. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  17. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    Science.gov (United States)

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance

  18. Association of nutritional status as measured by the Mini-Nutritional Assessment Short Form with changes in mobility, institutionalization and death after hip fracture.

    Science.gov (United States)

    Nuotio, M; Tuominen, P; Luukkaala, T

    2016-03-01

    We examined the association of nutritional status as measured by the Mini-Nutritional Assessment Short Form (MNA-SF) with changes in mobility, institutionalization and death after hip fracture. Population-based prospective data were collected on 472 out of 693 consecutive hip fracture patients aged 65 years and over between January 2010 and December 2012. Declined vs same or improved mobility level, institutionalization and death during the 4-month follow-up were the outcomes. Age, gender, American Society of Anesthesiologists scores, pre-fracture diagnosis of a memory disorder, mobility level, living arrangements and MNA-SF scores at baseline were the independent variables. Age-adjusted and multivariate logistic regression and Cox proportional hazards models were conducted. At baseline, 41 (9%) patients were malnourished and 200 (42%) patients at risk of malnutrition according to the MNA-SF. During the follow-up, 90 (19%) had died. In the multivariate Cox proportional hazards model, malnutrition (hazard ratio 2.16; 95% confidence interval (CI) 1.07-4.34) was associated with mortality. In the multivariate binary logistic regression analyses, risk of malnutrition (odds ratios (OR) 2.42; 95% CI 1.25-4.66) and malnutrition (OR 6.10;95% CI 2.01-18.5) predicted institutionalization. Risk of malnutrition (OR 2.03; 95% CI 1.24-3.31) was associated with decline in the mobility level. Malnutrition or risk of malnutrition as measured by the MNA-SF were independent predictors of negative outcomes after hip fracture. Patients classified as being at risk of malnutrition by the MNA-SF may constitute a patient population with mild-to-moderate malnutrition and may require specific attention when nutritional interventions are designed after hip fracture.

  19. Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Charifoulline, Z

    2006-01-01

    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets.

  20. Influence of the measurement location on the resistance index in the umbilical arteries: a hemodynamic approach.

    Science.gov (United States)

    Vieyres, P; Durand, A; Patat, F; Descamps, P; Gregoire, J M; Pourcelot, D; Pourcelot, L

    1991-12-01

    A computer model was used to study the primary factors generating the reduction in resistance index, (S-D)/S, values observed by ultrasonic Doppler measurements in the umbilical artery, from the fetal insertion to the placental insertion (S represents the amplitude of the systolic peak and D the amplitude of the diastolic peak). This hemodynamic approach shows that the placental resistance is the primary factor, the viscosity and the cord length playing secondary roles. Clinically, the position of the measurement along the cord is an important factor. To increase the sensitivity of the index, the Doppler measurement must be performed near the fetal insertion, whereas a measurement near the placental insertion will make the Doppler examination more specific.

  1. Measurement of the specific airway resistance by plethysmography in young children accompanied by an adult

    DEFF Research Database (Denmark)

    Klug, B; Bisgaard, H

    1997-01-01

    The purpose of this study was to evaluate a procedure for measurement of specific airway resistance (sRaw) by whole body plethysmography in young awake children accompanied by an adult. sRaw was measured by a single-step procedure, omitting the measurement of the thoracic gas volume. The frequency...... dependency of sRaw was investigated and the accuracy of simulating body temperature, atmospheric pressure and saturation with water vapour (BTPS) conditions by electronic compensation was assessed. One hundred and thirty one children with asthma were studied. In 57 children (mean (SD) age 5.6 (1.8) yrs) who....... In conclusion, the use of electronic compensation for simulating body temperature, atmospheric pressure and saturation with water vapour introduces a bias that affects the accuracy of the estimate of specific airway resistance. Nevertheless, plethysmographic measurements with and without an accompanying adult...

  2. Field assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    International Nuclear Information System (INIS)

    Forster, C.B.; Gale, J.E.

    1981-06-01

    A field experiment to evaluate the transient pressure pulse technique as a method of determining the in-situ hydraulic conductivity of low permeability fractured rock was made. The experiment attempted to define: the radius of influence of a pressure pulse-test in fractured rock and the correlation between pressure-pulse tests and steady-state flow tests performed in five boreholes drilled in fractured granite. Twenty-five test intervals, 2 to 3 m in length, were isolated in the boreholes, using air-inflated packers. During pressure pulse and steady-state tests, pressures were monitored in both the test and observation cavities. Rock-mass conductivities were calculated from steady-state test results and were found to range from less than 10 - 11 to 10 - 7 cm/sec. However, there was no consistent correlation between the steady-state conductivity and the pressure pulse decay characteristics of individual intervals. These conflicting test results can be attributed to the following factors: differences in volumes of rock affected by the test techniques; effects of equipment configuration and compliance; and complexity of the fracture network. Although the steady-state flow tests indicate that hydraulic connections exist between most of the test cavities, no pressure responses were noted in the observation cavities (located at least 0.3 m from the test cavities) during the pulse tests. This does not mean, however, that the pressure-pulse radius of influence is <0.3 m, because the observation cavities were too large (about 7 liters). The lack of correlation between steady-state conductivities and the corresponding pressure pulse decay times does not permit use of existing single-fracture type curves to analyze pulse tests performed in multiple-fracture intervals. Subsequent work should focus on the detailed interpretation of field results with particular reference to the effects of the fracture system at the test site

  3. Digital Pills to Measure Opioid Ingestion Patterns in Emergency Department Patients With Acute Fracture Pain: A Pilot Study.

    Science.gov (United States)

    Chai, Peter R; Carreiro, Stephanie; Innes, Brendan J; Rosen, Rochelle K; O'Cleirigh, Conall; Mayer, Kenneth H; Boyer, Edward W

    2017-01-13

    Nonadherence to prescribed regimens for opioid analgesic agents contributes to increasing opioid abuse and overdose death. Opioids are frequently prescribed on an as-needed basis, placing the responsibility to determine opioid dose and frequency with the patient. There is wide variability in physician prescribing patterns because of the lack of data describing how patients actually use as-needed opioid analgesics. Digital pill systems have a radiofrequency emitter that directly measures medication ingestion events, and they provide an opportunity to discover the dose, timing, and duration of opioid therapy. The purpose of this study was to determine the feasibility of a novel digital pill system to measure as-needed opioid ingestion patterns in patients discharged from the emergency department (ED) after an acute bony fracture. We used a digital pill with individuals who presented to a teaching hospital ED with an acute extremity fracture. The digital pill consisted of a digital radiofrequency emitter within a standard gelatin capsule that encapsulated an oxycodone tablet. When ingested, the gastric chloride ion gradient activated the digital pill, transmitting a radiofrequency signal that was received by a hip-worn receiver, which then transmitted the ingestion data to a cloud-based server. After a brief, hands-on training session in the ED, study participants were discharged home and used the digital pill system to ingest oxycodone prescribed as needed for pain for one week. We conducted pill counts to verify digital pill data and open-ended interviews with participants at their follow-up appointment with orthopedics or at one week after enrollment in the study to determine the knowledge, attitudes, beliefs, and practices regarding digital pills. We analyzed open-ended interviews using applied thematic analysis. We recruited 10 study participants and recorded 96 ingestion events (87.3%, 96/110 accuracy). Study participants reported being able to operate all

  4. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated

  5. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  6. Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China.

    Science.gov (United States)

    Cheng, Vincent C C; Wong, Sally C Y; Ho, Pak-Leung; Yuen, Kwok-Yung

    2015-02-01

    Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for

  7. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    International Nuclear Information System (INIS)

    Cai, Yu; Sha, Shuang

    2016-01-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/ N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers. (paper)

  8. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  9. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    Science.gov (United States)

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan

    2016-04-01

    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  10. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  11. Thermal resistance measurement of In{sub 3}SbTe{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, J.L.; Saci, A.; De, I. [I2M Laboratory, University of Bordeaux, UMR CNRS 5295, Talence (France); Cecchini, R.; Cecchi, S.; Longo, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Selmo, S.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Milano (Italy)

    2017-05-15

    The thermal resistance along the thickness of In{sub 3}SbTe{sub 2} crystalline nanowires was measured using the scanning thermal microscopy in 3ω mode. The nanowires were grown by metal organic vapor deposition, exploiting the VLS mechanism induced by Au metal-catalyst nanoparticles and harvested on a SiO{sub 2}/Si substrate. Two nanowires with different thickness (13 and 23 nm) were investigated. The thermal resistance of the nanowires was determined using two different approaches; the first one exploits the experimental data, whereas the second one is more sophisticated, since it involves a minimization procedure. Both methods led to comparable values of the thermal resistance along the transverse direction (thickness) of the nanowire. The obtained results were explained starting from the mean free path of phonons calculated in the In{sub 3}SbTe{sub 2} bulk. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  13. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    Science.gov (United States)

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  14. Ultra-shallow junction (USJ) sheet resistance measurements with a non-penetrating four point probe

    International Nuclear Information System (INIS)

    Benjamin, M.C.; Hillard, R.J.; Borland, J.O.

    2005-01-01

    An accurate method to measure the four point probe (4PP) sheet resistance (R S ) of ultra shallow junction (USJ) Source-Drain Extension structures is described. The method utilizes Elastic Material probes (EM-probes) to form non-penetrating contacts to the silicon surface [R.J. Hillard, P.Y. Hung, William Chism, C. Win Ye, W.H. Howland, L.C. Tan, C.E. Kalnas, Characterization and Metrology for ULSI Technology, AIP Conference proceedings 683 (2003) 802.]. The probe design is kinematic and the force is controlled to ensure elastic deformation of the probe material. The probe material is such that large direct tunneling currents can flow through the native oxide thereby forming a low impedance contact. Sheet resistance measurements on USJ implanted P+/N structures with Secondary Ion Mass Spectroscopy (SIMS) junction depths less than 15 nm have been measured. The method is demonstrated on implanted USJ structures and found to be consistent with expectations

  15. Distal radius fracture arthroscopic intraarticular displacement measurement after open reduction and internal fixation from a volar approach.

    Science.gov (United States)

    Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu

    2010-07-01

    The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopyguided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of > or = 2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities and specificities. The cutoff value of the new preopD (the sum of the preopDs determined by lateral radiography and coronal CT scan) was 5.80 mm, and its sensitivity and specificity were 100% and 83.3%, respectively. Because a new preopD cutoff value of 5.80 mm is a good indicator for residual articular displacement after internal fixation of >2 mm, it is also a good indicator for the need for arthroscopic evaluation after

  16. Distal radius fracture arthroscopic intraarticular displacement measurement after open reduction and internal fixation from a volar approach

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu

    2010-01-01

    The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopy-guided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of ≥2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities