WorldWideScience

Sample records for fracture parameters calculation-part

  1. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part IV: Cracked elbows

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 Place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie - Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO, SIS/GAM, 6, Avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    Two French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. Development of analytical methods has been made for the last 10 years through a collaboration between CEA, EDF and AREVA-NP, and through R and D actions involving CEA and IRSN. These activities have led to unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of papers is composed of five parts: the first presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation of the methods, with details on their accuracy. This paper presents the stress intensity factor and J calculation for cracked elbows. General data applicable for all defect geometries are first presented, and then, compendia for K{sub I} and {sigma}{sub ref} calculations are provided for the available defect geometries.

  2. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part V: Elements of validation

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO, SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications'. Development of analytical methods has been made for the last 10 years in the framework of a collaboration between CEA, EDF and AREVA-NP, and by R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of articles consists of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide the compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). This part presents validation of the methods, with details on the process followed for their development and of the evaluation accuracy of the proposed analytical methods.

  3. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part V: Elements of validation

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications'. Development of analytical methods has been made for the last 10 years in the framework of a collaboration between CEA, EDF and AREVA-NP, and by R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of articles consists of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide the compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). This part presents validation of the methods, with details on the process followed for their development and of the evaluation accuracy of the proposed analytical methods

  4. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part IV: Cracked elbows

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    Two French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. Development of analytical methods has been made for the last 10 years through a collaboration between CEA, EDF and AREVA-NP, and through R and D actions involving CEA and IRSN. These activities have led to unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of papers is composed of five parts: the first presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation of the methods, with details on their accuracy. This paper presents the stress intensity factor and J calculation for cracked elbows. General data applicable for all defect geometries are first presented, and then, compendia for K I and σ ref calculations are provided for the available defect geometries

  5. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part I: General overview

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    Two French nuclear codes include flaw assessment procedures: the RSE-M code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of five parts: this first one presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components: plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for their development and on evaluation of the accuracy of the proposed analytical methods. This first article of the series presents an overview of the calculation of K{sub I} and J in these two codes and describes briefly the defect assessment analyses. Specific details in the Appendix A16 of RCC-MR (LBB procedure and creep analyses) are also introduced in this article.

  6. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part II: Cracked plates

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for the development and evaluation of the accuracy of the proposed analytical methods. This second article in the series presents all details for the stress intensity factor and J calculations for cracked plates. General data applicable for all defect geometries are first presented, and then, available defect geometries where compendia for K{sub I} and {sigma}{sub ref} calculation are provided are given.

  7. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part III: Cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, Avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high-temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress-intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of the RSE-M and in the 2007 edition of the RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation, with details on the accuracy of the proposed analytical method. This third part in the series presents details of the stress intensity factor and J calculations for cracked pipes. General data applicable for all defect geometries are first presented, and then, compendia for K{sub I} and {sigma}{sub ref} calculations are provided for specific cases.

  8. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part II: Cracked plates

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for the development and evaluation of the accuracy of the proposed analytical methods. This second article in the series presents all details for the stress intensity factor and J calculations for cracked plates. General data applicable for all defect geometries are first presented, and then, available defect geometries where compendia for K I and σ ref calculation are provided are given

  9. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part I: General overview

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    Two French nuclear codes include flaw assessment procedures: the RSE-M code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of five parts: this first one presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components: plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for their development and on evaluation of the accuracy of the proposed analytical methods. This first article of the series presents an overview of the calculation of K I and J in these two codes and describes briefly the defect assessment analyses. Specific details in the Appendix A16 of RCC-MR (LBB procedure and creep analyses) are also introduced in this article

  10. Statistics of ductile fracture surfaces: the effect of material parameters

    DEFF Research Database (Denmark)

    Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth

    2013-01-01

    distributed. The three dimensional analysis permits modeling of a three dimensional material microstructure and of the resulting three dimensional stress and deformation states that develop in the fracture process region. Material parameters characterizing void nucleation are varied and the statistics......The effect of material parameters on the statistics of fracture surfaces is analyzed under small scale yielding conditions. Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive...... of the resulting fracture surfaces is investigated. All the fracture surfaces are found to be self-affine over a size range of about two orders of magnitude with a very similar roughness exponent of 0.56 ± 0.03. In contrast, the full statistics of the fracture surfaces is found to be more sensitive to the material...

  11. Estimation of fracture parameters using elastic full-waveform inversion

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.

  12. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  13. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters

    Directory of Open Access Journals (Sweden)

    Jianqiang Xue

    2017-12-01

    Full Text Available Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs. However, conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments, resulting in significant errors in calculation results. In this article, a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories, potential superimposition, and numerical analysis. Herein, an open-hole segment between two adjacent fractures was regarded as an equivalent fracture, which was discretized as in cases of artificial fractures. The proposed model was then applied to investigate the effects of various parameters, such as the angle between the fracture and horizontal shaft, fracture quantity, fracture length, diversion capacity of fractures, horizontal well length, and inter-fracture distance, on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells. Simulation results revealed that the quantity, length, and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible. Additionally, a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. Keywords: Low permeability gas reservoir, Multi-fractured horizontal well, Productivity prediction, Open-hole completion, Unsteady-state flow, Fracture parameters optimization

  14. Ductile fracture assessment using parameters from small specimens

    Energy Technology Data Exchange (ETDEWEB)

    Talja, H. [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The `classic` approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were

  15. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  16. A borehole fluid conductivity logging method for the determination of fracture inflow parameters

    International Nuclear Information System (INIS)

    Tsang, C.F.; Hufschmied, P.

    1988-01-01

    It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to provide data in the estimation of the hydrologic behavior of fractured rocks. In particular the fluid inflow rates from the fractures into the wellbore are important quantities to measure. However often these inflows are at very low rates. In addition very often one finds that only a few percent of the fractures identified by core inspection and geophysical logging are water-conducting fractures, the rest being closed, clogged or isolated from the water flow system. A new method has been developed to locate water-conducting fractures and obtain fracture inflow parameters by means of a time sequence of electric conductivity logs of the borehole fluid. The physical basis of the analysis method is discussed. The procedure is applied to an existing set of data, which shows initiation and growth of nine conductivity peaks in a 900-m section of a 1690-m borehole, corresponding to nine waterconducting fractures intersecting the borehole. We are able to match all nine peaks and determine the flow rates from these fractures. A discussion is given on the applicability of this technique in the context of a borehole testing program. (author) 18 refs., 30 figs., 5 tabs

  17. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  18. EGS in sedimentary basins: sensitivity of early-flowback tracer signals to induced-fracture parameters

    Science.gov (United States)

    Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2015-04-01

    Artificial-fracture design, and fracture characterization during or following stimulation treatment is a central aspect of many EGS ('enhanced' or 'engineered' geothermal system) projects. During the creation or stimulation of an EGS, the injection of fluids, followed by flowback and production stages offers the opportunity for conducting various tracer tests in a single-well (SW) configuration, and given the typical operational and time limitations associated with such tests, along with the need to assess treatment success in real time, investigators mostly favour using short-time tracer-test data, rather than awaiting long-term 'tailings' of tracer signals. Late-time tracer signals from SW injection-flowback and production tests have mainly been used for the purpose of multiple-fracture inflow profiling in multi-layer reservoirs [1]. However, the potential of using SW short-term tracer signals for fracture characterization [2, 3] remained little explored as yet. Dealing with short-term flowback signals, we face a certain degree of parameter interplay, leading to ambiguity in fracture parameter inversion from the measured signal of a single tracer. This ambiguity can, to a certain extent, be overcome by - combining different sources of information (lithostratigraphy, and hydraulic monitoring) in order to constrain the variation range of hydrogeologic parameters (matrix and fracture permeability and porosity, fracture size), - using different types of tracers, such as conservative tracer pairs with contrasting diffusivity, or tracers pairs with contrasting sorptivity onto target surfaces. Fracture height is likely to be constrained by lithostratigraphy, while fracture length is supposed to be determinable from hydraulic monitoring (pressure recordings); the flowback rate can be assumed as a known (measurable) quantity during individual-fracture flowback. This leaves us with one or two unknown parameters to be determined from tracer signals: - the transport

  19. Study on the relation between structural parameters and fracture strength of WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [East China Univ. of Sci. and Technol., Shanghai (China). Inst. of Tech. Chem. and Phys.; Zhang, Y. [Materials Physics Department of Beijing University of Science and Technology, Beijing (China); Ouyang, S. [State Key Laboratory For Synthesis and Processing of Advanced Materials of China, Wuhan University of Technology, Wuhan (China)

    2000-01-14

    In this article, a directly proportional relation between average free path (M) and ductile deformation energy ({gamma}) was proposed, and on the basis of it, a quantitative analysis was conducted for studying the effects of the structural parameters on fracture strength of WC-Co cemented carbides. The results show that, for different WC-Co cemented carbides with different cobalt contents, there exist different critical WC grain size R{sub c} and critical free path of binder M{sub c}. R{sub c} and M{sub c} act as the criteria that determine the growth behavior of crackles. When average free path of cobalt binder M < M{sub c}, or WC grain size R < R{sub c}, crackles will expand mainly across cobalt binder, which will result in intergranular fracture; when M M{sub c} or R R{sub c}, transgranular fracture will happen; when M = M{sub c} or R = R{sub c}, concurrence of intergranular fracture and transgranular fracture will take place. R{sub c} and M{sub c} will decrease with increasing of cobalt content, followed by increasing of fracture strength. The dimension of crackles in the circular fissure-breeding district is also a determinative factor to affect fracture strength of cemented carbides. (orig.)

  20. Colloid facilitated transport in fractured rocks: parameter estimation and comparison with experimental data

    International Nuclear Information System (INIS)

    Viswanthan, H.S.; Wolfsberg, A.V.; Reimus, P.W.; Ware, D.; Lu, G.

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

  1. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2016-01-01

    Roč. 89, AUG (2016), s. 99-107 ISSN 0142-1123. [International Conference on Characterisation of Crack Tip Fields /3./. Urbino, 20.04.2015-22.04.2015] Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Mixed mode * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  2. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  3. Fracture mechanics parameters calculation for semielliptical underclad cracks postulated in the cylindrical part of the WWER pressure vessel

    International Nuclear Information System (INIS)

    Matkovskij, V.V.; Akbashev, I.F.

    2015-01-01

    The requirements of brittle fracture failure resistance are fulfilled if the cracks postulated in RPV structure remain stable within all project cases. This requirements are stated in terms of fracture mechanics parameters such as J-integral or stress intensity factor. The case of semielliptical underclad cracks postulated in a cylindrical part of WWER pressure vessel is investigated. The analytical solution for fracture mechanics parameters estimation along the crack front in the ferritic vessel was developed on the basis of finite element calculation results. The amplification of the elastic stress intensity factor with respect to effect of plasticity is introduced [ru

  4. Measurement of nonlinear fracture parameter T integral under impact loading using laser caustic method

    International Nuclear Information System (INIS)

    Nishioka, T.; Sakai, K.; Murakami, T.; Matsuo, S.; Sakakura, K.

    1991-01-01

    In order to establish a sound design methodology assuring the integrity of nuclear structures against nonlinear static and dynamic fractures, a unified crack tip parameter is essential due to the existence of various aspects of material behavior in such structures. However, so-called J integral loses its theoretical validity when a crack grows dynamically or elastoplastically, or when a material is subjected to dynamic loading or elastic-plastic unloading. Dynamic J integral has been derived, which has the same features as those of static J integral. Later, a more general path-independent integral which is valid for any material-constitutive model under quasi-static and dynamic conditions was derived. This integral has the great potential as a unified crack tip parameter. Nonlinear dynamic fracture parameter T integral, the hybrid numerical-experimental method for T measurement, and the measurement of the T integral in dynamic tear test are described. The high speed photographs of the caustic pattern in dynamic tear test specimens were taken by a laser caustic method. (K.I.)

  5. Field and numerical determinations of pneumatic flow parameters of unsaturated fractured porous rocks on various scales

    International Nuclear Information System (INIS)

    Guillon, S.; Pili, E.; Vu, M.T.; Adler, P.M.

    2013-01-01

    Air permeability is measured in the fractured crystalline rocks of the Roselend Natural Laboratory (France). Single-hole pneumatic injection tests as well as differential barometric pressure monitoring are conducted on scales ranging from 1 to 50 m, in both shallow and deep boreholes, as well as in an isolated 60 m 3 chamber at 55 m depth. The field experiments are interpreted using numerical simulations in equivalent homogeneous porous media with their real 3-D geometry in order to estimate pneumatic parameters. For pneumatic injection tests, steady-state data first allow to estimate air permeability. Then, pressure recovery after a pneumatic injection test allows to estimate the air-filled porosity. Comparison between the various studied cases clarifies the influence of the boundary conditions on the accuracy of the often used 1-D estimate of air permeability. It also shows that permeabilities correlate slightly with fracture density. In the chamber, a 1 order-of-magnitude difference is found between the air permeabilities obtained from pneumatic injection tests and from differential barometric pressure monitoring. This discrepancy is interpreted as a scale effect resulting from the approximation of the heterogeneous fractured rock by a homogeneous numerical model. The difference between the rock volumes investigated by pneumatic injection tests and by differential barometric pressure monitoring may also play a role. No clear dependence of air permeability on saturation has been found so far. (authors)

  6. Development of shrinkage and fracture parameters in selected fine-grained cement-based composites

    Directory of Open Access Journals (Sweden)

    Kucharczyková Barbara

    2017-01-01

    Full Text Available The paper summarizes results of a pilot study aimed at the evaluation of an experimental investigation focused on determination of the material characteristics development of selected fine-grained cement-based composites during their ageing. The composition of composites being investigated differed only in a water to cement (w/c ratio and in amount of superplasticizer. Quite extensive experiments were performed with the aim to determine shrinkage, dynamic a static modulus of elasticity and fracture properties on test specimens exposed to free drying during the whole time of its ageing (including the early stage of setting and hardening. The article presents especially results (including their statistical evaluation of shrinkage and fracture parameters development within 90 days of composites’ ageing. Experimental results show the dependence of the investigated characteristics on the value of w/c ratio. The most visible effect was observed in the case of shrinkage development. The curing conditions were reflected especially in high variability of the test results.

  7. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  8. Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites

    Science.gov (United States)

    Mull, M. A.; Chudnovsky, A.; Moet, A.

    1987-01-01

    In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.

  9. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    Science.gov (United States)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  10. Tracer SWIW tests in propped and un-propped fractures: parameter sensitivity issues, revisited

    Science.gov (United States)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2017-04-01

    Single-well injection-withdrawal (SWIW) or 'push-then-pull' tracer methods appear attractive for a number of reasons: less uncertainty on design and dimensioning, and lower tracer quantities required than for inter-well tests; stronger tracer signals, enabling easier and cheaper metering, and shorter metering duration required, reaching higher tracer mass recovery than in inter-well tests; last not least: no need for a second well. However, SWIW tracer signal inversion faces a major issue: the 'push-then-pull' design weakens the correlation between tracer residence times and georeservoir transport parameters, inducing insensitivity or ambiguity of tracer signal inversion w. r. to some of those georeservoir parameters that are supposed to be the target of tracer tests par excellence: pore velocity, transport-effective porosity, fracture or fissure aperture and spacing or density (where applicable), fluid/solid or fluid/fluid phase interface density. Hydraulic methods cannot measure the transport-effective values of such parameters, because pressure signals correlate neither with fluid motion, nor with material fluxes through (fluid-rock, or fluid-fluid) phase interfaces. The notorious ambiguity impeding parameter inversion from SWIW test signals has nourished several 'modeling attitudes': (i) regard dispersion as the key process encompassing whatever superposition of underlying transport phenomena, and seek a statistical description of flow-path collectives enabling to characterize dispersion independently of any other transport parameter, as proposed by Gouze et al. (2008), with Hansen et al. (2016) offering a comprehensive analysis of the various ways dispersion model assumptions interfere with parameter inversion from SWIW tests; (ii) regard diffusion as the key process, and seek for a large-time, asymptotically advection-independent regime in the measured tracer signals (Haggerty et al. 2001), enabling a dispersion-independent characterization of multiple

  11. Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients.

    Directory of Open Access Journals (Sweden)

    Licheng Zhang

    Full Text Available Calcaneal quantitative ultrasound (QUS, which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear.A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip.We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA, and hip structural analysis (HSA were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT were extracted by a three-dimensional printing technique-assisted method. Pearson's correlation between QUS measurement with DXA, HSA-derived parameters and Young's modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward's areas, and the femoral shaft, respectively.Significant correlations were found between estimated BMD (Est.BMD and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009 was higher than that of the neck area (r = 0.297, p = 0.031 and total proximal femur (r = 0.291, p = 0.034. Furthermore, the quantitative ultrasound index (QUI was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315-0.356, all p<0.05 as well as with the Young's modulus of PCT from the femoral head (r = 0.589, p<0.001.The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck or shaft.

  12. The effect of rotational deformity on patellofemoral parameters following the treatment of femoral shaft fracture.

    Science.gov (United States)

    Yildirim, Ahmet Ozgur; Aksahin, Ertuğrul; Sakman, Bulent; Kati, Yusuf Alper; Akti, Sefa; Dogan, Ozgur; Ucaner, Ahmet; Bicimoglu, Ali

    2013-05-01

    The purpose of this study was to investigate the effect of rotational deformities on patellofemoral alignment using the dynamic magnetic resonance imaging method on patients whose femur fractures were treated with intramedullary locking nails. The dynamic patellofemoral magnetic resonance imaging results of 33 patients (5 females and 28 males) were reviewed. The mean age of the patients was 36.3 (range 19-61) years. The mean follow-up was 30.2 months (range 24-38). All the patients were given Kujala patellofemoral clinical evaluation scores at the latest follow-up. Those with less than 10° of rotational deformity in either direction were classified as Group A, those with more than a 10° of internal rotation deformity as Group B and more than a 10° of external rotation deformity as Group C. The three groups were then compared regarding to clinical scores. Patellofemoral parameters of operated and contralateral side were also compared in each group. There were 14 (42.4 %) patients in Group A, 12 (36.4 %) patients in Group B and 7 (21.2 %) patients in Group C. The mean patella score in Group C (74 ± 7.02) was significantly lower when compared with Group B (87.6 ± 9.9) and group A (90.6 ± 6.1) (p < 0.05). In Group C patients, medial patellar tilt was detected when compared with the intact side. There were no significant changes in patellofemoral position in either Group A or Group B. The results of this study revealed that more than 10° of external rotation deformity could cause a detoriation in the patellofemoral scores. Anatomic reduction of the fracture site should be performed as soon as possible and external rotational deformities should especially be avoided in order to prevent patellofemoral malalignment.

  13. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 25-32 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Williams expansion * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Determination of the key microstructural parameter for the cleavage fracture toughness of reactor pressure vessel steels in the transition region

    International Nuclear Information System (INIS)

    Kim, M.C.; Lee, B.S.; Hong, J.H.; Yang, W.J.

    2005-01-01

    The effects of the microstructural parameters, such as the prior austenite grain size and carbide size, on the cleavage fracture toughness were investigated in the transition region of Mn-Mo-Ni bainitic low alloy steels. Cleavage fracture toughness was evaluated by the ASTM standard E 1921 Master curve method. In order to clarify the effects of each microstructure, the grain size and carbide size of the test materials were independently controlled by modifying the heat treatment process. Firstly, the grain sizes were changed from 25 to 110 without any significant changes in the carbide size and shape. Secondly, the average carbide sizes were changed from 0.20 to 0.29 but maintaining the initial grain sizes. As a result, the fracture toughness in the transition region did not show any significant dependency on the austenite grain size, while the carbide size showed a close relation to the fracture toughness. Fracture toughness was decreased with an increase of the average carbide size. From the microscopic observation of the fractured surface, the cleavage initiation distance (CID) from the original crack tip showed no direct relationship to the prior austenite grain sizes but a strong relationship to the carbide sizes. However, the measured cleavage fracture toughness was strongly related to the distance from the crack tip to the cleavage initiation site. From the viewpoint of the weakest link theory, the particle size and their distribution in front of the crack tip is probably more important than the grain size in the transition temperature range where the fracture was controlled by the cleavage crack initiation. (orig.)

  15. Study of Relation between Shot Peening Parameters and Fatigue Fracture Surface Character of an AW 7075 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Libor Trško

    2018-02-01

    Full Text Available Shot peening is a well-known surface treatment method used for fatigue life improvement of cyclically loaded structural components. Since three main variables are considered in the peening process (peening intensity, coverage and peening media type, there is no direct way to choose the best combination of treatment parameters for the best performance, thus it has to be based on experience and laboratory tests. When shot peening is performed with inadequate parameters, or the peening process is not stable in time (decrease of the peening pressure, deterioration of the peening media and so on, it can result in significant degradation of the treated component fatigue properties, what is commonly called as the “overpeening” effect. When a premature fatigue fracture occurs in operation, the fracture surface analysis is usually the most important method of revealing the damage mechanism. This work is aimed at the study of the relation between the shot peening parameters and the fatigue fracture surface character on an AW 7075 aluminium alloy with an objective of identifying marks of overpeening and investigating the fatigue crack initiation mechanism. After performing the tests, it was observed that shot peening with optimized parameters creates a surface layer that is able to change the mechanism of the fatigue crack propagation and improve fatigue strength. On the other hand, using extensive peening parameters decrease the fatigue strength due to the creation of surface cracks and surface layer delamination.

  16. Quantitative ultrasound parameters as well as bone mineral density are better predictors of trochanteric than cervical hip fractures in elderly women. Results from the EPIDOS study.

    Science.gov (United States)

    Schott, A M; Hans, D; Duboeuf, F; Dargent-Molina, P; Hajri, T; Bréart, G; Meunier, P J

    2005-12-01

    Hip fractures can be separated into cervical and trochanteric fractures. Trochanteric fractures have been associated with up to twice the short-term mortality of cervical fractures in the elderly. There is also evidence suggesting that the mechanisms are different. Evidence from the literature remains limited on the predictive power of bone mineral density (BMD) and quantitative ultrasounds (QUS) for both types of hip fractures. 5703 elderly women aged 75 years or more, who were recruited from the voting lists in the EPIDOS study, and had baseline calcaneal ultrasounds (QUS) and DXA measurements at the hip and the whole body, were analyzed in this paper. Among those, 192 hip fractures occurred during an average follow-up of 4 years, 108 cervical and 84 trochanteric fractures. Femoral neck, trochanteric and whole body BMD were able to predict trochanteric hip fracture (RR's and 95% CI were, respectively, 3.2 (2.4-4.2); 4.8 (3.5-6.6); and 2.8 (2.2-3.6)) more accurately than cervical fractures (respectively, 2.1 (1.7-2.7); 2.3 (1.8-3.0); 1.2 (1.0-1.6)). All ultrasound parameters, SOS, BUA, and stiffness index (SI) were significant predictors of trochanteric (RR's respectively 3.0 (2.2-4.1), 2.5(2.0-3.1), and 3.5(2.6-4.7)) but not cervical fractures. After adjustment for femoral neck or trochanteric BMD ultrasound parameters were still significant predictors of trochanteric fracture, and stiffness tended to be a better predictor of trochanteric fractures than either BUA or SOS with a relative risk of 2.25 (1.6-3.1). A significant decrease of all bone measurements, BMD and QUS, was highly predictive of trochanteric fractures, whereas a decrease of femoral neck and trochanteric BMD were only associated with a slight increase in cervical fracture risk and a low total body BMD or QUS parameters were not significant predictors of cervical fractures. In women who sustained a hip fracture, the decrease of BMD and QUS values increases the risk of trochanteric fracture as

  17. Induced Seismicity in Northeast BC, Canada: Correlation With Operation Parameters of Shale Gas Hydraulic Fracturing

    Science.gov (United States)

    Kao, H.; Farahbod, A.; Cassidy, J. F.; Walker, D. M.

    2013-12-01

    The Horn River Basin and Montney Basin in northeast BC, Canada, are major shale-gas production areas in North America. The earthquake catalog compiled by the Geological Survey of Canada (GSC) using the Canadian National Seismograph Network (CNSN) data indicates that more than 40 earthquakes, with ML ranging between 2.2 and 3.6, occurred in the Horn River Basin since 2009 when the operation of hydraulic fracturing (HF) for shale gas development expanded significantly. In contrast, the GSC catalog shows no event for years before 2009, even though small-scale HF operations were performed as early as in 2007. In this study, we apply the single-station location and waveform correlation methods on continuous 3-component waveforms recorded at the only seismograph station in the region (Fort Nelson) to establish a comprehensive understanding of the spatiotemporal variation of the regional seismicity since 2002. We were able to locate 24 events during the one-year period between July 2002 and July 2003, with the largest ML being 2.9. This observation demonstrates that background seismicity in the Horn River Basin existed long before HF began. Since 2007, the occurrence of local earthquakes has become more frequent with gradually larger magnitude as the scale of HF in the region expands. An analysis of monthly HF operation parameters and local seismicity reveals a positive correlation between the total volume of injection and the maximum magnitude of local events. While the injection pressure during HF operations has been kept at a relatively constant level, the significant increase of injection volume in 2010 and 2011 coincides with a series of ML>3 events, with the largest being 3.6. The newly established state-of-the-art broadband seismograph stations in the region and the recent decline of HF operations in the Horn River Basin provide a rare opportunity to examine how the regional seismic pattern responds to different HF operation parameters, which in turn may give

  18. Observed source parameters for dynamic rupture with non-uniform initial stressand relatively high fracture energy

    Science.gov (United States)

    Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,

    2012-01-01

    We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture

  19. Correlation of nodular austempered ductile iron (ADI) microstructural parameters and fatigue properties using an approach based on fracture mechanics

    International Nuclear Information System (INIS)

    Dias, Jose Felipe; Fonseca, Vinicius Rizzuti; Godefroid, Leonardo Barbosa; Ribeiro, Gabriel de Oliveira

    2010-01-01

    An investigation has been accomplished to check the effect of temperature and austempering time on austempered ductile iron (ADI) properties by means of fracture toughness (K C ) and fatigue threshold (∆K th ) tests. The correlation of ADI microstructural parameters and ADI two mechanical parameters: KC and Kth, is evaluated. Three sets of samples have ben extracted from ADI casting Y blocks produced in industrial conditions.and austenitized at 900°C for 1.5 hour. The austempering process has been performed in the following ways: the first set was austenitized at 300 deg C for 4 hours, the second set at 360°C for 1.5 hour and the third at 360°C for 0.6 hour. These distinct austempering processes have been adopted in order to obtain distinct microstructures containing austenite with two different carbon rates and two ferritic cell sizes. The materials have been characterized by means of optical and electronic microscopy, X-ray diffraction and mechanical tests. All materials have presented equivalent fatigue crack propagation rates, fracture toughness in the range between 94 and 128 MPa·m 1/2 and ∆K th in the range between 5,7 and 6,4 MPa·m 1/2 . The experimental results have confirmed the effect of microstructural properties (austenitic volumetric rate, austenitic carbon rate, ferritic cell size, total matrix carbon content) on fracture toughness (K C ) and fatigue threshold (∆K th ). Further, it was found that following parameters: fracture toughness (K C ), fatigue threshold ((∆K th ) and impact strength are correlated with the total matrix carbon content and ferritic cell size. (author)

  20. Fracture mechanics parameters estimation of CCT specimens made of X 5 CrNi 18 10 steel

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2009-04-01

    Full Text Available This study investigates fracture behaviour of specimens made of high ductile stainless steel. Investigated material was X 5 CrNi 18 10 steel and the specimens used in this investigation were prepared as centre crack tension (CCT specimens. Pre-cracking of specimens was done by controlled cycling loading. For determination of J-integral, as one of important fracture mechanics parameters, a single specimen method with loading-unloading procedure was used. The same experiment was numerically modelled by using commercial software for finite element analysis – ANSYS. The standard node releasing technique was implemented in finite element method simulation to simulate crack propagation. Numerically obtained results were compared to the results obtained by experiment.

  1. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review.

    Science.gov (United States)

    Heintze, Siegward D; Ilie, Nicoleta; Hickel, Reinhard; Reis, Alessandra; Loguercio, Alessandro; Rousson, Valentin

    2017-03-01

    To evaluate a range of mechanical parameters of composite resins and compare the data to the frequency of fractures and wear in clinical studies. Based on a search of PubMed and SCOPUS, clinical studies on posterior composite restorations were investigated with regard to bias by two independent reviewers using Cochrane Collaboration's tool for assessing risk of bias in randomized trials. The target variables were chipping and/or fracture, loss of anatomical form (wear) and a combination of both (summary clinical index). These outcomes were modelled by time and material in a linear mixed effect model including random study and experiment effects. The laboratory data from one test institute were used: flexural strength, flexural modulus, compressive strength, and fracture toughness (all after 24-h storage in distilled water). For some materials flexural strength data after aging in water/saliva/ethanol were available. Besides calculating correlations between clinical and laboratory outcomes, we explored whether a model including a laboratory predictor dichotomized at a cut-off value better predicted a clinical outcome than a linear model. A total of 74 clinical experiments from 45 studies were included involving 31 materials for which laboratory data were also available. A weak positive correlation between fracture toughness and clinical fractures was found (Spearman rho=0.34, p=0.11) in addition to a moderate and statistically significant correlation between flexural strength and clinical wear (Spearman rho=0.46, p=0.01). When excluding those studies with "high" risk of bias (n=18), the correlations were generally weaker with no statistically significant correlation. For aging in ethanol, a very strong correlation was found between flexural strength decrease and clinical index, but this finding was based on only 7 materials (Spearman rho=0.96, p=0.0001). Prediction was not consistently improved with cutoff values. Correlations between clinical and laboratory

  2. The influence of physical activity and fractures on ultrasound parameters in elderly people

    NARCIS (Netherlands)

    Graafmans, W.C.; Bouter, L.M.; Lips, P.T.A.M.

    1998-01-01

    In this cross-sectional study we investigated the relationship between ultrasound measurements in the calcaneus versus daily physical activity and fractures sustained in the past in elderly subjects. Ultrasound measurements were performed at both heels, which enabled us to examine determinants of

  3. Determining fracture energy parameters of concrete from the modified compact tension test

    Czech Academy of Sciences Publication Activity Database

    Canteli, A.; Castañón, L.; Nieto, B.; Lozano, M.; Holušová, Táňa; Seitl, Stanislav

    2014-01-01

    Roč. 30, OCT (2014), s. 383-393 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) EE2.3.20.0214 Grant - others:interní podpora AV ČR(CZ) M100411204 Institutional support: RVO:68081723 Keywords : Concrete fracture energy * Modified compact tension test * Concrete * Numerical simulation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. A numerical study of two different specimen fixtures for the modified compact tension test – their influence on concrete fracture parameters

    Czech Academy of Sciences Publication Activity Database

    Holušová, Táňa; Seitl, Stanislav; Cifuentes, H.; Canteli, A.

    2016-01-01

    Roč. 10, č. 35 (2016), s. 242-249 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Modified Compact Tension Test * Fracture Parameters * Cementitious Composites * FEM Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. A two-parameter model to predict fracture in the transition

    International Nuclear Information System (INIS)

    DeAquino, C.T.; Landes, J.D.; McCabe, D.E.

    1995-01-01

    A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs

  6. Identifying a standard set of outcome parameters for the evaluation of orthogeriatric co-management for hip fractures.

    Science.gov (United States)

    Liem, I S; Kammerlander, C; Suhm, N; Blauth, M; Roth, T; Gosch, M; Hoang-Kim, A; Mendelson, D; Zuckerman, J; Leung, F; Burton, J; Moran, C; Parker, M; Giusti, A; Pioli, G; Goldhahn, J; Kates, S L

    2013-11-01

    Osteoporotic fractures are an increasing problem in the world due to the ageing of the population. Different models of orthogeriatric co-management are currently in use worldwide. These models differ for instance by the health-care professional who has the responsibility for care in the acute and early rehabilitation phases. There is no international consensus regarding the best model of care and which outcome parameters should be used to evaluate these models. The goal of this project was to identify which outcome parameters and assessment tools should be used to measure and compare outcome changes that can be made by the implementation of orthogeriatric co-management models and to develop recommendations about how and when these outcome parameters should be measured. It was not the purpose of this study to describe items that might have an impact on the outcome but cannot be influenced such as age, co-morbidities and cognitive impairment at admission. Based on a review of the literature on existing orthogeriatric co-management evaluation studies, 14 outcome parameters were evaluated and discussed in a 2-day meeting with panellists. These panellists were selected based on research and/or clinical expertise in hip fracture management and a common interest in measuring outcome in hip fracture care. We defined 12 objective and subjective outcome parameters and how they should be measured: mortality, length of stay, time to surgery, complications, re-admission rate, mobility, quality of life, pain, activities of daily living, medication use, place of residence and costs. We could not recommend an appropriate tool to measure patients' satisfaction and falls. We defined the time points at which these outcome parameters should be collected to be at admission and discharge, 30 days, 90 days and 1 year after admission. Twelve objective and patient-reported outcome parameters were selected to form a standard set for the measurement of influenceable outcome of patients

  7. Investigation of fracture conductivity under in situ conditions as a function of frac- and formation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Meyn, V.; Lajcsak, I.

    1998-10-01

    Because of their low permeability, deep-lying gas fields are often developed by the fracturing technique. Essential for the economy of this measure is a high fracture conductivity which persists over a long period. The objective of the project was the investigation of the various factors influencing the fracture conductivity under reservoir conditions. Besides the breaking strength of proppants, which is decisive for the conductivity attainable at high confining pressure, the long-term stability, the embedment and the transport of fragments, which results in plugging, were examined. With the proppants Superprop and Carboprop HC, fracture conductivity exhibits only a slight dependence on the closure pressure. Transport of fragments and embedment play no important role. With resin-coated proppants, conductivity is not improved appreciably. The resin-coating doesn`t resist reservoir conditions. After only one week, aquathermolytic products were detected. (orig.) [Deutsch] Tiefliegende Erdgasfelder werden aufgrund ihrer niedrigen Permeabilitaet haeufig durch eine Frac-Behandlung erschlossen. Eine wesentliche Voraussetzung fuer die Wirtschaftlichkeit einer solchen Massnahme ist eine hohe Rissleitfaehigkeit, die ueber einen langen Zeitraum bestehen bleibt. Ziel des Projektes war die Untersuchung der verschiedenen Faktoren, die die Rissleitfaehigkeit unter Lagerstaettenbedingungen beeinflussen. Neben der Bruchfestigkeit des Stuetzmittels, die fuer die bei hohen Schliessdrucken erreichbaren Rissleitfaehigkeiten entscheidend ist, wurde die Langzeitstabilitaet, das Embedment und der zu Verstopfung fuehrende Transport von Bruchstuecken untersucht. Die Stuetzmittel Superprop und Carboprop HC weisen nur eine geringe Abhaengigkeit der Rissleitfaehigkeit vom Schliessdruck auf. Der Bruchstuecktransport sowie das Embedment spielen nur eine untergeordnete Rolle. Durch die Verwendung von beschichtetem Stuetzmittel wird die Rissleitfaehigkeit nicht wesentlich erhoeht. Die Beschichtung

  8. The mechanics of delamination in fiber-reinforced composite materials. Part 2: Delamination behavior and fracture mechanics parameters

    Science.gov (United States)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.

  9. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    Science.gov (United States)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  10. The prognostic value of radiologic parameters for long-term outcome assessment after an isolated unilateral calcaneus fracture.

    Science.gov (United States)

    Persson, Jan; Peters, Sören; Haddadin, Simon; O'Loughlin, Padhraig F; Krettek, Christian; Gaulke, Ralph

    2015-01-01

    The current retrospective case-control study examines the prognostic value of radiologic parameters for long-term clinical outcome assessment after a calcaneus fracture. In the authors' trauma department 262 adult patients with an isolated calcaneus fracture were treated from 1995 to 2005. Using conventional x-ray and computed tomography imaging. the calcaneal fractures were classified according to Sanders system. In addition, Boehler's and Gissane's angles were measured before and after therapy and the Larsen stage of subtalar arthrosis was determined. After a mean follow-up interval of 9.5 years, 44 patients were available for clinical and radiological assessment. At the time of trauma the average age of the study group was 52 (range, 29-79) years. Thirty-seven patients were treated operatively and seven conservatively. Patients with a negative Boehler's angle, upon admission, exhibited significantly worse results using four of the five clinical scoring systems than patients with a preserved or slight reduced Boehler's angle. Operative treatment in patients whose Boehler's angle was elevated to normal range or beyond exhibited %worse better results than patients with an over-correction of Boehler's angle. In 11 cases, two primary and nine secondary subtalar arthrodeses were performed. The degree of subtalar arthrosis as per Larsen was increased 2.54 ± 1.14 in the course of hospital admission, arthrodesis and/or follow up examination. The results show no significant difference between operative and conservative treatment. Boehler's angle at time of admission appears to be a valuable prognosticator for functional long-term results after calcaneus fracture. An operative over-correction of a reduced Boehler's angle should be avoided.

  11. Pore-level influence of micro-fracture parameters on visco-capillary behavior of two-phase displacements in porous media

    Science.gov (United States)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.

    2018-03-01

    the thickness higher than the average pore diameter), considerable trapped oil volumes were observed inside the fracture at low M values. The fracture orientation had the most impressive effect on oil recovery compared to the other studied parameters; where the oil recovery factor incremented more than 20% as the fracture rotated 90° from flow direction. Due to the dominant effect of the channeling phenomenon, the change in the medium wettability from slightly oil-wet to slightly water-wet, did not considerably affect the displacement profile in the fractured medium. However, oil recovery factor increased as the medium became more water-wet. The fracture area was fully swept by the injected water in the oil-wet and neutral-wet media. However, flow instabilities were observed inside the fracture of the water-wet medium due to counter-current imbibition between fracture/matrix. Micro-scale mechanisms of pore doublet effect, interface coalesce, snap-off and reverse movements were captured during the studied unstable displacements.

  12. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

    Directory of Open Access Journals (Sweden)

    L. Malíková

    2015-07-01

    Full Text Available The presented work introduces a numerical parametric study on the crack propagation direction under mixed-mode conditions (mode I + II. It is conducted for the geometry of an eccentric asymmetric fourpoint bending of a single edge notched beam specimen; various levels of mode-mixity are ensured by modifications in the crack length and crack eccentricity. The direction of crack propagation is estimated semianalytically using both the maximum tangential stress criterion and the strain energy density criterion (implemented as a procedure within the used finite element computational code as well as numerically (from verification reasons. Multi-parameter fracture mechanics is employed in the presented work for precise analytical evaluation of the stress field in the cracked specimen. This theory is based on description of the stress and deformation fields in the cracked body by means of their approximation using several initial terms of the Williams power series. Recent studies show that utilization of only first term of the series, which corresponds to the stress intensity factor (SIF, the single controlling parameter for the crack initiation and propagation assessment in brittle materials, is insufficient in many crack problems. It appears also in this study that the higher-order terms of the asymptotic crack-tip field are of great relevance for the conducted analysis, similarly to a number of other fracture phenomena (near-crack-tip stress field approximation, non-linear zone extent estimation, etc..

  13. Estimation of hydrodinamics parameters in a volcanic fractured phreatic aquifer in Costa Rica. Part II. Double porosity model

    International Nuclear Information System (INIS)

    Macias, Julio; Vargas, Asdrubal

    2017-01-01

    MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information. (author) [es

  14. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Rouffié, A.L., E-mail: anne-laure.rouffie@cea.fr [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Wident, P.; Ziolek, L. [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Delabrouille, F. [EDF – EDF R and D, Département MMC groupe Métallurgie, 77818 Moret sur Loing (France); Tanguy, B. [CEA, DEN, DANS, DMN, SEMI, Bât 625, F-91191 Gif-sur-Yvette (France); Crépin, J.; Pineau, A. [Mines ParisTech, Centre des Matériaux PM Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Garat, V. [AREVA NP, 10 rue J. Récamier, 69006 Lyon (France); Fournier, B. [Manoir Industries, Metallurgy Dept., 12 rue des Ardennes, BP 8401 Pîtres, 27108 Val de Reuil Cedex (France)

    2013-02-15

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies.

  15. Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate

    Science.gov (United States)

    Srivastava, Amit Kumar; Arora, P. K.; Srivastava, Sharad Chandra; Kumar, Harish; Lohumi, M. K.

    2018-04-01

    A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .

  16. Parameters and a magnitude moment relationship from small earthquakes observed during hydraulic fracturing experiments in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, C.

    1982-04-01

    Using source parameters estimated from seismic spectra and magnitudes estimated from coda lengths, we demonstrate that the log-linear relationship between moment and magnitude holds for events with magnitudes as low as -6. Using, as a data set, events induced by hydraulic fracturing experiments at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) geothermal site, we find that the relationship between magnitude M and seismic moment (Mo) is log (Mo) = 17.27+0.77 M Moreover, the linear relationship between seismic moment and source radius (r) holds for the Fenton Hill microearthquakes. Analyses of the Fenton Hill data yield the following relationship. log (r) = 2.28+0.19 log (Mo)

  17. The bridge crane mechanism shaft reliability calculating in case of the fatigue fracture parameters correlation

    Directory of Open Access Journals (Sweden)

    Krutitskiy M.N.

    2016-03-01

    Full Text Available The method of statistical tests examines the impact of the correlation of the parameters of fatigue-such as the durability of the shaft mechanism of an overhead traveling crane for General use is under consideration in this article. It is be-lieved that the normal and shear stresses together affect the overall durability of the shaft. There may be a correlation between endurance limits and coefficients of block similarity of loading. To calculate resource used corrected linear theory of fatigue damage accumulation. Parameters on the reliability are computed after building the function, the reli-ability function directly or through private functions the reliability function for each type of stress.

  18. Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Onwuegbuche, Anthony A.

    2014-08-01

    Geohydraulic parameters are essential elements in groundwater resource management and conservation. Most of these parameters especially the hydraulic conductivity and transmissivity are usually estimated from pumping test carried out on drilled boreholes. This paper presents a study conducted in Abi area of the Ikom-Mamfe Embayment with the objective of estimating aquifer parameters from 30 evenly distributed vertical electrical soundings using the Schlumberger configuration and hydrogeologic measurements from 28 boreholes within the area as an alternative way of generating an initial data for groundwater characterisation and quality assessment in the area. The results showed low resistivity ⩽45 Ωm, hydraulic conductivity ⩽2.0 × 10-5 m/s (⩽1.7 m/day) and transmissivity ⩽5.2 × 10-4 m2/s (⩽45 m2/day) for the water-bearing aquifer horizons in the northeastern and northwestern parts of the study area due to the nature of the aquifer system that were predominantly fractured shale. The sand based aquifers had higher values in the neighbourhood of ∼100-800 Ωm, ∼4.0 × 10-5-1.0 × 10-4 m/s (∼3.46-9.04 m/day) and ∼6.94 × 10-4-3.81 × 10-3 m2/s (∼60-330 m2/day) for the respective parameters mentioned above. The potability of the groundwater system as observed from hydrogeologic measurements of water samples from most boreholes were relatively poor, having electrical conductivity and total dissolved solids values of ∼250-931.0 μS/cm and ∼500-623.77 mg/l respectively due to the influence of clay minerals within the aquifer horizon. Some of the vertical electrical sounding points were taken in the vicinity were pumping tests and lithologic data were available for adequate comparison of the results.

  19. Vertebral fracture prevalence among Greek healthy middle-aged postmenopausal women: association with demographics, anthropometric parameters, and bone mineral density.

    Science.gov (United States)

    Lambrinoudaki, Irene; Flokatoula, Maria; Armeni, Eleni; Pliatsika, Paraskevi; Augoulea, Areti; Antoniou, Aris; Alexandrou, Andreas; Creatsa, Maria; Panoulis, Constantinos; Dendrinos, Spyridon; Papacharalambous, Xenofon

    2015-01-01

    The prevalence of skeletal fractures shows a marked geographic variability; however, data regarding the Greek population remain limited. To evaluate the frequency of asymptomatic vertebral fractures (VFs), and potential risk factors, in a large sample of Greek postmenopausal women. A cross-sectional study at the University Menopause Clinic. Four hundred fifty-four postmenopausal women aged 35 to 80 years, with an average menopausal age of 9.2±7.1 years. They included medical history, anthropometric and biochemical parameters, bone mineral density (BMD) at lumbar spine (LS) and femoral neck (FN), and LS lateral radiographs. Lumbar spine lateral radiographs were evaluated according to quantitative procedures, aiming to identify VFs. Anthropometric and biochemical parameters and values of BMD were compared according to the presence of VFs. A total of 37 (8.15%) women had at least one VF. Lumbar spine and FN-osteoporosis was identified in up to 23.1% and 40.9% subjects with prevalent VFs, respectively. The prevalence of VFs was largely associated with age, with women aged 60 years or more presenting an up to fourfold risk compared with younger women. Moreover, the presence of VFs was associated with higher menopausal age, advanced age at menarche, a history of early menopause, and prolonged lactation. Lower LS-BMD and, especially, FN-BMD were negatively associated with VF prevalence (prevalent VF vs. no VF: LS-BMD, 0.89±0.16 g/cm(2) vs. 0.98±0.16 g/cm(2), p=.010; FN-BMD, 0.72±0.10 g/cm(2) vs. 0.81±0.12 g/cm(2), p=.008). Asymptomatic VFs are common among Greek healthy middle-aged postmenopausal women. More than 50% subjects with prevalent VFs present with normal BMD or osteopenia. Age and bone density classification at the FN presented the strongest association with the prevalence of VFs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Radiographic Parameters to Predict Union After Volar Percutaneous Fixation of Herbert Type B1 and B2 Scaphoid Fractures.

    Science.gov (United States)

    Mahmoud, Mostafa; Hegazy, Mohamed; Khaled, Sherif Ahmed; Abdelatif, Nasef Mohamed Nasef; Osman, Walid; Elfar, John C

    2016-02-01

    To study the angle of screw placement in relation to the scaphoid fracture plane and its effect on union after percutaneous fixation of scaphoid waist fractures. Twenty-four consecutive scaphoid waist fractures were retrospectively evaluated for the orientation of screws in relation to the fracture plane using a method in which the sum-of-smaller angles (SSA) in 3 different radiographs were used to correlate with time to fracture union. All but one patient achieved union after percutaneous fixation of the scaphoid. Another patient required revision surgery within the study period for inadequate fixation. A shortened time to union was significantly correlated to larger SSA. SSA may be a reasonable predictor of union after percutaneous fixation of scaphoid waist fracture. It can be reliably calculated using plain radiographs. An SSA of 190° or more correlated with union by 8 weeks postoperatively. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  1. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  2. MICROTOUGH - calculation of characteristic upper shelf fracture toughness values from microstructural parameters for high strength structural steels with normalized or quenched and tempered microstructure

    International Nuclear Information System (INIS)

    Muenstermann, S.; Dahl, W.; Langenberg, P.; Deimel, P.; Sattler, E.

    2004-01-01

    In modern applications, high strength steels are often utilised to increase the load bearing capacity of components. For safe design it is also necessary that these steels have an adequate fracture toughness. The mechanical properties of high strength structural steels are a result of the production process. In consequence, they are strongly related to the microstructure. Therefore, the aim of the research work in the Microtough project is to develop and apply a new method of quantitative correlation between microstructural parameters and characteristic fracture toughness values. This correlation will on the one hand help for the design of new structural steels with high toughness. On the other hand, it shall allow to characterise the fracture toughness of steel without performing expensive fracture mechanics tests. The research work is carried out in the full temperature range from lower to upper shelf. As both RWTH Aachen University and MPA Uni Stuttgart concentrate on ductile fracture behaviour in their research work, the focus of the presentation lies in the upper shelf. (orig.)

  3. Nose fracture

    Science.gov (United States)

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It most ... occurs with other fractures of the face. Nose injuries and neck ...

  4. The Effects of Bisphosphonates Used Continually or Intermittently on Fractures, Bone Mineral Density and Biochemical Parameters in Osteoporotic Patients - Original Investigation

    Directory of Open Access Journals (Sweden)

    Alev Çevikol

    2010-04-01

    Full Text Available Aim: The aim of this study was to evaluate the effects of bisphosphonates on new fracture development, bone mineral density and biochemical parameters in osteoporotic patients who were treated with these drugs for 5 years. Material and Methods: Thirty nine patients from our osteoporosis outpatient clinic, using bisphosphonates treatment for 5 years were included in this retrospective study. The patients were questioned in terms of demographic features, osteoporosis risk factors, spine and total hip BMD scores measured during the diagnosis and the last follow-up, duration of bisphosphonates use, adverse-effect profile and compliance to the treatment. Serum calcium, phosphorus, alkaline phosphatase levels and 24 houred-urine calcium level were examined. Patients were divided into 2 groups as the patients who were using bisphosphonates continually after diagnosis were group 1 and the patients left using bisphosphonates for some time because of several reasons treated intermittently were group 2. Results: After the diagnosis, 11 (28.2% patients received bisphosphonate treatment continually (Group 1 while 28 (71.8% used the treatment intermittently (Group 2 for 5 years. The break in bisphosphonate use in Group 2 was 1.25±0.63 years. No statistical differences were determined between the 2 groups with respect to DEXA measurement, biochemical parameters or new fracture development identified clinically (p>0.05. Conclusion: Efficacy of bisphosphonates on new fracture development identified clinically, biochemical parameters and DEXA measurement was sustained in patients using bisphosphonates regularly for 5 years, even when treatment was interrupted for approximately 1.5 years. (From the World of Osteoporosis 2010;16:1-8

  5. Comparison Thoracic Epidural and Intercostal Block to Improve Ventilation Parameters and Reduce Pain in Patients with Multiple Rib Fractures

    Directory of Open Access Journals (Sweden)

    Raheleh Aligholipour Maleki

    2011-08-01

    Full Text Available Introduction: Chest wall blunt trauma causes multiple rib fractures and will often be associated with significant pain and may compromise ventilator mechanics. Analgesia has great roll in rib fracture therapies, opioid are useful, but when used as sole agent may re-quire such high dose that they produce respiratory depression, especially in el-derly .the best analgesia for a severe chest wall injury is a continuous epidural infusion of local anesthetic. This provides complete analgesia allowing inspiration and coughing without of the risk of respiratory depression. Methods: sixty adult patients who with multiple rib fractures were enrolled in this study. They were divided into Group A or thoracic epidural with bupivacaine 0.125 % +1mg/5ml morphine and group B or inter-costal block with %0.25 bupivacaine. The patients were assessed through ICU and hos-pital stay length, ventilation function tests. Pain score among the patients was meas-ured with verbal rating scale, before and after administration of the analgesia. Results: We found a significant improvement in ventilatory function tests during the 1st, 2nd, and 3rd days after epidural analgesia compared with the intercostal block (P < 0.004. Changes in the visual Analogue Scale were associated with marked improvement re-garding pain at rest and pain caused by coughing and deep breathing in group A com-pared group B... ICU and hospital stay markedly reduced in Group A. Conclusion: tho-racic epidural analgesia is superior to intercostals block regarding pain relief of rib frac-tures. Patients who received epidural analgesia had significantly lower pain scores at all studied times.

  6. Multi-parameter crack tip stress state description for estimation of fracture process zone extent in silicate composite WST specimens

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sobek, J.; Šestáková, L.; Frantík, P.; Seitl, Stanislav

    2013-01-01

    Roč. 7, č. 25 (2013), s. 69-78 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GAP104/11/0833; GA ČR(CZ) GAP105/11/1551 Institutional support: RVO:68081723 Keywords : Near-crack tip fields * Williams series * higher-order terms * stress field approximation * wedge splitting test * fracture process zone Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  8. Evaluation of J and CTOD (Crack Tip Opening Displacement) fracture parameters for pipeline steels using Single Edge Notch Tension SE(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Tobar, Lenin Marcelo; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2009-12-19

    This work presents an evaluation procedure to determine the elastic-plastic J-integral and CTOD for pin-loaded and clamped single edge notch tension (SE(T)) specimens based upon the eta-method. The primary objective is to derive estimation equations applicable to determine J and CTOD fracture parameters for a wide range of a/W-ratios and material flow properties. Very detailed non-linear finite element analyses for plane-strain and full-thickness, 3-D models provide the evolution of load with increased crack mouth opening displacement which is required for the estimation procedure. The present analyses, when taken together with previous studies provide a fairly extensive body of results which serve to determine parameters J and CTOD for different materials using tension specimens with varying geometries. (author)

  9. Four-channel multidetector-row computed tomography in the evaluation of facial fractures - optimized parameters for acquisition and multiplanar reformation

    International Nuclear Information System (INIS)

    Omid, P. M.

    2002-08-01

    The first part of this thesis is designed to give the reader a comprehensive survey on the complex basic principles of computed tomography (CT), from the early beginning to the recent development of multidetector-row CT (MD-CT). Attention is focused on imaging of trauma in general and on imaging of facial fractures in particular. The second part of this thesis describes a clinical study performed to optimize acquisition protocols and multiplanar reformation (MPR) algorithms for the evaluation of facial fractures using MD-CT, which has not been yet described in literature. For this study, a cadaver head with artificial blunt facial trauma was examined using a 4-channel MD-CT scanner. The influence of acquisition parameters (collimation: 2x0.5 mm/4x1 mm/4x2.5 mm; tube current: 120 mAs/90 mAs/60 mAs), image reconstruction algorithms (standard vs. ultra-high resolution (UHR) modes; reconstructed slice thicknesses: 0.5 mm/1 mm/3 mm; increment: 0.3 mm/0.6 mm/1.5 mm), and reformation algorithms (slice thicknesses: 0.5 mm/1 mm/3 mm; overlap: 0.5 mm/1 mm/3 mm) on detectability of facial fractures in MPRs with MD-CT was analyzed. Effects of algorithms and parameters on image noise, artifacts and delineation of soft tissues were evaluated. The results of this study reliably demonstrate that fracture detection was significantly higher with thin MPRs (0.5/0.5 mm, 1/0.5 mm, 1/1 mm) (p = 0 .014) acquired with 2x0.5 mm collimation (p = 0 .046), in UHR mode (p .0005) with 120 mAs (p = 0 .025). Inter-observer variability showed very good agreement (κ > = 0 .942). Non-UHR mode, lower mAs and thick MPRs (3/0.5 mm, 3/1 mm, 3/0.5 mm) showed significantly decreased detectability. (author)

  10. Détermination de paramètres de fracturation hydraulique par inversion des courbes de pression Determining Hydraulic Fracturing Parameters by Inverting Pressure Curves

    Directory of Open Access Journals (Sweden)

    Herail R.

    2006-11-01

    Full Text Available Une nouvelle méthode d'interprétation des minifracsest présentée dans cet article, en considérant la contrainte principale mineure et le coefficient de filtration comme seules inconnues du problème. Tout d'abord, le problème direct est défini en appliquant le modèle confiné de Nordgren Nolte (à la fois phases de propagation et de fermeture. La sensibilité du modèle est étudiée et montre que la contrainte et la viscosité du fluide ont une grande influence sur la propagation tandis que le coefficient de filtration a une grande influence sur la fermeture. Deuxièmement, une méthode inverse qui consiste à minimiser une fonction dans l'espace des paramètres est proposée. La méthode inverse est ensuite appliquée à un cas réel et montre qu'une très bonne approximation de bêta3 et Cw peut être obtenue. This article describes a new method of interpreting minifracsby considering the minor principal stress and the fluid loss coefficient as the only unknowns of the problem. First of all, the direct problem is defined by applying Nordgren-Nolte's contained model (both propagation and closure phases. The sensitivity of the model is examined, and it shows that the stress and viscosity of the fluid have great influence on propagation, while the fluid loss coefficient has great influence on the closure. Secondly, an inverse method consisting in minimizing a function in the parameter space is proposed. The inverse method is then applied to an actual case and shows that a very good approximation of beta3 and Cw can be obtained.

  11. Effect of Process Parameters on Fatigue and Fracture Behavior of Al-Cu-Mg Alloy after Creep Aging

    Directory of Open Access Journals (Sweden)

    Lihua Zhan

    2018-04-01

    Full Text Available A set of creep aging tests at different aging temperatures and stress levels were carried out for Al-Cu-Mg alloy, and the effects of creep aging on strength and fatigue fracture behavior were studied through tensile tests and fatigue crack propagation tests. The microstructures were further analyzed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that temperature and stress can obviously affect the creep behavior, mechanical properties, and fatigue life of Al-Cu-Mg alloy. As the aging temperature increases, the fatigue life of alloy first increases, and then decreases. The microstructure also displays a transition from the Guinier-Preston-Bagaryatsky (GPB zones to the precipitation of S phase in the grain interior. However, the precipitation phases grow up and become coarse at excessive temperatures. Increasing stress can narrow the precipitation-free zone (PFZ at the grain boundary and improve the fatigue life, but overhigh stress can produce the opposite result. In summary, the fatigue life of Al-Cu-Mg alloy can be improved by fine-dispersive precipitation phases and a narrow PFZ in a suitable creep aging process.

  12. Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis

    International Nuclear Information System (INIS)

    Wen Jianfeng; Tu Shantung; Gong Jianming; Sun Wei

    2011-01-01

    In the present study, a low alloy Cr-Mo steel cylinder subjected to internal pressure at high temperature with a semi-elliptical crack located at the inner surface is considered. The creep crack driving force parameter C*-integrals calculated by finite element (FE) method, are compared with results from previous studies, which indicates that empirical equations may be inaccurate under some conditions. A total of 96 cases for wide practical ranges of geometry and material parameters are performed to obtain systematic FE results of C*-integral, which are tabulated and formulated in this paper. It is observed that the maximum C*-integral may occur neither at the deepest point nor at the surface point when the aspect ratio is large enough and the value of C*-integral is significantly sensitive to the crack depth ratio. Furthermore, based on the proposed equations for estimating C*-integrals and a step-by-step analysis procedure, crack profile development, crack depth, crack length and remaining life prediction are obtained for surface cracks with various initial aspect ratios. It is found that when the crack depth ratio is increased, there is no obvious convergence of crack aspect ratio observed. The magnitude of half crack length increment is always minor compared with the crack depth increment. In addition, the remaining life is much more dependent on the surface crack depth than on the surface crack length. - Highlights: → Existing empirical equations of C*-integral for surface cracks may be inaccurate. → Systematic FE results of C*-integral from 96 cases are tabulated and formulated. → Maximum C*-integral may not occur at deepest/surface point if a/c is large enough. → The value of C*-integral is significantly sensitive to the crack depth ratio. → Crack profile development, crack size and remaining life prediction are obtained.

  13. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  14. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  15. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  16. Brittle fracture properties

    International Nuclear Information System (INIS)

    Bui, H.D.

    1978-01-01

    In this manual, the following topics are discussed: introduction to the fracture mechanics; theories of brittle fractures; solutions of the boundary value problems of cracks; conservation laws in elastostatics; methods to derive stress-intensity factors; three-dimensional problems; dynamic problems; thermo-elasticity; theories of cracked plates; rock mechanics; crack parameters in elastodynamics; formulae for stress-intensity factors and a programme using the finite element method [fr

  17. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  18. fracture criterion

    Indian Academy of Sciences (India)

    Fracture in metallic glasses. What are the connections between nano- and micro- mechanisms and toughness? Metallic glasses are schizophrenic in the fracture sense. PDF Create! 5 Trial www.nuance.com ...

  19. Hand Fractures

    Science.gov (United States)

    ... Thumb Arthritis Thumb Sprains Trigger Finger Tumors Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ... Tunnel Ganglion Cysts Thumb Arthritis Trigger Finger Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ...

  20. Wrist Fractures

    Science.gov (United States)

    ... a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields From * To * DESCRIPTION A wrist fracture is a medical term for a broken wrist. The wrist is made up of eight ...

  1. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  2. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  3. Shoulder Fractures

    Science.gov (United States)

    ... as shown on an x-ray. Selection of treatment depends upon the patient’s activity level, the location of the fracture and the severity of the fracture. Recovery Shoulder fractures may leave a patient with permanent shoulder stiffness, regardless of ...

  4. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  5. Skull fracture

    Science.gov (United States)

    ... follow bicycle safety recommendations. Do not drink and drive. Do not allow yourself to be driven by someone who may have been drinking alcohol or is otherwise impaired. Alternative Names Basilar skull fracture; Depressed skull fracture; Linear skull fracture Images Skull of an adult Skull ...

  6. Factors affecting neutron measurements and calculations. Part C. Trace element concentrations in granite and their impact on thermal neutron activation

    International Nuclear Information System (INIS)

    Ruehm, Werner; Huber, Thomas; Nolte, Eckehart; Kato, Kazuo; Imanaka, Tetsuji; Egbert, Stephen D.

    2005-01-01

    Trace elements such as Li, B, Sm, and Gd can, despite their low elemental concentration in mineral materials, influence thermal neutron activation in Hiroshima and Nagasaki samples, due to their high thermal neutron absorption cross sections. This was demonstrated for a granite core, where the addition of those trace elements to the elemental composition of granite reduces the production of 152 Eu by some 25% at a depth of 25 cm from the surface. If typical concentrations of those trace elements are added to DS02 reference soil, however, the production of 152 Eu one meter above ground is not changed significantly, because of the high water content of the soil. This indicates that DS02 soil represents a reasonable reference material for the air-over-ground transport calculations. It must be kept in mind, however, that the local environment of any sample investigated for thermal neutron activation might be characterized by other elemental compositions. In particular, trace element and hydrogen concentrations could be considerably different from those used for DS02 reference soil. As an example it was demonstrated that in a granite gravestone thermal neutron activation of 36 Cl close to the surface might be, in the worst case, reduced by some 30%, due to increased local granite concentration in this type of environment. Beside other parameters such as, for example, individual sample geometry, the variability of trace elements in soil might be one reason for the variability that is observed in the individual thermal neutron activation measurements (Gold 1995). It is necessary, therefore, to carefully model the exposure geometry of the exposed material, its chemical composition, and the surrounding interface materials in order to obtain the best possible agreement in comparisons between calculated and measured data for thermal neutrons. (author)

  7. [Hip fractures].

    Science.gov (United States)

    Weisová, Drahomíra; Salášek, Martin; Pavelka, Tomáš

    2013-01-01

    Hip fractures are ranked among the frequent injuries. These fractures have been often coupled with high energy trauma in children and in patients with normal bone structure, low energy trauma and osteoporotic fracture (fragility fracture) is typical in elder patients. Hip fractures are divided into five groups: femoral head fracture, femoral neck fracture, pertrochanteric, intertrochateric and subtrochanteric fracture. Surgical treatment is indicated in all patients unless contraindications are present. Long bed rest has been accompanied by a high risk of development of thromboembolic disease, pneumonia and bed sore. Healing in the wrong position and nonunions are often the result of conservative treatment. Screw osteosynthesis is performed in isolated femoral head factures. Three cannulated screws or a DHS plate (dynamic hip screw) are used in fractures of the femoral neck with normal femoral head perfusion, total hip replacement is recommended in elder patients and in case of loss of blood supply of the femoral head. Pertrochanteric and intertrochanteric fractures can be stabilized by the femoral nails (PFN, PFN A, PFH - proximal femoral nail), nails are suitable for minimally invasive insertion and provide higher stability in the shaft, or plates (DHS) designed for stable pertronchanteric and intertrochanteric fractures. Subtrochanteric fractures can be fixed also intramedullary (nails - PFN long, PFN A long) and extramedullary (plates - DCS dynamic condylar screw, proximal femoral LCP - locking compression plate). Open reduction with internal plate fixation is advantageous for pathological fractures, as biopsy sampling can be performed. Hip fracture rehabilitation is integral part of the treatment, including walking on crutches or with a walker with partial weight bearing for at least six weeks.

  8. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff; Results of analyses for HYDROCOIN [Hydrologic Code Intercomparison Project] Level 3 Case 2: Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs.

  9. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  10. Colles Fracture

    OpenAIRE

    Sánchez León, Belisario

    2014-01-01

    Our expertise is the study of more than 2,000 cases of Colles' fractures. Colles name should in this case to synthesize the type of fractures of the lower end of the radius. There have been various proposed classifications according to the different fracture lines can be demonstrated radiologically in the region of the wrist. We believe that these ratings should only be retained if the concept of the articular fracture or not in the classical sense, since it has great value in the functional ...

  11. [Calcaneus fractures].

    Science.gov (United States)

    Clare, M P; Sanders, R W

    2011-10-01

    Fractures of the calcaneus generally occur in the setting of high-energy trauma, resulting in complex, three-dimensionally oriented fracture patterns. Surgical treatment is typically indicated for displaced intra-articular fractures, permitting restoration of calcaneal height, width and overall morphology, in addition to the posterior facet articular surface where possible, and enabling late in situ arthrodesis as a means of salvage in the event of post-traumatic arthritis. The present article briefly discusses our preferred methods for the management of calcaneal fractures. An English full text version of this article is available at SpringerLink as supplemental.

  12. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  13. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  14. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-01-29

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  15. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  16. Elbow Fractures

    Science.gov (United States)

    ... occur commonly in children and in the elderly. Nerve and/or artery injuries can be associated with these types of fractures and must be carefully evaluated by your doctor. These fractures usually require surgical repair with plates and/or screw, unless they are ...

  17. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  18. Possible factors for ankle fractures

    Directory of Open Access Journals (Sweden)

    Tabaković Dejan

    2010-01-01

    Full Text Available Background/Aim. Classification of ankle fractures is commonly used for selecting an appropriate treatment and prognosing an outcome of definite management. One of the most used classifications is the Danis-Weber classification. To the best of our knowledge, in the available literature, there are no parameters affecting specific types of ankle fractures according to the Danis-Weber classification. The aim of this study was to analyze the correlation of the following parameters: age, body weight, body mass index (BMI, height, osteoporosis, osteopenia and physical exercises with specific types of ankle fractures using the Danis-Weber classification. Methods. A total of 85 patients grouped by the Danis-Weber classification fracture types were analyzed and the significance of certain parameters for specific types of ankle fractures was established. Results. The proportion of females was significantly higher (p < 0.001 with a significantly higher age (59.9 years, SD ± 14.2 in relation to males (45.1 years, SD ± 12.8 (p < 0.0001. Type A fracture was most frequent in the younger patients (34.2 years, SD ± 8.6, and those with increased physical exercises (p = 0.020. In type B fracture, the risk factor was osteoporosis (p = 0.0180, while in type C fracture, body weight (p = 0.017 and osteoporosis (p = 0.004 were significant parameters. Conclusion. Statistical analysis using the Danis-Weber classification reveals that there are certain parameters suggesting significant risk factors for specific types of ankle fractures.

  19. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  20. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  1. Multiscale Multifunctional Progressive Fracture of Composite Structures

    Science.gov (United States)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  2. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  3. Supracondylar Fracture

    Directory of Open Access Journals (Sweden)

    Jessica Andrusaitis

    2017-07-01

    Full Text Available History of present illness: A 15-year-old male presented to the emergency department with right elbow pain after falling off a skateboard. The patient denied a decrease in strength or sensation but did endorse paresthesias to his hand. On exam, the patient had an obvious deformity of his right elbow with tenderness to palpation and decreased range of motion at the elbow. Sensation, motor function, and pulses were intact. Radiographic imaging was obtained. Significant findings: The pre-reduction films show a type III supracondylar fracture. There is complete displacement of the distal humerus anteriorly. Specific findings for supracondylar fracture include: a posterior fat pad (red arrow and a displaced anterior humeral line (yellow line.1 When no fracture is present, the anterior humeral line should intersect the middle third of the capitellum; in this X-ray, it does not intersect the capitellum at all. This X-ray demonstrates a normal radiocapitellar line (blue line that intersects the capitellum. The presence of a narrow anterior fat pad aka “sail sign” can be normal. Discussion: Supracondylar fractures of the humerus occur at the distal portion of the humerus without involving the growth plate.2 This is the second most common fracture in children overall. In children, it is the most common fracture of the elbow.3 This injury has a high risk of neurovascular compromise, such as compartment syndrome or ischemic contracture, and thus the clinician must perform immediate and frequent neurovascular assessments focusing on the distributions of the brachial artery in addition to the median, ulnar, and radial nerves.4 Hyperextension injuries that typically occur following a fall onto an outstretched arm are responsible for 95% of supracondylar fractures.1 A type I supracondylar fracture is non-displaced and can be treated with immobilization through a posterior splint and sling5 with close follow-up, type II is angulated but with an intact

  4. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral

    Science.gov (United States)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.

    2016-08-01

    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  5. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  6. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  7. Experimental and finite element analysis of fracture criterion in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    . The prevention of failure in stressed structural components currently requires fracture mechanics based design parameters like critical load, critical crack-tip opening displacement or fracture toughness. The present attempt would aim to fulfill ...

  8. Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir

    Science.gov (United States)

    Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang

    2017-10-01

    The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0

  9. Prediction of fracture parameters of circumferential through-wall cracks in the interface between an elbow and a pipe under internal pressure

    International Nuclear Information System (INIS)

    Jang, Youn Young; Huh, Nam Su; Jeong, Jae Uk

    2016-01-01

    This paper provides plastic influence functions of GE/EPRI method for calculating J and Crack opening displacement (COD) of pipes with a circumferential Through-wall crack (TWC) in the interface between an elbow and a straight pipe by using 3-dimensional (3-D) elastic-plastic finite element analyses for Ramberg-Osgood (R-O) materials, in which internal pressure was considered as a loading condition. The proposed plastic influence functions are tabulated as a function of the pipe geometries, crack length and strain hardening exponent. In order to provide sufficient confidence for the proposed plastic influence functions, the estimation scheme using the proposed plastic influence functions for J and COD of cracked elbows was validated against FE results using R-O parameters for the SA312 TP316 stainless steel. Moreover, the predicted J and COD for elbows with a TWC in the interface between an elbow and a pipe by the proposed scheme were compared with those for cracked straight pipes to investigate the effect of the elbow geometries on crack behavior of elbows. One important point is that crack behaviors in the interface between an elbow and a straight pipe can be significantly different with those in straight pipes according to pipe thickness, crack length and bend radius of elbows. Thus, the proposed plastic influence functions can be useful to predict accurate J and COD for cracked elbows

  10. Galeazzi fracture.

    Science.gov (United States)

    Atesok, Kivanc I; Jupiter, Jesse B; Weiss, Arnold-Peter C

    2011-10-01

    Galeazzi fracture is a fracture of the radial diaphysis with disruption at the distal radioulnar joint (DRUJ). Typically, the mechanism of injury is forceful axial loading and torsion of the forearm. Diagnosis is established on radiographic evaluation. Underdiagnosis is common because disruption of the ligamentous restraints of the DRUJ may be overlooked. Nonsurgical management with anatomic reduction and immobilization in a long-arm cast has been successful in children. In adults, nonsurgical treatment typically fails because of deforming forces acting on the distal radius and DRUJ. Open reduction and internal fixation is the preferred surgical option. Anatomic reduction and rigid fixation should be followed by intraoperative assessment of the DRUJ. Further intraoperative interventions are based on the reducibility and postreduction stability of the DRUJ. Misdiagnosis or inadequate management of Galeazzi fracture may result in disabling complications, such as DRUJ instability, malunion, limited forearm range of motion, chronic wrist pain, and osteoarthritis.

  11. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  12. Essential work of fracture (EWF): a useful tool for the fracture toughness characterization of particulate polyolefin composites

    OpenAIRE

    Arencón Osuna, David; Antunes, Marcelo de Sousa Pais; Velasco Perero, José Ignacio

    2011-01-01

    The characterization of the fracture toughness of polyolefin composites filled with inorganic particles is commonly solved by means of standardized testing procedures based wherther on the Linear Elastic Fracture Mechanics (LEFM) and the Elastic-Plastic Fracture Mechanics approaches. Fracture parameters as Kc, Gc and Jc are obtained and managed as "material" parameters in plain strain conditions. Nevertheless, particulate polyolefin composites are often in form of film or sheet, making diffi...

  13. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    Science.gov (United States)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  14. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  15. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  16. Description of Fracture Systems for External Criticality Reports

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe Nicot

    2001-09-21

    The purpose of this Analysis/Model Report (AMR) is to describe probabilistically the main features of the geometry of the fracture system in the vicinity of the repository. They will be used to determine the quantity of fissile material that could accumulate in the fractured rock underneath a waste package as it degrades. This AMR is to feed the geochemical calculations for external criticality reports. This AMR is done in accordance with the technical work plan (BSC (Bechtel SAIC Company) 2001 b). The scope of this AMR is restricted to the relevant parameters of the fracture system. The main parameters of interest are fracture aperture and fracture spacing distribution parameters. The relative orientation of the different fracture sets is also important because of its impact on criticality, but they will be set deterministically. The maximum accumulation of material depends primarily on the fracture porosity, combination of the fracture aperture, and fracture intensity. However, the fracture porosity itself is not sufficient to characterize the potential for accumulation of a fracture system. The fracture aperture is also important because it controls both the flow through the fracture and the potential plugging of the system. Other features contributing to the void space such as lithophysae are also investigated. On the other hand, no analysis of the matrix porosity is done. The parameters will be used in sensitivity analyses of geochemical calculations providing actinide accumulations and in the subsequent Monte Carlo criticality analyses.

  17. Description of Fracture Systems for External Criticality Reports

    International Nuclear Information System (INIS)

    Nicot, Jean-Philippe

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to describe probabilistically the main features of the geometry of the fracture system in the vicinity of the repository. They will be used to determine the quantity of fissile material that could accumulate in the fractured rock underneath a waste package as it degrades. This AMR is to feed the geochemical calculations for external criticality reports. This AMR is done in accordance with the technical work plan (BSC (Bechtel SAIC Company) 2001 b). The scope of this AMR is restricted to the relevant parameters of the fracture system. The main parameters of interest are fracture aperture and fracture spacing distribution parameters. The relative orientation of the different fracture sets is also important because of its impact on criticality, but they will be set deterministically. The maximum accumulation of material depends primarily on the fracture porosity, combination of the fracture aperture, and fracture intensity. However, the fracture porosity itself is not sufficient to characterize the potential for accumulation of a fracture system. The fracture aperture is also important because it controls both the flow through the fracture and the potential plugging of the system. Other features contributing to the void space such as lithophysae are also investigated. On the other hand, no analysis of the matrix porosity is done. The parameters will be used in sensitivity analyses of geochemical calculations providing actinide accumulations and in the subsequent Monte Carlo criticality analyses

  18. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  19. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

  20. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  1. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  2. Average Fracture Energy for Crack Propagation in Postfire Concrete

    Directory of Open Access Journals (Sweden)

    Kequan Yu

    2013-01-01

    Full Text Available Wedge-splitting tests of postfire concrete specimens were carried out in the present research to obtain the load-displacement curves. Ten temperatures varying from room temperature to 600°C were employed. In order to calculate the accurate fracture energy, the tails of load-displacement curves were best fitted using exponential and power functions. Three fracture energy quantities (fracture energy GF, stable fracture energy GFS, and unstable fracture energy GFU with their variation tendency and their mutual relationship were determined to predict energy consumption for the complete fracture propagation. Additionally, the stable fracture work WFS was also calculated. All these fracture parameters sustain an increase-decrease tendency which means that the fracture property of postfire concrete shares the same tendency.

  3. Fracture formation post impact on Enceladus?

    Science.gov (United States)

    Craft, Kathleen; Roberts, James

    2017-10-01

    Saturn’s small icy moon Enceladus was observed by the Cassini mission to have jets of ice and vapor emanating from its southern polar terrain (SPT), creating a plume. The fact that the activity is only observed in one region has not been well explained. Hypotheses include a regional sea beneath the SPT or a global ocean that is thicker beneath the SPT, which feeds a group of fractures observed there called the tiger stripes. As Enceladus orbits Saturn, stresses acting on the moon may open and close the fractures enabling interior volatiles to escape and form the plume. Here we investigate how these fractures could have formed and the activity begun. We propose that an impact could have either punctured through or caused substantial melt and fracturing in an ice shell connecting to a liquid layer below. Our goal is to determine whether a formation of fractures resembling the tiger stripes could emerge post-impact.Previous work by Roberts and Stickle (LPSC 2017, #1955) modeled an impact into an ice shell over an ocean and calculated penetration depth and melt temperatures and volumes through the shell thickness. Fracturing would occur during and after the impact, the crater would collapse, water would begin to refreeze and subsequent fluid exchange would occur. Working forward from a point after impact and as the ice shell begins refreezing, we performed finite element modeling to simulate the probable formation of fractures based on the resulting stress regime. Here we explore fracture formation for shells ranging from 1 km to 5 km thick (consistent with gravity and libration studies), to explore formation as the shell cools and thickens through time. We emplaced several fractures, penetrating either entirely or partially across the base to surface. Fracture interactions, tidal stress forcing with orbital true anomalies and ocean water pressurization are considered free parameters in the model. We present results for a number of parameter value combinations and

  4. Tibial shaft fractures treated with functional braces. Experience with 780 fractures.

    Science.gov (United States)

    Sarmiento, A; Gersten, L M; Sobol, P A; Shankwiler, J A; Vangsness, C T

    1989-08-01

    We have reviewed our recent results with functional bracing of tibial shaft fractures in adults in order to define its role in management. We also analysed several parameters of these fractures to discover those which influence healing. A total of 780 tibial fractures treated in prefabricated functional braces were followed to union; shortening of less than 10 mm and angulation of less than 5 degrees in any plane were our parameters for successful treatment. The average time before applying a brace was 3.8 weeks for closed fractures and 5.2 weeks for open ones. Closed fractures healed in an average of 17.4 weeks and open fractures in an average of 21.7 weeks, 90% of them with 10 mm of shortening or less. Varus angulation and posterior angulation were the most common deformities encountered at union. There were 20 nonunions (2.5%) and 46 braces were discontinued during treatment. We found no association between fracture healing and the patient's age, the mechanism of injury or the fracture location. The degree of soft tissue injury appeared to have most influence on the speed of fracture healing. Fracture comminution and initial displacement, the condition of the fibula and the time from injury to bracing also appeared to affect the speed of union.

  5. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  6. Effective Local-Global Upscaling of Fractured Reservoirs under Discrete Fractured Discretization

    Directory of Open Access Journals (Sweden)

    Junchao Li

    2015-09-01

    Full Text Available The subsurface flow in fractured reservoirs is strongly affected by the distribution of fracture networks. Discrete fracture models, which represent all fractures individually by unstructured grid systems, are thus developed and act as a more accurate way for fractured reservoir simulation. However, it is usually not realistic to directly apply discrete fracture models to simulate field scale models for efficiency reasons. There is a need for upscaling techniques to coarsen the high resolution fracture descriptions to sizes that can be accommodated by reservoir simulators. In this paper, we extended the adaptive local-global upscaling technique to construct a transmissibility-based dual-porosity dual-permeability model from discrete fracture characterizations. An underlying unstructured fine-scale grid is firstly generated as a base grid. A global coarse-scale simulation is performed to provide boundary conditions for local regions and local upscaling procedures are carried out in every local region for transmissibility calculations. Iterations are performed until the consistency between the global and local properties is achieved. The procedure is applied to provide dual-porosity dual-permeability (DPDK parameters including coarse-scale matrix-matrix, fracture-fracture and matrix-fracture flux transmissibilities. The methodology is applied to several cases. The simulation results demonstrate the accuracy, efficiency and robustness of the proposed method.

  7. Probabilistic application of fracture mechanics

    International Nuclear Information System (INIS)

    Dufresne, J.

    1981-04-01

    The different methods used to evaluate the rupture probability of a pressure vessel are reviewed. Data collection and processing of all parameters necessary for fracture mechanics evaluation are presented with particular attention to the size distribution of defects in actual vessels. Physical process is followed during crack growth and unstable propagation, using LEFM (Linear Elastic Fracture Mechanism) and plastic instability. Results show that the final failure probability for a PWR pressure vessel is 3.5 10 -8 , and is due essentially to LOCAs for any break size. The weakest point is the internal side of the belt line

  8. Dynamic fracture of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Stout, M.G.; Liu, C.; Addessio, F.L.; Williams, T.O.; Bennett, J.G.; Haberman, K.S.; Asay, B.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to investigate the fundamental aspects of the process of dynamic fracture propagation in heterogeneous materials. The work focused on three important, but poorly understood, aspects of dynamic fracture for materials with a heterogeneous microstructure. These were: the appropriateness of using a single-parameter asymptotic analysis to describe dynamic crack-tip deformation fields, the temperature rises at the tip and on the flanks of a running crack, and the constitutive modeling of damage initiation and accumulation.

  9. Correlation of nodular austempered ductile iron (ADI) microstructural parameters and fatigue properties using an approach based on fracture mechanics; Correlacao entre parametros microestruturais do ferro fundido nodular austemperado (ADI) com suas propriedades a fadiga utilizando uma abordagem baseada na mecanica de fratura

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Jose Felipe [Universidade de Itauna (UIT), MG (Brazil). Faculdade de Engenharia; Fonseca, Vinicius Rizzuti; Godefroid, Leonardo Barbosa [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Escola de Minas; Ribeiro, Gabriel de Oliveira [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Departamento de Engenharia de Estruturas

    2010-07-01

    An investigation has been accomplished to check the effect of temperature and austempering time on austempered ductile iron (ADI) properties by means of fracture toughness (K{sub C}) and fatigue threshold (∆K{sub th}) tests. The correlation of ADI microstructural parameters and ADI two mechanical parameters: KC and Kth, is evaluated. Three sets of samples have ben extracted from ADI casting Y blocks produced in industrial conditions.and austenitized at 900°C for 1.5 hour. The austempering process has been performed in the following ways: the first set was austenitized at 300 deg C for 4 hours, the second set at 360°C for 1.5 hour and the third at 360°C for 0.6 hour. These distinct austempering processes have been adopted in order to obtain distinct microstructures containing austenite with two different carbon rates and two ferritic cell sizes. The materials have been characterized by means of optical and electronic microscopy, X-ray diffraction and mechanical tests. All materials have presented equivalent fatigue crack propagation rates, fracture toughness in the range between 94 and 128 MPa·m{sup 1/2} and ∆K{sub th} in the range between 5,7 and 6,4 MPa·m{sup 1/2}. The experimental results have confirmed the effect of microstructural properties (austenitic volumetric rate, austenitic carbon rate, ferritic cell size, total matrix carbon content) on fracture toughness (K{sub C}) and fatigue threshold (∆K{sub th}). Further, it was found that following parameters: fracture toughness (K{sub C}), fatigue threshold ((∆K{sub th}) and impact strength are correlated with the total matrix carbon content and ferritic cell size. (author)

  10. Complex proximal ulna fractures: outcomes of surgical treatment.

    Science.gov (United States)

    Melamed, Eitan; Danna, Natalie; Debkowska, Monika; Karia, Raj; Liporace, Frank; Capo, John T

    2015-07-01

    To review the results of plating of various fracture patterns of proximal ulna fractures including isolated olecranon fractures, olecranon fractures combined with a coronoid fracture, and olecranon fractures combined with a coronoid and radial head fracture. The study included 38 patients with either an isolated olecranon fracture or combined injuries, all treated with open reduction and internal fixation of the olecranon. Other procedures were performed as needed, including radial head fixation or arthroplasty, fixation of the coronoid, and repair of the lateral collateral ligament complex. There were 27 men and 11 women with an average age of 49 years. Clinical and radiographic assessment was obtained at an average follow-up time of 15 and 8.4 months, respectively. All fractures healed within 5 months. The average arc of ulnohumeral motion was 91° (range 0°-140°); average pronation-supination arc was 128° (range 0°-180°). Subgroup analysis showed a statistically significant lower rotational motion arc in patients with associated radial head (73°) or coronoid fractures (68°) compared to isolated olecranon fractures. All other parameters including ulnohumeral motion, complication rate, and revision rate were similar among the groups. A stable, functional elbow can be restored in most patients with proximal ulna fractures treated with open reduction and internal fixation. Loss of full flexion is likely with high-energy trauma, complex fracture patterns, and concomitant injuries. Fracture patterns involving the coronoid and/or the radial head are associated with restricted forearm rotation. III.

  11. Modelling the Fracture Behavior of a 350WT Steel

    Science.gov (United States)

    2014-05-01

    of the pendulum after fracturing the specimen. Figure 4.1: Charpy V-Notch Specimen, Anvil Supports and Striker [9] Modelling the Fracture Behavior of...determined through FE calibration with existing Charpy V-notch (CVN) and dynamic tear ductile-to-brittle transition (DBT) data. Once the parameters...8 4.0 DETERMINATION OF FRACTURE PARAMETERS..........................................................................11 4.1 CHARPY V-NOTCH

  12. Fracture as a material sink

    Science.gov (United States)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  13. Rio Blanco massive hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    The Piceance Basin in Colorado contains an estimated 600 trillion cu ft of natural gas in place. Both the Rulison and Rio Blanco events have been detonated to determine the feasibility of nuclear fracturing to stimulate natural gas production in this basin. A demonstration program to test the relative effectiveness of massive hydraulic fracturing (MHF) to achieve natural gas production stimulation from the same gas reservoir is presented. Details are included on MHF design parameters, including surface and subsurface equipment, pumping requirements, evaluation of fracturing results, and all associated test programs; site characteristics and preparation; proposal for gas utilization program; environmental surveillance and comparative analysis of environmental aspects of MHF and nuclear stimulation; gas delivery estimates; project administration; and costs and scheduling.

  14. Carpal alignment in distal radial fractures

    Directory of Open Access Journals (Sweden)

    Jain Pankaj

    2002-05-01

    Full Text Available Abstract Background Carpal malalignment following the malunited distal radial fracture is described to develop as an adaptation to realign the hand to the malunion. It worsens gradually after healing of the fracture due to continued loading of the wrist. It is also reported to develop during the immobilization itself rather than after fracture healing. The present work was aimed to study the natural course and the quantitative assessment of such adaptive carpal realignment following distal radial fracture. Methods In a prospective study, 118 distal radial fractures treated with different modalities were followed-up with serial radiographs for a year for assessment of various radiological parameters. Results Two patterns of carpal malalignment were identified depending upon the effective radio-lunate flexion (ERLF measured on pre-reduction radiographs. The midcarpal malalignment was seen in 98 radial fractures (83% with the lunate following the dorsiflexed fracture fragment and a measured ERLF of less than 25°. The second pattern of radio-carpal malalignment showed the fracture fragment to dorsiflex without taking the lunate with a measured ERLF of more than 25°. The scaphoid did not follow the fracture fragment in both the patterns of malalignment. Conclusion It is better to assess distal radial fractures for any wrist ligamentous injury on the post-reduction film with the restored radial anatomy than on the pre-reduction film since most carpal malalignments get corrected with the reduction of the fracture. Similar carpal malalignment reappear with the redisplacement of the fracture as seen in pre-reduction radiographs and develops during the immobilization rather than as a later compensatory mechanism for the malunion.

  15. Clinical effects of internal fixation for ulnar styloid fractures associated with distal radius fractures: A matched case-control study.

    Science.gov (United States)

    Sawada, Hideyoshi; Shinohara, Takaaki; Natsume, Tadahiro; Hirata, Hitoshi

    2016-11-01

    Ulnar styloid fractures are often associated with distal radius fractures. However, controversy exists regarding whether to treat ulnar styloid fractures. This study aimed to evaluate clinical effects of internal fixation for ulnar styloid fractures after distal radius fractures were treated with the volar locking plate system. We used prospectively collected data of distal radius fractures. 111 patients were enrolled in this study. A matched case-control study design was used. We selected patients who underwent fixation for ulnar styloid fractures (case group). Three control patients for each patient of the case group were matched on the basis of age, sex, and fracture type of distal radius fractures from among patients who did not undergo fixation for ulnar styloid fractures (control group). The case group included 16 patients (7 men, 9 women; mean age: 52.6 years; classification of ulnar styloid fractures: center, 3; base, 11; and proximal, 2). The control group included 48 patients (15 men, 33 women; mean age: 61.1 years; classification of ulnar styloid fractures: center, 10; base, 31; and proximal, 7). For radiographic examination, the volar tilt angle, radial inclination angle, and ulnar variance length were measured, and the union of ulnar styloid fractures was judged. For clinical examination, the range of motions, grip strength, Hand20 score, and Numeric Rating Scale score were evaluated. There was little correction loss for each radiological parameter of fracture reduction, and these parameters were not significantly different between the groups. The bone-healing rate of ulnar styloid fractures was significantly higher in the case group than in the control group, but the clinical results were not significantly different. We revealed that there was no need to fix ulnar styloid fractures when distal radius fractures were treated via open reduction and internal fixation with a volar locking plate system. Copyright © 2016 The Japanese Orthopaedic Association

  16. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  17. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  18. Assessment of fracture risk

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, John A. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom)], E-mail: w.j.pontefract@sheffield.ac.uk; Johansson, Helena; Oden, Anders [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); McCloskey, Eugene V. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); Osteoporosis Centre, Northern General Hospital, Sheffield (United Kingdom)

    2009-09-15

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  19. Fracture properties of concrete specimens made from alkali activated binders

    Science.gov (United States)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties - effective fracture toughness and specific fracture energy - of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P-d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P-CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  20. Fracture modelling of a high performance armour steel

    Science.gov (United States)

    Skoglund, P.; Nilsson, M.; Tjernberg, A.

    2006-08-01

    The fracture characteristics of the high performance armour steel Armox 500T is investigated. Tensile mechanical experiments using samples with different notch geometries are used to investigate the effect of multi-axial stress states on the strain to fracture. The experiments are numerically simulated and from the simulation the stress at the point of fracture initiation is determined as a function of strain and these data are then used to extract parameters for fracture models. A fracture model based on quasi-static experiments is suggested and the model is tested against independent experiments done at both static and dynamic loading. The result show that the fracture model give reasonable good agreement between simulations and experiments at both static and dynamic loading condition. This indicates that multi-axial loading is more important to the strain to fracture than the deformation rate in the investigated loading range. However on-going work will further characterise the fracture behaviour of Armox 500T.

  1. Identifying osteoporotic vertebral fracture

    Science.gov (United States)

    2015-01-01

    Osteoporosis per se is not a harmful disease. It is the sequela of osteoporosis and most particularly the occurrence of osteoporotic fracture that makes osteoporosis a serious medical condition. All of the preventative measures, investigations, treatment and research into osteoporosis have one primary goal and that is to prevent the occurrence of osteoporotic fracture. Vertebral fracture is by far and away the most prevalent osteoporotic fracture. The significance and diagnosis of vertebral fracture are discussed in this article. PMID:26435923

  2. Clinical assessment of patients with isolated hip fractures associated with an upper limb fracture.

    Science.gov (United States)

    Gómez-Álvarez, J; González-Escobar, S; Gil-Garay, E

    2017-11-28

    Some patients with a hip fracture also present a concomitant upper limb fracture. We want to know whether these patients have a worse functional level and whether they have any differences in various clinical parameters compared with patients with an isolated hip fracture. We retrospectively reviewed 1061 discharge reports from the Orthogeriatrics Unit. We collected information on several clinical parameters of the fractures. Subsequently, we performed a statistical analysis of the data by comparing the associated fracture group with the isolated fracture group. We detected 44 patients with associated upper limb fracture, 90.9% were women (40) and the average age was 84.45years. Eighty-one point eight percent of the upper limb fractures were distal radius or proximal humerus. Pertrochanteric fractures were the most common (none of them were subtrochanteric fractures). Surgical delay was 2.60days and the average hospital stay was 12.30days. Sixty-four point three percent were nail surgery and 31% arthroplasty. The mean Barthel index score was 84.88 (P=.021). Fifty-two point 5 percent of the patients in the study group were referred to a functional support unit (P=.03). The in-hospital mortality rate was 4.2%, with no differences between groups. Patients with an associated fracture have a higher previous functional capacity and they are more independent. Nevertheless, after the fracture they need more help from the healthcare system for optimal functional recovery. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Thermal convection in three-dimensional fractured porous media

    Science.gov (United States)

    Mezon, C.; Mourzenko, V. V.; Thovert, J.-F.; Antoine, R.; Fontaine, F.; Finizola, A.; Adler, P. M.

    2018-01-01

    Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.

  4. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    best. Therefore, it is necessary to control fracturing degree reasonably and optimize fracturing parameters, so as to provide a theoretical support for the optimization design of shale gas reservoir fracturing. Keywords: Shale gas, Reservoir, Fracturing, Horizontal well, Complex fracture network, Multi-zone coupling, Multi-scale, Interference, Productivity capacity

  5. Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs

    Science.gov (United States)

    Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang

    2017-12-01

    This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren–Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin

  6. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  7. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  8. Imaging of vertebral fractures

    Directory of Open Access Journals (Sweden)

    Ananya Panda

    2014-01-01

    Full Text Available Vertebral fracture is a common clinical problem. Osteoporosis is the leading cause of non-traumatic vertebral fracture. Often, vertebral fractures are not clinically suspected due to nonspecific presentation and are overlooked during routine interpretation of radiologic investigations. Moreover, once detected, many a times the radiologist fails to convey to the clinician in a meaningful way. Hence, vertebral fractures are a constant cause of morbidity and mortality. Presence of vertebral fracture increases the chance of fracture in another vertebra and also increases the risk of subsequent hip fracture. Early detection can lead to immediate therapeutic intervention improving further the quality of life. So, in this review, we wish to present a comprehensive overview of vertebral fracture imaging along with an algorithm of evaluation of vertebral fractures.

  9. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  10. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    Science.gov (United States)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  11. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  12. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  13. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  14. Permeability tensor and representative elementary volume of fractured rock masses

    Science.gov (United States)

    Rong, Guan; Peng, Jun; Wang, Xiaojiang; Liu, Guang; Hou, Di

    2013-11-01

    Based on a simulation of three-dimensional fracture networks and a superposition principle of liquid dissipation energy for fractured rock masses, a model of the fracture permeability tensor is proposed. An elastic constitutive model of rock fractures, considering fracture closure and dilation during shearing, is also proposed, based on the dilation angle of the fracture. Algorithms of flow-path searching and calculation of the effective flow coefficients for fracture networks are presented, together with a discussion on the influence of geometric parameters of the fractures (trace length, spacing, aperture, orientation and the number of fracture sets) on magnitude, anisotropy of hydraulic permeability and the size of a representative elementary volume (REV). The anisotropy of hydraulic permeability of fractured rock masses is mainly affected by orientation and the number of fracture sets, and the REV size is mainly influenced by trace length, spacing and the number of fracture sets. The results of studies on REV size and the influence of in-situ stress on hydraulic conductivity of the rock mass on the slope of Jinping-I hydropower station, China, are presented using the developed models and methods. The simulation results agreed well with the results obtained from field water-pressure measurements, with an error of less than 10 %.

  15. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  16. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ...

  17. Tibial tuberosity fractures in adolescents.

    Science.gov (United States)

    Frey, Steven; Hosalkar, Harish; Cameron, Danielle B; Heath, Aaron; David Horn, B; Ganley, Theodore J

    2008-12-01

    Tibial tuberosity fractures in adolescents are uncommon. We retrospectively reviewed all tibial tuberosity fractures in adolescents (10-19) who presented to our level 1 pediatric trauma center over a 7-year period to review fracture morphology, mechanism of injury, fracture management including return to play, as well as complications. Additionally, we present a review of the literature and treatment algorithm. We reviewed the clinical charts and radiographs of consecutive patients with tibial tuberosity fractures between 01 January 2000 and 01 January 2007. Data parameters included the following: patients age and gender, involved side, injury classification, co-morbidities, mechanism of injury, treatment, return to activity and complications. Data were extracted and reviewed, and a treatment algorithm is proposed with some additional insights into the epidemiology of the injury. Nineteen patients met the inclusion criteria. There were 19 patients with 20 tibial tuberosity fractures. The mean age was 13.7 years. There were 18 males and 1 female patient. There were nine left-sided injuries and eleven right-sided including one patient with bilateral fractures. Mechanism of injuries included basketball injury (8), running injury (5), football injury (3), fall from a scooter (2), high jump (1) and fall (1). Co-morbidities included three patients with concurrent Osgood-Schlatter disease and one with osteogenesis imperfecta. All were treated with ORIF, including arthroscopic-assisted techniques in two cases. Complications included four patients with pre-operative presentation of compartment syndrome all requiring fasciotomy, one post-operative stiffness and one painful hardware requiring removal. Range of motion was started an average of 4.3 weeks post-operatively and return to play was an average of 3.9 months post-operatively. Although uncommon, tibial tuberosity fractures in adolescents are clinically important injuries. Early recognition and treatment (closed or open

  18. Benchmarks for single-phase flow in fractured porous media

    Science.gov (United States)

    Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru

    2018-01-01

    This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.

  19. Fracture prevention in men

    NARCIS (Netherlands)

    Geusens, PP; Sambrook, P.N.; Lems, W.F.

    2009-01-01

    The lifetime risk of experiencing a fracture in 50-year-old men is lower (20%) than the risk in women (50%). Consequently, much less research has been carried out on osteoporosis and fracture risk in men. Differences in the risk and incidence of fractures between men and women are related to

  20. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  1. Differentiation of Acute Osteoporotic and Malignant Vertebral Fractures by Quantification of Fat Fraction With a Dixon MRI Sequence.

    Science.gov (United States)

    Kim, Dong Hyun; Yoo, Hye Jin; Hong, Sung Hwan; Choi, Ja-Young; Chae, Hee Dong; Chung, Bo Mi

    2017-12-01

    The purpose of this study was to differentiate malignant compression fractures from acute osteoporotic compression fractures of the spine by use of a Dixon MRI sequence to quantify fat fraction (FF). Forty-four vertebral compression fractures were assessed with turbo spin-echo T1-weighted and six-echo Dixon sequences for FF quantification at 3-T MRI. The fractures were divided into malignant compression fractures (n = 24) and acute osteoporotic compression fractures (n = 20). Two radiologists independently measured quantitative parameters from ROIs in the fractures, including the T1 signal intensity of the fracture, the FF of the fracture, and the FF ratio (fracture FF divided by normal marrow FF). The mean values of the parameters were compared between the two groups, interobserver reliability between two radiologists was assessed, ROC curves were analyzed, and logistic regression analysis was performed. The fracture FF and FF ratio of malignant compression fractures were significantly lower than those of acute osteoporotic compression fractures (fracture FF, 2.73% vs 14.36% [p ratio, 0.05 vs 0.22 [p ratio was 0.95. In logistic regression analysis, fracture FF remained a significant variable that could be used to independently differentiate malignant from acute osteoporotic compression fractures (odds ratio, 0.33; p ratio obtained from FF maps obtained with a six-echo Dixon MRI sequence may be useful for differentiating acute osteoporotic compression fractures from malignant compression fractures.

  2. New quantitative ultrasound techniques for bone analysis at the distal radius in hip fracture cases: differences between femoral neck and trochanteric fractures.

    Science.gov (United States)

    Horii, Motoyuki; Fujiwara, Hiroyoshi; Sakai, Ryo; Sawada, Koshiro; Mikami, Yasuo; Toyama, Syogo; Ozaki, Etsuko; Kuriyama, Nagato; Kurokawa, Masao; Kubo, Toshikazu

    2017-01-01

    Ample evidence on etiological and pathological differences between femoral neck and trochanteric fracture cases suggests the possibility of individualized treatment. There are many issues related to areal bone mineral density and other quantitative computed tomography parameters of the proximal femur. Although osteoporosis is a systemic problem, little has been reported regarding differences in bone structural parameters, including bone mineral density, between them in regions other than the proximal femur. Participants were consecutive female patients >50 years of age admitted to the Saiseikai Suita Hospital (Osaka prefecture, Japan) for their first hip fracture between January 2012 and September 2014. Cortical thickness (CoTh, mm), volumetric trabecular bone mineral density (TBD, mg/cm 3 ), and elastic modulus of trabecular bone (EMTb, GPa) were obtained as the new QUS parameters using the LD-100 system (Oyo Electric, Kyoto, Japan). The mean values of these parameters were compared between femoral neck and trochanteric fracture cases. In addition, correlations between age and each QUS parameter were investigated for each fracture type. A receiver operating characteristic (ROC) curve analysis was performed to examine the degree of effect each parameter on the fracture types. The area under the curve (AUC) for each parameter was compared to the AUC for age. There were 63 cases of femoral neck fracture (mean age, 78.2 years) and 37 cases of trochanteric fracture (mean age, 85.9 years). Mean TBD and EMTb were significantly higher for femoral neck fractures. There were significant negative correlations between QUS parameters and age for femoral neck fractures (P fractures were above those for trochanteric fractures for TBD and EMTb. AUCs were 0.72 for age, and 0.61, 0.65, and 0.65 for CoTh, TBD, and EMTb, respectively. The new QUS parameters indicated that TR fracture cases were more osteoporotic than were FN fracture cases, even at the distal radius. There might be

  3. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  4. Quantifying Representative Hydraulic Conductivity for Three-Dimensional Fractured Formations

    Science.gov (United States)

    Lee, I.; Ni, C.

    2013-12-01

    The fractures and pores in rock formations are the fundamental units for flow and contaminant transport simulations. Due to technical and logical limitations it is difficult in reality to account for such small units to model flow and transport in large-scale problems. The concept of continuum representations of fractured rocks is then used as an alternative to solve for flow and transport in complex fractured formations. For these types of approaches the determinations of the representative parameters such as hydraulic conductivity and dispersion coefficient play important roles in controlling the accuracy of simulation results for large-scale problems. The objective of this study is to develop a discrete fracture network (DFN) model and the associated unstructured mesh generation system to characterize the continuum hydraulic conductivity for fractured rocks on different scales. In this study a coupled three-dimensional model of water flow, thermal transport, solute transport, and geochemical kinetic/equilibrium reactions in saturated/unsaturated porous media (HYDROGEOCHEM) is employed to be the flow simulator to analyze the flow behaviors in fracture formations. The fracture network model and the corresponding continuum model are simulated for same scale problems. Based on the concept of mass conservation in flow, the correlations between statistics of fracture structure and the representative continuum parameters are quantified for a variety of fracture distribution scenarios and scales. The results of this study are expected to provide general insight into the procedures and the associated techniques for analyzing flow in complex large-scale fractured rock systems.

  5. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  6. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increased...... with increasing age and disease duration. Among 34 deceased MS patients 4 had had fractures. These findings are discussed in relation to physical and cognitive impairment in MS. A case-control study is recommended....

  7. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon’s perspective

    Directory of Open Access Journals (Sweden)

    Wichlas, Florian

    2017-05-01

    Full Text Available Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon’s analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics.Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon’s decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon’s analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4% fractures, the dorsal approach for 39 (7.8%, and the combined dorsopalmar approach for 30 (6.0%. Nine (1.8% fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001. The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001. The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001. Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon’s analysis for the surgical approach.

  8. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon's perspective.

    Science.gov (United States)

    Wichlas, Florian; Tsitsilonis, Serafim; Kopf, Sebastian; Krapohl, Björn Dirk; Manegold, Sebastian

    2017-01-01

    Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon's analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics. Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon's decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon's analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4%) fractures, the dorsal approach for 39 (7.8%), and the combined dorsopalmar approach for 30 (6.0%). Nine (1.8%) fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001). The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001). The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001). Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon's analysis for the surgical approach.

  9. An analytical model for hydraulic fracturing in shallow bedrock formations.

    Science.gov (United States)

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  10. Medial fracture line significance in calcaneus fracture.

    Science.gov (United States)

    Ogut, Tahir; Ayhan, Egemen; Kantarci, Fatih; Unlu, Mehmet C; Salih, Muhammet

    2011-01-01

    In Sanders' classification of calcaneus fractures, the medial fracture line (subtype C) is close to the tarsal canal, which contains an artery for the talus and calcaneus. We hypothesized that because of this brittle vascular localization, patients with C line fracture patterns might describe radiologic subtalar arthritis more often and have more complaints. The purpose of the present study was to compare the results of C line fracture patterns with other types of calcaneus fractures. A total of 25 surgically treated feet were involved. Regarding Sanders' classification, group 1 included fractures involving the C line (11 feet), and group 2 included fractures not involving the C line (14 feet). Patient age at admission, trauma date, and interval until surgery were obtained from the patients' medical records. The Bohler angles were determined from the radiographs. At the last follow-up visit, the radiologist graded subtalar arthritis using computed tomography. For clinical follow-up, the American Orthopaedic Foot and Ankle Society and Maryland scores were assessed. No significant differences were found in mean age, follow-up period, delay to surgery, or postoperative Bohler angle between the 2 groups. The mean preoperative Bohler angle was significantly low for group 1. Although not significantly different, the mean American Orthopaedic Foot and Ankle Society and Maryland scores were lower for group 1 (81.9 and 84.3) than group 2 (87.8 and 92.0), and the median subtalar arthritis grade was greater for group 1 (score 2) than for group 2 (score 1.5). The worse results with C line fracture patterns despite satisfactory reduction might result from sinus tarsi artery damage. Angiographic investigations could clarify this theory in the future. Consequently, surgeons must inform and should hesitate to operate on patients with these highly comminuted C line calcaneus fractures. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All

  11. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  12. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass

    Science.gov (United States)

    Pin, Yeh; Yuan-Chieh, Wu

    2017-04-01

    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  13. Pediatric femur fractures, epidemiology and treatment

    Directory of Open Access Journals (Sweden)

    Petković Lazar

    2011-01-01

    Full Text Available Background/Aim. Femur fractures in children most often occur as a consequence of traffic accidents, during play and sport activities, and due to different pathological states. Diagnosis is rather simple and it includes physical and radiographycal examination. Femur fractures treatment in children can be operative and unoperative, depending on several facts: age, localisation and type of fracture, joint injuries of soft tissues, the presence of other injuries (in polytrauma, economical and social aspects, ect. The aim of this study was to present epidemiological characteristics of pediatric femur fractures, that is in the stage of development, including a special analysis of the used treatment techniques, as well as the comparison of the obtained data with those from the literature. Methods. The evaluation included following parameters: age, gender, cause, localisation and type of femur fracture, applied treatment and hospitalisation duration. Results. Among the presented 143 patients with femur fracture, 109 were boys and 34 were girls (3.2 : 1 ratio; p = 0.0001. Average age for both genders was 8.6 years, and no difference between boys and girls were found for the age (p = 0.758. In total, the most common fracture was diaphyseal fracture of femur in 93 (65.03% patients. The second was proximal fracture in 30 (20.98% patients, and the last distal fracture of the femur in 20 (13.99% patients (p = 0.0001. Three main causes of femur fracture can be distinguished: during play and sport activities in 67 (46.8% children, in traffic accidents in 64 (44.8% children, and pathological fractures in 12 (8.4% children. Inoperative treatment was applied in 82 (57.3% patients, and operative one in 61 (42.7% patients. The most common tretament was traction, in 71 (49.6% patients, followed by immobilization by hip spica cast mostly in young children. Intramedullar elastic nailing was applied in 16 (11.2% cases, and intramedullar rigid nailing (Küntscher in 19

  14. Assessment of fracture toughness of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junyor, José Onésimo; Faria, Stéfanno Bruno; Rocha, Nirlando Antônio; Reis, Emil; Vilela, Jefferson José, E-mail: ze_onezo@hotmail.com, E-mail: sbrunofaria@gmail.com, E-mail: nar@cdtn.br, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro Universitário de Belo Horizonte (UNIBH), MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The fracture toughness parameters are applied to estimate the lifetime of mechanical components and define the criteria of safe failure and tolerable damages. This information allows equipment to be used longer with a high degree of safety. These techniques are applied in the Leak-Before-Break (LBB) concept that is accepted for designing the piping system of the primary circuit of the pressurized water reactor (PWR). In this work, fracture toughness tests such as J{sub IC} and CTOD were performed on some structural steels. The fracture toughness parameters were determined using SE(B) and C(T) test specimens. The fracture toughness values for the same material varied according to the type specimen. The parameter δ{sub 1c} showed different values when it was calculated using the ASTM E1820 standard and using the BS 7448: Part 1 standard. These results indicate that procedures of these standards need to be improved. Two systems with different sensitivity in the force measurement were used that showed similar results for toughness fracture but the dispersion was different. (author)

  15. Odontoid Fracture: Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jonathan Peña

    2016-09-01

    Full Text Available History of present illness: An 84-year-old male presented with left-sided posterior head, neck, and back pain after a ground level fall. Exam was notable for left parietal scalp laceration and midline cervical spine tenderness with no obvious deformities. He was neurovascularly intact, and placed in an Aspen Collar with strict spine precautions. Significant findings: Computed Tomography (CT of the cervical spine showed a stable, acute, non-displaced fracture of the odontoid process extending into the body of C2, consistent with a Type III Odontoid Fracture. He was evaluated by orthopedic spine service who recommended conservative, non-operative management. Discussion: The cervical spine is composed of seven vertebrae, with C1 and C2 commonly referred to as the Atlas and Axis, respectively. Unique to C2 is a bony prominence, the Odontoid Process (Dens. Hyperextension or hyperflexion injuries can induce significant stress causing fractures. Odontoid fractures comprise approximately 10% of vertebral fractures, and there are three types with varying stability.1 Type 1 is the rarest and is a fracture involving the superior segment of the Dens. It is considered a stable fracture. Type 2 is the most common and is a fracture involving the base of the odontoid process, below the transverse component of the cruciform ligament. This fracture is unstable and requires operative stabilization. 2 Type 3 odontoid fractures are classified by a fracture of the Odontoid process, as well as the lateral masses of the C2. Determining the stability of a Type III Odontoid fracture requires radiographic evaluation. Strict cervical spine precautions must be adhered to until adequate imaging and surgical consultation is obtained. CT of the of cervical spine fractures poses several advantages to plain film radiography due to the ability to view the anatomy in three planes. 3 However, if there is concern for ligamentous injury, MRI is the preferred modality.3

  16. Computational simulation methods for composite fracture mechanics

    Science.gov (United States)

    Murthy, Pappu L. N.

    1988-01-01

    Structural integrity, durability, and damage tolerance of advanced composites are assessed by studying damage initiation at various scales (micro, macro, and global) and accumulation and growth leading to global failure, quantitatively and qualitatively. In addition, various fracture toughness parameters associated with a typical damage and its growth must be determined. Computational structural analysis codes to aid the composite design engineer in performing these tasks were developed. CODSTRAN (COmposite Durability STRuctural ANalysis) is used to qualitatively and quantitatively assess the progressive damage occurring in composite structures due to mechanical and environmental loads. Next, methods are covered that are currently being developed and used at Lewis to predict interlaminar fracture toughness and related parameters of fiber composites given a prescribed damage. The general purpose finite element code MSC/NASTRAN was used to simulate the interlaminar fracture and the associated individual as well as mixed-mode strain energy release rates in fiber composites.

  17. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  18. Emergence of Anomalous Transport in Stressed Rough Fractures

    Science.gov (United States)

    Kang, P. K.; Brown, S.; Alves da Silva, J.; Juanes, R.

    2015-12-01

    Fluid flow and tracer transport in fractured rock controls many natural and engineered processes in the geosciences, and therefore has been extensively studied. Geologic fractures, however, are always under significant overburden stress. While confining stress has been shown to impact fluid flow through rough-walled fractures in a fundamental way, studies of anomalous tracer transport at the scale of individual fractures have so far ignored the potential role of confining stress.Here, we report the emergence of anomalous (non-Fickian) transport through a rough-walled fracture as a result of increasing the normal stress on the fracture. We generate fracture surfaces with fractal roughness, and solve the elastic contact problem between the two surfaces to obtain the 3D fracture geometry for increasing levels of normal stress. We then simulate fluid flow and particle transport through the stressed rough fracture. We observe a transition from Fickian to anomalous transport as the normal stress on the fracture increases.We show that the origin of this anomalous transport behavior can be traced to the self-organization of the flow field into a heterogeneous structure dominated by preferential channels and stagnation zones, as a result of the larger number of contacts in a highly stressed fracture. We also propose a spatial Markov model that reproduces the transport behavior at the scale of the entire fracture with only three physical parameters. Our results point to a heretofore unrecognized link between geomechanics and anomalous particle transport in fractured media. Finally, we show preliminary laboratory experiment results that confirm our findings. (a) Magnitude of the volumetric flux at each discretization grid block at low stress. (b) Magnitude of the volumetric flux for a highly stressed fracture. Values are normalized with the mean volumetric flux.

  19. -Lesser known stress fractures-.

    Science.gov (United States)

    Wybier, M; Hamze, B; Champsaur, P; Parlier, C

    1997-01-01

    Stress fractures of the tibia may disclose a longitudinal orientation which is obvious at bone scanning; a mild periostosis may appear on plain films; CT demonstrates a radially-oriented fracture in one aspect of the diaphyseal cortex. A cortical dissection-like vertically oriented insufficiency fracture may involve the medial aspect of the femoral shaft underlying the lesser trochanter; the fracture is concentric to the femoral cortex at CT. Insufficiency fractures of the sacrum may be misdiagnosed on plain films; bone scanning displays a typical H-shaped increased uptake which is a specific pattern. Insufficiency fractures of the pubis may appear as tumoral bone destruction; however no soft tissue mass is present at CT which in addition demonstrates normal fat tissue abutting the osseous lesion.

  20. A simplified approach to well test analysis of naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, R. [Servipetrol Ltd., Calgary, AB (Canada)

    2004-07-01

    This paper presents a simplified equation for drawdown and well test analysis of naturally fractured reservoirs. It can also be used for conventional single porosity reservoirs. The proposed technique allows approximate solutions to determine parameters such as fracture, permeability, wellbore storage, skin, storativity ratio, interporosity flow coefficient, fracture spacing, number of fractures intercepted by the wellbore and the amount of secondary mineralization within fractures. The results are in reasonable agreement with more rigorous methods published in the literature which require specialized software. The proposed method was illustrated with actual data from fractured reservoirs. 13 refs., 2 tabs., 4 figs.

  1. TIBIAL SHAFT FRACTURES

    OpenAIRE

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2015-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical...

  2. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    Science.gov (United States)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an

  3. Study on ductile fracture evaluation for austenitic stainless steel

    International Nuclear Information System (INIS)

    Miura, Naoki; Shimakawa, Takashi; Kashima, Koichi; Michiba, Kouji; Hiramatsu, Hideki.

    1994-01-01

    In the development of Fast Breeder Reactors (FBRs), structural integrity must be assured for components subjected to high temperatures up to 550degC, even though possible defects are presumed. Nonlinear fracture mechanics is one of the most effective approaches to evaluate ductile fracture behavior of cracked components. In this study, ductile fracture tests were conducted at room temperature and 550degC for austenitic stainless steel SUS304 and 316FR, which were candidates for FBR structural material. The applicability of fracture parameters was investigated from tests using small CT specimens, small CCT specimens, and wide CCT specimens. Fracture tests under the condition of combined tension and bending loads were also performed to investigate the effect of additional bending stress due to the temperature gradient through thickness. It was ascertained that fracture load could be predicted based on the net section collapse criterion and was not so affected by an additional bending stress. (author)

  4. Pediatric pelvic fractures.

    Science.gov (United States)

    Holden, Candice P; Holman, Joel; Herman, Martin J

    2007-03-01

    Pediatric pelvic fractures account for only 1% to 2% of fractures seen by orthopaedic surgeons who treat children. They are typically associated with high-energy trauma, requiring a comprehensive workup for concomitant life-threatening injuries. Anteroposterior radiographs and rapid-sequence computed tomography are the standards of diagnostic testing to identify the fracture and recognize associated injuries. Treatment is individualized based on patient age, fracture classification, stability of the pelvic ring, extent of concomitant injuries, and hemodynamic stability of the patient. Most pelvic injuries in children are treated nonsurgically, with protected weight bearing and gradual return to activity. Open reduction and internal fixation is required for acetabular fractures with >2 mm of fracture displacement and for any intra-articular or triradiate cartilage fracture displacement >2 mm. To prevent limb-length discrepancies, external fixation is necessary for pelvic ring displacement >2 cm. Fractures involving immature triradiate cartilage may lead to growth disturbance of the acetabulum, resulting in acetabular dysplasia, hip subluxation, or hip joint incongruity. Osteonecrosis of the femoral head may develop after acetabular fractures associated with hip dislocation. Other complications include myositis ossificans and neurologic deficits secondary to sciatic, femoral, and/or lumbosacral plexus nerve injuries.

  5. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  6. Fracture Toughness Of Zircaloy Claddings

    International Nuclear Information System (INIS)

    Bertsch, J.; Hoffelner, W

    2003-01-01

    Zirconium-based alloys (Zircaloy) have been used as cladding material in Light Water Reactors for many years. During fabrication, or in in-reactor service, crack-type defects can be formed, posing questions regarding mechanical integrity. As claddings change their mechanical properties (mainly toughness) during service as a result of irradiation-induced degradation, oxidation and hydride formation, it is essential for integrity considerations to provide parameters for the assessment of the influence of flaws on rupture behaviour. Usually, fracture-mechanics parameters are employed such as the fracture toughness, K IC , or, for high plastic strains, the J-integral, JIC. The applicability of these parameters is, however, limited by the dimensions of the samples (e.g. thickness). In claddings with a wall thickness of below 1 mm, determination of toughness necessitates an extension of the J-integral concept. A method based on the traditional J-approach, but applicable to thin-walled structures, is presented in this paper. (author)

  7. Analysis of multi-factor coupling effect on hydraulic fracture network in shale reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2015-03-01

    Full Text Available Based on the research results of lab triaxial hydraulic fracturing simulation experiments, field fracturing practice, and theory analysis, the factors affecting the growth of hydraulic fracture network in shale reservoirs, including brittleness, difference of horizontal stress, distribution and mechanical characteristics of natural fractures, fluid viscosity and fracturing parameters, etc are analyzed in this study. The results show that the growth of fracture network in shale reservoirs is affected by geological factors and engineering factors jointly. From the perspective of reservoir geological factors, the higher the rock brittleness, the more developed the natural fractures, and the poorer the natural fracture consolidation, the more likely hydraulic fracture network will be formed. From the perspective of fracturing engineering factors, lower fluid viscosity and larger fracturing scale will be more helpful to the formation of extensive fracture network. On the basis of the analysis of single factors, a multi-factor coupling index has been established to characterize the growth degree of hydraulic fracture network and evaluate the complexity of hydraulic fractures after the fracturing of shale reservoirs.

  8. CT findings predictive of neurological deficits in throracolumbar burst fractures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Jeong, Hee Seok; Jeong, Yeo Jin [Pusan National University and Research Institute for Convergence of Biomedical Science and Technology, Dept. of Radiology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of); Lee, In Sook [Dept. of Radiology, Pusan National University Hospital, Busan (Korea, Republic of)

    2016-09-15

    To determine the computed tomography (CT) findings predictive of neurological deficits in thoracolumbar spine injuries. One hundred two patients with thoracolumbar spinal burst fractures, after excluding the patients with brain and cervical cord injuries and unconsciousness, who underwent consecutive spine 128-multidetector CT scan formed the study group. The neurological findings were clinically classified as no deficit (n = 58), complete deficit with paraplegia (n = 22), and incomplete deficit with either motor or sensory impairment (n = 22). The following four CT imaging parameters were analyzed: the level of the main burst fracture as the cord (n = 44) and the cauda equina (n = 58) levels; the extent of canal encroachment as central canal ratios (CCRs) below 0.5 (n = 43) and above 0.5 (n = 59); the degree of laminar fracture as no fracture (n = 33), linear fracture (n = 7), separated fracture (n = 27), and displaced fracture (n = 35); fractured vertebra counted as single (n = 53) and multiple (n = 49). Complete neurological deficit was associated with injuries at the cord level (p = 0.000) and displaced laminar fractures (p = 0.000); incomplete neurological deficit was associated with CCRs below 0.5 (p = 0.000) and multiple vertebral injuries (p = 0.002). CT scan can provide additional findings predictive of neurological deficits in thoracolumbar spinal burst fractures.

  9. Return to sports after ankle fractures: a systematic review.

    Science.gov (United States)

    Del Buono, Angelo; Smith, Rebecca; Coco, Manuela; Woolley, Laurence; Denaro, Vincenzo; Maffulli, Nicola

    2013-01-01

    This review aims to provide information on the time athletes will take to resume sports activity following ankle fractures. We systematically searched Medline (PubMED), EMBASE, CINHAL, Cochrane, Sports Discus and Google scholar databases using the combined keywords 'ankle fractures', 'ankle injuries', 'athletes', 'sports', 'return to sport', 'recovery', 'operative fixation', 'pinning', 'return to activity' to identify articles published in English, Spanish, French, Portuguese and Italian. Seven retrospective studies fulfilled our inclusion criteria. Of the 793 patients, 469 (59%) were males and 324 (41%) were females, and of the 356 ankle fractures we obtained information on, 338 were acute and 18 stress fractures. The general principles were to undertake open reduction and internal fixation of acute fractures, and manage stress fractures conservatively unless a thin fracture line was visible on radiographs. The best timing to return to sports after an acute ankle fracture is still undefined, given the heterogeneity of the outcome measures and results. The time to return to sports after an acute stress injury ranged from 3 to 51 weeks. When facing athletes with ankle fractures, associated injuries have to be assessed and addressed to improve current treatment lines and satisfy future expectancies. The best timing to return to sports after an ankle fracture has not been established yet. The ideas of the return to activity parameter and surgeon databases including sports-related information could induce research to progress.

  10. Characterization of fracture networks for fluid flow analysis

    International Nuclear Information System (INIS)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs

  11. CT findings predictive of neurological deficits in throracolumbar burst fractures

    International Nuclear Information System (INIS)

    Moon, Tae Yong; Jeong, Hee Seok; Jeong, Yeo Jin; Lee, In Sook

    2016-01-01

    To determine the computed tomography (CT) findings predictive of neurological deficits in thoracolumbar spine injuries. One hundred two patients with thoracolumbar spinal burst fractures, after excluding the patients with brain and cervical cord injuries and unconsciousness, who underwent consecutive spine 128-multidetector CT scan formed the study group. The neurological findings were clinically classified as no deficit (n = 58), complete deficit with paraplegia (n = 22), and incomplete deficit with either motor or sensory impairment (n = 22). The following four CT imaging parameters were analyzed: the level of the main burst fracture as the cord (n = 44) and the cauda equina (n = 58) levels; the extent of canal encroachment as central canal ratios (CCRs) below 0.5 (n = 43) and above 0.5 (n = 59); the degree of laminar fracture as no fracture (n = 33), linear fracture (n = 7), separated fracture (n = 27), and displaced fracture (n = 35); fractured vertebra counted as single (n = 53) and multiple (n = 49). Complete neurological deficit was associated with injuries at the cord level (p = 0.000) and displaced laminar fractures (p = 0.000); incomplete neurological deficit was associated with CCRs below 0.5 (p = 0.000) and multiple vertebral injuries (p = 0.002). CT scan can provide additional findings predictive of neurological deficits in thoracolumbar spinal burst fractures

  12. Three-phase fracturing in granular material

    Science.gov (United States)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  13. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  14. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  15. Geometry, mechanics and transmissivity of rock fractures

    International Nuclear Information System (INIS)

    Lanaro, F.

    2001-04-01

    This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of

  16. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  17. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  18. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    Science.gov (United States)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    the increasing of the interporosity flow parameter, flow exchange between the matrix and the small-scale fracture network will be advanced and may mask the pseudosteady-state flow period. The duration of flow exchange increases and the dip caused by the interporosity flow gets deeper with the decreasing of the storability ratio. Finally, an appropriate choice of the pseudosteady or transient dual-porosity model to idealize the small-scale fracture networks with the matrix depends entirely on a better understanding of the geological evidence supporting either model.

  19. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  20. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  1. Rapid imbibition of water in fractures within unsaturated sedimentary rock

    Science.gov (United States)

    Cheng, C.-L.; Perfect, E.; Donnelly, B.; Bilheux, H. Z.; Tremsin, A. S.; McKay, L. D.; DiStefano, V. H.; Cai, J. C.; Santodonato, L. J.

    2015-03-01

    The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s-0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s-0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s-1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media.

  2. Vertebral Fracture Prediction

    DEFF Research Database (Denmark)

    2008-01-01

    Vertebral Fracture Prediction A method of processing data derived from an image of at least part of a spine is provided for estimating the risk of a future fracture in vertebraeof the spine. Position data relating to at least four neighbouring vertebrae of the spine is processed. The curvature...

  3. Dislocation model of fracture

    International Nuclear Information System (INIS)

    Kull', L.M.

    1987-01-01

    Papers dealing with study on mechanisms of submicricrack formation and propagation using dislocation representations are analyzed. Cases of brittle and ductile fracture of materials as well as models of dislocationless (amorphous) zone at the growing crack tip are considered. Dislocation models of fracture may be used when studying the processes of deformation and accumulation of damages in elements of nuclear facilities

  4. Physeal Fractures in Foals.

    Science.gov (United States)

    Levine, David G; Aitken, Maia R

    2017-08-01

    Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue of S¯adhan¯a is rightly dedicated to the fracture mechanics of concrete. In particular, the size effect is highlighted. As appropriately pointed out in the first inter- national conference on fracture mechanics of concrete structures, FraMCos-I, organized by Z P Ba˘zant, at Breckenridge, Colorado in 1992, ...

  6. Displaced patella fractures.

    Science.gov (United States)

    Della Rocca, Gregory J

    2013-10-01

    Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Hand fracture - aftercare

    Science.gov (United States)

    ... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...

  8. 10-year probability of major osteoporotic fractures and hip fractures according to Ukrainian model of FRAX® in women with vertebral fractures

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva

    2017-02-01

    Full Text Available Background. Vertebral fractures are one of the severe complications of systemic osteoporosis, which lead to the low-back pain, decrease or loss of efficiency and increase of mortality in older people. FRAX and dual-energy X-ray absorptiometry (DXA are important methods in determining major osteoporotic fractures risk, including vertebral fractures. Materials and methods. We studied the parameters of Ukrainian model of FRAX in women depending on the presence of vertebral fractures. 652 patients aged 40–89 years examined at the Ukrainian Scientific Medical Center of Osteoporosis were divided into two groups: the first one — 523 women without any previous fractures, the second one — 129 patients with previous vertebral fractures. The assessment of bone mineral density (BMD was performed using DXA (Prodigy, General Electric. The 10-year probability of major osteoporotic fractures (FRAX-MOF and hip fractures (FRAX-HF has been determined using Ukrainian model of FRAX according to two methods — with body mass index (FRAXBMI and BMD. Results. According the distribution of FRAXBMI-MOF parameters in women depending on the presence of vertebral fractures, it was found that index of FRAXBMI-MOF was less than 20 % (the limit indicated as the criterion for treatment initiation in US guidelines in 100 and 100 % of subjects, respectively. The indices of FRAX BMD-HF were less than 3 % (the limit for starting treatment in US guidelines in 95 and 55 % of women, respectively. It was shown the significant moderate correlation between the indices of two methods in all groups for both parameters of the algorithm — FRAX-MOF and FRAX-HF. Conclusions. The study of the age-specific features of FRAX in women depending on the presence of vertebral fractures showed a significant increase in the risks for both major osteoporotic and hip fractures, regardless of the used technique (with BMI or BMD in women with vertebral fractures or without any fractures. Our

  9. Discrete fracture network for the Forsmark site

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Bour, O.; Dreuzy, J.R. de

    2006-08-01

    In this report, we aim at defining a self-consistent method for analyzing the fracture patterns from boreholes, outcrops and lineaments. The objective was both to point out some variations in the fracture network parameters, and to define the global scaling fracture models that can encompass all the constraints brought by the different datasets. Although a full description of the DFN model variability is obviously fundamental for the future, we have put emphasis on the determination of mean parameters. The main parameters of the disc-shaped DFN model are the fracture size, orientations and spatial density distribution. The scaling model is defined as an extrapolation of existing i) observations at specific scales and ii) local fitting models to the whole range of scales. The range of possible models is restricted to the power-law scaling models. During the project we have put emphasize on the definition of the theory and methodology necessary to assess a sound comparison between data taken at different scales, with different techniques. Both 'local' and 'global' models have been investigated. Local models are linked exactly to the dataset they represent. Then, the global DFN models arise from the association of local models, different scales and different sample support shapes. Discrepancies between local and global model illustrate the variability associated to the DFN models. We define two possible Global Scaling Models (GSM). The first one is consistent with the scaling measured in the outcrops (Model A). Its scaling exponent is a 3d =3.5 (eq. to k r =2.5); it overestimates the fracture densities observed in the lineament maps. The second one assumes that both lineaments and outcrops belong to the same distribution model (Model B), which entails a scaling exponent a 3d =3.9 (eq. to k r =2.9). Both models have been tested by looking for the best consistency in the fracture density-dip relationships, between boreholes data at depth (based on boreholes KFM02A, KFM

  10. Management of Open Fractures

    Directory of Open Access Journals (Sweden)

    Robert Blease

    2005-11-01

    Full Text Available The large spectrum of open fractures is an amalgamation of injuries with the single variable in common of communication of the fractured bone with the outside environment, and thus an increased risk for infection. Contributing to the presence of bacteria within the fracture site is devascularized soft tissue, the degree of which can be directly attributed to the amount of energy imparted to the tissues. The currently used classification system aids in defining the degree of severity of these injuries and their subsequent risk for infection. The basic management principal for all of these injury patterns remains essentially the same, however: prevention of infection through debridement, wound management, antibiotic usage, and fracture stabilization. Frequently multiple surgical procedures will be required in order to obtain an infection free, united fracture with adequate soft tissue coverage (1.

  11. Formation fracturing with foam

    Energy Technology Data Exchange (ETDEWEB)

    Blauer, R.E.; Kohlhaas, C.A.

    1974-01-01

    Over 60 wells have been treated with hydraulic fracturing techniques, with foam as the fracturing fluid. These foams contained as much as 95% gaseous phase; most treatments used foams with gas contents in the 65% to 85% range. Foam has several desirable properties for use as a fracturing fluid: high sand-carrying and sand-suspending capability, low fluid loss, low hydrostatic head, low pressure drops due to friction, quick fluid recovery, low formation damage, and no reduction of fracture conductivity due to fluid ingredients. Most applications of foam as a fracturing fluid have been in low permeability gas reservoirs. However, several oil reservoirs also have been successfully treated. Cost of the treatment is approx. the same or slightly less than a treatment with conventional fluids of comparable volume and rate. (25 refs.)

  12. Dating fractures in infants

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N.J.; Somers, J.M. [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R. [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  13. Proximal femoral fractures

    DEFF Research Database (Denmark)

    Palm, Henrik; Teixidor, Jordi

    2015-01-01

    BACKGROUND: In hip fracture surgery, the exact choice of implant often remains somewhat unclear for the individual surgeon, but the growing literature consensus has enabled publication of evidence-based surgical treatment pathways. The aim of this article was to review author pathways and national...... guidelines for hip fracture surgery and discuss a method for future pathway/guideline implementation and evaluation. METHODS: By a PubMed search in March 2015 six studies of surgical treatment pathways covering all types of proximal femoral fractures with publication after 1995 were identified. Also we......-displaced femoral neck fractures and prosthesis for displaced among the elderly; and sliding hip screw for stabile- and intramedullary nails for unstable- and sub-trochanteric fractures) but they are based on a variety of criteria and definitions - and often leave wide space for the individual surgeons' subjective...

  14. Studies of fracture network geometry of reservoir outcrop analogues from terrestrial lidar data: attempts to quantify spatial variations of fracture characteristics

    Science.gov (United States)

    Vsemirnova, E. A.; Jones, R. R.; McCaffrey, K. J. W.

    2012-04-01

    We describe studies analysing terrestrial lidar datasets of fracture systems from a range of reservoir analogues in clastic and carbonate lithologies that represent geological analogues of offshore hydrocarbon reservoirs for the UK continental shelf. As fracture networks (observed here from centimetre to kilometre scale) can significantly affect the permeability of a fractured reservoir, the definition of fracture network geometry at various scales has become an important goal of structural analysis. The main aim of the study has been to extend the investigation of fracture networks in order to quantify spatial variations in fracture parameters in a variety of lithologies. The datasets were pre-processed using RiSCAN PRO software, and then re-sampled and filtered to derive characteristics which are traditionally measured from outcrops, including size distributions, fracture spacing and clustering statistics. This type of analysis can significantly reduce the uncertainty associated with some field fracture network measurements. The digitised fracture networks datasets are then used to investigate various aspects of spatial heterogeneity. A series of fracture maps (joints and faults) were generated at different scales, and fracture trends were studied to test scale dependency of fracture orientations. Multiscale trend analysis was then applied to describe the trend structure of the fracture networks.

  15. FRACTAL ANALYSIS OF FRACTURE SYSTEMS IN UPPER TRIASSIC DOLOMITES IN ŽUMBERAK MOUNTAIN, CROATIA

    Directory of Open Access Journals (Sweden)

    Ivica Pavičić

    2017-01-01

    Full Text Available This paper presents results of fractal analysis of fracture systems in upper Triassic dolomites in Žumberak Mountain, Croatia. Mechanical rock characteristics together with structural and diagenetic processes results with fracture systems that can be considered as fractals. They are scale-invariant in specific range of scales. Distribution of fractures can be than described with power law distribution and fractal dimension. Fractal dimension is a measure of how fractures fill the space. Fractal dimension can be estimated form photographs of outcrops by converting photographs to binary photographs. In binary photo there is only black (rock or fractures and white (fractures or rock. Fractal dimension is then estimated based on box-counting method. In this paper we present results of fractal analysis from three outcrops. Results are very similar to previous published results from outcrops of dolomites in Slovenia. Obtained fractal dimensions are in range 2,69-2,78 and it depends on how fracture systems are distributed in the outcrop. Lower values indicate smaller number of fractures and higher significance of larger fractures. Higher values indicate distribution of more similar sized fractures throughout whole outcrop. Fractal dimension is very significant parameter in rock fracture system characterisation sense it describes how fractures are distributed in the outcrop. It can be used in discrete fracture network modelling if spatial distribution of fractures is represented with power law distribution.

  16. Optimization of Multi-Cluster Fracturing Model under the Action of Induced Stress in Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Shanyong Liu

    2016-05-01

    Full Text Available Volume fracturing in shale gas forms complex fracture networks and increases stimulated reservoir volume through large-scale fracturing operation with plug-perforation technology. However, some perforation clusters are stimulated unevenly after fracturing. This study aims to solve this problem by analyzing the shortcomings of the conventional fracturing model and developing a coupled model based on the 2D fracture motion equation, energy conservation law, linear elastic mechanics, and stress superposition principle. First, a multi-fracture in-situ stress model was built by studying the induced stress produced by the fracture initiation to deduce the multi-fracture induced stress impact factor on the basis of the stress superposition principle. Then, the classical Perkins–Kern–Nordgren model was utilized with the crustal stress model. Finally, a precise fracturing design method was used to optimize perforation and fracturing parameters under the new model. Results demonstrate that the interference effect among fractures is the major factor causing the non-uniform propagation of each fracture. Compression on the main horizontal stress increases the net pressure. Therefore, both the degree of operation difficulty and the complexity of fracture geometry are improved. After applying the optimal design, the production is increased by 20%, and the cost is reduced by 15%.

  17. Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Jonathan Lee

    2016-09-01

    Full Text Available History of present illness: A 74-year-old male presented to the emergency department with left hip pain after falling off his bicycle. Pain is 3/10 in severity and exacerbated by movement. Patient denied head trauma. Exam showed left hip tenderness, 3/5 left lower extremity strength secondary to pain, and 5/5 right lower extremity strength. Sensation and pulses were intact in bilateral lower extremities. Left hip X-ray and pelvic CT revealed comminuted, impacted transcervical and subcapital fracture of the left femoral neck. Significant findings: In the anteroposterior view bilateral hip x-ray, there is an evident loss of Shenton’s line on the left (red line when compared to the normal right (white line, indicative of a fracture in the left femoral neck. This correlates with findings seen on pelvic CT, which reveals both a subcapital fracture (blue arrow and transcervical fracture (yellow arrow. The neck of the femur is displaced superiorly relative to the head of the femur while the head of the femur remains in its anatomical position within the acetabulum. Discussion: Femoral neck fractures are one of the most common types of hip fractures, accounting for 49.4% of all hip fractures.1 Diagnosing a femoral neck fracture can be made with plain x-ray, CT, or MRI. Plain film radiographs have been found to be at least 90% sensitive for hip fractures CT’s have been found to be 87%-100% sensitive and 100% specific for occult hip fractures in which plain radiographs were read as negative, but the patient still complained of hip pain Although MRI is currently the gold standard for detecting occult hip fractures (sensitivity and specificity = 100%, given MRI’s limited accessibility in the ED as well as the high sensitivity and specificity of CT scans for occult hip fractures, it is generally recommended to obtain CT scans for patients with suspected occult hip fractures as a first-line investigation

  18. An evaluation of fracture toughness of bituminous coal

    International Nuclear Information System (INIS)

    Pathan, A.G.

    2005-01-01

    The role of fracture mechanics in the design of rock structures is vitally important. However, because of the complexities of rock structures and lack of understanding of the fundamentals of the failure mechanism, it has become customary to use the engineering properties approach in the design of stable rock structures. Recently considerable attention has been given and attempts are being made to apply the fracture mechanics approach to the design of safe mining structures. In mining engineering the fracture mechanics may be applied to calculate the formation of fracture zones around mine opening, thus estimating support requirements and formulating guide lines for the selection of mine roadway support system. The research work presented here is concerned with the evaluation of fracture toughness of coal under laboratory conditions. Diametral compression test method is used to determine the fracture toughness parameter of coal in the opening model failure. The effect of crack length and dimensionless crack length on the fracture toughness was studied also. A laboratory investigation of fracture toughness of coal in tensile mode failure has led to the conclusion that fracture toughness could be treated as a material property. (author)

  19. Transport efficiency and dynamics of hydraulic fracture networks

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  20. Transport efficiency and dynamics of hydraulic fracture networks

    Directory of Open Access Journals (Sweden)

    Till eSachau

    2015-08-01

    Full Text Available Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  1. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  2. Stress fluctuations in fracture networks from theoretical and numerical models

    Science.gov (United States)

    Davy, P.; Darcel, C.; Mas Ivars, D.; Le Goc, R.

    2017-12-01

    We analyze the spatial fluctuations of stress in a simple tridimensional model constituted by a population of disc-shaped fractures embedded in an elastic matrix with uniform and isotropic properties. The fluctuations arise from the classical stress enhancement at fracture tips and stress shadowing around fracture centers that are amplified or decreased by the interactions between close-by fractures. The distribution of local stresses is calculated at the elementary mesh scale with the 3DEC numerical program based on the distinct element method. As expected, the stress distributions vary with fracture density, the larger is the density, the wider is the distribution. For freely slipping fractures, it is mainly controlled by the percolation parameter p (i.e., the total volume of spheres surrounding fractures). For stresses smaller than the remote deviatoric stress, the distribution depends only on for the range of density that has been studied. For large stresses, the distribution decreases exponentially when increasing stress, with a characteristic stress that increases with entailing a widening of the stress distribution. We extend the analysis to fractures with plane resistance defined by an elastic shear stiffness ks and a slip Coulomb threshold. A consequence of the fracture plane resistance is to lower the stress perturbation in the surrounding matrix by a factor that depends on the ratio between ks and a fracture-matrix stiffness km mainly dependent on the ratio between Young modulus and fracture size. km is also the ratio between the remote shear stress and the displacement across the fracture plane in the case of freely slipping fractures. A complete analytical derivation of the expressions of the stress perturbations and of the fracture displacements is obtained and checked with numerical simulations. In the limit ks >> km, the stress perturbation tends to 0 and the stress state is spatially uniform. The analysis allows us to quantify the intensity of the

  3. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  4. Barometric Pumping of a Fractured Porous Medium

    Science.gov (United States)

    Adler, P. M.; Mourzenko, V.; Thovert, J. F.; Pili, E.; Guillon, S.

    2014-12-01

    Fluctuations in the ambient atmospheric pressure result in motion of air in porous fractured media. This mechanism, known as barometric pumping, efficiently transports gaseous species through the vadose zone to the atmosphere. This is of interest in fields, such as transport of trace gases from soil to atmosphere, remediation of contaminated sites, radon in buildings, leakage from carbon sequestration sites and detection of nuclear explosions. The fractures are modeled as polygonal plane surfaces with a given transmissivity embedded in a permeable matrix. The slightly compressible fluid obeys Darcy's law in these two media with exchanges between them. The solute obeys convection-diffusion equations in both media again with exchanges. The fractures and the porous medium are meshed by triangles and tetrahedra, respectively. The equations are discretized by the finite volume method. A Flux Limiting Scheme diminishes numerical dispersion ; the solute transfer between the fractures and the porous medium is precisely evaluated. The resulting equations are solved by conjugate gradient algorithms. This model is applied to the Roselend Natural Laboratory. At a 55 m depth, a sealed cavity allows for gas release experiments across fractured porous rocks in the unsaturated zone. The fractures are hexagons with a radius of 5m; their density is larger than 2.4 10-3 m-3; the aperture is about 0.5 mm. The pressure fluctuations are sinusoidal, of amplitude 0.01 bar and period 1 week. The solute concentration is equal to 1 at the bottom. Systematic results will be presented. First, the precision of the calculations is assessed. Second, the pressure and solute concentration fields are displayed and discussed. Third, the influence of the major parameters (fracture density, aperture, porosity, diffusion coefficient,…) is illustrated and discussed. These results are discussed in terms of the amplification of solute transfer to the ground surface by the pressure fluctuations.

  5. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  6. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  7. Hydraulic Fracture Containment in Sand

    NARCIS (Netherlands)

    Dong, Y.

    2010-01-01

    The mechanism of hydraulic fracturing in soft, high permeability material is considered fundamentally different from that in hard, low permeability rock, where a tensile fracture is created and conventional linear elastic fracture mechanics (LEFM) applies. The fracturing and associated modeling work

  8. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  9. A Modified TSD Specimen for Fracture Toughness Characterization – Fracture Mechanics Analysis and Design

    DEFF Research Database (Denmark)

    Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    The tilted sandwich debond (TSD) specimen has been recognized as a viable candidate for characterization of the face/core fracture resistance. Analysis, however, shows that the range of phase angles that can be realized by altering the tilt angle and other parameters of the test is quite limited....

  10. Femur fracture repair - discharge

    Science.gov (United States)

    ... McCormack RG, Lopez CA. Commonly encountered fractures in sports medicine. In: Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap ...

  11. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  12. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  13. Fractures - Multiple Languages

    Science.gov (United States)

    ... Expand Section Bone Fractures - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Cast Care - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual ...

  14. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 13. Safran MR, Zachazewski J, Stone DA. Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, ...

  15. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-01-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis. (orig.) [de

  16. Calcaneal stress fractures.

    Science.gov (United States)

    Weber, Jason M; Vidt, Louis G; Gehl, Richard S; Montgomery, Travis

    2005-01-01

    The majority of plantar heel pain is diagnosed as plantar fasciitis or heel spur syndrome. When historic or physical findings are unusual or when routine treatment proves ineffective, one should consider an atypical cause of heel pain. Stress fractures of the calcaneus are a frequently unrecognized source of heel pain. In some cases they can continue to go unrecognized because the symptoms of calcaneal stress fractures sometimes improves with treatments aimed at plantar fasciitis. Calcaneal stress fractures can occur in any population of adults and even children and are common among active people, such as athletes, sports enthusiasts, and military personnel. It is likely that the number of diagnosed calcaneal stress fractures will rise among practitioners with an increased recognition of their possibility.

  17. Stress fractures in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-12-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis.

  18. Fatigue and insufficiency fractures

    International Nuclear Information System (INIS)

    Lodwick, G.S.; Rosenthal, D.I.; Kattapuram, S.V.; Hudson, T.M.

    1987-01-01

    The incidence of stress fracture is increasing. In our younger society this is due largely to a preocupation with physical conditioning, but in our elderly population it is due to improved recognition and better methods of detection and diagnosis. Stress fracture of the elderly is an insufficiency fracture which occurs in the spine, the pelvis, the sacrum and other bones afflicted with disorders which cause osteopenia. Stress fracture is frequently misdiagnosed as a malignant lesion of bone resulting in biopsy. Scintiscanning provides the greatest frequency of detection, while computed tomography often provides the definitive diagnosis. With increased interest and experience a better insight into the disease has been achieved, and what was once thought of as a simple manifestation of mechanical stress is now known to be an orderly, complex pattern of physiological changes in bone which conform to a model by Frost. The diffuse nature of these changes can be recognized by scintigraphy, radiography and magnetic resonance imaging. 27 refs.; 8 figs

  19. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  20. Hip fracture - discharge

    Science.gov (United States)

    ... Philadelphia, PA: Elsevier; 2017:chap 55. Read More Broken bone Hip fracture surgery Hip pain Leg MRI scan Osteoporosis - overview Patient Instructions Getting your home ready - knee or hip surgery Osteomyelitis - discharge Review ...

  1. Upscaling on Fracture Flow Models

    OpenAIRE

    Dugstad, Martin Sandanger

    2017-01-01

    Fractures have a great impact on the quality of a porous media. The understanding of the fractures is important to describe the challenges linked to flow of geothermal heat, the transport of groundwater or transport of hydrocarbons in a porous media. The understanding of fracture can help to increase the energy production, or the extraction of clean drinkable groundwater. In this study we will investigate the effects of fractures in a porous medium by incorporate fractures as a...

  2. Pressure Transient Analysis and Flux Distribution for Multistage Fractured Horizontal Wells in Triple-Porosity Reservoir Media with Consideration of Stress-Sensitivity Effect

    Directory of Open Access Journals (Sweden)

    Jingjing Guo

    2015-01-01

    Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.

  3. Nano-scale characterization of fracture surfaces of blended epoxy resins related to fracture properties

    Energy Technology Data Exchange (ETDEWEB)

    Haris, Andi [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Adachi, Tadaharu [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)], E-mail: adachi@mech.titech.ac.jp; Araki, Wakako [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-11-25

    The fracture surface morphologies of epoxy resins with different macromolecular structures created by blending two epoxy monomers with different molecular weights (Epikote 828 and Epikote 1001) were characterized using atomic force microscopy with different sampling intervals. A measured fracture surface parameter (roughness ratio, S{sub dr}) was quantitatively analyzed from the topographic images and then correlated to the measured fracture energy, G{sub IC}. The fracture energy increased with the content of Epikote 1001 monomer, {phi}. The nano-scale surface roughness strongly depended on {phi}, meaning that each epoxy resin can be considered to have a different material structure in several nano-scales; heterogeneity, network or crosslink, which can be observed at higher resolution, 6 nm for 3 x 3 {mu}m{sup 2} scanning area, and 2 nm for 1 x 1 {mu}m{sup 2} scanning area. The fracture property is thus sensitive to the observed nano-structure whereas the glassy modulus is not. Therefore, the combination of the viscoelastic and fracture properties can be tailored by changing the network or crosslink structure by blending monomers with different molecular weights.

  4. Thermal fracture and pump limit of Nd: glass

    International Nuclear Information System (INIS)

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  5. 2014 New Trends in Fatigue and Fracture Conference

    CERN Document Server

    Milovic, Ljubica

    2017-01-01

    This book is a compilation of selected papers from the 2014 New Trends in Fatigue and Fracture (NT2F14) Conference, which was held in Belgrade, Serbia. This prestigious conference brought together delegates from around the globe to discuss how to characterize, predict and analyze the fatigue and fracture of engineering materials, components, and structures using theoretical, experimental, numerical and practical approaches. It highlights some important new trends in fracture mechanics presented at the conference, such as: • two-parameter fracture mechanics, arising from the coupling of fracture toughness and stress constraints • high-performance steel for gas and oil transportation and production (pressure vessels and boilers) • safety and reliability of welded joints This book includes 12 contributions from well-known international scientists and a special tribute dedicated to the scientific contributions of Stojan Sedmark, who passed away in 2014.

  6. Modelling of Specimen Fracture

    Science.gov (United States)

    2013-09-23

    cleavage fracture initiation (such as displacement at fracture initiation for Charpy V-notch tests ) is first selected. Normally, tests are selected... Testing and Materials. 2006. ASTM E 1921-05: Standard Test Method for Determination of Reference Temperature, T0 for Ferritic Steels in the...work includes the continuing testing and improvement of the post-processor. TABLE OF CONTENTS 1.0 INTRODUCTION

  7. Classical fracture mechanics methods

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Landes, J.D.

    2007-01-01

    Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals

  8. Dynamic fracture toughness

    Science.gov (United States)

    Kobayashi, A. S.; Ramulu, M.; Dadkhah, M. S.; Yang, K.-H.; Kang, B. S. J.

    1986-01-01

    Dynamic fracture toughness versus crack velocity relations of Homalite-100, polycarbonate, hardened 4340 steel and reaction bonded silicon nitride are reviewed and discrepancies with published data and their probable causes are discussed. Data scatter in published data are attributed in part to the observed fluctuations in crack velocities. The results reaffirmed our previous conclusion that the dynamic fracture toughness versus crack velocity relation is specimen dependent and that the dynamic arrest stress intensity factor is not a unique material property.

  9. Radiocolloid transport in saturated and unsaturated fractures

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Jain, R.; Fertelli, Y.

    1991-01-01

    Studies have shown that radionuclides and toxic materials can attach to colloidal particles in groundwater or are themselves colloids. Since these contaminated particles can migrate several miles, toxic colloids present a potential environmental problem: They can rapidly transfer toxic materials through groundwater and pollute drinking water aquifers. Present in this paper is a colloid transport model for single fractures and the resulting simulations of colloid transport in both saturated and unsaturated fracture flow regimes. Results indicated that colloid diffusion rate in the direction normal to flow was an important parameter which was the rate controlling step in the process of colloids diffusing to the fracture wall and being captured. Colloid diffusion is an important parameter because the rate is approximately three orders of magnitude lower for colloids than for molecular species. An analysis of the average fluid velocities for saturated versus unsaturated cases showed that for the same fluid thickness, maximum and average velocities of unsaturated flow case were four times greater than that of the saturated case. In the unsaturated case where colloids migrate irreversibly to the air/water interface, migration rate will be six times the average rate of a saturated fracture. Therefore, unsaturated flow can potentially enhance colloid migration in comparison to the saturated case. A study of various rock/water boundary conditions was also performed and the results showed that irreversible capture was necessary to fully stop colloid propagation

  10. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  11. Long endomedullary nail in proximal third humeral shaft fractures.

    Science.gov (United States)

    Caforio, Marco; Maniscalco, Pietro; Colombo, Massimiliano; Calori, Giorgio Maria

    2016-10-01

    Proximal humeral fractures with a spiral line of fracture extending from the humeral head to the diaphyseal region are increasing. Treatment for these fractures is comparable to that for shaft fractures. The purpose of this study was to evaluate the use of a new "Long" humeral nail for this type of lesion and identify the best distal locking. Forty-three patients treated with a Long Diphos Nail ® were selected for this study: main exclusion criteria were poor cognitive and responsive ability to physical therapy, four-part fracture requiring humeral head replacement, an isolated greater or lesser tubercle fracture and a head-splitting fracture. All patients were divided into two groups according to the distal locking (single or double) and clinically evaluated at 1, 3, 6 and 12 months after surgery. The following parameters were evaluated: fracture healing on radiographic images every month; level of pain with Visual Analogue Scale (VAS); recovery of shoulder function or ability to resume normal daily activities according to the Constant Scoring System (CSS); patient satisfaction; and complications, like fracture consolidation defect or delay. A statistical analysis was performed. Improvements in pain, satisfaction and shoulder functional recovery were recorded. Patients reached fracture healing in two to six months. The mean healing time was better for double distal locking (p=0.04).There was a clinically greater difference (p=0.006) between the groups for the mean Constant score at 3 months follow-up, with better results for the double distal locking group. Complications were: one patient with a consolidation delay with a single distal locking screw breakage; it was necessary to remove the nail and perform a second treatment. The results of the study indicate the efficacy of Long Diphos Nail ® in the treatment of fractures with a line of fracture extending to the proximal diaphyseal region. The features of a multiplane stabilisation above the fracture and a

  12. Assessment of a novel biomechanical fracture model for distal radius fractures

    Directory of Open Access Journals (Sweden)

    Baumbach Sebastian Felix

    2012-12-01

    Full Text Available Abstract Background Distal radius fractures (DRF are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3 and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface. Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10, the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard.

  13. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred; Augustine, Chad

    2017-05-01

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injection well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.

  14. In vitro compressive fracture resistance of human maxillary first premolar with different mesial occlusal distal cavity

    Directory of Open Access Journals (Sweden)

    Wen-Chou Wu

    2014-09-01

    Conclusion: A bonded ceramic restoration restores the fracture load of a tooth comparable to an intact tooth independent of the examined design parameters, whereas the fracture loads of composite-resin-restored teeth were dependent on cavity widths. Cavity pulpal floor depth is not a significant factor of cusp fracture resistance in a tooth restored with either a ceramic inlay or composite resin.

  15. The Criteria for the Selection of Wells for Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    O.V. Salimov

    2017-12-01

    Full Text Available Various methods of selection of wells for hydraulic fracturing are analyzed. It is established that all methods can be divided into three large groups: criteria in the table form of boundary values of parameters, statistical methods of pattern recognition, methods of engineering calculation. The complication or use of additional parameters only leads to a reduction in the number of wells at which hydraulic fracturing is possible. It is shown that the use of reservoir properties of rocks, which are already used by hydraulic fracturing simulators, is not practicable as selection criteria. It is required to include in the selection criteria only those additional factors on which the effectiveness of hydraulic fracturing depends directly.

  16. Occult fracture of the calcaneus - another Toddler's fracture

    International Nuclear Information System (INIS)

    Starshak, R.J.; Simons, G.W.; Sty, J.R.

    1984-01-01

    Fractures of the calcaneus have been considered rare among children. We feel this may be erroneous since in the last 12 months we have seen 10 such fractures among children, 19 and 41 months of age, who presented with acute limping. The fractures were detected with bone imaging which was performed when initial radiographs were noncontributory. Subsequent radiographs of the calcaneus were positive for fracture in 4 to 10 while follow up radiographs confirmed healing fractures in the two children so evaluated. The sensitivity of bone imaging for the detection of occult fractures in toddlers is emphasized. (orig.)

  17. Galeazzi fractures: Is DRUJ instability predicted by current guidelines?

    Science.gov (United States)

    Tsismenakis, Tony; Tornetta, Paul

    2016-07-01

    Clinically significant distal radioulnar joint (DRUJ) injuries can occur with radial shaft fractures. Several radiographic methods of diagnosis, such as radial shortening of >5mm or fracture line within 7.5cm from the lunate facet, have been proposed but not clinically validated. The purpose of this study was to compare radiographic measurements of radial shaft fractures associated with and without clinically significant DRUJ injury (i.e., true Galeazzi fracture-dislocation) in order to evaluate the predictive value of reported parameters of DRUJ injury. A retrospective record and radiographic review was performed of 66 consecutive skeletally mature patients with isolated radial shaft fractures from 2004 to 2014 treated at one level 1 academic trauma center. Intraoperatively determined DRUJ instability after radial shaft fixation was used as the gold standard for diagnosis of a Galeazzi fracture-dislocation. Average age was 34 years old (range: 18-90). By thirds, there were 10 proximal (15%), 27 middle (41%), and 29 distal (44%) fractures. 13 (20%) had an associated ulnar styloid fracture. 7 (11%) patients had DRUJ instability after radial fixation. Radial shortening averaged 4.4±5.2mm (-2.6-22), and 21 had shortening of >5mm. Twenty-six (39%) fractures were within 7.5cm of the wrist joint. Previous guidelines were only moderately accurate. Even greater shortening did not predict instability (3/7 patients with >10mm shortening had a true injury). Four out of 7 cases with instability had ulnar styloid fractures (p=0.02). Using a larger data set than has historically been evaluated, previously reported radiographic guidelines are only moderately accurate. The presence of an ulnar styloid fracture can be helpful. Surgeons should be aware of these associations but rely primarily on intraoperative assessment of the DRUJ after radial fixation to determine treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  19. Sphenoid Sinus and Sphenoid Bone Fractures in Patients with Craniomaxillofacial Trauma

    Science.gov (United States)

    Cantini Ardila, Jorge Ernesto; Mendoza, Miguel Ángel Rivera; Ortega, Viviana Gómez

    2013-01-01

    Background and Purpose Sphenoid bone fractures and sphenoid sinus fractures have a high morbidity due to its association with high-energy trauma. The purpose of this study is to describe individuals with traumatic injuries from different mechanisms and attempt to determine if there is any relationship between various isolated or combined fractures of facial skeleton and sphenoid bone and sphenoid sinus fractures. Methods We retrospectively studied hospital charts of all patients who reported to the trauma center at Hospital de San José with facial fractures from December 2009 to August 2011. All patients were evaluated by computed tomography scan and classified into low-, medium-, and high-energy trauma fractures, according to the classification described by Manson. Design This is a retrospective descriptive study. Results The study data were collected as part of retrospective analysis. A total of 250 patients reported to the trauma center of the study hospital with facial trauma. Thirty-eight patients were excluded. A total of 212 patients had facial fractures; 33 had a combination of sphenoid sinus and sphenoid bone fractures, and facial fractures were identified within this group (15.5%). Gender predilection was seen to favor males (77.3%) more than females (22.7%). The mean age of the patients was 37 years. Orbital fractures (78.8%) and maxillary fractures (57.5%) were found more commonly associated with sphenoid sinus and sphenoid bone fractures. Conclusions High-energy trauma is more frequently associated with sphenoid fractures when compared with medium- and low-energy trauma. There is a correlation between facial fractures and sphenoid sinus and sphenoid bone fractures. A more exhaustive multicentric case-control study with a larger sample and additional parameters will be essential to reach definite conclusions regarding the spectrum of fractures of the sphenoid bone associated with facial fractures. PMID:24436756

  20. Focal osteoporosis defects play a key role in hip fracture.

    Science.gov (United States)

    Poole, Kenneth E S; Skingle, Linda; Gee, Andrew H; Turmezei, Thomas D; Johannesdottir, Fjola; Blesic, Karen; Rose, Collette; Vindlacheruvu, Madhavi; Donell, Simon; Vaculik, Jan; Dungl, Pavel; Horak, Martin; Stepan, Jan J; Reeve, Jonathan; Treece, Graham M

    2017-01-01

    Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction. In the FEMCO case-control clinical study, Cortical Bone Mapping (CBM) was applied to clinical computed tomography (CT) scans to define 3D cortical and trabecular bone defects in patients with acute hip fracture compared to controls. Direct measurements of trabecular bone volume were then made in biopsies of target regions removed at operation. The sample consisted of CT scans from 313 female and 40 male volunteers (158 with proximal femoral fracture, 145 age-matched controls and 50 fallers without hip fracture). Detailed Cortical Bone Maps (c.5580 measurement points on the unfractured hip) were created before registering each hip to an average femur shape to facilitate statistical parametric mapping (SPM). Areas where cortical and trabecular bone differed from controls were visualised in 3D for location, magnitude and statistical significance. Measures from the novel regions created by the SPM process were then tested for their ability to classify fracture versus control by comparison with traditional CT measures of areal Bone Mineral Density (aBMD). In women we used the surgical classification of fracture location ('femoral neck' or 'trochanteric') to discover whether focal osteoporosis was specific to fracture type. To explore whether the focal areas were osteoporotic by histological criteria, we used micro CT to measure trabecular bone parameters in targeted biopsies taken from the femoral heads of 14 cases. Hip fracture patients had distinct patterns of focal osteoporosis that determined fracture type, and CBM measures classified fracture type better than a

  1. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  2. Genetics of osteoporotic fracture

    Directory of Open Access Journals (Sweden)

    Chuan Qiu

    2011-03-01

    Full Text Available Chuan Qiu1,2, Christopher J Papasian2, Hong-Wen Deng1,2,3,4, Hui Shen1,21Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA; 2Department of Basic Medical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA; 3Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, China; 4Molecular and Statistical Genetics Lab, College of Life Sciences, Hunan Normal University, Changsha, ChinaAbstract: Osteoporosis is a major public health problem that results in a massive burden to patients and society through associated low-trauma, osteoporotic fractures. Previous studies have shown that osteoporosis-associated traits, such as low bone mineral density, as well as the probability of actually experiencing an osteoporotic fracture, are under strong genetic control. Susceptibility to osteoporosis and osteoporotic fractures is likely to be controlled by multiple genetic and environmental factors, and by interactions between them. Although numerous genetic studies, mainly candidate gene association studies, have attempted to decipher the genetic basis for osteoporosis and osteoporotic fractures, little success has been achieved. Recent advances in high-throughput genotyping technology and knowledge of common human genetic variants have shifted the approach for studying human complex disorders from candidate gene studies to large-scale genome-wide association studies. In the past three years, more than 10 genome-wide association studies have been carried out for osteoporosis. A number of genes that are associated with osteoporosis-related traits, and/or with the probability of actually experiencing an osteoporotic fracture, have been successfully identified and replicated through these studies. In this article, we review the recent progress in the genetics

  3. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  4. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  5. Analysis of thin fractures with GPR: from theory to practice

    Science.gov (United States)

    Arosio, Diego; Zanzi, Luigi; Longoni, Laura; Papini, Monica

    2017-04-01

    Whenever we perform a GPR survey to investigate a rocky medium, being the ultimate purpose of the survey either to study the stability of a rock slope or to determine the soundness of a quarried rock block, we would like mainly to detect any fracture within the investigated medium and, possibly, to estimate the parameters of the fractures, namely thickness and filling material. In most of the practical cases, rock fracture thicknesses are very small when compared to the wavelength of the electromagnetic radiation generated by the GPR systems. In such cases, fractures are to be considered as thin beds, i.e. two interfaces whose distance is smaller than GPR resolving capability, and the reflected signal is the sum of the electromagnetic reverberation within the bed. According to this, fracture parameters are encoded in the thin bed complex response and in this work we propose a methodology based on deterministic deconvolution to process amplitude and phase information in the frequency domain to estimate fracture parameters. We first present some theoretical aspects related to thin bed response and a sensitivity analysis concerning fracture thickness and filling. Secondly, we deal with GPR datasets collected both during laboratory experiments and in the facilities of quarrying activities. In the lab tests fractures were simulated by placing materials with known electromagnetic parameters and controlled thickness in between two small marble blocks, whereas field GPR surveys were performed on bigger quarried ornamental stone blocks before they were submitted to the cutting process. We show that, with basic pre-processing and the choice of a proper deconvolving signal, results are encouraging although an ambiguity between thickness and filling estimates exists when no a-priori information is available. Results can be improved by performing CMP radar surveys that are able to provide additional information (i.e., variation of thin bed response versus offset) at the expense

  6. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  7. Delayed Fracture Healing in Diabetics with Distal Radius Fractures.

    Science.gov (United States)

    Pscherer, S; Sandmann, G H; Ehnert, S; Nussler, A K; Stöckle, U; Freude, T

    2017-01-01

    PURPOSE OF THE STUDY Diabetics may have an increased fracture risk, depending on disease duration, quality of metabolic adjustment and extent of comorbidities, and on an increased tendency to fall. The aim of this retrospective one-centre study consisted in detecting differences in fracture healing between patients with and without diabetes mellitus. Data of patients with the most common fracture among older patients were analyzed. MATERIAL AND METHODS Classification of distal radius fractures was established according to the AO classification. Inital assessment and followup were made by conventional x-rays with radiological default settings. To evaluate fracture healing, formation of callus and sclerotic border, assessment of the fracture gap, and evidence of consolidation signs were used. RESULTS The authors demonstrated that fracture morphology does not influence fracture healing regarding time span, neither concerning consolidation signs nor in fracture gap behavior. However, tendency for bone remodeling is around 70% lower in investigated diabetics than in non-diabetics, while probability for a successful fracture consolidation is 60% lower. CONCLUSIONS To corroborate the authors hypothesis of delayed fracture healing in patients with diabetes mellitus, prospective studies incorporating influencing factors like duration of metabolic disease, quality of diabetes control, medical diabetes treatment, comorbidities and secondary diseaseas, like chronic nephropathy and osteoporosis, have to be carried out. Key words: diabetes, delayed fracture healing, distal radius fractures, callus formation, blood glucose level, osteoblasts.

  8. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  9. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  10. CT classification of acetabular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Marincek, B.; Porcellini, B.; Robotti, G.

    1984-05-01

    The contribution of computed tomography (CT) in classifying acetabular fractures was analysed retrospectively in 33 cases. CT and plain radiography classification agreed in 27 cases (82%). CT revealed more extensive fractures in 6 patients (thereof 5 patients with associated fractures). In 10 patients (thereof 9 patients with associated fractures) CT showed intraarticular fragments; radiographically intraarticular fragments were seen only in 2 patients and suspected in 4. CT is of considerable aid in defining the fracture pattern. It should be used mainly in patients with radiographically difficult interpretable associated fractures in order to assess preoperatively the weight-bearing part of the acetabulum, the degree of displacement and the presence of intraarticular fragments.

  11. Influence of bone mineral density and hip geometry on the different types of hip fracture.

    Science.gov (United States)

    Li, Yizhong; Lin, Jinkuang; Cai, Siqing; Yan, Lisheng; Pan, Yuancheng; Yao, Xuedong; Zhuang, Huafeng; Wang, Peiwen; Zeng, Yanjun

    2016-01-01

    The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD) were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  12. Influence of bone mineral density and hip geometry on the different types of hip fracture

    Directory of Open Access Journals (Sweden)

    Yizhong Li

    2016-01-01

    Full Text Available The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  13. On the fracture toughness of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as

  14. Pediatric calcaneal fractures

    Directory of Open Access Journals (Sweden)

    Hobie Summers

    2009-07-01

    Full Text Available Although operative treatment of displaced, intra-articular fractures of the calcaneus in adults is generally accepted as standard practice, operative treatment for the same fractures in the skeletally immature remains controversial, potentially because the outcome for fracture types (intra- vs. extra-articular and severity (displaced vs. nondisplaced have been confounded in studies of children. We review herein the results of 21 displaced, intra-articular fractures in 18 skeletally immature patients, who were treated with open reduction and internal fixation using a standard surgical approach and protocol developed for adults. The average pre-operative Böhler's angle on the injured side was -5° (range: -35 - +35 compared to 31° (range: +22 - +47 on the uninjured side, indicating substantial displacement. There were no post-operative infections or wound healing problems, and all but one patient was followed to union (average follow-up: 1.5 years; range: 0.30-4.3 years. Maintenance of reduction was confirmed on follow-up radiographs with an average Böhler's angle of 31° (range: +22 - +49. We demonstrate that results for operative fixation of displaced, intra-articular calcaneal fractures in the skeletally immature are comparable to those in adults when the treatment protocol is the same.

  15. Management of penile fractures

    International Nuclear Information System (INIS)

    Ghilan, Abdulelah M. M.; Al-Asbahi, Waleed A.; Alwan, Mohammed A.; Al-Khanbashi, Omar M.; Ghafour, Mohammed A.

    2008-01-01

    Objective was to present our experience with surgical and conservative management of penile fracture. This prospective study was carried out in the Urology and Nephrology Center, at Al-Thawra General and Teaching Hospital, Sana'a, Yemen from June 2003 to September 2007 and included 30 patients presenting with penile fracture. Diagnosis was made clinically in all our patients. Six patients with simple fracture were treated conservatively while 24 patients with more severe injuries were operated upon. Patient's age ranged from 24-52 years (mean 31.3 years) 46.7% of patients were under the age of 30 years and 56.7% were unmarried. Hard manipulation of the erect penis for example during masturbation was the most frequent mechanism of fracture in 53.3% of patients. Solitary tear was found in 22 patients and bilateral corporal tears associated with urethral injury were found in 2 patients. Corporal tears were saturated with synthetic absorbable sutures and urethral injury was repaired primarily. All operated patients described full erection with straight penis except 3 of the 8 patients who were managed by direct longitudinal incision, in whom mild curvature during erection was observed. The conservatively treated patients described satisfactory penile straightness and erection. The optimal functional and cosmetic results are achieved following immediate surgical repair of penis fracture. Good results can also be obtained in some selected patients with conservative management. (author)

  16. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  17. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.

    2011-11-04

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  18. Talar neck fractures.

    Science.gov (United States)

    Berlet, G C; Lee, T H; Massa, E G

    2001-01-01

    Clinical management of talar neck fractures is complex and fraught with complications. As Gaius Julius Caesar stated: "The die is cast"; often the outcome of a talar neck fracture is determined at the time of injury. The authors believe, however, that better results can be achieved by following some simple guidelines. The authors advocate prompt and precise anatomic surgical reduction, preferring the medial approach with secondary anterolateral approach. Preservation of blood supply can be achieved by a thorough understanding of vascular pathways and efforts to stay within appropriate surgical intervals. The authors advocate bone grafting of medial neck comminution (if present) to prevent varus malalignment and rigid internal fixation to allow for joint mobilization postoperatively. These guidelines may seem simple, but when dealing with the complexity of talar neck fractures, the foot and ankle surgeon needs to focus and rely on easily grasped concepts to reduce poor outcomes.

  19. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... of radiological outcomes and a level of health related quality of life (Eq5d) below but not significantly different from the Danish reference population at a mean of 5.2 years follow-up. Furthermore, a knee injury-specific questionnaire (KOOS) reported a level of disability close to a reference population...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...

  20. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  1. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sensitivity Analysis of the Bone Fracture Risk Model

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  3. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  4. Quantification of guided mode propagation in fractured long bones.

    Science.gov (United States)

    Xu, Kailiang; Liu, Dan; Ta, Dean; Hu, Bo; Wang, Weiqi

    2014-07-01

    Guided modes propagation in intact, fractured and healing long bone has drawn significant research interests. However, mode quantifications for the direct comparison are still necessary to address. The aim of the study is to analyze the mode interaction with a notch-fracture in the long bone and find quantitative ultrasound parameters sensitive to depth and width variation of the fracture. We analyzed the impacts of the partially and completely diaphyseal osteotomy on fundamental guided modes propagation using the two-dimension finite-difference time-domain (2D-FDTD) simulations. The long bones were built as three layer models by a cortical plate embedded between overlying soft tissue and inner-coated marrow. Narrowband low-frequency sinusoids (100 kHz) were employed to only excite two fundamental guided modes. The mode amplitude variations were investigated as functions of the gap-breakage width and depth. It is found that the transverse fractures have strong influences on the anti-symmetric mode A0 transmission and reflection, whereas amplitudes of the symmetric mode S0 are not sensitive to the fracture degree. The quantitative results consistently indicate that reflection energy and transmission coefficients of the S0 and A0 modes can be used to quantify the mode interaction in the fractured long bone and further to evaluate long bone fracture status. Future study is needed to investigate the physical experiments on realistic fractured long bone and to insure that the proposed ultrasound parameters can be used to quantitatively evaluate the long bone fracture in clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A new post-frac evaluation method for shale gas wells based on fracturing curves

    Directory of Open Access Journals (Sweden)

    Xiaobing Bian

    2016-03-01

    Full Text Available Post-fracturing evaluation by using limited data is of great significance to continuous improvement of the fracturing programs. In this paper, a fracturing curve was divided into two stages (i.e., prepad fluid injection and main fracturing so as to further understand the parameters of reservoirs and artificial fractures. The brittleness and plasticity of formations were qualitatively identified by use of the statistics of formation fracture frequency, and average pressure dropping range and rate during the prepad fluid injection. The composite brittleness index was quantitatively calculated by using the energy zones in the process of fracturing. It is shown from the large-scale true triaxial physical simulation results that the complexity of fractures is reflected by the pressure fluctuation frequency and amplitude in the main fracturing curve, and combined with the brittleness and plasticity of formations, the fracture morphology far away from the well can be diagnosed. Well P, a shale gas well in SE Chongqing, was taken as an example for post-fracturing evaluation. It is shown that the shale beds are of stronger heterogeneity along the extension directions of horizontal wells, and with GR 260 API as the dividing line between brittleness and plasticity in this area, complex fracture systems tend to form in brittleness-prone formations. In Well P, half of the fractures are single fractures, so it is necessary to carry out fine subsection and turnaround fracturing so as to improve development effects. This paper provides a theoretical basis for improving the fracturing well design and increasing the effective stimulated volume in this area.

  6. Fractured Petroleum Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  7. Social inequality and hip fracture

    DEFF Research Database (Denmark)

    Harvey, N. C.; Hansen, L.; Judge, A.

    2015-01-01

    fracture (ICD10: S720, S721, S722 and S729) were identified from 1 January 1995 to 31 December 2011. Hip fracture patients were matched 1:1 on age, gender and year of fracture to a non-hip fracture control. An individual's education attainment was defined as basic, secondary or higher, and their income...... and year of fracture, and education and year of fracture, to describe whether the association of income or education with rates of hip fracture changed over time. Results: There were 69,774 hip fracture patients and 69,709 controls (both mean age 81.2 years) with complete data on income and education. Both...

  8. Numerical modeling of the effects of roughness on flow and eddy formation in fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs

    2017-02-01

    Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.

  9. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  10. Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Höfner, S.; Vincent, J.-B.; Blum, J.; Davidsson, B. J. R.; Sierks, H.; El-Maarry, M. R.; Deller, J.; Hofmann, M.; Hu, X.; Pajola, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marqués, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Michalik, H.; Moissl-Fraund, R.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.; Zitzmann, S.

    2017-12-01

    Context. The camera OSIRIS on board Rosetta obtained high-resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Great parts of the nucleus surface are composed of fractured terrain. Aims: Fracture formation, evolution, and their potential relationship to physical processes that drive activity are not yet fully understood. Observed temperatures and gas production rates can be explained or interpreted with the presence of fractures by applying appropriate modelling methods. Methods: We followed a transient thermophysical model approach that includes radiative, conductive, and water-ice sublimation fluxes by considering a variety of heliocentric distances, illumination conditions, and thermophysical properties for a set of characteristic fracture geometries on the nucleus of 67P. We computed diurnal temperatures, heat fluxes, and outgassing behaviour in order to derive and distinguish the influence of the mentioned parameters on fractured terrain. Results: Our analysis confirms that fractures, as already indicated by former studies about concavities, deviate from flat-terrain topographies with equivalent properties, mostly through the effect of self-heating. Compared to flat terrain, illuminated cometary fractures are generally warmer, with smaller diurnal temperature fluctuations. Maximum sublimation rates reach higher peaks, and dust mantle quenching effects on sublimation rates are weaker. Consequently, the rough structure of the fractured terrain leads to significantly higher inferred surface thermal inertia values than for flat areas with identical physical properties, which might explain the range of measured thermal inertia on 67P. Conclusions: At 3.5 AU heliocentric distance, sublimation heat sinks in fractures converge to maximum values >50 W / m2 and trigger dust activity that can be related mainly to H2O. Fractures are likely to grow through the erosive interplay of alternating sublimation and thermal fatigue.

  11. Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks

    Science.gov (United States)

    Kornev, V. M.; Demeshkin, A. G.

    2011-12-01

    The Neuber-Novozhilov approach is used to obtain necessary and sufficient fracture criteria. Using a modified Leonov-Panasyuk-Dugdale model, simple relations for the critical fracture parameters are derived for opening mode edge cracks for the case where the diameter of the prefracture zone coincides with the diameter of the plasticity zone. These relations are suitable for studying fracture where the crack length is negligibly small. A fracture diagram using critical stresses under both criteria is proposed for a wide range of crack length. At a certain level of loading, three regions are identified, in the first of which the crack is stable, in the second, the crack extends but remains stable, and in the third, the crack is unstable. Experimental data on the fracture of specimens with edge cracks are obtained. It is established that the theoretical critical fracture curves are in good agreement with the obtained critical parameters for flat tensile specimens with two collinear edge cracks.

  12. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.

    Science.gov (United States)

    Mondal, Pulin K; Sleep, Brent E

    2012-09-18

    The effects of fracture characteristics, specific discharge, and ionic strength on microsphere transport in variable-aperture dolomite rock fractures were studied in a laboratory-scale system. Fractures with different aperture distributions and mineral compositions were artificially created in two dolomite rock blocks. Transport tests were conducted with bromide and carboxylate-modified latex microspheres (20, 200, and 500 nm diameter). Under overall unfavorable attachment conditions, there was significant retention of the 20 nm microsphere and minimal retention of the 500 nm microsphere for all conditions examined. Aperture variability produced significant spatial variation in colloid transport. Flushing with low ionic strength solution (1 mM) following microsphere transport at 12 mM ionic strength solution produced a spike in effluent microsphere concentrations, consistent with retention of colloids in secondary energy minima. Surface roughness and charge heterogeneity effects may have also contributed to the effect of microsphere size on retention. Matrix diffusion influenced bromide transport but was not a dominant factor in transport for any microsphere size. Calibrated one-dimensional, two-site kinetic model parameters for colloid transport in fractured dolomite were sensitive to the physical and chemical properties of both the fractured dolomite and the colloids, indicating the need for mechanistic modeling for accurate prediction.

  13. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  14. Spatial Distribution, Scaling and Self-similar Behavior of Fracture Arrays in the Los Planes Fault, Baja California Sur, Mexico

    Science.gov (United States)

    Nieto-Samaniego, A. F.; Alaniz-Alvarez, S. A.; Tolson, G.; Oleschko, K.; Korvin, G.; Xu, S. S.; Pérez-Venzor, J. A.

    2005-05-01

    We present a case of detailed analysis of fracture arrays spanning four orders of magnitude in length; all of them measured at a single natural site by acquiring images at progressively larger scales. There is a high dispersion of cumulative-length exponents, box dimensions and fracture densities. However, the fractal analysis supports the fractal nature of fracture arrays. Our data indicate the existence of an upper limit for the density parameters, as similarly reported by other authors. We prove that box dimension is in inverse relation with fracture concentration and in direct relation with fracture density. These relations are also observed in our data and additionally there is an upper limit for the box dimensions. We interpret the dispersion in our results as more fundamental than methodological problems. It represents a truncation in the complete evolution of the fracture systems because in natural cases strain initiates overprinting of previous fracture arrays. Considering that larger fractures accommodate strain more efficiently than small fractures, the generation of small fractures is inhibited in the presence of pre-existing larger fractures. Maximum values of fracture density prevent accommodating an excess of strain in a single or restricted range of scales; we claim this condition produces migration of fracturing to larger scales originating fracture scaling.

  15. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  16. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    type" fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1-C3/4 posterior fusion and the course...... for this injury and suggest early operative stabilization....

  17. Fracture mechanics and parapsychology

    Science.gov (United States)

    Cherepanov, G. P.

    2010-08-01

    The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution

  18. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  19. Neglected hangman fracture

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Srivastava

    2015-01-01

    Full Text Available Acute management of hangman fracture is well described; however the surgical management of neglected hangman fracture has not been described in literature. We report the surgical management of an untreated hangman′s fracture. A 30-year-old male had fallen from a tree 12 weeks back. Patient presented with cervical myelopathy and restricted neck movements. Radiographs and computed tomography (CT scan revealed fracture of pars interarticularis of axis with Grade III C2-C3 spondylolisthesis with localized kyphosis of 33°. Gentle reduction under general anesthesia (GA failed to improve the alignment. Patient was operated in three stages in a single setting. In Stage I, release of contracted anterior structures and C2-C3 discectomy was done in supine position followed by C2-C3 posterior fixation and fusion in Stage II. C2-C3 interbody bone grafting and anterior plating completed the third stage. C2-C3 interbody fusion was seen at 5 months and a CT scan at 18 months postoperative confirmed fusion and maintenance of alignment. The satisfactory outcome in our patient leads us to believe that anterior-posterior-anterior is the appropriate surgical approach for treatment of such patients.

  20. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Going back in the memory pipeline, it was M F Kaplan1 (in 1961) who tried to obtain the fracture toughness of concrete. It was observed ... of cracks. The next question is how to bring the size effect into codes of practice on the design of reinforced concrete structures, since large structures like dams, nuclear reactors, very tall.

  1. Posthydraulic fracture report

    Energy Technology Data Exchange (ETDEWEB)

    Hecht-Nielsen, R.

    1978-10-04

    A series of four, parallel, hydraulically induced hydrofractures were created. The hydrofractures will be used later in Phase I as the loading fractures for slurried explosives. An evaluation of the aerial extent, thickness, and resistance to air flow of each of these four fractures is reported. Downhole pressure, well-head pressure, surface resistivity, tiltmeter, hydrophone response, and crack opening measurements were used as dynamic tests to monitor and to later describe the hydrofracture. Downhole television, high-resolution seismic reflection survey (HRSRS), cross-hole seismic survey (CHSS), pressurized air-flow, tracer-gas flows, gamma-ray logging, and hydrogeologic monitoring were all used as posthydrofracture tests. Of all of these tests, tiltmeter, wellhead pressure, downhole television, pressurized air flows, and hydrogeologic monitoring were the most useful. Downhole pressure, crack opening, hydrophone response, tracer gas flow, and gamma-ray logging were less useful and provided only supportive data. HRSRS and CHSS provided no useful evaluation data. These evaluation tests showed the four hydrofractures to be narrow (less than or equal to 0.01 inches) and horizontal; to extend out at least to the outer ring of production wells in a southeasterly direction; to extend beyond the outer ring of production wells in a northwesterly direction; to have some degree of vertical communication; to have had a minor impact upon the naturally fractured aquifer lying above the desired production zone; and to have had no impact on the naturally fractured aquifer lying below the desired production zone.

  2. Infiltration into Fractured Bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  3. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  4. Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling

    Science.gov (United States)

    Rizzo, Roberto Emanuele; Healy, David; De Siena, Luca

    2017-04-01

    The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in rocks, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture lengths and apertures are fundamental to estimate bulk permeability and therefore fluid flow, especially for rocks with low primary porosity where most of the flow takes place within fractures. The main objective of this work is to demonstrate a more accurate statistical approach to increase utility, meaningfulness, and reliability of data from fractured outcrop analogues. We collected outcrop data from a fractured upper Miocene biosiliceous mudstone formation (California, USA), which exhibits seepage of bitumen-rich fluids through the fractures. The dataset was analysed using Maximum Likelihood Estimators to extract the underlying scaling parameters, and we found a log-normal distribution to be the best representative statistic for both fracture lengths and apertures in the study area. This result can be related to a characteristic length scale, probably the bedding within the sedimentary succession. Finding the best statistical distribution governing a dataset is of critical importance when predicting the tendency of fracture attributes towards small and large scales. The application of Maximum Likelihood Estimators allowed us firstly to individuate the best statistical distribution for fracture attributes measured on outcrop (specifically, length and aperture); secondly, we
used the calculated scaling parameter to generate synthetic fracture networks, which by design are more likely to resemble 
the distribution and spatial organisation observed on outcrop. Finally, we employed the derived distributions for a 2D estimation of the bulk permeability tensor, yielding consistent values of anisotropic permeability for highly fractured rock masses

  5. Multi-scale modelling of transfers in fractured media: application to the Aspo site (Sweden)

    International Nuclear Information System (INIS)

    Fourno, A.

    2005-06-01

    In the field of nuclear waste storage, the geological barrier is the last transfer zone for radio-elements. Since fractures are to be found in geological media, especially for granitic fractured media, special emphasis is put on improving modeling approaches to transfer processes in fractured media. It remains a challenging task due to the large contrasts in the properties of different units of the medium, the geometrical complexity of the system and strong level of uncertainties for flow and transport parameters. In addition, for post closure natural flow conditions, flow is slow and diffusion processes play a major role contributing to the retention of the plume. In this context, a Smeared Fractures approach was developed for a Mixed and Hybrid Finite Element scheme and implemented in our code, Cast3M. This approach allows for explicit representation of major fractures while adopting an homogenized representation of lower levels of fracturing. This Smeared Fracture approach does not require explicit meshing of the complex fracture network geometry. The fractured block is represented on regular mesh, the presence of the fracture being taken into account through an heterogeneous field of parameters. Considering conservation of flow and mass fluxes for each fracture, these parameters are derived. The performances of Smeared Fractures approach are comparable to discrete modeling for flow and presents in addition the advantage of taking full 3D matrix block geometry into account for transport. The size of the mesh as well as temporal discretization have to comply with criteria that were established. Nevertheless, within these boundaries coarser discretization is possible allowing for notable computing costs. The validation and qualification phase was conducted for 2D and 3D cases. These include results on synthetics and realistic systems, for different flow regimes and parameter values. The approach is finally applied on several cases from the Aspo site, Sweden

  6. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  7. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  8. STRESS FRACTURES IN SPORT

    Directory of Open Access Journals (Sweden)

    Đivo Ban

    2009-11-01

    Full Text Available Children and adolescents today, all before starting with regular sports activities and involvement in semi-professional and top professional sport, so it increases the num- ber of discovered stress fractures in this age. This type of injury can occur as a consequence of action one strong force, or the many repeated small force strength, to be exact, when the load (stress transcend ability reparations bones. Stress fractures are recorded and described up to the lower limbs. Research has been confirmed that the bones of lower leg are mostly made in injury, and with the el- derly and with the population of children and young adolescents. Occur in many sports, something to them is greater when the frequency of running and often are present in the female population. According to the results of numerous investigations, mistakes in the training are the most common cause of the emergence of stress fracture. In a direct comparison with complemented these injuries is the condition of muscles, so it is important that at the sa- me time carry out exercises strengthen muscles and stretching. Typical clinical signs of stress fractures are localized painful sensitivity to palpa- tion and runoff in a small number of cases. The basic diagnostic procedure is a medical check, it is the small, radiology and scintigraphyc diagnostics (most accurate and mag- netic resonance imaging. Treatment is usually without surgery and conservative, with rest and reducing stress, and its activity athlete breaks mainly between four and eight weeks. Only the very need surgical treatment The most important thing is that attention is focused on the proper prevention and to take all that it ever occurred to stress fractures that athletes ramble of the courts and the competition (better education of sports workers, separation of groups with increa- sed risk of the formation of an injury, adaptation activities age and abilities of athletes, adequate sports equipment, high-quality sports

  9. Electrical characteristics of rocks in fractured and caved reservoirs

    Science.gov (United States)

    Tang, Tianzhi; Lu, Tao; Zhang, Haining; Jiang, Liming; Liu, Tangyan; Meng, He; Wang, Feifei

    2017-12-01

    The conductive paths formed by fractures and cave in complex reservoirs differ from those formed by pores and throats in clastic rocks. In this paper, a new formation model based on fractured and caved reservoirs is established, and the electrical characteristics of rocks are analyzed with different pore structures using resistance law to understand their effects on rock resistivity. The ratio of fracture width to cave radius (C e value) and fracture dip are employed to depict pore structure in this model. Our research shows that the electrical characteristics of rocks in fractured and caved reservoirs are strongly affected by pore structure and porous fluid distribution. Although the rock electrical properties associated with simple pore structure agree well with Archie formulae, the relationships between F and φ or between I and S w , in more complicated pore structures, are nonlinear in double logarithmic coordinates. The parameters in Archie formulae are not constant and they depend on porosity and fluid saturation. Our calculations suggest that the inclined fracture may lead to resistivity anisotropy in the formation. The bigger dip the inclining fracture has, the more anisotropy the formation resistivity has. All of these studies own practical sense for the evaluation of oil saturation using resistivity logging data.

  10. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  11. Laser induced damage and fracture in fused silica vacuum windows

    International Nuclear Information System (INIS)

    Campbell, J.H.; Hurst, P.A.; Heggins, D.D.; Steele, W.A.; Bumpas, S.E.

    1996-11-01

    Laser-induced damage, that initiates catastrophic fracture, has been observed in large (≤61 cm dia) fused silica lenses that also serve as vacuum barriers in Nova and Beamlet lasers. If the elastic stored energy in the lens is high enough, the lens will fracture into many pieces (implosion). Three parameters control the degree of fracture in the vacuum barrier window: elastic stored energy (tensile stress), ratio of window thickness to flaw depth, and secondary crack propagation. Fracture experiments were conducted on 15-cm dia fused silica windows that contain surface flaws caused by laser damage. Results, combined with window failure data on Beamlet and Nova, were used to develop design criteria for a ''fail-safe'' lens (that may catastrophically fracture but not implode). Specifically, the window must be made thick enough so that the peak tensile stress is less than 500 psi (3.4 MPa) and the thickness/critical flaw size is less than 6. The air leak through the window fracture and into the vacuum must be rapid enough to reduce the load on the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments ''lock'' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase, leading to further (i.e. secondary) crack growth

  12. Optimization of Multiple Hydraulically Fractured Horizontal Wells in Unconventional Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2013-01-01

    Full Text Available Accurate placement of multiple horizontal wells drilled from the same well pad plays a critical role in the successful economical production from unconventional gas reservoirs. However, there are high cost and uncertainty due to many inestimable and uncertain parameters such as reservoir permeability, porosity, fracture spacing, fracture half-length, fracture conductivity, gas desorption, and well spacing. In this paper, we employ response surface methodology to optimize multiple horizontal well placement to maximize Net Present Value (NPV with numerically modeling multistage hydraulic fractures in combination with economic analysis. This paper demonstrates the accuracy of numerical modeling of multistage hydraulic fractures for actual Barnett Shale production data by considering the gas desorption effect. Six uncertain parameters, such as permeability, porosity, fracture spacing, fracture half-length, fracture conductivity, and distance between two neighboring wells with a reasonable range based on Barnett Shale information, are used to fit a response surface of NPV as the objective function and to finally identify the optimum design under conditions of different gas prices based on NPV maximization. This integrated approach can contribute to obtaining the optimal drainage area around the wells by optimizing well placement and hydraulic fracturing treatment design and provide insight into hydraulic fracture interference between single well and neighboring wells.

  13. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  14. Insufficiency fractures in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Vidal, L.; Ausejo de Pomar, E.; Cruzalegui, L.; Cano, R.; Morales, R.; Ara, P.

    1992-01-01

    The occurrence of insufficiency fractures in patients with long-standing rheumatoid arthritis has not been sufficiently emphasized. Osteoporosis due to rheumatoid arthritis, corticosteroid therapy, contracture and angular deformity of the extremity, combine to predispose to the occurrence of the insufficiency fractures in these patients. Additionally, the pain and disability caused by the fracture is often attributed to rheumatoid joint involvement, masking the diagnosis of insufficiency fracture. The fracture may not be visible on radiographs near the onset of symptoms and the bone scanning can help in making an early diagnosis. (Author). 18 refs., 2 fig

  15. Managing Complications of Calcaneus Fractures.

    Science.gov (United States)

    Clare, Michael P; Crawford, William S

    2017-03-01

    Calcaneus fractures remain among the most complicated fractures for orthopedic surgeons to manage because of the complexity of various fracture patterns, the limited surrounding soft tissue envelope, and the prolonged rehabilitation issues impacting function after successful treatment. Despite this, appropriate management of complications associated with calcaneus fractures is critical for the complete care of this injury, whether treated operatively or nonoperatively. The authors present the common complications encountered with fractures of the calcaneus and management thereof. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Percolation and permeability of heterogeneous fracture networks

    Science.gov (United States)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data

  17. EXPERIMENTAL RESULTS OF FRACTURE PARAMETERS FOR HIGH PERFORMANCE CONCRETE

    OpenAIRE

    VERONICA DE SOUZA CALAND

    2001-01-01

    A utilização mais freqüente dos concretos de alto desempenho na Construção Civil exige um melhor conhecimento sobre o comportamento deste material e a verificação de possíveis modificações no dimensionamento de elementos estruturais, como a consideração do efeito de escala. Recentemente, os conceitos da teoria da mecânica da fratura para a análise do comportamento das estruturas começaram a ser utilizados. A energia de fraturamento passa a ser uma propriedade int...

  18. Elastic robust intramedullary nailing for forearm fracture in children

    Directory of Open Access Journals (Sweden)

    Wasem, Jürgen

    2006-01-01

    Full Text Available Background: Forearm fractures are the most common fractures in children (23% of all fractures. Basically there are two treatment options available for diaphyseal forearm fractures in children: closed reduction with cast immobilisation (conservative therapy and the elastic stable intramedullary nailing (ESIN. Treatment decision is influenced by the doctor's estimation of fracture instability. Stable fractures can be treated conservatively whereas instable forearm shaft fractures can be treated according the following three treatment strategies: 1. conservative therapy in an outpatient setting 2. conservative therapy in the operating room in attendance to change to ESIN in case that no stabilisation can be achieved with cast immobilisation 3. immediate treatment with ESIN in the operating room. Objectives: Aim of this Health Technology Assessment (HTA report is to assess and report the published evidence concerning effectiveness and cost-effectiveness of ESIN as a treatment option for diaphyseal forearm fractures in children and to identify future research need. Important parameters for the assessment of effectiveness are objective parameters (axis deviation, losses of motion, and numbers of reductions in case of redislocations and subjective parameters (pain or impairment in quality of life. Furthermore, a health economic evaluation shall be done which refers to the costs of the different therapy strategies. Methods: An extensive, systematic literature search in medical, economic, and HTA literature databases was performed. Relevant data were extracted and synthesised. Results: Three cohort studies and seven case series have been identified. Controlled clinical studies, systematic reviews and/or HTA reports that gave evidence to answer the own study question have not been found. The identified studies partly differed in respect of defined indication for ESIN, study population and treatment strategies. For that reason comparability of results was

  19. Dynamics and Scaling Properties of Fractures in clay-like Materials

    Energy Technology Data Exchange (ETDEWEB)

    Walmann, Thomas

    1998-12-31

    Computer models that can help oil companies predict realistic and physically correct fracture patterns are important. To verify such a model, experiments described in this thesis were undertaken, using wet clay and powder. The main focus was on extensional fractures, but other types of fractures were also studied. High resolution digital images of the fracture patterns were recorded and analyzed using statistical physics and fractal geometry. The characteristic shapes and size distributions of individual fractures and the overall fracture patterns obtained from laboratory model studies were compared to results from aerial photographs of a fracture pattern in a collapsed glacier that had undergone a similar deformation. A new scaling relation (a power-law) between the length of a fracture and the projected area is derived for fractures formed during clay model experiments. This scaling relation is found also in a field study of a fracture pattern in a glacier. The forms of the different distributions that characterizes fractures in clay experiments are discussed. Several characteristic lengths are associated with the laboratory experiments. They are related to the sample size and shape, the model material and the nature of the imposed deformation. The roughness of the fracture traces obtained from powder experiments was found to have a self-affine form. The roughness, or Hurst exponent, was found to have the value 0.73, plus or minus 0.09. A large number of interacting fractures were formed in the systems studied, and under such conditions the fluctuations about the direction perpendicular to the principle strain direction are influenced by neighbouring fractures. As expected, an upper cutoff for the scaling range was observed. But the length at which the crossover from a self-affine shape to a flat shape took place did not depend systematically on any of the experimental parameters or characteristic length scales. The total fracture trace patterns could not be

  20. Introduction to the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2018-02-01

    Full Text Available Due to the limitation of actual shale gas reservoir conditions and fracturing technologies, artificial fracture networks are different greatly even in the same or similar stimulated reservoir volume. Deviations and even faults occur in evaluation and cognition if only the stimulated reservoir volume (SRV is used to characterize and evaluate the effect of stimulation. In this paper, the spatial distribution of artificial fractures and natural fractures and the internal pressure state and degree of reserve recovery of stimulated shale gas reservoirs were studied by means of artificial fracture propagation numerical simulation and production numerical simulation. And three concepts were proposed, i.e., shale gas fracture network, ideal fracture network and appropriate-stimulation degree of fracture network. The study results indicate that, at the end of reservoir development, target zones can be classified into three types (i.e., relatively appropriate stimulation zone, transitional stimulation zone, and uncompleted stimulation zone according to the recovery degree and production time of stimulated reservoirs; and that the final morphologic parameter of fracture networks and the reservoir characteristic are two main factors affecting the appropriate-stimulation degree of fracture networks. As for a specific gas reservoir, the orientation, length, conduction, height and spatial location of its fracture network are the main factors influencing its appropriate-stimulation degree if the well trajectory is set. The proposal of the theory on the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoir enriches the theoretical system of shale reservoir stimulation technology, and it can be used as the reference for characterizing the fracture systems in other unconventional reservoirs, such as tight oil and gas reservoirs. Keywords: Shale gas, Reservoir stimulation, Ideal fracture network, Appropriate-stimulation degree of

  1. Pubic insufficiency fracture: MRI findings

    International Nuclear Information System (INIS)

    Min, Tae Kyu; Lee, Yeon Soo; Park, Jeong Mi; Kim, Jee Young; Chung, Hong Jun; Lee, Eun Hee; Lee, Eun Ja; Kang, So Won; Han Tae Il

    2000-01-01

    To evaluate the characteristic MRI findings of pubic insufficiency fracture. In nine cases of pubic insufficiency fracture, the findings of plain radiography (n=9), MRI (n=9), and bone scintigraphy (n=8) were reviewed. We retrospectively analyzed, with regard to fracture site, the destructive pattern revealed by plain radiography, and uptake by other pelvic bones, as demonstrated by RI bone scanning. The MR findings evaluated were the fracture gap and its signal intensity, the site and signal intensity of the soft tissue mass, and other pelvic bone fractures. Plain radiography revealed osteolysis and sclerosis of pubic bone in eight of nine cases (89%), and parasymphyseal fractures in seven (78%). RI indicated uptake by the sacrum in six cases (66%), and by the ilium in three (33%). MR findings of fracture gap (seven cases, 78%) were hypo to isointensity on T1WI, hyper intensity on T2WI and the absence of contrast enhancement. Soft tissue masses were found in seven cases (78%); in four of these the location was parasymphyseal, and in three, surrounding muscle was involved. Hypo to isointensity was revealed by T1WI, hyperintensity by T2WI, and there was peripheral enhancement. Other associated pelvic bone fractures involved the sacrum in seven cases and the ilium in four. The characteristic MR findings of pubic insufficiency fracture were parasymphyseal location, fracture gap, peripherally enhanced soft tissue mass formation, and fractures of other pelvic bones, namely the sacrum and ilium

  2. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  3. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...... after 2 weeks in the diaphyseal fractures and after 6 weeks in the condylar fractures. The degradation of type I collagen increased after 4 days and reached a maximum at 2 weeks in both groups. The interindividual variation was wide. On a group basis, the turnover of types I and III collagen had...

  4. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  5. Observations in Fracture Toughness Testing of Glasses and Optical Ceramics

    Science.gov (United States)

    Salem, Jon

    2017-01-01

    Fracture toughness is a critical structural design parameter and an excellent metrics to rank materials. Itdetermines fracture strength by way of the flaws, both inherent and induced, and defines the endpoint of the slow crackgrowth curve. The fracture toughness of structural and optical ceramics, and glasses as measured by several techniques is compared. When good metrology is employed, the results are very comparable with two exceptions: materials exhibiting crack growth resistance and those with a low SCG exponents. For materials with R-curves, the result is a function of extension and can be minimized with short cracks. For materials with low SCG exponents, such as glasses, elimination of the corrosive media andor increasing the stress intensity rate minimizes effects. A summary of values is given, and it appears that highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  6. Fracturing Pressure of Shallow Sediment in Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Chuanliang Yan

    2013-01-01

    Full Text Available The shallow sediment in deep water has weak strength and easily gets into plastic state under stress concentration induced by oil and gas drilling. During drilling, the formation around a wellbore can be divided into elastic zone and plastic zone. The unified strength theory was used after yielding. The radius of the plastic zone and the theoretical solution of the stress distribution in these two zones were derived in undrained condition. The calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel’s excess pore pressure theory. Combined with hydraulic fracturing theory, the fracturing mechanism of shallow sediment was analyzed and the theoretical formula of fracturing pressure was given. Furthermore, the influence of the parameters of unified strength theory on fracturing pressure was analyzed. The theoretical calculation results agreed with measured results approximately, which preliminary verifies the reliability of this theory.

  7. Fracture mechanics for delamination problems in composite materials

    Science.gov (United States)

    Wang, S. S.

    1983-01-01

    A fracture mechanics approach to the well-known delamination problem in composite materials is presented. Based on the theory of anisotropic laminate elasticity and interlaminar fracture mechanics concepts, the composite delamination problem is formulated and solved. The exact order of the delamination crack-tip stress singularity is determined. Asymptotic stress and displacement fields for an interlaminar crack are obtained. Fracture mechanics parameters such as mixed-mode stress intensity factors, KI, KII, KIII, and the energy release rate, G, for composite delamination problems are defined. To illustrate the fundamental nature of the delamination crack behavior, solutions for edge-delaminated graphite-epoxy composites under uniform axial extension are presented. Effects of fiber orientation, ply thickness, and delamination length on the interlaminar fracture are examined.

  8. Fracture prediction in hydraulic bulging of AISI 304 austenitic steel sheets based on a modified ductile fracture criterion

    Science.gov (United States)

    Xu, Y.; Song, H. W.; Zhang, S. H.; Cheng, M.

    2011-08-01

    The demand for weight reduction in modern vehicle construction has resulted in an increase in the application of hydroforming processes for the manufacture of automotive lightweight components. This trend led to the research of evaluation on formability of the sheet or tube hydroforming to be noted, particularly the prediction of fracture. In this study, a new proposed approach based on damage theory for fracture prediction considering the deformation history was introduced. And the modified ductile fracture criterion was applied to predict the failure for hydraulic bulging of AISI 304 austenitic steel sheets. The material parameters in terms of the function of strain rate in the failure criterion were determined from the equivalent fracture strains corresponding tensile tests under different stress conditions. Then, in the finite element simulation the effect of strain rates and their distribution as well during practical sheet metal forming process was considered. The hydraulic bulging tests were carried out to identify the fracture behavior predicted from FE analysis. A comparison between the prediction and experimental results showed that the proposed approach with a modified ductile fracture criteria can give better fracture predictions than traditional ways.

  9. A study on the fracture behavior in tensile and fracture toughness tests of CFRP by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Bukyung National University, Pusan (Korea, Republic of)

    1994-05-15

    This study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics, and to find relationship between tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 degree/90 degree]{sub 2s} and [0 degree{sub 2}/90 degree{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 degree/90 degree]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine between fracture behavior of tensile and fracture toughness test and post processing for AE parameters of AE data and observations of microscopy, SEM are carried out respectively.

  10. A study on the fracture behavior of CFRP in tensile and fracture toughness tests by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [National Fishery University of Pusan, Pusan (Korea, Republic of)

    1995-01-01

    The Study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 deg/90 deg]{sub 2s} and [0 deg{sub 2}/90 deg{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 deg/90 deg]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively. (author)

  11. A Study on the Fracture Behavior of CFRP in Tensile and Fracture Toughness Tests by Acoustic Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Fisheries University of Pusan , Busan (Korea, Republic of)

    1995-06-15

    The study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in owe process of the carbon fiber reinforced composites of two types, [0 .deg. /90 .deg. ]{sub 2s} and [0 .deg. {sub 2}/90 .deg. {sub 2}]. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 .deg. /90 .deg. ]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively

  12. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    Science.gov (United States)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  13. HEMIARTHROPLASTY FOR INTERTROCHANTERIC FRACTURES

    Directory of Open Access Journals (Sweden)

    Mahesh

    2016-06-01

    Full Text Available BACKGROUND Intertrochanteric fractures in the generic population are a common injury and are associated with the poor bone quality and hence management of unstable osteoporotic intertrochanteric fractures in elderly is challenging because of difficult anatomical reduction, poor bone quality, and sometimes a need to protect the fracture from stresses of weight bearing. Internal fixation in these cases usually involves prolonged bed rest or limited ambulation, to prevent implant failure secondary to osteoporosis. This might result in higher chances of complications like pulmonary embolism, deep vein thrombosis, pneumonia, and decubitus ulcer. The purpose of this study is to analyse the role of primary hemiarthroplasty in cases of unstable osteoporotic intertrochanteric femur fractures. AIMS AND OBJECTIVES Find out the results of Hemiarthroplasty for intertrochanteric fracture in elderly patients from the population of Bihar. METHODS AND MATERIALS Study Area: Departments of Orthopaedics, Nalanda Medical College and Hospital. All these patients with hip injury reporting in Emergency and OPD were clinically examined, those satisfying for the inclusion and exclusion criteria were taken for study and the total number of patients was 37 for the study. INCLUSION CRITERIA 1. Boyd Griffin type 3 and 4, 2. Evans and Jensen type 1c and type 2, 3. AO/OTA type a21 to a33, 4. Age > 60 years. EXCLUSION CRITERIA Patient 1. ASA Grade – 1. 2. BG Grade – 1. 3. Less than 60 years. 4. With previous ipsilateral hip fracture. 5. With stable fracture and intact lesser trochanter. 6. With neurologic problem. 7. Psychiatric patient. 8. With multiple fractures. 9. Cataract. 10. Any severe cardiac disorder. 11. Medically unfit for surgery and patient unwillingness for surgery were excluded for study. RESULTS Total mortality was two patients due to unrelated cause (myocardial infarction within 6 months of surgery and study period and remaining 35 patients were followed up

  14. Fracture network model of the groundwater flow in the Romuvaara site

    International Nuclear Information System (INIS)

    Poteri, A.; Laitinen, M.

    1997-01-01

    In the study, computer codes are employed to analyse the groundwater flow patterns in the sparcely fractured intact rock at the Romuvaara site. The new fracture data gathered during the detailed site characterisation phase demonstrated that the characteristic properties of fractures can be estimated quite reliably from few boreholes and outcrops. Results obtained by employing new methods, like the use of borehole-TV, changed the fracture intensity of the potential water conducting fractures compared to the earlier model. In the preliminary site investigation phase only the orientated fractures were used to derive the parameters of the intact rock. In the present model all the fractures outside the known fracture zones are used. The hydraulic conductivity tensor of the intact rock was estimated with the fracture network model. The flow simulations were calculated for a 16 x 16 x 16 m 3 rock volume and about 2000 fractures. The flow rate distribution through the cross sectional area of the disposal canisters was calculated for a set of ten realisations and a large number of different canister positions. The total number of canister positions simulated was 2200. The flow distribution in larger volume was studied using a method that searched the flow routes of highest conductance. The flow routes were examined into north-south, east-west and vertical directions. Flow routes along homogeneous and heterogeneous fractures were compared. (21 refs.)

  15. Fracture mechanics of ceramics. Vol. 8. Microstructure, methods, design, and fatigue

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.H.; Lange, F.F.

    1986-01-01

    This paper presents information on the following topics: fracture mechanics and microstructures; non-lubricated sliding wear of Al 2 O 3 , PSZ and SiC; mixed-mode fracture of ceramics; some fracture properties of alumina-containing electrical porcelains; transformation toughening in the Al 2 O 3 -Cr 2 O 3 /ZrO 2 -HfO 2 system; strength toughness relationships for transformation toughened ceramics; tensile strength and notch sensitivity of Mg-PSZ; fracture mechanisms in lead zirconate titanate ceramics; loading-unloading techniques for determining fracture parameters of brittle materials utilizing four-point bend, chevron-notched specimens; application of the potential drop technique to the fracture mechanics of ceramics; ceramics-to-metal bonding from a fracture mechanics perspective; observed changes in fracture strength following laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC; crack growth in single-crystal silicon; a fracture mechanics and non-destructive evaluation investigation of the subcritical-fracture process in rock; slow crack growth in sintered silicon nitride; uniaxial tensile fatigue testing of sintered silicon carbide under cyclic temperature change; and effect of surface corrosion on glass fracture

  16. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    Science.gov (United States)

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Geological discrete-fracture network model (version 1) for the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Fox, A.; Buoro, A.; Dahlbo, K.; Wiren, L.

    2009-10-01

    This report describes the methods, analyses, and conclusions of the modelling team in the production of a discrete-fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 500 m; an upper scale limit is not expressly defined, but the DFN model explicitly excludes structures at deformation-zone scales (∼ 500 m) and larger. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modelling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is currently planned to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches (as of July 2007), geological and structural data from cored boreholes (as of July 2007), and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory (January 2008). The modelling results suggest that the rock volume at Olkiluoto surrounding the ONKALO tunnel can be separated into three distinct volumes (fracture domains): an upper block, an intermediate block, and a lower block. The three fracture domains are bounded horizontally and vertically by large deformation zones. Fracture properties, such as fracture orientation and relative orientation set intensity, vary between fracture domains. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east, a subvertically-dipping fracture set striking roughly north-south, and a subverticallydipping fracture set

  18. Polymer behaviour and fracture models in dynamic

    Directory of Open Access Journals (Sweden)

    Bourel B.

    2012-08-01

    Full Text Available A phenomenological small strain model is developed to capture the elastoviscoplastic behaviour of a 20% filled polypropylene. The constitutive model is based on a multiplicative viscoplastic law. The hydrostatic pressure dependency is considered by using the Drucker Prager yield surface. A phenomenological damage model characterised directly by experimental investigation is used to capture the yield degradation during the deformation in tension. The volume variation due to the cavitation phenomenon is captured by using non-associated viscoplasticity. Some experimental tests at different speed loadings are carried out for the parameters identification of the constitutive model. Furthermore, a fracture model which depends on the stress triaxiality and the strain rate is developed in order to model the complete behaviour of the material studied until fracture.

  19. Could whole body vibration exercises influence the risk factors for fractures in women with osteoporosis?

    Directory of Open Access Journals (Sweden)

    Eloá Moreira-Marconi

    2016-12-01

    Conclusions: Although the paucity of research regarding direct effects of WBV in decreasing fractures, WBV could be a feasible and effective way to modify well-recognized risk factors for falls and fractures, improvements in some aspects of neuromuscular function and balance. More studies have to be performed establish protocols with well controlled parameters.

  20. Treatment of unstable trochanteric fractures : the balance between man and material

    NARCIS (Netherlands)

    I.B. Schipper (Inger)

    2003-01-01

    textabstractTreatment of unstable trochanteric fractures poses a challenge to surgeons in many ways. Accepting this challenge requires understanding of those parameters that determine the outcome. In operative fracture care at least four elements influence the outcome of treatment: the patient, the

  1. Outcome analysis of pelvic ring fractures

    Directory of Open Access Journals (Sweden)

    Sen Ramesh

    2010-01-01

    Full Text Available Background: The behavior of pelvic ring fractures in the long run has been very sparsely studied. The purpose of this study is to assess the long-term outcome of pelvic ring fractures. Materials and Methods: A total of 24 patients with pelvic ring fractures, not involving the acetabulum, were followed up for an average duration of 33 months (range 24-49 months. The clinicoradiological assessment was done using the pelvic scoring system adapted from Cole et al. Parameters assessed included sacroiliac (SI joint involvement and, among SI joint injuries, the presence of a fracture disruption and the degree of displacement. Results: Pain and limp were present in 13 patients (54.2% each and residual working disability in 9 patients (37.5%. The overall Cole′s pelvic score was 31.3 ± 7.02 of a total score of 40. The average pelvic score in patients with SI disruption was 29.2 ± 6.75; much lower than patients without SI disruption with an average score of 34.9 ± 6.25 reaching statistical significance. The pelvic score among patients with a displacement ≤10 mm was 33.0 ± 3.92 and with a displacement> 10 mm 25.88 ± 7.14. The difference was statistically significant. Conclusions: Pelvic ring injuries can lead to long term problems significantly. The involvement of the SI joint affects the long-term outcome adversely, more so if the residual displacement is> 10 mm. The pelvic scoring system is comprehensive and depicts subtle differences in the outcome, which the individual parameters of the assessment fail to show.

  2. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.

    2005-01-01

    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  3. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Since analytical methods are very time consuming different analytical models have been developed. Three methods for plain concrete are presented, where one of the methods is developed by the author. The method is based on three different fracture models. Also two models applicable for lightly reinforced...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...... to describe fracture in concrete are presented. Two of the methods are combined into a power method which is stable for all brittleness numbers and which is able of calculating the entire load-displacement curve even for very ductile beams. This method is used extensively in the rest of the thesis. Chapter 4...

  4. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  5. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  6. Phase Field Fracture Mechanics.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brett Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  7. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  8. Fracture Behavior under Impact.

    Science.gov (United States)

    1983-01-01

    value still is ." the Charpy energy, i.e. the energy to break a Charpy V-notch specimen in a pendulum type impact tester. This material property...Most of the dynamic fracture toughness 3ata have been obtained in the lower impact velocity range with Charpy - and drop weight tests. An overview of...A .-..- ..- -6- =.., lyses (e.g. with Charpy tests [3]), theoretical analyses which some- times are based on nonrealistic assumptions (e.g. infinite

  9. Numerical investigation and optimization of multiple fractures in tight gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hou, M.Z. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Energie-Forschungszentrum Niedersachsen, Goslar (Germany); Zhou, L. [Energie-Forschungszentrum Niedersachsen, Goslar (Germany)

    2013-08-01

    The main objective of the project DGMK-680 in phase 2 was to investigate the influence of fractures on each other in a multi-fracture system including their space optimization by using the numerical program FLAC3D with our own developments, which treats all fractures in one 3D geometric model under 3D stress state with fully hydro-mechanical coupling effect. The case study was conducted on a horizontal wellbore at location A, which was stimulated hydraulically with a total of eight transverse fractures in summer 2009. Transverse multiple fractures were simulated using the modified continuum method. In the simulation all fractures were generated in one single model, comprising 22 different rock layers. Each layer was assumed to be homogeneous with regard to its rock and hydromechanical parameters. Thus the influence of the individual fractures on each other can be investigated. The simulation procedure applied, which is a consecutive execution ofa hydraulic and a mechanical computation, is the same for all fractures. The only differences are the primary in-situ stresses, the initial pore pressure, the injection parameters (location, rate, volume, duration), which lead to different patterns of fracture propagations. But there are still some common points, such as irregular patterns of the fracture front, which represents the heterogeneity of the model. All fractures (1 to 8) have their fracture average half-length between 70 m to 115 m, height between 93 m to 114 m and average width between 18 mm to 31 mm. The percentage difference of fracture height for individual fractures is obviously smaller than that of the fracture half-lengths, because the fracture barriers at bottom and top limit the fracture propagation in z-direction. Incomparison with the analytical simulator (FracPro) most results match well. Simulation of multiple fractures at location A, with the newly developed algorithms, shows that individual transverse multiple fractures at distances between 100

  10. To fix or not to fix? The role of fibular fixation in distal shaft fractures of the leg.

    Science.gov (United States)

    Berlusconi, M; Busnelli, L; Chiodini, F; Portinaro, N

    2014-02-01

    The role of stabilisation of the fibula in distal two-bone fractures of the leg is controversial. Some studies indicate the need for fibular stabilisation in 43 AO fractures, but few studies consider the role of the fibula in 42 AO fractures. The aim of the current paper is to explain the role of stabilisation of the fibula in 42 AO fractures, correlating the rates of healing and non-union between patients with and without fibula fixation. A total of 60 patients with 42 AO (distal) shaft fracture of the tibia with associated fracture of the fibula were selected. Patients were divided into two groups according to whether or not the fibula was fixed: Group I (n=26) comprised patients who had their fibula fixed while Group II (n=34) comprised patients who did not. The fibular fracture was classified according to the AO and related to the level of the tibial fracture. Other parameters examined were the union rate of the two groups correlated to the fracture pattern and position of the fibular fracture; the demographic data, such as age and gender; the presence of an open fracture, and the type of tibial fixation device used (nail or plate). None of the parameters considered (open injury, AO classification, device used and level of the fibular fracture relative to the tibial) were shown to have an influence on the development of a non-union. This study showed a higher non-union rate when the fracture of the tibia and fibula were at the same level, the tibia was fixed with a bridging plate and the fibula left untouched. For this reason, we recommend fibular fixation in all 42 distal fractures when both fractures lie on the same plane and the tibial fracture is relatively stabilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  12. Diagnosing vertebral fractures: missed opportunities.

    Science.gov (United States)

    Borges, João Lindolfo Cunha; Maia, Julianne Lira; Silva, Renata Faria; Lewiecki, Edward Michael

    2015-01-01

    Vertebral fractures are the single most common type of osteoporotic fracture. Postmenopausal women are at increased risk for osteoporotic vertebral fractures compared with women of childbearing age. Vertebral fractures are associated with an increase in morbidity, mortality, and high risk of a subsequent vertebral fracture, regardless of bone mineral density. Despite the common occurrence and serious consequences of vertebral fractures, they are often unrecognized or misdiagnosed by radiologists. Moreover, vertebral fractures may be described by variable terminology that can confuse rather than enlighten referring physicians. We conducted a survey of spine X-ray reports from a group of postmenopausal women screened for participation in a study of osteoporosis at Centro de Pesquisa Clínica do Brasil. A descriptive analysis evaluated the variability of reports in 7 patients. Four independent general radiologists issued reports assessing vertebral fractures through a blinded analysis. The objective of this study was to evaluate for consistency in these reports. The analysis found marked variability in the diagnosis of vertebral fractures and the terminology used to describe them. In community medical practices, such variability could lead to differences in the management of patients with osteoporosis, with the potential for undertreatment or overtreatment depending on clinical circumstances. Accurate and unambiguous reporting of vertebral fractures is likely to be associated with improved clinical outcomes. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  13. Age and Sex Features of Proximal Hip Geometry in Patients with its Intraarticular Fractures

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva

    2015-10-01

    Full Text Available According to the literature data, some parameters of the femoral bone (FB, namely the length of its axis, head-collum-diaphyseal angle, etc., are independent predictors of proximal femoral (PF fractures, but such studies among Ukrainian patients are absent. This article presents the literature data and the results of own research on the geometrical features of the FB in patients with intra-articular PF fractures. We have analyzed 100 survey (anteroposterior radiographs of the hip joint in patients aged 50–89 years (median age 70.98 ± 0.99 years. We observed 31 women and 39 men, who were hospitalized with intra-articular FB fractures, and 30 persons (16 women and 14 men without fractures. Assessment of hip geometry parameters was performed on the contralateral limb in relation to fracture. For the analysis, patients were divided into subgroups by gender and age. It was established the significant effect of the age on the parameters of PF geometry in men and women with intra-articular fractures, but not in patients without fractures. Also, we have found the significantly lower indices of the length of femoral axis, the base and the diameter of the head, «head — acetabulum» distance in men with intra-articular PF fractures compared to the parameters in persons without fractures, in the absence of significant differences in indices of women. Identified differences should be considered for both planning surgery after PF fracture and for predicting the risk of PF fractures in older age patients.

  14. Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, A.K.; Thissell, W.R.; Tonks, D.L.; Hixon, R.; Addessio, F.

    1997-05-01

    The authors present quantification of micromechanical features such as voids that comprise the ductile fracture obtained under uniaxial strain condition in a spall test of commercial purity tantalum. Two evolutionary parameters of ductile fracture void formation are quantified: (i) the void volume fraction (porosity) and its distribution with respect to the distance from the main spall fracture plane, and (ii) void diameter distribution. The results complement the discussion of the implications of void clustering and linking for micromechanical modeling of ductile fracture as presented in a paper by D. L. Tonks et al. in this volume.

  15. Low-density lipoprotein cholesterol is associated with fracture risk in diabetes patients - a nested case-control study

    DEFF Research Database (Denmark)

    Starup-Linde, Jakob; Gregersen, Søren; Vestergaard, Peter

    2014-01-01

    available for an analysis of patient characteristics, co-morbidities, biochemical parameters and drug usage. Results: Patient age at the time of diabetes diagnosis, a diagnosis of previous fracture, an alcohol related diagnosis, total cholesterol level, and the usage of antidepressants, antiepileptics...... and insulin all increased the odds of fracture. Low-density lipoprotein cholesterol (LDL) levels decreased the odds of fracture, where the level of 3.04-5.96 mmol/l was optimal with regard to fracture risk. Conclusion: LDL may add to the understanding of fractures in diabetes patients and it may be added...

  16. Fractures in the growing foal. Part 1: Epiphyseal fractures

    International Nuclear Information System (INIS)

    Auer, J.A.

    1986-01-01

    This paper discusses general considerations for epiphyseal fractures and the anatomical differences which led to the Salter-Harris-classification are explained. The various locations and fracture configurations in the different bones are mentioned, and suggestions for their treatment are made. Epiphyseal fractures in growing foals have generally a favourable prognosis for healing, if treated properly. However, the prognosis for future use as an athlete has to be judged as guarded. The limb with an epiphyseal fracture should under any circumstances be splinted or cast for the transport to hospital. Epiphyseal fractures of the distal portions of the limb may be treated by cast application in some cases. More frequently, however, surgical reduction followed by some form of internal fixation is preferred. It is important to follow the basic principles of internal fixation. The implants should be removed at the earliest convenience, to prevent undue growth disturbances. Epiphyseal fractures should be treated as soon as possible to avoid further destruction of the growth plate through continuous movement at the fracture site. Growth disturbances are the most frequently encountered complications with epiphyseal fractures. Other complications include infection, osteomyelitis, degenerative joint disease and breakdown of the fracture fixation

  17. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  18. Atomistic simulations of nanotube fracture

    Science.gov (United States)

    Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S.

    2002-06-01

    The fracture of carbon nanotubes is studied by molecular mechanics simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The fracture strain of a zigzag nanotube is predicted to be between 10% and 15%, which compares reasonably well with experimental results. The predicted range of fracture stresses is 65-93 GPa and is markedly higher than observed. The computed fracture strengths of chiral and armchair nanotubes are above these values. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle.

  19. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  20. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of ...

  1. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2004-07-19

    regular, discrete, vertical fracture systems. The model contains a series of point scatterers delineating the top tip and bottom tip of each vertical fracture. When the shot record is located in the middle of the fractured zone and oriented normal to the direction of fracturing, a complicated series of beating is observed in the back scattered energy. When the shot record is oriented parallel to the fracturing, ringing wavetrains are observed with moveouts similar to reflections from many horizontal layers. These results are consistent with the full 3D elastic modeling results. An AVOA analysis method was refined and applied to a field data set. An iterative, nonlinear least squares inversion that uses the Gauss-Newton method and analyzes the full range of azimuths simultaneously was employed. Resulting fracture location and strike orientation estimates are consistent with other fracture information from the area. Two modeling approaches for estimating permeability values from seismically derived fracture parameters have been investigated. The first is a statistical method that calculates the permeability tensor for a given distribution of fractures. A possible workflow using this method was tested on fracture distributions obtained from the Transfer Function-Scattering Index analysis method. Fracture aperture and length estimates are needed for this method. The second method is a direct flow model of discrete fractures and fracture networks using a computational fluid dynamics code. This tool provides a means of visualizing flow in fracture networks and comparing expressions for equivalent fracture aperture flow to the actual flow. A series of two dimensional models of fractures and fracture networks, as well as a 3-D model of a single rough fracture, were tested.

  2. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    Science.gov (United States)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  3. Ulnar variance as a predictor of persistent instability following Galeazzi fracture-dislocations.

    Science.gov (United States)

    Takemoto, Richelle; Sugi, Michelle; Immerman, Igor; Tejwani, Nirmal; Egol, Kenneth A

    2014-03-01

    We investigated the radiographic parameters that may predict distal radial ulnar joint (DRUJ) instability in surgically treated radial shaft fractures. In our clinical experience, there are no previously reported radiographic parameters that are universally predictive of DRUJ instability following radial shaft fracture. Fifty consecutive patients, ages 20-79 years, with unilateral radial shaft fractures and possible associated DRUJ injury were retrospectively identified over a 5-year period. Distance from radial carpal joint (RCJ) to fracture proportional to radial shaft length, ulnar variance, and ulnar styloid fractures were correlated with DRUJ instability after surgical treatment. Twenty patients had persistent DRUJ incongruence/instability following fracture fixation. As a proportion of radial length, the distance from the RCJ to the fracture line did not significantly differ between those with persistent DRUJ instability and those without (p = 0.34). The average initial ulnar variance was 5.5 mm (range 2-12 mm, SD = 3.2) in patients with DRUJ instability and 3.8 mm (range 0-11 mm, SD = 3.5) in patients without. Only 4/20 patients (20%) with DRUJ instability had normal ulnar variance (-2 to +2 mm) versus 15/30 (50%) patients without (p = 0.041). In the setting of a radial shaft fracture, ulnar variance greater or less than 2 mm was associated with a greater likelihood of DRUJ incongruence/instability following fracture fixation.

  4. Golfer's fracture of the ribs

    International Nuclear Information System (INIS)

    Lim, J. H.

    1980-01-01

    Golfer's fracture is stress fracture of the posterior portion of left 3, 4, 5, 6 or 7th ribs of golfer's, usually beginners,and it is considered due to exposure to unaccustomed severe exercise of this fascinating sport. Healing is usually uneventful, but possible complication may occur, because symptom is mild and golfers continue the exercise with physical therapy such as massage. Author report 4 cases of golfer's fracture, including 1 case complicated by platelike at electasis of lung.

  5. Wormhole formation in dissolving fractures

    OpenAIRE

    Szymczak, P.; Ladd, A. J. C.

    2009-01-01

    We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical pr...

  6. Fracture mechanics in pavement design

    CSIR Research Space (South Africa)

    Denneman, E

    2009-07-01

    Full Text Available MODELLING FRACTURE IN PAVEMENT MATERIALS The cohesive crack approach can be incorporated in finite element method (FEM) to simulate fracture in pavement materials. In this paper an embedded discontinuity method (EDM) based on the work by Sancho et al... through elements, in other words, independent of nodal positions and element boundaries. The EDM was used for the numerical simulation of two examples of fracture tests on road materials from the literature. The model is applied to reproduce...

  7. Contribution to the research on fracture properties of metals in the elasto-plastic field

    International Nuclear Information System (INIS)

    Rousselier, G.; Electricite de France, 77 - Ecuelles. Dept. Etudes des Materiaux)

    1979-01-01

    Standard Fracture Mechanics theories proved unsuccessful for the treatment of ductile fracture in metals. We have shown the necessity of better knowledge and satisfactory modelling of the fracture process, prior to any application to cracked bodies. In that way we developed stress-strain laws which take into consideration the growth of voids during ductile fracture. The damage resulting from void growth is characterized by internal parameters. Finite strain analysis leads to material instability, corresponding to the stage of void coalescence and material decohesion. This latter result is only true in a finite strain analysis. In the infinitesimal strain finite element numerical analysis of three-point bend specimens, a local fracture criterion is used. The experimental determination of this criterion is performed with axisymmetrical notched tension specimens, which allow the investigation of various stress triaxialities at fracture. The numerical analysis proved effective in the modelling of stable crack growth and size effect, and was compared with experimental results [fr

  8. Crack tip fields and mixed mode fracture behaviour of progressively drawn pearlitic steel

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available This paper deals with the influence of the cold drawing process on the fracture behaviour of pearlitic steels. To this end, fracture tests under axial loading were performed on steel wires with different drawing degree (from a hot rolled bar to a commercial prestressing steel wire, transversely pre-cracked by fatigue, analyzing in detail the changes in fracture micromechanisms. The deflection angles of the fracture path were measured by longitudinal metallographic sections and the characteristic parameters of the loaddisplacement plot were related to different fracture events. Results allowed a calculation of critical stress intensity factors for different fracture angles and drawing degrees, thus evaluating the strength anisotropy and obtaining a sort of directional toughness.

  9. Sufficient criterion of fracture in the case with a complex stress state and non-proportional deformation of the material in the pre-fracture zone

    Science.gov (United States)

    Kornev, V. M.; Kurguzov, V. D.

    2010-12-01

    A general case of proportional loading with a complex stress state of the material in the pre-fracture zone, which is typical for polycrystalline solids with plastic deformation, is considered. A sufficient criterion of fracture is proposed for the case of a complex stress state with non-proportional deformation of the material in the pre-fracture zone. Critical parameters of fracture (pre-fracture zone length and load) for cracks propagating in quasi-brittle materials are obtained with the use of a modified Leonov-Panasyuk-Dugdale model. The pre-fracture zone width is determined by solving the problem of the plasticity theory in the vicinity of the crack tip. The proposed modification of the Leonov-Panasyuk-Dugdale model makes it possible to estimate the critical opening of the crack and the critical displacement of the crack flanks. Inequalities that describe different mechanisms of material fracture under proportional loading (predominantly shear fracture mechanism and fracture mechanism through cleavage) are derived.

  10. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  11. Radionuclide migration through fractured granite

    International Nuclear Information System (INIS)

    Grondin, D.M.; Vandergraaf, T.T.; Drew, D.J.

    1988-01-01

    Radionuclide migration has been studied in natural fractures in granite blocks of up to 30 cm in length. Results are reported for four migration experiments involving synthetic groundwaters containing tritiated water, 95m Tc, 75 Se, 137 Cs, or 60 Co-labelled natural colloids, which were injected into the fractures at flow rates of 0.4-0.45 mL/h, giving residence times in the fractures of up to 15 h. Also presented are the results of the post-experiment analyses, including an autoradiograph of one of the fracture surfaces, and the spatial distribution of the sorbed radionuclides determined by γ-scanning and selective chemical extractions

  12. Wormhole formation in dissolving fractures

    Science.gov (United States)

    Szymczak, P.; Ladd, A. J. C.

    2009-06-01

    We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate, and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation were determined.

  13. Management of femoral shaft fractures.

    Science.gov (United States)

    Neumann, M V; Südkamp, N P; Strohm, P C

    2015-01-01

    Femoral shaft fractures are severe injuries and are often associated with a high impact trauma mechanism, frequently seen in multiple injured patients. In contrast an indirect trauma mechanism can lead to a complex femoral shaft fracture especially in elderly patients with minor bone stock quality. Hence management of femoral shaft fractures is often directed by co-morbidities, additional injuries and the medical condition of the patient. Timing of fracture stabilization is depended on the overall medical condition of the patient, but definite fracture fixation can often be implemented in the early total care concept in management of multiple injured patients. The treatment of choice is intramedullary fracture fixation. Further development of existing intramedullary nailing systems now offer comfortable handling and different locking options. Ipsilateral fractures of the neck and shaft are therefore facilitated in management. Then again increasing numbers of obese patient are representing a new patient group with challenging co-factors in fracture management. Sufficient preoperative planning is helpful to choose the most adequate fixation device. Correct reduction of the fracture and perioperative control of the axis and rotation is mandatory to avoid postoperative malrotation, which still represents the most frequent complication.

  14. Excess mortality following hip fracture

    DEFF Research Database (Denmark)

    Abrahamsen, B; van Staa, T; Ariely, R

    2009-01-01

    Summary This systematic literature review has shown that patients experiencing hip fracture after low-impact trauma are at considerable excess risk for death compared with nonhip fracture/community control populations. The increased mortality risk may persist for several years thereafter, highlig......Summary This systematic literature review has shown that patients experiencing hip fracture after low-impact trauma are at considerable excess risk for death compared with nonhip fracture/community control populations. The increased mortality risk may persist for several years thereafter...... and excess mortality rates for hip fracture. Although a lack of consistent study design precluded any formal meta-analysis or pooled analysis of the data, we have shown that hip fracture is associated with excess mortality (over and above mortality rates in nonhip fracture/community control populations......) during the first year after fracture ranging from 8.4% to 36%. In the identified studies, individuals experienced an increased relative risk for mortality following hip fracture that was at least double that for the age-matched control population, became less pronounced with advancing age, was higher...

  15. Time-dependent fracture of early age concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik; Olesen, John Forbes

    2002-01-01

    An experimental method suitable for the determination of the time-dependent tension softening response of early age concrete is presented. The method is based on the wedge splitting test by Tschegg, which is well known to be suited for the determination of fracture mechanical parameters, i...

  16. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  17. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  18. Use of CTRW for Prediction of Radionuclide Migration in Fractured Tuff

    Science.gov (United States)

    Pickman, L. H.; Parashar, R.; Reeves, D. M.

    2014-12-01

    Non-local contaminant transport methods have been extensively studied as an alternative for the classical Advection Dispersion Equation (ADE) to model particle migration in heterogeneous media and in regions with geologic patterns that shape secondary porosity. The challenges encountered in fractured media are usually more complex than un-fractured porous media because of the irregular connectivity patterns between individual fractures, large number of parameters, and wide distribution of parameter space. The Continuous Random Time Walk (CTRW) methodology provides a framework for modeling non-Fickian transport through fracture networks by employing probabilistic distributions to generate particle jump lengths and residence time spanning over orders of magnitude. We apply CTRW framework to model transport of radionuclides in the fractured volcanic tuff of Western Pahute Mesa located at the Nevada National Security Site (NNSS). By analyzing borehole data recorded at the NNSS, statistical attributes of fracture parameters are derived that are used to generate discrete fracture network (DFN) realizations. Through convolution of both particle travel time and fracture length distribution, transport is modeled on a continuum of spatial scales via the CTRW technique and the predictions are compared against DFN results to ascertain the efficacy of upscaling.

  19. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  20. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  1. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    Science.gov (United States)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  2. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  3. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2017-03-01

    Full Text Available Due to downhole complexities, shale-gas horizontal well fracturing in the Sichuan Basin suffered from casing deformation and failure to apply the technique of cable-conveyed perforation bridge plug. In view of these problems, a new technique of staged volume fracturing with temporary plugging by sand filling is employed. Based on theoretical analyses and field tests, a design of optimized parameters of coiled tubing-conveyed multi-cluster sand-blasting perforation and temporary plugging by sand filling was proposed. It was applied in the horizontal Well ZJ-1 in which casing deformation occurred. The following results are achieved in field operations. First, this technique enables selective staged fracturing in horizontal sections. Second, this technique can realize massive staged fracturing credibly without mechanical plugging, with the operating efficiency equivalent to the conventional bridge plug staged fracturing. Third, full-hole is preserved after fracturing, thus it is possible to directly conduct an open flow test without time consumption of a wiper trip. The staged volume fracturing with temporary plugging by sand filling facilitated the 14-stage fracturing in Well ZJ-1, with similar SRV to that achieved by conventional bridge plug staged fracturing and higher gas yield than neighboring wells on the same well pad. Thus, a new and effective technique is presented in multi-cluster staged volume fracturing of shale gas horizontal wells.

  4. From Multi-Porosity to Multiple-Scale Permeability Models of Natural Fractured Media

    Science.gov (United States)

    De Dreuzy, J. R.; Davy, P.; Meheust, Y.; Bour, O.

    2014-12-01

    Classical dual-porosity models and homogenization approaches fail to represent the permeability scaling, the high flow channeling and the broad variability observed in natural fractured media. More critically, most modeling frameworks cannot restitute simultaneously the permeability increase with scale and the persistence of channeling. In fact, channeling enhances the impact of bottlenecks, reduces permeability, and increases permeability variability with scale. It is the case of percolation theory but also of more advanced large-range correlated theories including power-law scaling of some of the fracture properties including their length or their mutual distances. More generally, we show with extensive numerical studies on 3D Discrete Fracture Networks (DFNs) that hydraulic behaviors come from a number of local and global fracture characteristics. The concept of effective properties like effective permeability itself appears quite weak and should be replaced by new modeling frameworks. We propose three alternative approaches combining the specificies of fracture flow and transport of DFNs and the simplicity of continuum approaches: 1- Discrete dual porosity media for high flow localization in a subset of the fracture network. 2- Structured Interacting Continua for highly organized diffusive processes in poorly connected fracture structures. 3- Multiple-scale permeability models for hierarchically structured fractured media with 3D concurrent fracture percolating networks. These different approaches can be combined and specified with a limited number of parameters. They are also efficient in representing the potentially large hydraulic impact of minor modification of the fracture network geometry and local connectivity.

  5. Supergranular Parameters

    Science.gov (United States)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  6. Forearm diaphyseal fractures in the adolescent population: treatment and management.

    Science.gov (United States)

    Truntzer, Jeremy; Vopat, Matthew L; Kane, Patrick M; Christino, Melissa A; Katarincic, Julia; Vopat, Bryan G

    2015-02-01

    Pediatric both-bone diaphyseal forearm fractures are commonly treated in a variety of clinical settings. Most often, closed reduction followed by immobilization leads to satisfactory results. However, in the adolescent population (10-16 years of age), forearm fractures are more challenging due to less remodeling potential. The purpose of this review was to provide an overview of the anatomy, biomechanics, and treatment options relevant to adolescent patients. A systematic review of peer-reviewed publications and abstracts related to the treatment for pediatric both-bone diaphyseal forearm fractures in adolescents was carried out. Forearm fractures in the pediatric population are most common following indirect blows to the forearm. When treating these fractures using closed reduction, it is important to recognize the muscular attachments of the forearm. In roughly 70-90% of cases, closed reduction leads to adequate alignment. In all cases, return to function is the primary goal; however, exact alignment parameters remain controversial. In the adolescent population, surgical treatment has risen substantially in the last few decades. Intramedullary nailing and open reduction using plate fixation are the two most common operative techniques. Unfortunately, recent results have shown that nonunion, malunion, and overall complication rates are higher in older pediatric patients. Moreover, no consensus exists regarding one technique over another. Both-bone diaphyseal fractures in the adolescent population present unique challenges regarding optimal treatment, especially when considering surgical intervention. Further research is necessary to better understand indications for specific surgical treatment.

  7. Size Effects on Deformation and Fracture of Scandium Deuteride Films.

    Energy Technology Data Exchange (ETDEWEB)

    Teresi, C. S. [Univ. of Minnesota, Minneapolis, MN (United States); Hintsala, E. [Univ. of Minnesota, Minneapolis, MN (United States); Hysitron, Inc., Eden Prairie, MN (United States); Adams, David P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Nancy Y. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kammler, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moody, N. R. [Univ. of Minnesota, Minneapolis, MN (United States); Gerberich, W. W. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-07-01

    Metal hydride films have been observed to crack during production and use, prompting mechanical property studies of scandium deuteride films. The following focuses on elastic modulus, fracture, and size effects observed in the system for future film mechanical behavior modeling efforts. Scandium deuteride films were produced through the deuterium charging of electron beam evaporated scandium films using X-ray diffraction, scanning Auger microscopy, and electron backscatter diffraction to monitor changes in the films before and after charging. Scanning electron microscopy, nanoindentation, and focused ion beam machined micropillar compression tests were used for mechanical characterization of the scandium deuteride films. The micropillars showed a size effect for flow stress, indicating that film thickness is a relevant tuning parameter for film performance, and that fracture was controlled by the presence of grain boundaries. Elastic modulus was determined by both micropillar compression and nanoindentation to be approximately 150 GPa, Fracture studies of bulk film channel cracking as well as compression induced cracks in some of the pillars yielded a fracture toughness around 1.0 MPa-m1/2. Preliminary Weibull distributions of fracture in the micropillars are provided. Despite this relatively low value of fracture toughness, scandium deuteride micropillars can undergo a large degree of plasticity in small volumes and can harden to some degree, demonstrating the ductile and brittle nature of this material

  8. Slow Waves in Fractures Filled with Viscous Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  9. Fracture behavior of quenched poly(lactic acid

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available The effect of a quenching treatment applied on heated cast sheet extruded films of two poly(lactic acid (PLA commercial grades, with different optical purities, was studied. The thermal and mechanical properties of the films, as well as their fracture behavior, were assessed by differential scanning calorimetry (DSC, tensile tests, and the essential work of fracture (EWF approach. The heating-quenching treatment causes a de-aging effect with an increase in the free volume of polymer chains evidenced by a decrease in the glass transition temperature (Tg and a decrease in the tensile stiffness and yield stress. As a result, there is an abrupt increase in ductility, finding a dramatic change in the fracture behavior, from brittle to ductile. The use of digital image correlation (DIC of the strain field analysis during fracture testing has allowed relating the decrease on the yield stress promoted by quenching with the crack propagation kinetics. The use of the EWF method to characterize the fracture toughness of PLA has allowed to measure this enhancement on toughness, finding that the specific essential work of fracture (we and the plastic term (βwp parameters increased 120% and 1200%, respectively, after the quenching process.

  10. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  11. Migration of Water Pulse Through Fractured Porous Media

    International Nuclear Information System (INIS)

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  12. Fracture mechanics evaluation of heavy welded structures

    International Nuclear Information System (INIS)

    Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.

    1982-01-01

    This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude of residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses

  13. Reactive Tracers for Characterizing Fractured Geothermal Reservoirs

    Science.gov (United States)

    Hawkins, Adam J.

    Multi-component tracer tests were conducted at a 10 x 10 m well field located in the Altona Flat Rocks of northern New York. Temperature advancement between two wells separated by 14 m was monitored throughout the well field during progressive heating of the reservoir over 6 d. Multiple approaches to predicting heat transport were applied to field data and compared to temperature rise recorded during reservoir heat-up. Tracer analysis incorporated both an analytical one-dimensional model and a two-dimensional numerical model for non-uniform fractures experiencing "flow-channeling." Modeling efforts demonstrated that estimating heat transfer surface area using a combined inert/adsorbing tracer (cesium-iodide) could provide accurate forecasting of premature thermal breakthrough. In addition, thermally degrading tracer tests were used to monitor inter-well temperature during progressive reservoir heating. Inert tracers alone were, in general, inadequate in forecasting thermal performance. In fact, moment analysis shows that, mathematically, thermal breakthrough is independent of parameters that primarily influence inert tracers. The most accurate prediction of thermal breakthrough using inert tracer alone was produced by treating hydrodynamic dispersion as a truly Fickian process with known and accurate mathematical models. Under this assumption, inert tracer data was matched by solving an inverse problem for non-uniform fracture aperture. Early arrival of the thermal front was predicted at the production, but was less accurate than using a combined inert/adsorbing tracer test. The spatial distribution of fluid flow paths in the plane of the fracture were identified using computational models, Fiber-Optic Distributed Temperature Sensing (FO-DTS), and Ground Penetrating Radar (GPR) imaging of saline tracer flow paths in the target fracture. Without exception, fluid flow was found to be concentrated in a roughly 1 m wide flow channel directly between the two wells. The

  14. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  15. Characterization of In-Situ Stress and Permeability in Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2006-06-30

    Fracture orientation and spacing are important parameters in reservoir development. This project resulted in the development and testing of a new method for estimating fracture orientation and two new methods for estimating fracture spacing from seismic data. The methods developed were successfully applied to field data from fractured carbonate reservoirs. Specific results include: the development a new method for estimating fracture orientation from scattered energy in seismic data; the development of two new methods for estimating fracture spacing from scattered energy in seismic data; the successful testing of these methods on numerical model data and field data from two fractured carbonate reservoirs; and the validation of fracture orientation results with borehole data from the two fields. Researchers developed a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fractures impart a ringing coda type signature to seismic energy that is transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: (1) the difference in angle between the orientation of the fractures and the acquisition direction, (2) the fracture spacing, (3) the wavelength of the illuminating seismic energy, and (4) the compliance, or stiffness, of the fractures. This coda energy is the most coherent when the acquisition direction is parallel to the strike of the fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function that quantifies the change in the apparent source

  16. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  17. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  18. Mechanical transport in two-dimensional networks of fractures

    International Nuclear Information System (INIS)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  19. Image diagnosis of nasal bone fracture

    International Nuclear Information System (INIS)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-01-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films. (author)

  20. Toe and Metatarsal Fractures (Broken Toes)

    Science.gov (United States)

    ... enable Javascript in your browser. Toe and Metatarsal Fractures (Broken Toes) The structure of the foot is ... received in an emergency room. What Is a Fracture? A fracture is a break in the bone. ...

  1. Mandibular ramus fractures: a rarity.

    Science.gov (United States)

    Kale, Tejraj Pundalik; Kotrashetti, S M; Louis, Archana; Lingaraj, J B; Sarvesh, B U

    2013-01-01

    To determine the incidence of mandibular ramus fractures in KLE's PK Hospital and to analyze the outcome of open reduction and internal fixation of these fractures. Using a retrospective study design, records of all trauma patients who reported to the Department of Oral and Maxillofacial Surgery, KLE's PK Hospital Belgaum, between the years January 2006 to October 2011 was obtained from the medical records office. The data variables that were analyzed were the name, age, sex, cause of injury, pretreatment occlusion, treatment given, period of MMF and post-treatment occlusion. Total number of mandibular fracture cases was 298. Ramus fractures were 10 in number which accounted for 3.3% of fractures. The age range of these 10 patients was seen to be between 20 to 80 years with the average age being 35.6 years. Of these 10 patients, 9 were male and 1 was female and 7 patients were treated by open reduction and internal fixation and the remaining 3 by closed reduction. The average period of MMF was 3 days for the patients who underwent open reduction and internal fixation. There was improvement in occlusion in all 10 patients post-treatment and there was no complication reported in any of the cases. Ramus fractures accounted for 3.3% of all mandibular fractures. Open reduction and internal fixation of ramus fractures ensures adequate functional and anatomic reduction. This study makes an attempt to throw a light on the increasing incidence of ramus fractures and a successful management of these fractures by open reduction and internal fixation. How to cite this article: Kale TP, Kotrashetti SM, Louis A, Lingaraj JB, Sarvesh BU. Mandibular Ramus Fractures: A Rarity. J Contemp Dent Pract 2013;14(1):39-42. Source of support: Nil Conflict of interest: None declared.

  2. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  3. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  4. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  5. An evaluation of the active fracture concept with modelingunsaturated flow and transport in a fractured meter-sized block ofrock

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-05-30

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network.

  6. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  7. Hydraulic fracturing proppants

    Directory of Open Access Journals (Sweden)

    V. P. P. de Campos

    Full Text Available Abstract Hydrocarbon reservoirs can be classified as unconventional or conventional depending on the oil and gas extraction difficulty, such as the need for high-cost technology and techniques. The hydrocarbon extraction from bituminous shale, commonly known as shale gas/oil, is performed by using the hydraulic fracturing technique in unconventional reservoirs where 95% water, 0.5% of additives and 4.5% of proppants are used. Environmental problems related to hydraulic fracturing technique and better performance/development of proppants are the current challenge faced by companies, researchers, regulatory agencies, environmentalists, governments and society. Shale gas is expected to increase USA fuel production, which triggers the development of new proppants and technologies of exploration. This paper presents a review of the definition of proppants, their types, characteristics and situation in the world market and information about manufacturers. The production of nanoscale materials such as anticorrosive and intelligent proppants besides proppants with carbon nanotubes is already carried out on a scale of tonnes per year in Belgium, Germany and Asia countries.

  8. Pediatric tibia fractures: current concepts.

    Science.gov (United States)

    Setter, Kevin J; Palomino, Kathryn E

    2006-02-01

    Fracture of the tibia is a common occurrence in children. The operative treatment of pediatric tibia fractures has undergone a recent change. However, there is no clear consensus regarding the superiority of one treatment option. The literature clearly supports the fact that the vast majority of pediatric tibia fractures can and should be managed nonoperatively. This is secondary to their inherent stability. A variety of factors including fracture type, location, severity and patient age determine the best treatment options for a particular fracture. A thorough understanding of these factors and how they affect outcome, help the clinician formulate the proper plan of treatment. A randomized prospective controlled trial will be necessary to establish which surgical options are superior for which type of pediatric tibia fracture. Until then, recent studies have indicated that flexible intramedullary nails may lead to a shorter time to union and a decreased rate of refracture when compared with external fixation of unstable tibial shaft fractures. What remains unclear are the specific indications and contraindication for the use of flexible nails. External fixation still remains a successful treatment option for unstable tibial shaft fractures.

  9. Ankle Fractures: The Operative Outcome

    Directory of Open Access Journals (Sweden)

    Ahmad Hafiz Z

    2011-03-01

    Full Text Available Ankle fractures are commonly seen in orthopaedic practice. This retrospective study of patients with ankle fractures who underwent surgical treatment in our institution from January 2000 to December 2003 was undertaken to analyze the common causes and patterns of ankle fractures; and the functional outcome of operative treatment for these fractures. Eighty patients were identified and reviewed. There were 65 male (81.3% and 15 female patients (18.7% with age ranging from 13 to 71 years old (mean, 32.3y. Common causes of ankle fractures were trauma (especially motor vehicle accidents, sports injuries and the osteoporotic bones in the elderly. Weber C (64.0% was the most common pattern of fracture at presentation. The most common operative treatment for ankle fractures was open reduction and internal fixation (73 patients, 91.2%. Excellent and good outcomes were achieved in 93.8% of cases when measured using the Olerud and Molander scoring system for foot and ankle. In conclusion, operative treatment for ankle fractures restores sufficient stability and allowed mobility of the ankle joint.

  10. Management of pediatric mandible fractures.

    Science.gov (United States)

    Goth, Stephen; Sawatari, Yoh; Peleg, Michael

    2012-01-01

    The pediatric mandible fracture is a rare occurrence when compared with the number of mandible fractures that occur within the adult population. Although the clinician who manages facial fractures may never encounter a pediatric mandible fracture, it is a unique injury that warrants a comprehensive discussion. Because of the unique anatomy, dentition, and growth of the pediatric patient, the management of a pediatric mandible fracture requires true diligence with a variance in treatment ranging from soft diet to open reduction and internal fixation. In addition to the variability in treatment, any trauma to the face of a child requires additional management factors including child abuse issues and long-term sequelae involving skeletal growth, which may affect facial symmetry and occlusion. The following is a review of the incidence, relevant anatomy, clinical and radiographic examination, and treatment modalities for specific fracture types of the pediatric mandible based on the clinical experience at the University of Miami/Jackson Memorial Hospital Oral and Maxillofacial Surgery program. In addition, a review of the literature regarding the management of the pediatric mandible fracture was performed to offer a more comprehensive overview of this unique subset of facial fractures.

  11. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  12. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  13. Bilateral acetabular fracture without trauma

    OpenAIRE

    Rosa, M. A.; Maccauro, G.; D’Arienzo, M.

    1999-01-01

     In the absence of trauma fracture of the acetabulum is an extremely rare injury. We describe a 70 year old man who spontaneously developed fractures in both acetabulae due to bony insufficiency. It was successfully treated by bilateral total hip replacement.

  14. Fracture of the anterior colliculus.

    Science.gov (United States)

    Skie, M C; Ebraheim, N A; Woldenberg, L; Randall, K

    1995-04-01

    The authors retrospectively reviewed 33 cases of fracture involving the anterior colliculus of the medial malleolus to examine clinical results of operative treatment for these fractures. Although this injury appears innocuous, it can be difficult to obtain stable fixation of the fragment intraoperatively, and painful nonunion can result. A simple reduction maneuver and method of tension band fixation are described.

  15. [Surgical treatment of unstable pelvic fractures combined with acetabular fractures].

    Science.gov (United States)

    Wang, Tao; Wang, Jun; Li, Zong-yuan; Liu, Gang

    2015-05-01

    To discuss the treatment strategy of acetabular fractures and unstable pelvic fracture of the hip and to evaluate its outcome. Retrospective analysis of clinical data in 32 patients with unstable pelvic fracture and acetabular fractures from January 2007 to June 2013 were collected. There were 18 males and 14 females aged from 18 to 62 years old (means 38 years old). According to Tile classification of pelvic fracture, 11 cases were type B1, 8 were type B2.1, 7 were type B2.2, 3 were type C1.1, 2 were type C1.2, 1 was type C3. According to Judet-Letournel classification, anterior column fracture was in 1 case, transverse fracture in 8, transverse plus posterior wall fracture in 6, T-type fracture in 1, anterior column plus half transverse fractures in 5, double column fracture in 11. Other combined injuries were treated early, the surgical operation were performed after stable condition. The hip joint function and the fracture reduction were assessed during follow-up. The operative time was from 1.8 to 6.5 hours (averaged 3 hours). Two fat patients' incision occurred in fat liquefaction and healed after dressing, no incision infection happened. Only 1 case was lost to follow-up, 31 patients were followed up with a mean time of 23 months (6 to 42 months). The healing time of pelvic fracture was from 8 to 18 weeks (averaged in 10.6 weeks). The hip function was evaluated according to the Matta and Tornetta standard postoperatively, the result was excellent in 15 cases, good in 14 cases, fair and poor in 1 case respectively. The Majeed score of the hip function was 83.65? 7.67, the result was excellent in 15 cases, good in 12 cases and fair in 4 cases. The healing time of acetabular fractures was from 8 to 16 weeks (averaged in 10.2 weeks). The fracture reduction was assessed by Matta standard, the result was excellent in 15 cases, good in 12 cases and fair in 4 cases. The heterotopic ossification was evaluated by Brooker standard, 4 cases were grade I, 1 case was

  16. An Analysis for the Influences of Fracture Network System on Multi-Stage Fractured Horizontal Well Productivity in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Deliang Zhang

    2018-02-01

    Full Text Available This paper presents two representative models to analyze the flow dynamic of multi-scale porous medium in hydraulic fractured horizontal shale gas wells. In this work, considering the characteristic mechanisms (multi-scale porous space, desorption and diffusion, flow equations in shale are established. After that, two representative models (discrete fracture model and dual-porosity model are tailored to our issues. Solved by the control-volume finite element method (CVFEM, influences of fracture network system on productivity in shale reservoirs are analyzed in detail. Based on the analysis, the effects can be summarized as follow: at the beginning of production, high conductivity fracture network means more free gas could be produced; at the later part of production, high conductive fracture network can form a large low pressure region, which can not only stimulate the desorption of adsorbed gas, but also reduce the flow resistance to the well. Finally, the sensitivities of characteristic parameters in shale are discussed.

  17. Characterization of fractured reservoirs joint inversion of seismic and production data

    Energy Technology Data Exchange (ETDEWEB)

    Shahraini, Ali

    2011-03-15

    Significant amounts of oil and gas reserves are trapped in fractured reservoirs. A proper characterization of fractured reservoirs can contribute to better reservoir management, including optimum well placement, planning of enhanced oil recovery (EOR) methods, well completion and so on. Characterization of fractured (and faulted) reservoirs has been a challenging and complicated task due to the high degree of heterogeneity and anisotropy that exists in this kind of reservoirs. In this thesis I look at the problem of fractured reservoir characterization as an inverse problem, and try to estimate the uncertain fracture parameters by joint inversion (or history matching) of seismic and production data. Updating a reservoir model to behave as closely as possible to the real reservoir is called history matching, which generally has a non-unique solution. History matching is a time consuming problem. Using both production and seismic data can help to narrow the solution space. This work aims to propose and develop work flows and methodologies for improved characterization of fractured reservoirs. It is based on an integrated approach using both seismic and production data in the characterization process. The fluid flow- seismic wave system for fractured reservoir characterization consists of a reservoir simulator coupled to consistent rock physics models and forward seismic modeling tools. A consistent (computationally inexpensive) rock physics model is used to calculate the effective permeability and stiffness tensors of fractured porous media from a limited number of uncertain fracture parameters. Based on the calculated effective permeability tensors, the reservoir simulator calculates production data such as well oil production, well bottom hole pressure, well water cut, saturation and pressure for all grid blocks at specific time steps. Similarly, using the effective stiffness tensors (calculated from saturation maps and assumed fracture parameters), seismic

  18. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  19. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  20. [Femoral shaft fractures in children].

    Science.gov (United States)

    Dietz, H-G; Schlickewei, W

    2011-05-01

    Femoral shaft fractures in children represent 1.5% of all fractures in childhood. Up to the age of 4 years, conservative treatment in a hip spica or short-term overhead traction is the therapy of choice. Femoral shaft fractures between the age of 5 and 16 years should be treated surgically. In over 90% of these cases elastic stable intramedullary nailing (ESIN) is the premier treatment option. Additional end caps can be used for unstable fractures and in length discrepancy. The external fixator and the locking plate are reserved for fractures with severe soft tissue injuries, vascular problems and some specific situations mentioned later on. By adhering to these standards good results can be achieved with a low complication rate.

  1. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-01-01

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  2. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He

    2017-05-01

    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  3. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  4. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  5. Evaluation of the conservativeness of the methodology for estimating earthquake-induced movements of fractures intersecting canisters

    International Nuclear Information System (INIS)

    La Pointe, Paul R.; Cladouhos, Trenton T.; Outters, Nils; Follin, Sven

    2000-04-01

    This study evaluates the parameter sensitivity and the conservativeness of the methodology outlined in TR 99-03. Sensitivity analysis focuses on understanding how variability in input parameter values impacts the calculated fracture displacements. These studies clarify what parameters play the greatest role in fracture movements, and help define critical values of these parameters in terms of canister failures. The thresholds or intervals of values that lead to a certain level of canister failure calculated in this study could be useful for evaluating future candidate sites. Key parameters include: 1. magnitude/frequency of earthquakes; 2. the distance of the earthquake from the canisters; 3. the size and aspect ratio of fractures intersecting canisters; and 4. the orientation of the fractures. The results of this study show that distance and earthquake magnitude are the most important factors, followed by fracture size. Fracture orientation is much less important. Regression relations were developed to predict induced fracture slip as a function of distance and either earthquake magnitude or slip on the earthquake fault. These regression relations were validated by using them to estimate the number of canister failures due to single damaging earthquakes at Aberg, and comparing these estimates with those presented in TR 99-03. The methodology described in TR 99-03 employs several conservative simplifications in order to devise a numerically feasible method to estimate fracture movements due to earthquakes outside of the repository over the next 100,000 years. These simplifications include: 1. fractures are assumed to be frictionless and cohesionless; 2. all energy transmitted to the fracture by the earthquake is assumed to produce elastic deformation of the fracture; no energy is diverted into fracture propagation; and 3. shielding effects of other fractures between the earthquake and the fracture are neglected. The numerical modeling effectively assumes that the

  6. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  7. Numerical Investigation of Influence of In-Situ Stress Ratio, Injection Rate and Fluid Viscosity on Hydraulic Fracture Propagation Using a Distinct Element Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-02-01

    Full Text Available Numerical simulation is very useful for understanding the hydraulic fracturing mechanism. In this paper, we simulate the hydraulic fracturing using the distinct element approach, to investigate the effect of some critical parameters on hydraulic fracturing characteristics. The breakdown pressure obtained by the distinct element approach is consistent with the analytical solution. This indicates that the distinct element approach is feasible on modeling the hydraulic fracturing. We independently examine the influence of in-situ stress ratio, injection rate and fluid viscosity on hydraulic fracturing. We further emphasize the relationship between these three factors and their contributions to the hydraulic fracturing. With the increase of stress ratio, the fracture aperture increases almost linearly; with the increase of injection rate and fluid viscosity, the fracture aperture and breakdown pressure increase obviously. A low value of product of injection rate and fluid viscosity (i.e., Qμ will lead to narrow fracture aperture, low breakdown pressure, and complex or dispersional hydraulic fractures. A high value of Qμ would lead wide fracture aperture, high breakdown pressure, and simple hydraulic fractures (e.g., straight or wing shape. With low viscosity fluid, the hydraulic fracture geometry is not sensitive to stress ratio, and thus becomes a complex fracture network.

  8. Fractures of the sustentaculum tali.

    Science.gov (United States)

    Dürr, C; Zwipp, H; Rammelt, S

    2013-12-01

    Anatomical reconstruction of displaced sustentaculum tali fractures via a direct medial approach. Displaced fractures of the sustentaculum tali with incongruity or depression of the medial facet of the subtalar joint, entrapment of the flexor hallucis longus or flexor digitorum longus tendons, fracture line extending into the posterior facet of the subtalar joint. Infected or grossly contaminated soft tissue, severely restricted vascular supply to the foot, high perioperative risk. Direct medial approach over the sustentaculum tali, retraction of the tendons, joint exploration, fracture reduction using the medial facet and cortical outline as guidelines, fracture fixation with two small fragment screws from medial to lateral directed slightly plantarly and posteriorly. Fractures with depression of the medial facet as a whole can alternatively be reduced and fixed percutaneously. Lower leg splint for 5-7 days, partial weight-bearing with 20 kg for 6-8 weeks (until radiographic signs of consolidation) in the patient's own shoewear, early range of motion exercises of the ankle, subtalar and mid-tarsal joints. Over a course of 15 years, 31 patients were treated operatively for sustentacular fractures. In all, 27 patients (87%) had additional fractures to the same foot and ankle. Eighteen patients with a mean age of 41 years treated at our institution with screw fixation for a unilateral fracture of the sustentaculum tali could be followed for a mean of 80 months (range 15-151 months). No wound healing problems or infections were seen with the medial approach. At the time of follow-up, 15 sustentaculum tali fractures had an average Foot Function Index of 21.6 and an average AOFAS Ankle-Hindfoot Score of 83.6. Patients with isolated fractures of the sustentaculum tali had significantly better scores than those with additional injuries. In 1 patient, an additional lateral process fracture of the talus required subtalar fusion due to persistent pain. Care must be taken not

  9. Computational aspects of nonlinear fracture mechanics

    International Nuclear Information System (INIS)

    Brocks, W.; Cornec, A.; Scheider, I.

    2003-01-01

    The following contribution will essentially restrict to the application of the von Mises theory of incremental plasticity to cracked specimens and components. In particular, the classical parameters of EPFM, J and CTOD, as well as subsequently proposed parameters such as energy dissipation rate and crack-tip opening angle (CTOA) and the related computational aspects will be discussed. Some remarks follow on the 'local approach to fracture' which is based on continuum field quantities, namely stresses and strains, and the damage models of Gurson (1977) and Rousselier (1987), which have now found increasing application, will be briefly addressed in Section 3.03.4. The numerical modeling of decohesion and separation phenomena by 'cohesive elements' will be presented in Section 3.03.5. (orig.)

  10. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  11. Local manganese chloride treatment accelerates fracture healing in a rat model.

    Science.gov (United States)

    Hreha, Jeremy; Wey, Aaron; Cunningham, Catherine; Krell, Ethan S; Brietbart, Eric A; Paglia, David N; Montemurro, Nicholas J; Nguyen, Daniel A; Lee, Yung-Jae; Komlos, Daniel; Lim, Elisha; Benevenia, Joseph; O'Connor, J Patrick; Lin, Sheldon S

    2015-01-01

    This study investigated the effects of local delivery of manganese chloride (MnCl2), an insulin-mimetic compound, upon fracture healing using a rat femoral fracture model. Mechanical testing, histomorphometry, and immunohistochemistry were performed to assess early and late parameters of fracture healing. At 4 weeks post-fracture, maximum torque to failure was 70% higher (P<0.05) and maximum torsional rigidity increased 133% (P<0.05) in animals treated with 0.125 mg/kg MnCl2 compared to saline controls. Histological analysis of the fracture callus revealed percent new mineralized tissue was 17% higher (P<0.05) at day 10. Immunohistochemical analysis of the 0.125 mg/kg MnCl2 treated group, compared to saline controls, showed a 379% increase in the density of VEGF-C+ cells. In addition, compared to saline controls, the 0.125 mg/kg MnCl2 treated group showed a 233% and 150% increase in blood vessel density in the subperiosteal region at day 10 post-fracture as assessed by detection of PECAM and smooth muscle α actin, respectively. The results suggest that local MnCl2 treatment accelerates fracture healing by increasing mechanical parameters via a potential mechanism of amplified early angiogenesis leading to increased osteogenesis. Therefore, local administration of MnCl2 is a potential therapeutic adjunct for fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Fracture simulation of restored teeth using a continuum damage mechanics failure model.

    Science.gov (United States)

    Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun

    2011-07-01

    The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Numerical modelling of single-phase flow in rough fractures with contacts

    Science.gov (United States)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2017-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  14. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k t close to 1.2 with a density term (α 2d ) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k t close to 3 and a density term (α 2d ) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k t equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k t = 1.2) on one side, to the lineament scale (k t = 2) on

  15. A simplified fracture network model for studying the efficiency of a single well semi open loop heat exchanger in fractured crystalline rock

    Science.gov (United States)

    de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.

  16. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  17. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  18. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  19. Early history of scapular fractures.

    Science.gov (United States)

    Bartoníček, Jan; Kozánek, Michal; Jupiter, Jesse B

    2016-01-01

    The first to use the term Scapula was Vesalius (1514-1564) and thus it has remained ever since. Probably the oldest injured scapula, from 250 million years ago, was described by Chinese authors of a skeletal examination of a fossilised remains of a dinosaur Yangchuanosaurus hepingensis. In humans, the oldest known scapular fractures date back to the prehistoric and early historic times. In ancient times, a fracture of acromion was described in the treatises of Hippocrates. Early modern history of the treatment of scapular fractures is closely interlinked with the history of the French surgery. The first to point out the existence of these fractures were Petit, Du Verney and Desault in the 18th century. The first study devoted solely to scapular fractures was published by Traugott Karl August Vogt in 1799. Thomas Callaway published in 1849 an extensive dissertation on injuries to the shoulder girdle, in which he discussed a number of cases known at that time. The first radiograph of a scapular fracture was published by Petty in 1907. Mayo Robson (1884), Lambotte (1913) and Lane (1914) were pioneers in the surgical treatment of these fractures, followed in 1923 by the French surgeons Lenormat, Dujarrier and Basset. The first internal fixation of the glenoid fossa, including a radiograph, was published by Fischer in 1939.

  20. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  1. Scaling exponents for fracture surfaces in opal glass

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Guerrero, L., E-mail: guerreroleo@hotmail.com [Facultad de Ingenieria Mecanica y Electrica. Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Center of Innovation, Research and Development on Engineering and Technology, Universidad Autonoma de Nuevo Leon Monterrey, C.P. 66600, Apodaca, Nuevo Leon (Mexico); Garza, F.J., E-mail: fjgarza@gama.fime.uanl.mx [Facultad de Ciencias Quimicas, Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Hinojosa, M., E-mail: hinojosa@gama.fime.uanl.mx [Facultad de Ingenieria Mecanica y Electrica. Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Center of Innovation, Research and Development on Engineering and Technology, Universidad Autonoma de Nuevo Leon Monterrey, C.P. 66600, Apodaca, Nuevo Leon (Mexico)

    2010-09-25

    We have investigated the scaling properties of fracture surfaces in opal glass. Specimens with two different opacifying particle sizes (1 {mu}m and 0.4 {mu}m) were broken by three-point bending test and the resulting fracture surfaces were analyzed using Atomic Force Microscopy. The analysis of the self-affine behavior was performed using the Variable Bandwidth and Height-Height Correlation Methods, and both the roughness exponent, {zeta}, and the correlation length, {xi}, were determined. It was found that the roughness exponent obtained in both samples is {zeta} {approx} 0.8; whereas the correlation length in both fractures is of the order of the particle size, demonstrating the dependence of this self-affine parameter on the microstructure of opal glass.

  2. Fracture properties evaluation of stainless steel piping for LBB applications

    International Nuclear Information System (INIS)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-01-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal

  3. Proximal Femoral Geometry and the Risk of Fractures: Literature Review

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva

    2016-02-01

    Full Text Available This article presents the literature review of the impact of the upper third of the femur geometry (hip axis length, femoral neck angle, inter-trochanteric length, horizontal offset, thickness of the cortical bone, etc. on the risk of fractures. The article demonstrates the capabilities of techniques for measurement of hip geometry, namely conventional X-ray of pelvic bones, dual-energy X-ray absorptiometry, computed tomography. Possible correlation is shown between some genetic markers and features of the geometry of the upper third of the femur. Also, there are presented the results of own researches of age and sex characteristics of proximal hip geometry parameters in patients without fractures, as well as in patients of older age groups with internal and extraarticular femoral fractures.

  4. Fracture properties evaluation of stainless steel piping for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S. [Sung Kyun Kwan Univ., Suwon (Korea, Republic of)

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  5. The effect of specimen and flaw dimensions on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M.J. [VTT Manufacturing Technology, Espoo (Finland)

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account. 64 refs. The thesis includes also four previous publications by author.

  6. Stress fractures and bone pain

    International Nuclear Information System (INIS)

    Groshar, D.; Even-Sapir, E.; Lam, M.; Israel, O.; Front, D.

    1984-01-01

    Stress fractures result from an unusual repetitive physical activity causing absorption of bone in excess of repair and bone formation. This leads to the weakening of the bone and subsequently to a fracture. It is a benign condition that if recognized in time does not need any treatment besides rest. However, if diagnosis is not made and physical activity continues it may result in severe injury to the bone and a frank fracture may result. Pain is the typical clinical feature and bone scintigraphy, being more sensitive than radiography, is done to establish early diagnosis. The presence of asymptomatic sites of abnormal bone uptake typical of stress fracture in which pain appeared only about 2 weeks after scintigraphy, drew the authors' attention to the question of how close is the relationship between stress fractures and bone pain. Sixty-four military recruits diagnosed as suffering from stress fracture were investigated in order to correlate sites with abnormal uptake of Tc-99m MDP on bone scintigraphy with sites of local pain. In 37 (58%) subjects multiple sites of abnormal uptake were recognised. Of 123 sites of abnormal uptake, 31 (25%) were asymptomatic. In three patients bone pain appeared at the site of the abnormal uptake two weeks after scintigraphy. Bone scintigraphy appears to be more sensitive than bone pain in the diagnosis of stress fractures. The osteoblastic activity which manifests itself by abnormal uptake appears in some cases earlier than the pain caused by the fracture. Present findings may suggest that under certain circumstances, in a population prone to stress fracture, bone scan should be considered as a screening method

  7. Fracture healing in osteoporotic bone.

    Science.gov (United States)

    Cheung, Wing Hoi; Miclau, Theodore; Chow, Simon Kwoon-Ho; Yang, Frank F; Alt, Volker

    2016-06-01

    As the world population rises, osteoporotic fracture is an emerging global threat to the well-being of elderly patients. The process of fracture healing by intramembranous ossification or/and endochondral ossification involve many well-orchestrated events including the signaling, recruitment and differentiation of mesenchymal stem cells (MSCs) during the early phase; formation of a hard callus and extracellular matrix, angiogenesis and revascularization during the mid-phase; and finally callus remodeling at the late phase of fracture healing. Through clinical and animal research, many of these factors are shown to be impaired in osteoporotic bone. Animal studies related to post-menopausal estrogen deficient osteoporosis (type I) have shown healing to be prolonged with decreased levels of MSCs and decreased levels of angiogenesis. Moreover, the expression of estrogen receptor (ER) was shown to be delayed in ovariectomy-induced osteoporotic fracture. This might be related to the observed difference in mechanical sensitivity between normal and osteoporotic bones, which requires further experiments to elucidate. In mice fracture models related to senile osteoporosis (type II), it was observed that chondrocyte and osteoblast differentiation were impaired; and that transplantation of juvenile bone marrow would result in enhanced callus formation. Other factors related to angiogenesis and vasculogenesis have also been noted to be impaired in aged models, affecting the degradation of cartilaginous matrixes and vascular invasion; the result is changes in matrix composition and growth factors concentrations that ultimately impairs healing during age-related osteoporosis. Most osteoporotic related fractures occur at metaphyseal sites clinically, and reports have indicated that differences exist between diaphyseal and metaphyseal fractures. An animal model that satisfies three main criteria (metaphyseal region, plate fixation, osteoporosis) is suggested for future research for

  8. Double-beam Stacking to Infer Seismic Properties of Fractured Reservoirs

    Science.gov (United States)

    Zheng, Y.; Fang, X.; Fehler, M.; Burns, D.

    2011-12-01

    The Earth is constantly deforming, thereby creating stress field, which may generate fractures when the material fails. Fracture spacing, orientation and compliance are key parameters we want to infer about a fractured reservoir that may contain oil and gas. Fractures can be modeled as inclusions with contrasting material properties and they can also be characterized by Schoenberg's linear slip boundary condition, which garnered experimental support from laboratories in 1980s and 90s. In both models, fractures scatter seismic waves. We adopt the linear slip boundary condition as a working hypothesis for the fracture model. The more compliant the fracture is, the better the permeability is and the stronger the scattering is. When the wavelength λ is large compared to the fracture spacing D, e.g. λ >10D, one can use the effective medium theory which treats the fractured reservoir as a homogeneous but anisotropic medium. In this case, the common-midpoint stacks should vary with the azimuth. However, when the wavelength is comparable to the fracture spacing, seismic scattering theory is needed and we have developed a theory for using 3D beam interference to infer scattering properties of a fractured reservoir using reflected seismic P data. For the sake of simplicity, we use Gaussian beams. The method involves interference of two beams, one from the source region and the other emanating from the receivers. Each beam is formed by first windowing the scattered data in space and time and then performing the f-k filtering. The interference pattern depends on frequency, the incident angle, the reflection angle, and the azimuth. We try to interpret the interference pattern using local Born scattering in the target region. This interpretation is motivated by the observation that full-wave finite difference simulation of waves propagating through a set of vertical fractures using Schoenberg's linear-slip boundary condition and fracture compliances consistent with those

  9. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  10. Fracture Union in Closed Interlocking Nail in Humeral Shaft Fractures

    Directory of Open Access Journals (Sweden)

    Ramji Lal Sahu

    2015-01-01

    Conclusions: The results of the present study indicates that in the presence of proper indications, reamed antegrade intramedullary interlocked nailing appears to be a method of choice for internal fixation of osteoporotic and pathologic fractures.

  11. fracture ouverte de la jambe

    OpenAIRE

    DJALT HOUARI, BADREDDINE; KHODJA, BOCHRA BAKHTA

    2015-01-01

    Les fractures de jambes ouvertes sont les plus fréquentes des fractures ouvertes des os longs. Elles sont en général graves et surviennent le plus souvent après un accident de la voie publique. La classification de Cauchoix modifiée par Gustilo a une valeur pronostique, mais elle nécessite une réévaluation au cours du temps. La contamination initiale de la plaie peut être considérée comme une constante lors de fractures ouvertes. La prise en charge initiale comporte une a...

  12. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic. (orig.)

  13. Arthroscopic Management of Bennett Fracture.

    Science.gov (United States)

    Solomon, Jason; Culp, Randall W

    2017-11-01

    Bennett fracture is the most common fracture of the thumb. Choosing the appropriate approach to fracture fixation requires a thorough knowledge of the anatomy surrounding the first carpometacarpal joint, which is necessary to prevent injury to local sensory nerves and tendons. Although no study has shown superior outcomes compared with open reduction internal fixation and fluoroscopically guided closed reduction and percutaneous pinning, arthroscopic-assisted fixation allows for debridement of the carpometacarpal joint, direct visualization of the articular surface during reduction, and has minimal morbidity and associated complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  15. Contemporary management of subtrochanteric fractures.

    Science.gov (United States)

    Joglekar, Siddharth B; Lindvall, Eric M; Martirosian, Armen

    2015-01-01

    Cephalomedullary interlocking nails that allow for trochanteric entry and minimally invasive fixation have revolutionized the contemporary management of subtrochanteric fractures with improved union rates and decreased incidence of fixation failure. The most successful alternative to intramedullary fixation remains the angled blade plate. Despite biomechanical superiority of contemporary intramedullary implants to previous intramedullary devices, the importance of achieving and maintaining satisfactory fracture reduction prior to and during hardware insertion cannot be overemphasized. In comminuted and more challenging fractures, additional techniques, such as limited open reduction with clamps and/or cables, can allow for canal restoration and more anatomic reductions prior to and/or during nail insertion. Published by Elsevier Inc.

  16. Vertebral Fractures and Spondylosis in Men - Original Investigation

    Directory of Open Access Journals (Sweden)

    Selmin Gülbahar

    2008-04-01

    Full Text Available Aim: The aim of this study was to investigate the relationship between vertebral fractures and spondylosis and bone mineral density in men older than 60 years. Material and Method: Thirty-two men with back and low back pain aged over 60 years were included into the study. Thoracic and lumbar spine radiographs were taken and, anterior, central and posterior heights of each vertebral body from T4 to L5 was measured and than the number of vertebral fractures was assessed. Osteophyte and disc scores were used for evaluation of spondylosis. Bone mineral density was measured by dual-energy-X-ray absorptiometry. Measurements were obtained from lumbar vertebrae and proximal femoral region. Results: Significant positive correlations were found between vertebral fracture and osteophyte score and bone mineral density of total femoral region. When osteophyte score and total femoral bone mineral density were taken into consideration, there were no significant correlations between other parameters and vertebral fracture. Significant positive correlations were observed between osteophyte score and bone mineral density and t scores of L1-4. Also there were significant positive correlations between disc score and both bone mineral density and t scores of L1-4. Significant positive correlation was also found between femoral bone density and body weight. Conclusion: Finally, lumbar bone mineral density increases with spinal degenerative changes, but the increase in bone mineral density can not prevent sub clinic vertebral fractures. Especially, in the men who have intensive spinal degenerative changes, the measurement of lumbar bone mineral density is not enough for determining the fracture risk. Measurement of femoral bone mineral density and evaluation of clinic risk factors are more important for determining the fracture risk. (From the World of Osteoporosis 2008;14:1-6

  17. Understanding the effect of single-fracture heterogeneity from single-well injection-withdrawal (SWIW) tests

    Science.gov (United States)

    Larsson, Martin; Doughty, Christine; Tsang, Chin-Fu; Niemi, Auli

    2013-12-01

    The single-well injection-withdrawal (SWIW) tracer test is a method used to estimate the tracer retardation properties of a fracture or fracture zone. The effects of single-fracture aperture heterogeneity on SWIW-test tracer breakthrough curves are examined by numerical modelling. The effects of the matrix diffusion and sorption are accounted for by using a particle tracking method through the addition of a time delay added to the advective transport time. For a given diffusion and sorption property ( P m) value and for a heterogeneous fracture, the peak concentration is larger compared to a homogeneous fracture. The cumulative breakthrough curve for a heterogeneous fracture is similar to that for a homogeneous fracture and a less sorptive/diffusive tracer. It is demonstrated that the fracture area that meets the flowing water, the specific flow-wetted surface (sFWS) of the fracture, can be determined by matching the observed breakthrough curve for a heterogeneous fracture to that for a homogeneous fracture with an equivalent property parameter. SWIW tests are also simulated with a regional pressure gradient present. The results point to the possibility of distinguishing the effect of the regional pressure gradient from that of diffusion through the use of multiple tracers with different P m values.

  18. Atypical fractures on long term bisphosphonates therapy.

    LENUS (Irish Health Repository)

    Hussein, W

    2011-01-01

    Bisphosphonates reduce fractures risk in patients with osteoporosis. A new pattern of fractures is now being noted in patients on prolonged bisphosphonate therapy. We report a case of an atypical femoral fracture with preceding pain and highlight the characteristics of these fractures.

  19. Evaluation of regional fracture properties for groundwater ...

    Indian Academy of Sciences (India)

    Fracture networks have the potentiality to significantly influence local and regional scale fluid movement. Fracture induced permeability depends on density of fractures, size of apertures and connectivities (Singhal and Gupta. 1999). It is assumed that closely spaced fractures with higher frequency represent better possibility.

  20. Humerus shaft fractures - where are we today?

    DEFF Research Database (Denmark)

    Strohm, P C; Reising, K; Hammer, T

    2011-01-01

    Humeral shaft fractures account for about 1-3% of all fractures. These fractures are regarded as the domain of non-surgical management. This is certainly still the contemporary view but there is an obvious trend towards surgical stabilization. Surgical treatment of humeral shaft fractures has...

  1. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    surface roughness; the relationship was found to exhibit a square root of time dependence. Rough surfaces also affect the movement of bulk fluid through the fractures. The speed of droplets moving downward between smooth and rough surfaces is seen to be significantly different. Experiments were used to develop predictive algorithms to calculate the speed of droplets in unsaturated rock fractures, which incorporate an adjusted contact angle for wet rough surfaces, and also incorporate the effect of dynamics on the evolution of the advancing contact angle. The third paper investigates the effect of intersection geometry on the larger scale distribution of fluid in a system of fractures. Fluid movement through fracture intersections depends on input flow parameters, geometry of the system, and capillary and gravitational forces. The physical mechanisms governing the process are analyzed to predict distribution of liquid into fracture branches and velocity of the output flow. This study will improve the ability to incorporate pore-scale fluid physics phenomena into large-scale models for predicting flow transport in rock fracture systems.

  2. Insights on the fractal-fracture behaviour relationship

    Directory of Open Access Journals (Sweden)

    Rodrigues José de Anchieta

    1998-01-01

    Full Text Available The fractals theory has been increasingly applied in the field of materials science and engineering. Models of fractal lines and surfaces have been generated to describe the microstructural features of materials. Special interest is placed upon a description of the fracture surface based on a fractal geometry in order to understand the crack path in materials. Several papers have demonstrated the relationship between the fractal dimension of a fracture surface and the values of roughness and fracture toughness. In this work an extension of the theory of fractals for ceramic materials is proposed, to which the crack deflection toughening mechanism is thought to be related. In order to accomplish this objective, a review describing the concept of fractals and its relationship with the fracture toughness is presented. In the following part, a correlation between fractal dimension, total energy of fracture and the average resistance to crack propagation is proposed; all these parameters being dependent on the history and on the complexity of crack propagation path.

  3. [Immunological aspects of delayed regeneration of mandibular fractures].

    Science.gov (United States)

    Mashchenko, I; Idashkina, N; Gudaryan, A

    2015-04-01

    The level of complications in patients with the mandibular fractures does not have a tendency to the decline. A research purposes is a study of the basic laws of immunological reactions and possibility of optimizing processes osteogenesis by drugs-cytokines at patients with the mandibular fractures with delayed consolidation of bone tissue. 46 patients with the mandibular fractures were observed. The maintenance of cytokines IL - 1β, TNF - α, IL - 4, SICAM-1 in the blood serum, IgA, IgM, IgG in a mouth liquid was probed. It is set that in pathogenesis of delayed consolidation a basic role is played by changes reactivity of organism, which realized in three directions: immunodeficit of humoral immunity, immunodepression of cellular factors of defence, disbalance in functioning of the cytokines system. It is necessary to count the levels of products SICAM-1 and cytokine IL-1β in the blood serum by the diagnostic criteria of bone repair features at patients with the mandibular fractures: development of delayed consolidation of mandibular fragments is accompanied the increase of their parameters at the control group more than in 2 and in 15 times (668,2±10,3 pg/ml and 363,4 ±6,6 pg/ml relatively). Includding in the complex treatment of the mandibular fractures of immunomodulator Ronkoleukin showed clinico-immunological efficiency for the patients with impaired bone repair.

  4. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    Venter, R.D.; Hoeppner, D.W.

    1985-10-01

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is J IC , but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  5. Intramedullary nailing in segmental tibial fractures.

    Science.gov (United States)

    Melis, G C; Sotgiu, F; Lepori, M; Guido, P

    1981-10-01

    Thirty-eight consecutive segmental fractures of the tibia were treated by intramedullary nailing with the Küntscher-Herzog nail. Twenty-two fractures were closed and sixteen were open. Reaming of the medullary cavity was performed and adequate fixation was ensured by use of a plaster cast. Weight-bearing was allowed after thirty-days for closed fractures and sixty days for open fractures. All of the closed fractures healed without malunion or infection. Of the patients with open fractures, one had an infection; one, non-union; and one, malunion. In all cases but one, union was slower at the distal fracture.

  6. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  7. Detection of fractures in borehole image

    Science.gov (United States)

    Zhang, Xiang; Xiao, Xiaoling

    2009-10-01

    Fractures in borehole images are currently handpicked by geologists, which is a tedious and expensive task. Automatically detecting fractures in these images is not an easy task. We present a scheme for automatic fracture detection in borehole images. First, an adaptive histogram equalization method is applied to enhance borehole images which enhances the visibility of fractures in the images. Then, a direction filtering method is proposed to extract traces of fractures in borehole images. Finally, the fast Hough transform is taken to detect fractures from the results of direction filtering. Experiment results show that the scheme achieves the good results for automatic fracture detection in borehole images.

  8. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    Science.gov (United States)

    2013-09-01

    tomography, fractured rocks, heterogeneity, plume mass flux, compound specific isotope analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...flow and transport parameters of highly fractured porous rock samples, J. Hydrol., 278 (1-4), 51-63. McDermott C, Kolditz O. Geomechanical model for

  9. Osteoporotic thoracolumbar junctional fracture accompanied by spinous process fracture without posterior ligament injury: its clinical and radiologic significances.

    Science.gov (United States)

    Lee, Seonjong; Park, Moon Soo; Kim, Yong-Chan; Kim, Tae-Hwan

    2016-11-01

    To assess the clinical and radiologic outcome of osteoporotic thoracolumbar junctional fracture accompanied by spinous process fracture (SPF) without posterior ligament injury. A total of 391 patients with single-level osteoporotic thoracolumbar junctional (T10-L2) fracture were selectively enrolled. The patients were divided into two groups by absence (group I) or presence (group II) of SPF. Clinical and radiologic parameters were compared between the two groups. Group I comprised of 332 patients with only vertebral body fracture, and group II comprised of 59 patients with both vertebral body and SPFs. In all cases of group II, SPFs were located just one level above the fractured vertebral body, and the injury of the posterior ligament was not found. At the time of injury, group II patients showed worse outcomes in anterior vertebral body compression percentage, kyphotic Cobb angle, cranial disk status, and the rate of the initial neurologic injury. Kyphotic alignment changes during 1-year follow-up were compared between the conservative subgroups of groups I and II. At the time of injury, there were no statistical differences in anterior vertebral body compression percentage and Cobb angle between the two conservative subgroups. However, the difference was significant after 1-year follow-up. Comparison of kyphotic alignment change at 12 months after diagnosis within group II was done according to the treatment method. Vertebroplasty subgroup in group II did not show benefit even in preventing such kyphotic alignment change, whereas instrumentation subgroup in group II showed lordotic alignment restoration despite more severe kyphotic alignment at the time of injury. Osteoporotic thoracolumbar junctional fracture accompanied by spinous process fracture without posterior ligament injury represented more severe injury with flexion forces on the anterior column and tensile forces on the posterior column, and was related with more severe posttraumatic kyphotic

  10. Modelisation of transport in fractured media with a smeared fractures modeling approach: special focus on matrix diffusion process.

    Science.gov (United States)

    Fourno, A.; Grenier, C.; Benabderrahmane, H.

    2003-04-01

    Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to

  11. [Management of facial bone fractures].

    Science.gov (United States)

    Oikarinen, Kyösti; Korpi, Jarkko

    2010-01-01

    Although the number of patients suffering from facial bone fractures has decreased more resources due to complexity of the fractures are needed. The initial treatment and reconstruction phase require hospitalisation and close collaboration between several medical and dental specialists. Fractures cause alterations in occlusion and masticatory functions and are frequently associated with soft tissue injuries. The primary radiographic examination is panoramic radiography in mandibular and computed tomography in maxillary and mid face fractures. The treatment principles have changed during the last three decades. Long-term maxillomandibular immobilisation has given way to internal fixation and direct osteosynthesis. The greatest innovations of the treatment have taken place in materials. Steel has been replaced by Titanium or resorbable plates, screws and meshes.

  12. Hip Fractures among Older Adults

    Science.gov (United States)

    ... this page: About CDC.gov . Home & Recreational Safety Older Adult Falls Important Facts about Falls Costs of Falls Hip Fractures Among Older Adults Older Adult Falls Programs Compendium of Effective Fall Interventions, 3rd Edition ...

  13. Ankle Fractures Often Not Diagnosed

    Science.gov (United States)

    ... especially in the cold-weather months when most ankle injuries occur. An ankle fracture involves a crack or ... Weak ankles may be a result of previous ankle injuries, but in some cases, they are a congenital ( ...

  14. The treatment of subtrochanteric fractures

    Directory of Open Access Journals (Sweden)

    Vučetić Čedomir S.

    2011-01-01

    Full Text Available Subtrochanteric fractures of the femur have a special place because of a significant number of complications following treatment. Powerful loading forces asymmetrically acting to this bone segment, as well as poor vascularization interfere with bone union. There are basically two current approaches in the fixation of subtrochanteric fractures; the first involves a plate with a compression screw and another one is intramedullary (IM nail, with two options: centromedullary (standard interlocking femoral nail and cephalomedullary femoral nail with two modifications, reconstructive and trochanteric. All IM nails may be used by open technique or closed minimal invasive method. IM nailing is favoured in view of a shorter operative time, shorter hospitalisation and complications. Indirect fracture reduction and knowledge of biology of bone fracture may result in full success without any bone graft.

  15. Treatment of Temporal Bone Fractures

    Science.gov (United States)

    Diaz, Rodney C.; Cervenka, Brian; Brodie, Hilary A.

    2016-01-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted. PMID:27648399

  16. Computed tomography of calcaneal fractures

    International Nuclear Information System (INIS)

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-01-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concluded that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment

  17. Computed tomography of calcaneal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-07-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concluded that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment.

  18. [Humeral shaft fracture in childhood].

    Science.gov (United States)

    Machan, F G; Vinz, H

    1993-06-01

    In a collective study of twelve surgical clinics 222 diaphyseal fractures of the humerus in children were examined. 159 children were checked up two to 14 years after the accident. Priority was given to conservative treatment: Désault or Gilchrist dressing (24%), arm cast (34%), extension (29%), change from primary extension to secondary dressing or cast (27%), osteosynthesis (10%). Late results were excellent in 85%, whereas in 15% minor anatomical lesions persisted, such as axial deviations, but without functional impairment. There were eight transitory primary nerve lesions (3.6%), seven concerning the radial nerve, one the ulnar nerve. The individual therapeutic procedure depends on the age of the child and on the pattern of the fracture. Operative treatment is indicated in open fractures, in cases of polytraumatism, and in fractures with uncontrolled major axial deviation.

  19. New C2 synchondrosal fracture classification system

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Jerome A.; Ruess, Lynne [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States); The Ohio State University College of Medicine and Public Health, Columbus, OH (United States); Daulton, Robert S. [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States)

    2015-06-15

    Excessive cervical flexion-extension accompanying mild to severe impact injuries can lead to C2 synchondrosal fractures in young children. To characterize and classify C2 synchondrosal fracture patterns. We retrospectively reviewed imaging and medical records of children who were treated for cervical spine fractures at our institution between 1995 and 2014. We reviewed all fractures involving the five central C2 synchondroses with regard to patient demographics, mechanism of injury, fracture pattern, associated fractures and other injuries, treatment plans and outcome. Fourteen children had fractures involving the central C2 synchondroses. There were nine boys and five girls, all younger than 6 years. We found four distinct fracture patterns. Eleven complete fractures were further divided into four subtypes (a, b, c and d) based on degree of anterior displacement of the odontoid segment and presence of distraction. Nine of these 11 children had fractures through both odontoneural synchondroses and the odontocentral synchondrosis; one had fractures involving both neurocentral synchondroses and the odontoneural synchondrosis; one had fractures through bilateral odontoneural and bilateral neurocentral synchondroses. Three children had incomplete fractures, defined as a fracture through a single odontoneural synchondrosis with or without partial extension into either the odontocentral or the adjacent neurocentral synchondroses. All complete fractures were displaced or angulated. Four had associated spinal cord injury, including two contusions (subtype c fractures) and two fatal transections (subtype d fractures). Most children were treated with primary halo stabilization. Subtype c fractures required surgical fixation. We describe four patterns of central C2 synchondrosal fractures, including two unique patterns that have not been reported. We propose a classification system to distinguish these fractures and aid in treatment planning. (orig.)

  20. Estimation method of the fracture resistance curve

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Keun; Lee, Kwang Hyeon; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Suwon (Korea, Republic of); Park, Jae Sil [Samsung Electric Company, Suwon (Korea, Republic of)

    2008-07-01

    Fracture resistance curves for concerned materials are required in order to perform elastic-plastic fracture mechanical analysis. Fracture resistance curve is built with J-integral values and crack extension values. The objective of this paper is to propose the estimation method of the fracture resistance curve. The estimation method of the fracture resistance curve for the pipe specimen was proposed by the load ratio method from load - displacement data for the standard specimen.

  1. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.

    Science.gov (United States)

    Patel, Priyesh V; Eckstein, Felix; Carballido-Gamio, Julio; Phan, Catherine; Matsuura, Maiko; Lochmüller, Eva-Maria; Majumdar, Sharmila; Link, Thomas M

    2007-10-01

    Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [A(Z)] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD

  2. Irreducible Galeazzi Fracture-Dislocations.

    Science.gov (United States)

    Yohe, Nicholas J; De Tolla, Jadie; Kaye, Marc B; Edelstein, David M; Choueka, Jack

    2017-11-01

    Fractures of the radial shaft with disruption of the distal radial ulnar joint (DRUJ) or Galeazzi fractures are treated with reduction of the radius followed by stability assessment of the DRUJ. In rare instances, the reduction of the DRUJ is blocked by interposed structures requiring open reduction of this joint. The purpose of this study is to review all cases of irreducible Galeazzi fracture-dislocations reported in the literature to offer guidelines in the diagnosis and management of this rare injury. A search of the MEDLINE database, OVID database, and PubMed database was employed using the terms "Galeazzi" and "fracture." Of the 124 articles the search produced, a total of 12 articles and 17 cases of irreducible Galeazzi fracture-dislocations were found. The age range was 16 to 64 years (mean = 25 years). A high-energy mechanism of injury was the root cause in all cases. More than half of the irreducible DRUJ dislocations were not identified intraoperatively. In a dorsally dislocated DRUJ, a block to reduction in most cases (92.3%) was secondary to entrapment of one or more extensor tendons including the extensor carpi ulnaris, extensor digiti minimi, and extensor digitorum communis, with the remaining cases blocked by fracture fragments. Irreducible volar dislocations due to entrapment of the ulnar head occurred in 17.6% of cases with no tendon entrapment noted. In the presence of a Galeazzi fracture, a reduced/stable DRUJ needs to be critically assessed as more than half of irreducible DRUJs in a Galeazzi fracture-dislocation were missed either pre- or intraoperatively.

  3. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    the periosteal tissues of healing fractures in small animals , and allow more accurate evaluation of the effects of the fracture therapy (Rundle et...X-ray fluoroscopy (Figure 7). Individual animals receiving the MLV-BMP-2/4 gene therapy by either the percutaneous injection or the intramedullary... animal subjects to understand gene expression in the healing response to bone injury and identify novel genes that might accelerate or delay the

  4. Treatment of Unstable Ankle Fractures

    OpenAIRE

    Yaniel Truffín Rodríguez; Gerardo Águila Tejeda

    2015-01-01

    Patients with unstable ankle fractures frequently attend the emergency rooms. It is estimated that there are 122 ankle fractures per 100 000 people a year. Surgical treatment of those that are unstable is inevitable since they can not be corrected in a conservative way. Several surgical procedures for repair of such lesions have been described and all of them constitute important tools for the orthopedic surgeon. Therefore, we conducted a literature review to discuss the current management of...

  5. Evaluation of WWER-1000 vessel materials fracture toughness

    International Nuclear Information System (INIS)

    Grinik, Eh.U.; Revka, V.N.; Chirko, L.I.; Chajkovskij, Yu.V.

    2007-01-01

    The lifetime of WWER-1000-type reactor vessels is finally conditioned by the fracture toughness (crack growth resistance) of RPV materials. Up to now in line with the regulations the fracture toughness is characterized by the critical temperature of brittleness determined by the results of the Charpy specimen impact testing. Such approach is typical for all countries operating the water pressure reactors. However, regulatory approach is known from the western specialists not always to characterize adequately the crack growth resistance of the vessel materials and in some cases to underestimate their characteristics in the reference state that leads to unreasonably high conservatism. Excessive conservatism may lead to the invalid restrictions in the operating modes and the service life of the reactor vessel. Therefore there appeared the necessity to apply another approaches based on the state-of-the-art experimental methods of the fracture mechanics and allowing evaluating the fracture toughness parameters sufficiently. The paper presents the results of the comparison of the regulatory approach and the Master curve approach from the point of view of the adequate determination of the vessel material crack growth resistance parameters. Analysis of the experimental data of the surveillance specimens illustrated the potential possibility of applying the new statistical method for the WWER-1000- type reactor vessel lifetime extension