WorldWideScience

Sample records for fracture basalt aquifer

  1. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  2. Analysis of fracturing in the basalts of the Serra Geral Aquifer and the potential regional recharge of the Guarani Aquifer System; Analise de fraturas dos basaltos do Aquifero Serra Geral e o potencial de recarga regional do Sistema Aquifero Guarani

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A. J.; Assis Negri, F. de; Azevedo Sobrino, J. M.; Varnier, C.

    2012-11-01

    The Geological Institute, belonging to the Ministry for the Environment of the State of Sao Paulo, is currently undertaking regional research into vertical groundwater flow through the basalts in the Serra Geral Aquifer (ASG), which influences recharge of the sandstones in the underlying Guarani Aquifer System (SAG) and therefore the quantity of groundwater available and its susceptibility to pollution. The study area corresponds to the outcropping region of the ASG, an area of the state of Sao Paulo that contains important urban centres. The methods used included: (1) field work, focused on characterizing the vertical tectonic structures and the stresses responsible for their origin; and (2) an analysis of the structural data collected, aimed at identifying brittle tectonic events and their influence on groundwater flow. Distinguishing between cooling and tectonic fractures is a relevant aspect of the field work as only the tectonic events are capable of cutting across the vesicular beds, which otherwise form a barrier against vertical flow and block any connection between the aquifers. Three tectonic strike-slip events have been identified, each having generated hybrid tectonic fractures, which, because they involve extension as well as shearing, potentially favour flow. Diagnostic features suggest the occurrence in the south-western zone of the study area of preferential flow along fractures in the direction N70-80W and N60-80E, and secondary ones trending N20W and N20E; in the northeastern zone there is flow along secondary fractures in the direction N15W and N5-10E and in the central zone N40-65W. (Author)

  3. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  4. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material

  5. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  6. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  7. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  8. Evaluation of permeable fractures in rock aquifers

    Science.gov (United States)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  9. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  10. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  11. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  12. Geology of hole drill thermal infra basaltic (Guarani Aquifer System) in Salto Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Muzio, R.; Marmisolle, J.; De Souza, S.

    2004-01-01

    This paper deals with the lithological description of a thermal infrabasaltic (Guarani Aquifer System) hole drill cutting in Dayman (Kanarek Hotel), Salto department (Uruguay). This hole drill shows 152 meters of Buena Vista Formation (Upper Permian- Lower Triassic), 188 meters of Tacuarembo Formation (Upper Jurassic-Lower Cretaceous) and 940meters of Arapey Formation (Lower Cretaceous). Petrographical studies of six basaltic levels were done [es

  13. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  14. Solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1981-01-01

    The purposes of this study were: (1) to provide information on the solid phases which are in apparent equilibrium with ground waters of basalt aquifers, and (2) to further develop the capability of geochemical modeling to support solute transport studies and performance assessments of nuclear waste repositories. The basalt aquifers of the Columbia Plateau in eastern Washington were chosen as the study area because: (1) regional ground-water analyses are readily available, (2) these basalts are a potential medium for a nuclear-waste repository, and (3) mineralogical analyses from local site studies are available

  15. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    Science.gov (United States)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  16. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  17. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  18. Basalt aquifer identification correlation and sampling activities. History of wells, DB-12, DB-13, DB-14

    International Nuclear Information System (INIS)

    Webster, C.T.

    1980-01-01

    Research core wells have recently been completed to assist in the characterization of the ground water regime of the upper confined aquifers found within the basalt of the Hanford Site. These wells, drilled for the Long-Term Transuranic Defense Waste Program, were constructed to assure that waste management operations on the Department of Energy's Hanford Site will not have an impact on the environment by providing an avenue for off-site migration of radionuclides. This is the third report detailing results of confined aquifer drilling activities. The purpose of this report is to document the drilling history of the wells by presenting as-built well construction diagrams and tables listing hole history data, coring records, and bit records

  19. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  20. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  1. Chemical and environmental isotope study of the basaltic aquifer systems of Yarmouk Basin (Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    1994-08-01

    The water in the fissured basalt aquifer system, the Upper Jurassic aquifer of the Yarmouk Basin and the atmospheric precipitation have been investigated using chemical and environmental isotope techniques. The groundwaters flowing through the different aquifers are differentiated by their chemical ratios and their isotopic compositions. The evolution of chemical facies of groundwater from the recharge area towards the basin outlet is characterized by increasing of sodium and magnesium contents as a result of silicate leaching. The stable isotope compositions of precipitation and mountainous spring waters match the Mediterranean Meteoric Water Line, while the groundwaters from the central zone and from the major springs of the Yarmouk Basin are mixtures of freshwater, which is isotopically depleted and salty groundwater of Laja plateau area. The interpretations of tritium and radiocarbon ( 14 C) data indicate that the recharge zones of the groundwater in the Yarmouk Basin occur on the high-land of more than 1000 m of altitude. The residence time of the mountainous springs is short (of about 40 years or less). However, water ages corrected by Vogel's concept and Gonfiantini's Model show, in general, a range from 1000 to 11000 years for the central zone groundwater. The groundwater moves from the Mt. Hermon and Mt. Arab towards the central zone and from the north-east (i.e. the Laja plateau) towards south-west (i.e. the major springs). The radiometric flow velocities range from 20 to 60 m/year within the central zone, while the flow velocities from both sides of Mt. Hermon and Mt. Arab are lower (1-7 m/year). (author). 43 refs., 37 figs., 6 tabs

  2. The relationship of seismic velocity structure and surface fracture characteristics of basalt outcrops to rippability estimates

    International Nuclear Information System (INIS)

    Kay, S.E.; Dougherty, M.E.; Pelton, J.R.

    1994-01-01

    Seismic velocity has been shown in previous engineering studies to be related to the fracture characteristics and rippability of rock outcrops. However, common methods of measuring seismic velocity in outcrops do not take into account the many possible travel paths for wave propagation and the fact that velocity zones may exist within an outcrop. Presented here are the results of using raytracing inversion of first-arrival travel-time data to map P-velocity structure in basalt outcrops, and also the investigation of the relationship of the mapped velocities to observed surface fractures and hand-sample P-velocities. It is shown that basalt outcrops commonly consist of an irregular near-surface low-velocity zone underlain by higher velocity material; that velocity gradients can exist in outcrops; that hand-sample velocity measurements are typically higher than outcrop-scale measurements; and that the characteristics of surface fractures are empirically related to near-surface P-velocity. All of these findings are relevant to the estimated rippability of rock in geotechnical engineering. The data for this study are derived from eleven sites on basalt outcrops of the Troodos Ophiolite in Cyprus. The basalt types include pillow basalts, massive flows, and a pillow breccia. A commonly available raytracing inversion program (RAYINVR) was used to produce a velocity profile of each outcrop. Different velocity zones were detailed by inverting observed travel times to produce a model of outcrop velocity structure which produces rippability profiles for each outcrop. 16 refs., 9 figs

  3. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

    Science.gov (United States)

    Asfahani, Jamal

    2017-08-01

    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  4. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  5. Ultramafic-derived arsenic in a fractured bedrock aquifer

    International Nuclear Information System (INIS)

    Ryan, Peter C.; Kim, Jonathan; Wall, Andrew J.; Moen, Jonathan C.; Corenthal, Lilly G.; Chow, Daniel R.; Sullivan, Colleen M.; Bright, Kevin S.

    2011-01-01

    Highlights: → Arsenic is elevated in groundwater from a fractured bedrock aquifer system in northern Vermont, USA. → The arsenic source is serpentinized ultramafic rock. → Antigorite, magnetite (MgCO 3 ) and magnetite (Fe 3 O 4 ) appear to be the main mineralogical hosts of arsenic in the ultramafic rock. → Arsenic appears to be introduced to the ultramafic rock when As-bearing fluids are driven out of sediments during subduction. → The occurrence of serpentinized ultramafic rocks in many orogenic belts suggests that similar arsenic anomalies may occur in geologically-similar terranes globally. - Abstract: In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from 3 ) with lesser amounts in magnetite (Fe 3 O 4 ). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9 μg/L) and an Mg-HCO 3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO 3 - concentrations.

  6. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    Science.gov (United States)

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  7. Deep Basalt Aquifers in Orcus Patera, Elysium Basin Mars: Perspectives for Exobiology Exploration

    Science.gov (United States)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    content of the caldera. In this study, we adopt a water content of 1%. The total volume of magma that has been contained in the caldera, and the volume of lava contained in the observed lava field is about 110 x 10(exp 6) cubic km, that gives a total volume of 1.10 x 10(exp 6) cubic km of water. The juvenile water expelled by the overpressure within the magma chamber charged with desolved water-vapor may have moved into the crust. The decrease in overburden pressure led to bubble formation. The ascent of these bubbles generated a pressurization of the magma, which was sufficient to fracture the overlaying magma layer, (2) Water from Elysium paleolake. During the Amazonian, the rise of the Elysium paleolake level generated an overspilling that supplied the caldera with water. The southern portion of the crest shows a deep gap 12-km wide at -1500 m elevation, locating the gap between 500 to 1000 in below the assumed water of Elysium paleolake, thus facilitating the influx of Elysium paleolake water into Orcus Patera. Bathymetric calculations give a floor area of 25,500 sq km at -2000 m elevation, and a water volume of 42,000 cubic km, with a lake-level at -1500 m. A substantial amount of water may have percolated through the fractured lava, and part of the volume may have overspilled the northern crest of Orcus Patera to debouch in the Tartarus Montes region. We envision the formation of a subsurface aqueous environment in basaltic rocks at the contact of the two water-source origins, possibly the percolating surface lake water, and more likely the juvenile water. Similarly to terrestrial calderas, Orcus Patera might be surrounded by ring-fractures caused by the collapse of the magma chamber that followed the release of gases. These ring-fractures may have been covered later by sedimentation in the caldera (lacustrine, aeolian, and volcanic), and by mass wasting. The detumescence of the magma in the caldera, and the vesiculation of the juvenile water may have operated

  8. Ultramafic-derived arsenic in a fractured bedrock aquifer

    Science.gov (United States)

    Ryan, P.C.; Kim, J.; Wall, A.J.; Moen, J.C.; Corenthal, L.G.; Chow, D.R.; Sullivan, C.M.; Bright, K.S.

    2011-01-01

    In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from chemical extraction, X-ray diffraction (XRD) and stoichiometric analysis indicates that the majority of the As is located in antigorite and magnesite (MgCO3) with lesser amounts in magnetite (Fe3O4). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9??g/L) and an Mg-HCO3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO3- concentrations. ?? 2011 Elsevier Ltd.

  9. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    Science.gov (United States)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a

  10. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  11. Final report for the IAEA urban aquifers RCA : determining the effects of storm water infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.; Reeves, R.R.

    2000-01-01

    Disposal of storm water in the Mt Eden-Mt Albert area of Auckland, New Zealand, is via ''soak holes'' drilled directly into the top of the fractured basalt. These soak holes receive storm water and sediment runoff from city streets throughout Mt Eden. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. This study aimed to determine the impact of soakage on the chemical and isotopic composition of the groundwater. In addition, sediments captured by the soak holes were analysed to determine their effectiveness at trapping contaminants. Groundwater samples were collected between August 1998 and August 1999. Three sampling trips were carried out after rainfall events in October 1998, April 1999 and August 1999. Samples were analysed for major and trace components, including nutrients, dissolved and total heavy metals (As, Cr, Cu, Zn, Pb, Cd, and Ni), polynuclear aromatic hydrocarbons (PAHs), chlorofluorocarbons (CFCs) and stable and radiogenic isotopes. Cores of sediment collected in the soak holes were analysed for major components, total and leachable heavy metals, and PAHs to determine the ability of the sediments to adsorp contaminants. In summary, the Mt Eden aquifer system shows the effect of storm water infiltration rapidly after a rainfall event in some parts of the aquifer. Water quality has been effected in some areas, but in general the water quality is quite good considering the quantity of storm water discharge that has occurred in the area for the past 60 years. The relatively high quality of the water in the wells monitored may be attributed to the ability of the accumulated sediment in the soak holes and the aquifer fractures to trap contaminants. Further research is needed to determine if continued use of the groundwater system as a conduit for storm water infiltration will lead to clogging of the fractures in the aquifer and/or transport of particulates

  12. Behavior of rare earth elements in fractured aquifers: an application to geological disposal criteria for radioactive waste

    International Nuclear Information System (INIS)

    Lee, Seung Gu; Kim, Yong Je; Lee, Kil Yong; Kim, Kun Han

    2003-01-01

    An understanding of the geochemistry of potential host rocks is very important in the site evaluation for construction of an underground geologic repository for radioactive waste. Because of similar valence and ionic radii and high similarity in electronic structure with trivalent actinides (such as Am 3+ and Cm 3+ ), the rare earth elements (REEs) have been used to predict the behavior of actinide-series elements in solution (Runde et al., 1992). For Am and Cm, which occur only in the trivalent states in most waste-disposal repository environments, the analogy with the REEs is particularly relevant. In order to discuss the behavior of REEs in geological media and to deduce the behavior of actinides in geological environments based on the REE abundance, and to provide an useful tool in deciding an optimum geological condition for radioactive disposal, we estimated the REE abundance from various kinds of fractured rock type. In fractured granitic aquifer, chondrite-normalized REE pattern show Eu positive anomaly due to fracture-filling calcite precipitation. However, in fractured meta-basaltic and volcanic tuffaceous aquifer, REE pattern do not show the change of Eu anomaly due to fracture-filling calcite precipitation. Eu shows very similar properties such as cohesive energy, ionic radii with coordination number compared to Am. Therefore, if we consider the Eu behavior in fractured rocks and the similar physical/chemical properties of Eu and Am, together, our results strongly suggest that Eu is a very useful analogue for predicting the behavior of Am in geological environment

  13. Basalt aquifer identification, correlation and sampling activities. History of Wells DB-8, DB-9, DB-10 and DB-11

    International Nuclear Information System (INIS)

    Webster, C.T.

    1979-07-01

    Research core wells have been completed to assist in the characterization of the groundwater regime of the upper confined aquifers found within the basalts of the Hanford Site. These wells were drilled on the Hanford Site for the Long-Term Transuranic Defense Waste Program. They were constructed to assure the Department of Energy that waste management operations will not provide an avenue for offsite migration of radionuclides. This second report details results of confined aquifer drilling activities. The purpose of this report is to document the drilling history of the wells by presenting as-built well construction diagrams and tables listing hole history data, coring records and bit records. Four wells were cored to a maximum depth of 1100 feet and water samples were taken from selected confined aquifers. Full depth was reached on all wells and core recovery was 94% of all formations drilled. Well DB-8 was abandoned after a well screen was destroyed while setting it in the well. Two wells, DB-9 and DB-10 were screened in the Mabton interbed and water was produced from this interval in both wells. Well DB-11 was used to explore for artesian water from the Priest Rapids flow unit on the western edge of the Hanford Site. The water was found at a depth of 1045 feet and now produces makeup water for all Hanford drilling

  14. Ground penetrating radar and seismic refraction investigation of fracture patterns in the basalt of Lucky Peak near Boise, Idaho

    International Nuclear Information System (INIS)

    Dougherty, M.E.; Hudson, W.K.; Kay, S.E.; Vincent, R.J.

    1994-01-01

    In hard rock environments, fluid flow and basement integrity are often controlled by the degree and connectivity of fracturing on an outcrop scale, rather than strictly by laboratory values of the permeability and competence of the matrix rock. Therefore, in many cases it is important to have a subsurface image of fracture characteristics of rock units in addition to an image of gross rock type. Fortunately, within a single rock type, many physical properties on outcrop scale are greatly influenced by fracturing, and changes in these physical properties should be detectable through the innovative use of geophysical methods. Work presented here is an attempt to use surface geophysical methods to delineate areas within a basalt flow which display different fracture characteristics and which have different electrical and seismic properties. The Basalt of Luck Peak is an intracanyon basalt flow exposed in cliffs around Lucky Peak Reservoir and in a terrace downstream from Lucky Peak Dam near Boise, Idaho. Visible in the face of the terrace below Lucky Peak Dam are the colonnade and entablature structures characteristic of differential cooling rates within basalt flows. Exposure of structural units within the cliff face is used to ground truth results from ground penetrating radar (GPR) and seismic refraction data collected along a line running perpendicular and away from the top edge of the cliff. 19 refs., 6 figs

  15. Localizing Fracture Hydromechanical Response using Fiber Optic Distributed Acoustic Sensing in a Fractured Bedock Aquifer

    Science.gov (United States)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2017-12-01

    Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured

  16. Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO2 Leakage through Columbia River Basalt Flow Interiors

    Science.gov (United States)

    Gierzynski, A.; Pollyea, R.

    2016-12-01

    Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular

  17. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  18. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  19. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    Science.gov (United States)

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  20. Palaeofluid evolution in a fractured basalt hosted reservoir in the Ulles-Ruzsa-Bordany area, southern sector of the Pannonian Basin

    Czech Academy of Sciences Publication Activity Database

    Szabó, B.; Schubert, F.; Toth, T.M.; Steinbach, Gabor

    2016-01-01

    Roč. 69, č. 3 (2016), s. 281-293 ISSN 1330-030X Institutional support: RVO:61388971 Keywords : fractured basalt reservoir * Pannonian Basin * zeolite minerals Subject RIV: EE - Microbiology, Virology Impact factor: 0.595, year: 2016

  1. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  2. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  3. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    Science.gov (United States)

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  4. Virus occurrence in private and public wells in a fractured dolostone aquifer in Canada

    Science.gov (United States)

    Groundwater samples collected during eight months from 22 wells completed in a regional fractured dolostone aquifer in the Guelph region of southern Ontario, Canada were analyzed for viruses and Campylobacter jejuni. Only 8% of the 118 samples exhibited viruses at extremely low concentrations; but ...

  5. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Science.gov (United States)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  6. Impact of urbanization coupled with drought situations on groundwater quality in shallow (basalt) and deeper (granite) aquifers with special reference to fluoride in Nanded-Waghala Municipal Corporation, Nanded District, Maharashtra (India).

    Science.gov (United States)

    Pandith, Madhnure; Kaplay, R D; Potdar, S S; Sangnor, H; Rao, A D

    2017-09-01

    Rapid expansion in urbanization and industrialization coupled with recent drought conditions has triggered unplanned groundwater development leading to severe stress on groundwater resources in many urban cities of India, particularly cities like Nanded, Maharashtra. In the quest of tapping drinking water requirement, due to recent drought conditions, people from the city are piercing through entire thickness of shallow basalt aquifers to reach productive deeper granite aquifers. Earlier reports from Nanded and surrounding districts suggest that deeper granite aquifer is contaminated with fluoride (geogenic). The study aimed to find out variations in fluoride concentration in shallow basalt (10-167 m) and deeper granite aquifers (below 167 m) and to find out the relationship between fluoride and other ions. Study suggests that concentration of fluoride in shallow basalt aquifer is within maximum permissible limits of Bureau of Indian Standards and deeper granite aquifer contains as high as 4.9 mg/l of fluoride and all samples from granite aquifers are unfit for human consumption. The groundwater from basalt aquifer is mainly Ca-HCO 3- Cl type, and from granite aquifer, it is Ca-Na-Cl type. The correlation plot between F - vs. pH, Na + and HCO 3 - shows a positive correlation and an inverse relationship with Ca 2+ in both aquifers. As recommendations, it is suggested that granite aquifers should not be tapped for drinking purposes; however, in drought situations, water from this aquifer should be blended with treated surface water before supplying for drinking purposes. Efforts may be made to utilize 1.35 MCM of rainwater from available rooftop, which is sufficient to cater for the needs of ~40,800 people annually. Most effective defluoridation techniques like electrolytic de-fluoridation (EDF), ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures.

  7. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    Science.gov (United States)

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992–2010 is part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation.

  8. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    International Nuclear Information System (INIS)

    Kim, Jonathan J.; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan

    2016-01-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO_3−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO_3 (manure deposited in a ravine) was exhausted and NO_3 dropped from 34 mg/L to 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated with nitrates at a dairy farm in Vermont, U.S.A. • Nitrate concentration vs. time patterns for wells were spatially separable. • Multidisciplinary aquifer characterization used physical and chemical methods. • Denitrification dominant over dilution along fracture flowpaths • Conceptual model shows exhaustion of a nitrate point-source over 12 years.

  9. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996-Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer; FINAL

    International Nuclear Information System (INIS)

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-01-01

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty

  10. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  11. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  13. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  14. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Influence of pyrolysis temperature on fracture response in SiOC based composites reinforced by basalt woven fabric

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Černý, Martin; Strachota, Adam; Sucharda, Zbyněk; Halasová, Martina; Dlouhý, Ivo

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3389-3398 ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 ; RVO:67985891 ; RVO:61389013 Keywords : Fracture behaviour * CMCs * Pyrolysis * Basalt fibre * Polysiloxane Subject RIV: JL - Materials Fatigue, Friction Mechanics; JI - Composite Materials (USMH-B); JH - Ceramics, Fire-Resistant Materials and Glass (UMCH-V) Impact factor: 2.947, year: 2014

  16. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    . Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE...... was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit...... of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant...

  17. Groundwater Waves in a Coastal Fractured Aquifer of the Third Phase Qinshan Nuclear Power Engineering Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nian-qing; TANG Yi-qun; TANG He-ping

    2005-01-01

    Tidal fluctuations of Hangzhou Bay produce progressive pressure waves in adjacent field fractured aquifers, as the pressure waves propagate, groundwater levels and hydraulic gradients continuously fluctuate. The effect of tidal fluctuations on groundwater flow can be determined using the mean hydraulic gradient that can be calculated by comparing mean ground and surface water elevations. Tidal fluctuation is shown to affect the piezometer readings taken in a nearshore fractured aquifer around the nuclear power engineering field. Continuous monitoring of a network of seven piezometers provided relations between the tidal cycle and the piezometer readings. The relations can be expressed in times of a time and amplitude scaling factor. The time lag and the tidal effi ciency factor and wavelength are calculated using these parameters. It provides significant scientific basis to prevent tide and groundwater for the nuclear power engineering construction and safety run of nuclear power station in the future.

  18. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  19. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil'kova, N.A.

    1996-01-01

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  20. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance

    Science.gov (United States)

    Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.

    2013-06-01

    A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solving the flow and transport equations, the delineation is reformulated as a mass balance problem assigning arable land in proportion to the pesticide mass discharged annually in a spring at minimum total transport cost. The approach was applied to the Luxembourg Sandstone, a fractured-rock aquifer supplying half of the drinking water for Luxembourg, using the herbicide atrazine. Predictions of the recharge areas were most robust in situations of strong competition by neighbouring springs while the catchment boundaries for isolated springs were extremely sensitive to the parameter controlling flow direction. Validation using a different pesticide showed the best agreement with the simplest model used, whereas using historical crop-rotation data and spatially distributed soil-leaching data did not improve predictions. The whole approach presents the advantage of integrating objectively information on land use and pesticide concentration in spring water into the delineation of groundwater recharge zones in a fractured-rock aquifer.

  1. Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software

    Directory of Open Access Journals (Sweden)

    Kanak Moharir

    2017-11-01

    The present study of estimation of aquifer factors such as transmissivity (T and storativity (S are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.. In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery is caused due to pumping of water from the well. Theis (1935 was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl flow through an aquifer and storativity (confined aquifer: S = bSs, unconfined: S = Sy, for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.

  2. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  3. Groundwater Dynamics in Fossil Fractured Carbonate Aquifers in Eastern Arabian Peninsula

    Science.gov (United States)

    Farag, A. Z. A.; Heggy, E.; Helal, M.; Thirunavukkarasu, D.; Scabbia, G.; Palmer, E. M.

    2017-12-01

    The Eastern Arabian Peninsula, notably the Qatar Peninsula, represents one of the highest natural groundwater discharge areas for the Arabian platform fossil aquifer system. Groundwater flow dynamics in these aquifers trace the paleoclimatic conditions that have prevailed the Arabian Peninsula during the Quaternary. In such settings, connections between aquifers strongly affect the flow dynamics, water quality and availability as well as karst formation and landscape evolution. Geological structures such as folds, faults and fractures are central to aquifer connectivity, yet their role on groundwater flow is poorly understood. Herein, we performed a detailed mapping of exposed and buried structural features in Qatar using Landsat, Sentinel and ALOS-PalSAR scenes, correlated with field and laboratory measurements to understand their role in aquifer connectivity and groundwater dynamics. Our results suggest that E-W oriented fold-related faults act as vertical conduits along which artesian upward leakages from the deep aquifers (e.g. Aruma and Umm er Radhuma) take place into the shallower aquifers (e.g. Rus and Dammam). Evidence includes: (1) the high potentiometric surfaces of deep aquifers (6 to 25 m amsl) compare to the shallower aquifers (2-3 m amsl for the same region); (2) anomalous elevation of groundwater levels and steeper hydraulic gradients in densely faulted regions; (3) mixed isotopic composition in shallow aquifers (δ18O: -5 to -2 ‰, δ2H: -40 to -10 ‰) between reported deep fossil waters (δ18O: -6.3 ‰, δ2H: -55 ‰) and modern meteoric waters (weighted average: δ18O: -0.6 ‰, δ2H: 4 ‰); (4) abundant meso-crystalline fibrous gypsum veins along fault zones in the Dammam Formation (up to 28 m amsl) in southern Qatar where the anhydritic member of the Rus Formation predominates the subsurface leading to gypsum oversaturation of groundwater. The similarity of crystal morphology (platy crystals under SEM), mineralogical compositions from XRD

  4. Contamination in fractured-rock aquifers: Research at the former Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Goode, Daniel J.; Tiedeman, Claire; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Shapiro, Allen M.; Chapelle, Francis H.

    2007-01-01

    The U.S. Geological Survey and cooperators are studying chlorinated solvents in a fractured sedimentary rock aquifer underlying the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey. Fractured-rock aquifers are common in many parts of the United States and are highly susceptible to contamination, particularly at industrial sites. Compared to 'unconsolidated' aquifers, there can be much more uncertainty about the direction and rate of contaminant migration and about the processes and factors that control chemical and microbial transformations of contaminants. Research at the NAWC is improving understanding of the transport and fate of chlorinated solvents in fractured-rock aquifers and will compare the effectiveness of different strategies for contaminant remediation.

  5. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: jon.kim@vermont.gov [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)

    2016-11-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  6. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  7. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  8. Techniques for Source Zone and Plume Characterization of Tetrachloroethene in Fractured Limestone Aquifers

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Mosthaf, Klaus; Janniche, Gry S.

    Characterization of chlorinated solvents in fractured limestone aquifers is essential for proper development of site specific conceptual models and subsequent risk assessment and remediation. High resolution characterization is challenged by the difficulties involved in collection of intact core...... an improved conceptual understanding of contaminant transport. At both sites limestone cores were collected with significant core losses. The discrete quantification of chlorinated solvents in the retrieved limestone cores was compared to different FLUTe technologies at the DNAPL site and passive and active...... distribution compared to the data obtained by quantification of chlorinated solvents in the limestone cores....

  9. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    Science.gov (United States)

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  10. Vertical variation in groundwater chemistry inferred from fluid specific-conductance well logging of the Snake River Plain Basalt aquifer, Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Wood, S.H.; Bennecke, W.

    1994-01-01

    Well logging of electrical fluid specific conductance (C s ) shows that permeable zones yielding ground water to intrawell flows and the water columns in some wells at INEL have highly different chemistry, with as much as a two-fold variation in C s . This suggests that dedicated-pump sampling of ground water in the aquifer may not be representative of the chemistry of the waste plumes migrating southwest of the nuclear facilities. Natural background C s in basalt-aquifer ground water of this part of the Snake River Plain aquifer is less than 325μS/cm (microSiemans/cm), and total dissolved solids in mg/L units, (TDS) ∼ 0.6C s . This relationship underestimates TDS for waters with chemical waste, when C s is above 800 μS/cm. At well 59 near the ICPP water of 1115 μS/cm (∼6570+ mg/L TDS) enters the well from a permeable zone between 521 and 537 ft depth; the zone being 60 ft below the water level and water of 550 μS/cm. At the time of logging (9/14/93) the 1115/μS/cm water was flowing down the well, mixing with less concentrated waters and exciting at 600 or 624-ft depth. Waste water disposed of down the injection well at ICPP until 1984 was estimated to have a C 5 of 1140 μS/cm, identical to the water detected in logging. 29 refs., 8 figs., 1 tab

  11. Permanent groundwater storage in basaltic dyke fractures and termite mound viability

    Science.gov (United States)

    Mège, Daniel; Rango, Tewodros

    2010-04-01

    Many basaltic dykes of the Ethiopian flood basalt province are observed in the northwestern Ethiopian lowlands. In this area, the termites preferentially build their epigeous mounds on the top of dolerite dykes. The relationship between termite mounds and dykes is investigated from the analysis of their distribution along one of these dykes, of thickness 2-5 m, that we could follow over 2000 m. Termite mounds are periodically spaced (mean distance 63 m, R2 = 0.995), and located exclusively where the topographic relief of the dyke is not more than 2 m above the surrounding area. From these observations and from the geological context, a hydrological circuit model is proposed in which (1) dykes are preferential conduits for groundwater drainage during the rainy season due to pervasive jointing, (2) during the dry season, the portion of the dyke forming a local topographic relief area dries up more quickly than the surroundings, the elevation difference between the dyke summit and the surroundings being a factor restricting termite mound development. For dyke topographic relief >2 m, drying is an obstacle for maintaining the appropriate humidity for the termite colony life. Periodic termite mound spacing is unlikely to be related to dyke or other geological properties. It is more likely related to termite population behaviour, perhaps to clay shortage, which restricts termite population growth by limiting the quantity of building material available for mound extension, and triggers exploration for a new colonization site that will be located along the dyke at a distance from the former colony that may be controlled by the extent of the zone covered by its trail pheromones. This work brings out the importance of dykes in channelling and storing groundwater in semiarid regions, and shows that dykes can store groundwater permanently in such settings even though the dry season is half the year long. It contributes also to shedding light on water supply conditions

  12. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  13. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  14. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    was run through a computer programme of the least square and mass balance calculations for understanding the evolutionary path by differentiating minerals present in these basalts. The results indicate that the basalts under study represent a set...

  15. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    International Nuclear Information System (INIS)

    Carrieri, C.; Masciopinto, C.

    2000-01-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m 3 /d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health [it

  16. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    Science.gov (United States)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the

  17. St Paul fracture zone intratransform ridge basalts (Equatorial Atlantic): Insight within the mantle source diversity

    Science.gov (United States)

    Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.

    2017-12-01

    The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with

  18. The combined use of chemical and isotopic information to model the effects of stormwater infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Reeves, R.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.

    2002-01-01

    Disposal of storm water in the Mt Eden area of Auckland, New Zealand, is via 'soak holes' drilled directly into the top of fractured basalt. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. The groundwater has relatively low concentrations of dissolved heavy metals, although total metals are higher suggesting that the metals are bound to mobile particulates within the aquifer. PAH concentrations are also low in the aquifer, although sampling after rainfall events show small increases in PAH. Tritium measurements of the groundwater showed that all of the groundwater south of Chamberlin Park is less than 2 years old. This area has many soak holes. The data suggest that infiltration is very rapid and occurs throughout the area almost simultaneously after rainfall events. One well north of Chamberlin Park, where soak holes are absent has an age of 47 years ± 2 years. The groundwater here is low in dissolved oxygen and appears to be slow moving. CFC measurements indicate that all wells sampled south of Chamberlin Park are contaminated by excess CFCs. However, this result indicates rapid recharge from the surface via storm water. The same well north of Chamberlin Park that was dated using tritium, also has a CFC age of approximately 30 years. Thus, CFC dating may be useful in urban areas that are separated from atmospheric contamination by confining beds or slow circulation. A Kohonen self-organising feature maps (KSOFM) neural network was used to analyse the effect on storm water infiltration on groundwater quality, and determine the inter-relationship of the groundwater quality variables. The model shows that where the land use type is industrial or residential with many soak holes, there is a strong correlation of increased concentrations of heavy metals and storm water infiltration. (author)

  19. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region

    Science.gov (United States)

    Manna, Ferdinando; Walton, Kenneth M.; Cherry, John A.; Parker, Beth L.

    2017-12-01

    Eleven porewater profiles in rock core from an upland exposed sandstone vadose zone in southern California, with thickness varying between 10 and 62 m, were analyzed for chloride (Cl) concentration to examine recharge mechanisms, estimate travel times in the vadose zone, assess spatial and temporal variability of recharge, and determine effects of land use changes on recharge. As a function of their location and the local terrain, the profiles were classified into four groups reflecting the range of site characteristics. Century- to millennium-average recharge varied from 4 to 23 mm y-1, corresponding to different average Cl concentrations in the vadose zone and in groundwater, the contribution of diffuse flow (estimated at 80%) and preferential flow (20%) to the total recharge was quantified. This model of dual porosity recharge was tested by simulating transient Cl transport along a physically based narrow column using a discrete fracture-matrix numerical model. Using a new approach based on partitioning both water and Cl between matrix and fracture flow, porewater was dated and vertical displacement rates estimated to range in the sandstone matrix from 3 to 19 cm y-1. Moreover, the temporal variability of recharge was estimated and, along each profile, past recharge rates calculated based on the sequence of Cl concentrations in the vadose zone. Recharge rates increased at specific times coincident with historical changes in land use. The consistency between the timing of land use modifications and changes in Cl concentration and the match between observed and simulated Cl concentration values in the vadose zone provide confidence in porewater age estimates, travel times, recharge estimates, and reconstruction of recharge histories. This study represents an advancement of the application of the chloride mass balance method to simultaneously determine recharge mechanisms and reconstruct location-specific recharge histories in fractured porous rock aquifers. The

  20. Development methodologies evaluation of the charge and vulnerability of the Aquifer Guarani System in Argentina and Uruguay

    International Nuclear Information System (INIS)

    Rodriguez, L.; Gomez, A.; Oleaga, A.

    2007-01-01

    The study area is located in the Uruguayan/Brazilian border near the cities of Rivera (Uruguay) and Santa Ana do Livramento (Brasil) and their surroundings. The area is characterized by the presence of fractured basalts of the Arapey or Serra Geral Formation and sandstones of the Tacuarembo-Rivera (Botucatu) Formation that form up the Guarani Aquifer System (GAS). The general objectives of the project were to adapt and apply methodologies to estimate the recharge to the fractured aquifer and to estimate the fraction of that recharge that eventually reaches the GAS in the study area. The development of new methodologies for the vulnerability assessment of the Serra Geral Formation was also sought. Piezo metric data, geological and structural analyses and hydrogeochemical studies were used to construct the conceptual model of the system behavior. Then, a numerical model was implemented to validate the conceptual model, reproduce the current system behavior, and estimate the recharge to the sandstones (either from the overlying basalts or from rainfall). The model would indicate a downward flow, i.e., recharge from the fractured basalt to the shallow aquifer, and from it to the deep aquifer, which matches the hypothesis of this research. As for the vulnerability of the GAS below the fractured zone, and reminding that there would be recharge from the basalt, adapted methodologies from flat-land scenarios were proposed, integrating the degree of fracturing of the volcanic rocks and the thickness of the unsaturated zone

  1. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  2. Preliminary results of hydrologic testing of the Umtanum Basalt Fracture Zone at borehole RRL-2 (3,781 to 3,827 ft)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1983-02-01

    This report presents preliminary results and description of hydrologic test activities for the Umtanum Basalt Fracture Zone at Borehole RRL-2, within the test interval 3,781 to 3,827 feet. Hydrologic tests conducted include two short-term, constant discharge pumping tests and two slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 406.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed range between 205 and 881 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 6 feet, is 147 ft/day. 8 refs., 6 figs., 3 tabs

  3. Environmental tracers as indicators of groundwater flow and evolution in a fractured rock aquifer, Clare Valley, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Cook, P.G.; Herczeg, A.L.; Simmons, C.T.

    1999-01-01

    Environmental tracers, chemistry and hydraulic data have been used to develop a conceptual model for groundwater flow in a fractured rock aquifer, at Clare, South Australia. In the upper 36 m there is relatively high horizontal flow, closely spaced fractures and large apertures. Below 36 m, horizontal flow rates are less and apertures become smaller. A sub horizontal fracture at 36 m separates the upper system from flow systems below. There is minimum vertical connection of groundwater above and below 36 m as indicated by low hydraulic conductivity and a steep 14 C concentration gradient. The observed linear trends in chemistry and isotope data are a result of mixing between old saline water and relatively younger fresh water. Greater mixing has occurred in the upper 36 m, with the amount of mixing diminishing with depth. We propose that this mixing is a recent process that has been triggered as a result of increased recharge to the system since the clearing of native vegetation approximately 100 years ago. Increased recharge of lower salinity water has resulted in the establishment of concentration gradients between the matrix and the fractures. This has resulted in diffusion of relatively immobile water in the matrix into relatively fast moving water in the fractures. Greater flushing has occurred in the upper 36 m due greater fracture density and larger apertures and higher horizontal flow rates. (author)

  4. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    Science.gov (United States)

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  5. Conceptual model of fractured aquifer of Uranium Deposit in Caetité, Bahia: implications for groundwater flow

    International Nuclear Information System (INIS)

    Silva, Liliane Ferreira da

    2015-01-01

    The studied area is represented by the uraniferous district of Lagoa Real, located in the center-south of Bahia State, Brazil. The region is set in a semiarid climate context, with hot and dry weather parameters, with hydric deficit along all months of the year and high aridity index. Rural population is affected on drought periods since small agriculture and animal rearing are the main economic activities which are vulnerable in dry seasons. Groundwater represents the main supply source considering that most surface water sources are temporary and only exhibit flow in rainy periods. The main aquifer system present on the region is fractured, and the presence of groundwater flow occurs through the discontinuities of the rock considering that the rock mass corresponds to the set formed by the rock matrix and all its discontinuities (fractures, foliations, discordance, etc). In this sense, the main purpose of this Master Dissertation was to develop a conceptual model for the aquifer system, through the geotechnical characterization of discontinuities, once these structures allow the secondary porosity of the medium. Hydrochemical data hand out as complement for physical characterization for the behavioral interpretation of the aquifer. The aquifer system is unconfined, however, presents points of stagnation of flow forming compartments without communication with the surrounding areas. According to the International Society of Rock Mechanics ISRM method, which consist on qualitative and quantitative characterization of discontinuities of rock mass scanlines were constructed, systematically, describing, the following structure parameters: attitude, spacing, persistence, openness, infilling and roughness. From the results analysis it could be concluded that the aquifer system is composed of three discontinuities sets: one set which dips to NE, second set dipping to SW-W-NW and the last set sub-horizontal. The first and second sets are responsible for the aquifer

  6. Prospecting fractured rock aquifers using radon soil gases method; Analise de radonio no solo para prospeccao de agua em aquiferos fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Paulo Henrique Prado; Roisenberg, Ari, E-mail: paulohenriquestefano@hotmail.com, E-mail: ari.roisenberg@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gallas, Jose Domingos Faraco, E-mail: jgallas@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Rocha, Zildete, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Groundwater prospecting in fractured aquifers depends on the detection of tectonic lineaments, which may be difficult in urban areas. A survey was carried out using radon soil gases concentrations in four localities in the region of Granite Santana and Viamao Granite, Porto Alegre, Rio Grande do Sul, in order to test the method for water prospecting in fractured aquifers. The radon data have been compared with electrical resistivity survey executed using dipole-dipole arrangement. At four studied areas, an interesting correlation was noted between the two methods. At regions of low resistivity, positive radon anomalies were found in fracture zones, reaching values up to 7 times the background of the region, starting from a concentration value of 2500 Bq/m{sup 3} in a non-fractured zones to 22187 Bq /m{sup 3} in the fractured zones. (author)

  7. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    Science.gov (United States)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on

  8. Integrated modelling of enhanced in situ biodenitrification in a fractured aquifer: biogeochemistry and isotope geochemistry

    Science.gov (United States)

    Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert

    2014-05-01

    Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the

  9. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  10. Geophysical characterization of the role of fault and fracture systems for recharging groundwater aquifers from surface water of Lake Nasser

    Directory of Open Access Journals (Sweden)

    Khamis Mansour

    2018-06-01

    Full Text Available The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES’s were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area. Keywords: Fracture system, Seismicity, Groundwater reservoir, Gravity, VES

  11. How Well Does Fracture Set Characterization Reduce Uncertainty in Capture Zone Size for Wells Situated in Sedimentary Bedrock Aquifers?

    Science.gov (United States)

    West, A. C.; Novakowski, K. S.

    2005-12-01

    Regional groundwater flow models are rife with uncertainty. The three-dimensional flux vector fields must generally be inferred using inverse modelling from sparse measurements of hydraulic head, from measurements of hydraulic parameters at a scale that is miniscule in comparison to that of the domain, and from none to a very few measurements of recharge or discharge rate. Despite the inherent uncertainty in these models they are routinely used to delineate steady-state or time-of-travel capture zones for the purpose of wellhead protection. The latter are defined as the volume of the aquifer within which released particles will arrive at the well within the specified time and their delineation requires the additional step of dividing the magnitudes of the flux vectors by the assumed porosity to arrive at the ``average linear groundwater velocity'' vector field. Since the porosity is usually assumed constant over the domain one could be forgiven for thinking that the uncertainty introduced at this step is minor in comparison to the flow model calibration step. We consider this question when the porosity in question is fracture porosity in flat-lying sedimentary bedrock. We also consider whether or not the diffusive uptake of solute into the rock matrix which lies between the source and the production well reduces or enhances the uncertainty. To evaluate the uncertainty an aquifer cross section is conceptualized as an array of horizontal, randomly-spaced, parallel-plate fractures of random aperture, with adjacent horizontal fractures connected by vertical fractures again of random spacing and aperture. The source is assumed to be a continuous concentration (i.e. a dirichlet boundary condition) representing a leaking tank or a DNAPL pool, and the receptor is a fully pentrating well located in the down-gradient direction. In this context the time-of-travel capture zone is defined as the separation distance required such that the source does not contaminate the well

  12. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  13. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    Fracture zones with an interconnected network of open fractures can conduct significant groundwater flow and as in the case of the Pohjukansalo well field in Leppaevirta, can yield sufficiently for small-scale municipal water supply. Glaciofluvial deposits comprising major aquifers commonly overlay fracture zones that can contribute to the water balance directly or indirectly by providing hydraulic interconnections between different formations. Fracture zones and fractures can also transport contaminants in a poorly predictable way. Consequently, hydrogeological research of fracture zones is important for the management and protection of soil aquifers in Finland. Hydraulic properties of aquifers are estimated in situ by well test analyses based on analytical models. Most analytical models rely on the concepts of radial flow and horizontal slab aquifer. In Paper 1, pump test responses of fracture zones in the Pohjukansalo well field were characterised based on alternative analytical models developed for channelled flow cases. In Paper 2, the tests were analysed based on the generalised radial flow (GRF) model and a concept of a fracture network possessing fractional flow dimension due to limited connectivity compared to ideal 2- or 3- dimensional systems. The analysis provides estimates of hydraulic properties in terms of parameters that do not have concrete meaning when the flow dimension of the aquifer has fractional values. Concrete estimates of hydraulic parameters were produced by making simplified assumptions and by using the composite model developed in Paper 3. In addition to estimates of hydraulic parameters, analysis of hydraulic tests provides qualitative information that is useful when the hydraulic connections in the fracture system are not well known. However, attention should be paid to the frequency of drawdown measurements-particularly for the application of derivative curves. In groundwater studies, analytical models have been also used to estimate

  14. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    Science.gov (United States)

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  15. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  16. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan

    International Nuclear Information System (INIS)

    Le Druillennec, Th.

    2007-06-01

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of 222 Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L -1 . 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the low

  17. Estimation of hydrodinamics parameters in a volcanic fractured phreatic aquifer in Costa Rica. Part II. Double porosity model

    International Nuclear Information System (INIS)

    Macias, Julio; Vargas, Asdrubal

    2017-01-01

    MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information. (author) [es

  18. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  19. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  20. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion–Clipperton Fracture Zone

    NARCIS (Netherlands)

    Mewes, K.; Mogollón, J.M.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.; Kasten, S.

    2016-01-01

    The Clarion–Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature

  1. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    Science.gov (United States)

    2015-09-29

    is characterized by dark gray slate or phyllite, alternating with thin layers of light gray siltstone or sandstone . Table 1 summarizes the primary...sedimentary rocks of the Newark Basin. Competent rocks are primarily mudstones and sandstones of the Lockatong and Stockton Formations. Fill, weathered silt... sandstone , and characterized by water bearing bedding plane fractures. An array of open boreholes in the source area that were drilled for the 2002

  2. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.; Fan, X.; Wei, W.; Kou, J.

    2011-01-01

    distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  3. Fluoride in the Serra Geral Aquifer System: Source Evaluation Using Stable Isotopes and Principal Component Analysis

    OpenAIRE

    Nanni, Arthur Schmidt; Roisenberg, Ari; de Hollanda, Maria Helena Bezerra Maia; Marimon, Maria Paula Casagrande; Viero, Antonio Pedro; Scheibe, Luiz Fernando

    2013-01-01

    Groundwater with anomalous fluoride content and water mixture patterns were studied in the fractured Serra Geral Aquifer System, a basaltic to rhyolitic geological unit, using a principal component analysis interpretation of groundwater chemical data from 309 deep wells distributed in the Rio Grande do Sul State, Southern Brazil. A four-component model that explains 81% of the total variance in the Principal Component Analysis is suggested. Six hydrochemical groups were identified. δ18O and δ...

  4. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  5. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    Science.gov (United States)

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  6. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  7. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  8. Importance of the study on recharge for the evaluation of potential impact of uranium mining on fractured aquifers. Case study: URA/INB (Caetite, Bahia, Brazil)

    International Nuclear Information System (INIS)

    Silva, Liliane Ferreira da; Matos, Evando Carele de

    2007-01-01

    The domain of the crystalline rocks, that predominant at the brazilian semiarid, presents fractured type aquifers systems, and their spatial distribution is done in very heterogeneous way, since the underground water depends upon the underground geological characteristics and the climate conditions. So, it is very important to study the geologic structure of the area, observing the depth and distribution of the fractures and failure, their relationship with the topography and with water wells productivity, and it is possible to obtain information explaining the fact that frequently producer and dry wells are placed near to each other, and where are positioned the fractures in the space and how they are connected to each other. Those data will be used in the near future to predict also the fluid mobility, through the use of transport numerical models. In the present study case, the fractured aquifer represents the main water source for the mine industrial complex and for the rural community near the enterprise as well. In this case, the study presents the description of the fractures obtained on tubular wells, relating with topography and physic-chemical parameters of the water. (author)

  9. Electrokinetically Enhanced Delivery for ERD Remediation of Chlorinated Ethenes in a Fractured Limestone Aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hyldegaard, Bente Højlund; With Nedergaard, Lærke

    causing very long remediation timeframes. Electrokinetics (EK) offers some unique transport processes, which can potentially overcome the diffusion limitations in the matrix. A novel technology combines ERD and EK for enhanced delivery. The combined technology (EK-BIO) has shown promising results in clay....... Experimental work on EK-BIO in limestone was conducted in a laboratory setup with limestone cores. EK was demonstrated to be promising in establishing enhanced contact between the donor lactate, bacteria, and cis-DCE within the limestone matrix. Complete dechlorination is expected to take place in the matrix......, since back diffusion limitations in the limestone matrix are overcome. This is essential for the overall time perspective of a remediation in limestone aquifers....

  10. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  11. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Directory of Open Access Journals (Sweden)

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  12. Comparison of single and dual continuum representations of faults and fractures for simulating groundwater flow and solute transport in the Meuse/Haute-Marne aquifer system

    International Nuclear Information System (INIS)

    McLaren, R.; Sudicky, E.; Therrien, R.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. The Paris Basin system covers approximately 200 000 km 2 and consists of 27 aquiferous and semipermeable (aquitard) hydrogeological units of Trias to Quaternary age that are intersected by 80 regional faults. The Meuse/Haute-Marne site is located in the eastern part of the Paris Basin and covers approximately 250 km 2 . Within the sector, the Callovo-Oxfordian clay formation is a potential host for the French high and intermediate level and long lived radioactive waste. It is located at a mean depth of 500 m and has a minimum thickness of 130 m and very low hydraulic conductivity, on the order of 10-14 m/s. The Callovo-Oxfordian is confined between the overlying Oxfordian aquifer and the underlying Dogger aquifer. Both the Oxfordian and Dogger are limestone aquifers characterized locally by macro-pores, regional faults that oriented along the N40 deg. E direction (the Gondrecourt and Joinville faults) and the N150 deg. E direction (the Marne and Poissons faults), as well as diffuse fracture zones located south west of the Meuse/Haute-Marne Repository site. To support site investigation of the Meuse/Haute-Marne underground repository, a single continuum multi-scale hydrogeological model of the Paris Basin and the Meuse/Haute-Marne sector has been developed. The model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The model has been calibrated to observed hydraulic heads by varying the hydraulic conductivity of the individual layers, using a single continuum approach. To investigate the impact of treating the two confining layers for the clay formation, the Oxfordian and Dogger aquifers, as single continua with equivalent hydraulic properties for the combined fracture and matrix system, additional simulations have been conducted with either a dual continuum or

  13. Impeller flow-meter logging of vertical cross flow between basalt aquifers through wells at the Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.; Wood, S.H.

    1992-01-01

    An impeller flowmeter was used with a COLOG digital acquisition system to determine existing borehole flows, to compare with previous logging results, and to acquire flow measurements of vertical cross-flow of water in the wells between permeable zones in the open-hole intervals. The direction of flow found was predominantly downward with velocities ranging from 0-30 ft/min. Some flow reversals were noted and attributed to nearby pumping wells. USGS wells 44 and 46 were studied in September, 1991 near the Idaho Chemical Processing Plant (ICPP). The results showed a usual overall flow direction downward with flow entering the wells at around 510 to 600 ft. below the land surface. Water exited these wells at lower levels around 550 to 580 ft. Flow velocities ranged up to 24 ft/min. Using published aquifer parameters, the rate of propagation of a pressure change in an aquifer was calculated for the well CPP-2 turning on and off, at 3100 gpm

  14. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  15. A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy Fractured Aquifer

    Directory of Open Access Journals (Sweden)

    Costantino Masciopinto

    2016-02-01

    Full Text Available A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50% sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer.

  16. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    International Nuclear Information System (INIS)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C.C.; Aravena, Ramon; Canals, Àngels; Binning, Philip J.; Bjerg, Poul L.; Otero, Neus; Soler, Albert

    2014-01-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ 13 C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ 37 Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ 37 Cl and δ 13 C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ( 13 C, 35 Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer

  17. The Guarani Aquifer System: estimation of recharge along the Uruguay-Brazil border

    Science.gov (United States)

    Gómez, Andrea A.; Rodríguez, Leticia B.; Vives, Luis S.

    2010-11-01

    The cities of Rivera and Santana do Livramento are located on the outcropping area of the sandstone Guarani Aquifer on the Brazil-Uruguay border, where the aquifer is being increasingly exploited. Therefore, recharge estimates are needed to address sustainability. First, a conceptual model of the area was developed. A multilayer, heterogeneous and anisotropic groundwater-flow model was built to validate the conceptual model and to estimate recharge. A field campaign was conducted to collect water samples and monitor water levels used for model calibration. Field data revealed that there exists vertical gradients between confining basalts and underlying sandstones, suggesting basalts could indirectly recharge sandstone in fractured areas. Simulated downward flow between them was a small amount within the global water budget. Calibrated recharge rates over basalts and over outcropping sandstones were 1.3 and 8.1% of mean annual precipitation, respectively. A big portion of sandstone recharge would be drained by streams. The application of a water balance yielded a recharge of 8.5% of average annual precipitation. The numerical model and the water balance yielded similar recharge values consistent with determinations from previous authors in the area and other regions of the aquifer, providing an upper bound for recharge in this transboundary aquifer.

  18. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data

    Science.gov (United States)

    Khomsi, Sami; Echihi, Oussema; Slimani, Naji

    2012-03-01

    A set of different data including high resolution seismic sections, petroleum wire-logging well data, borehole piezometry, structural cross-sections and outcrop analysis allowed us to characterise the tectonic framework, and its relationships with the deep aquifers seated in Cretaceous-Miocene deep reservoirs. The structural framework, based on major structures, controls the occurrence of deep aquifers and sub-basin aquifer distributions. Five structural domains can be defined, having different morphostructural characteristics. The northernmost domain lying on the north-south axis and Zaghouan thrust system is a domain of recharge by underflow of the different subsurface reservoirs and aquifers from outcrops of highly fractured reservoirs. On the other hand, the morphostructural configuration controls the piezometry of underground flows in the Plio-Quaternary unconfined aquifer. In the subsurface the Late Cretaceous-Miocene reservoirs are widespread with high thicknesses in many places and high porosities and connectivities especially along major fault corridors and on the crestal parts of major anticlines. Among all reservoirs, the Oligo-Miocene, detritic series are widespread and present high cumulative thicknesses. Subsurface and fieldwork outline the occurrence of 10 fractured sandy reservoirs for these series with packages having high hydrodynamic and petrophysical characteristics. These series show low salinities (maximum 5 g/l) in the northern part of the study area and will constitute an important source of drinkable water for the next generations. A regional structural cross-section is presented, compiled from all the different data sets, allowing us to define the major characteristics of the hydrogeological-hydrogeothermal sub-basins. Eight hydrogeological provinces are defined from north-west to south-east. A major thermal anomaly is clearly identified in the south-eastern part of the study area in Sfax-Sidi Il Itayem. This anomaly is possibly related to

  19. Flow modelling in fractured aquifers, development of multi-continua model (direct and inverse problems) and application to the CEA/Cadarache site

    International Nuclear Information System (INIS)

    Cartalade, Alain

    2002-01-01

    This research thesis concerns the modelling of aquifer flows under the CEA/Cadarache site. The author reports the implementation of a numerical simulation tool adapted to large scale flows in fractured media, and its application to the Cadarache nuclear site. After a description of the site geological and hydrogeological characteristics, the author presents the conceptual model on which the modelling is based, presents the inverse model which allows a better definition of parameters, reports the validation of the inverse approach by means of synthetic and semi-synthetic cases. Then, he reports experiments and simulation of the Cadarache site

  20. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  1. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  2. Tritium, carbon-14, and iodine-129 as indicators for localized vertical recharge along an anticline in the Columbia River Basalts using a decay-corrected mixing model

    Energy Technology Data Exchange (ETDEWEB)

    Hall, S.H.; Johnson, V.G.; Early, T.O.

    1987-11-01

    Tritium, /sup 14/C, and /sup 129/I in groundwater samples are used to demonstrate vertical recharge and measure flow velocity in the fractured and faulted Umtanum Ridge-Gable Mountain acticline, within the Columbia River Basalts, at a sampling site about 6 mi northeast of the proposed high-level nuclear waste repository at the Hanford Site, Washington State. Mixing model calculations yield an apparent downward migration rate of 15 to 19 ft/yr through a sequence of aquifers in the Wanapum Basalt that range in depth from 698 to 1373 ft. Estimates of the vertical flow rate in the overlying Saddle Mountains Basalt are somewhat higher. Hydrographs from neighboring wells, hydrostatic heads, pump test data, and the chemical composition of groundwater samples from the sampling well are consistent with interaquifer communication. Some hydrologic evidence from aquifers in this region suggests that, in the past, flow may have been upward. This possible reversal of flow may be associated with water table mounding in the unconfined aquifer, caused by waste disposal activities at the Hanford Site since World War II. 17 refs., 12 figs., 3 tabs.

  3. Tritium, carbon-14, and iodine-129 as indicators for localized vertical recharge along an anticline in the Columbia River Basalts using a decay-corrected mixing model

    International Nuclear Information System (INIS)

    Hall, S.H.; Johnson, V.G.; Early, T.O.

    1987-11-01

    Tritium, 14 C, and 129 I in groundwater samples are used to demonstrate vertical recharge and measure flow velocity in the fractured and faulted Umtanum Ridge-Gable Mountain acticline, within the Columbia River Basalts, at a sampling site about 6 mi northeast of the proposed high-level nuclear waste repository at the Hanford Site, Washington State. Mixing model calculations yield an apparent downward migration rate of 15 to 19 ft/yr through a sequence of aquifers in the Wanapum Basalt that range in depth from 698 to 1373 ft. Estimates of the vertical flow rate in the overlying Saddle Mountains Basalt are somewhat higher. Hydrographs from neighboring wells, hydrostatic heads, pump test data, and the chemical composition of groundwater samples from the sampling well are consistent with interaquifer communication. Some hydrologic evidence from aquifers in this region suggests that, in the past, flow may have been upward. This possible reversal of flow may be associated with water table mounding in the unconfined aquifer, caused by waste disposal activities at the Hanford Site since World War II. 17 refs., 12 figs., 3 tabs

  4. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  5. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  6. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Rocks dredged in the vicinity of the 79 degrees E fracture zone, in the Central Indian Basin, are sub-alkaline basalts, which are regarded as precursors to spilites. The minerals identified are mainly albitic plagioclase, augite, olivine, and less...

  7. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  8. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  9. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  10. Demonstration of a performance assessment methodology for high-level radioactive waste disposal in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.; Shipers, L.R.; Brinster, K.F.; Beyler, W.E.; Updegraff, C.D.; Shepherd, E.R.; Tilton, L.M.; Wahi, K.K.

    1989-06-01

    This document describes a performance assessment methodology developed for a high-level radioactive waste repository mined in deep basalt formations. This methodology is an extension of an earlier one applicable to bedded salt. The differences between the two methodologies arise primarily in the modeling of round-water flow and radionuclide transport. Bedded salt was assumed to be a porous medium, whereas basalt formations contain fractured zones. Therefore, mathematical models and associated computer codes were developed to simulate the aforementioned phenomena in fractured media. The use of the methodology is demonstrated at a hypothetical basalt site by analyzing seven scenarios: (1) thermohydrological effects caused by heat released from the repository, (2) mechanohydrological effects caused by an advancing and receding glacier, (3) normal ground-water flow, (4) pumping of ground water from a confined aquifer, (5) rerouting of a river near the repository, (6) drilling of a borehole through the repository, and (7) formation of a new fault intersecting the repository. The normal ground-water flow was considered the base-case scenario. This scenario was used to perform uncertainty and sensitivity analyses and to demonstrate the existing capabilities for assessing compliance with the ground-water travel time criterion and the containment requirements. Most of the other scenarios were considered perturbations of the base case, and a few were studied in terms of changes with respect to initial conditions. The potential impact of these scenarios on the long-term performance of the disposal system was ascertained through comparison with the base-case scenario or the undisturbed initial conditions. 66 refs., 106 figs., 27 tabs

  11. Hydrogeology and simulation of groundwater flow in fractured-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, Bedford County, Virginia

    Science.gov (United States)

    McCoy, Kurt J.; White, Bradley A.; Yager, Richard M.; Harlow, George E.

    2015-09-11

    An annual groundwater budget was computed as part of a hydrogeologic characterization and monitoring effort of fractured-rock aquifers in Bedford County, Virginia, a growing 764-square-mile (mi2) rural area between the cities of Roanoke and Lynchburg, Virginia. Data collection in Bedford County began in the 1930s when continuous stream gages were installed on Goose Creek and Big Otter River, the two major tributaries of the Roanoke River within the county. Between 2006 and 2014, an additional 2 stream gages, 3 groundwater monitoring wells, and 12 partial-record stream gages were operated. Hydrograph separation methods were used to compute base-flow recharge rates from the continuous data collected from the continuous stream gages. Mean annual base-flow recharge ranged from 8.3 inches per year (in/yr) for the period 1931–2012 at Goose Creek near Huddleston (drainage area 188 mi2) to 9.3 in/yr for the period 1938–2012 at Big Otter River near Evington (drainage area 315 mi2). Mean annual base-flow recharge was estimated to be 6.5 in/yr for the period 2007–2012 at Goose Creek at Route 747 near Bunker Hill (drainage area 125 mi2) and 8.9 in/yr for the period 2007–2012 at Big Otter River at Route 221 near Bedford (drainage area 114 mi2). Base-flow recharge computed from the partial-record data ranged from 5.0 in/yr in the headwaters of Goose Creek to 10.5 in/yr in the headwaters of Big Otter River.

  12. Microbiology of transitional groundwater of the porous overburden and underlying fractured bedrock aquifers in Olkiluoto 2004, Finland

    International Nuclear Information System (INIS)

    Pedersen, K.

    2006-07-01

    following present day hypotheses can be drawn. Continued investigations will update and test them. 1. The transient between the shallow and deep biospheres occurs at a very shallow depth, typically within the first 15-25 m. 2. The shallow biosphere is dominated by oxygen consuming microorganisms that will block oxygen migration to deeper groundwater. 3. The groundwater depression caused by construction of ONKALO will most probably move the borderline between the shallow and deep biosphere downwards. 4. As the groundwater depression zone deepens, oxygen will intrude from above and microbial oxidation of ferrous iron and pyrite will occur with a concomitant decrease in pH and the deposition of ferric iron oxides in the aquifers. Later, when the repository is closed and the groundwater level is restored, those oxides will add to the radionuclide retention capacity of the rock. 5. At present, a deep biosphere signature is found at relatively shallow depths in Olkiluoto compared to other sites investigated with the same methods (The SKB sites Forsmark, Oskarshamn and Aespoe). (orig.)

  13. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  14. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    Science.gov (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  15. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    Science.gov (United States)

    Plummer, Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg

  16. Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey

    Directory of Open Access Journals (Sweden)

    Cüneyt Güler

    2017-01-01

    Full Text Available The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey. In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011 and wet (May 2012 seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite, precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides, atmospheric/anthropogenic inputs (halite, and seasonal dilution from recharge.

  17. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel

    2016-12-01

    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  18. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria

    International Nuclear Information System (INIS)

    Asfahani, Jamal

    2011-01-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range.

  19. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  20. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  1. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  2. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan; Apport de la caracterisation de la variabilite des concentrations en radon-222 dans l'eau a la comprehension du fonctionnement d'un aquifere en milieu fracture de socle: exemple du site de Ploemeur, Morbihan

    Energy Technology Data Exchange (ETDEWEB)

    Le Druillennec, Th

    2007-06-15

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of {sup 222}Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L{sup -1}. 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the

  3. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  4. Regional basalt hydrology of the Columbia Plateau in Washington

    International Nuclear Information System (INIS)

    Tanaka, H.; Barrett, G.; Wildrick, L.

    1979-10-01

    This study is part of the Basalt Waste Isolation Project, operated for the US Department of Energy by Rockwell Hanford Operations. The overall purpose of the study is to assess locations within the Columbia River Basalt Group beneath the Hanford Site in south-central Washington suitable for a geologic repository for radioactive waste. This hydrologic study was made to describe the hydrologic characteristics of the basalt units of the Columbia Plateau. This was done by comprehensive data compilation, data interpretation and analysis. Data are presented in the form of maps and tables suitable as input information about the regional hydrology for possible future analysis by computer models. The report includes: an introduction; basic data; interpretation which covers stratigraphic trend surface, water levels, transmissivity and storage of aquifers, recharge, discharge, flow, subbasins, cross sections, references and appendix of record of wells

  5. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  6. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  7. 3D gravity modeling of the Corrientes province (NE Argentina) and its importance to the Guarani Aquifer System

    Science.gov (United States)

    Mira, Andrés; Gómez Dacal, María Laura; Tocho, Claudia; Vives, Luis

    2013-11-01

    This paper presents a geological model of Corrientes province (Argentina) based on Bouguer gravity anomaly data, obtained in 2073 measurement points. To build the model, the IGMAS + interactive program was used. Two areas of approximately 135,000 km2 were modeled in this study. The selection of these areas was based on the sectors where the largest number of gravity anomaly measurements was made and other type of data was available to perform the parameterization (i.e, lithology profiles in boreholes, seismic profiles and audio-magnetotelluric AMT soundings). The initial geological configuration proposed was composed by four layers: basement, sediments (Paleozoic-Lower Cretaceous), basalts (Serra Geral Group, Lower Cretaceous) and post-basaltic sediments. The result shows a basement compartmentalized in structural blocks separated by large faults. The connection of Asunción and Río Grande Arches is confirmed along a structural high that crosses Corrientes province from SE to NW. The basaltic layer shows lateral changes in its thickness, due to faulting, almost disappearing on the NW of Corrientes. This structural configuration has a special hydrogeological importance because it produces the rise of the Guaraní Aquifer System sedimentary series near the surface and the intense fracture network makes this area prone to local recharge and regional discharge.

  8. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  9. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  10. Heat resistance study of basalt fiber material via mechanical tests

    Science.gov (United States)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  11. Basalt alteration and basalt-waste interaction in the Pasco Basin of Washington State. Final report

    International Nuclear Information System (INIS)

    Benson, L.V.; Carnahan, C.L.; Apps, J.A.; Mouton, C.A.; Corrigan, D.J.; Frisch, C.J.; Shomura, L.K.

    1978-09-01

    A study was conducted to determine the nature of the minerals which coat vesicle and fracture surfaces in the Grande Ronde Basalt Formation, simulate the mass transfer which led to their precipitation, and predict the mass transfer associated with the dissolution of spent unreprocessed fuel (SURF). Scanning electron microscopy (SEM), petrographic, x-ray diffraction (XRD), and electron microprobe (EMP) analyses have been made on a series of samples taken from 1100 ft (335.3 m) of core from core hole DC2. Preliminary simulations of the mass transfer associated with basalt dissolution in a thermodynamically closed system have been accomplished. In addition two mass transfer codes have been modified to facilitate data base changes. Thermochemical data for uranium and plutonium have been collected and converted to standard state conditions. These data will be critically evaluated and input to the mass transfer data base in the near future

  12. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    Science.gov (United States)

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  13. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  14. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    International Nuclear Information System (INIS)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-01-01

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive

  15. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  16. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties

    International Nuclear Information System (INIS)

    Carmisciano, Salvatore; Rosa, Igor Maria De; Sarasini, Fabrizio; Tamburrano, Alessio; Valente, Marco

    2011-01-01

    A preliminary comparative study of basalt and E-glass woven fabric reinforced composites was performed. The fabrics were characterized by the same weave pattern and the laminates tested by the same fiber volume fraction. Results of the flexural and interlaminar characterization are reported. Basalt fiber composites showed higher flexural modulus and apparent interlaminar shear strength (ILSS) in comparison with E-glass ones but also a lower flexural strength and similar electrical properties. With this fiber volume fraction, scanning electron microscopy (SEM) analysis of the fractured surfaces enabled a better understanding both of the failure modes involved and of points of concern. Nevertheless, the results of this study seem promising in view of a full exploitation of basalt fibers as reinforcement in polymer matrix composites (PMCs).

  17. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume I

    International Nuclear Information System (INIS)

    1976-11-01

    Geologic, hydrologic, heat transfer and rock-waste compatibility studies conducted by the Atlantic Richfield Hanford Company to evaluate the feasibility of storing nuclear wastes in caverns mined out into the Columbia River basalts are discussed. The succession of Columbia River Plateau flood basalts was sampled at various outcrops and in core holes and the samples were analyzed to develop a stratigraphic correlation of the various basalt units and sedimentary interbeds. Hydrologic tests were made in one bore hole to assess the degree of isolation in the various deep aquifers separated by thick basalt accumulations. Earthquake and tectonic studies were conducted to assess the tectonic stability of the Columbia River Plateau. Studies were made to evaluate the extent of heat dissipation from stored radioactive wastes. Geochemical studies were aimed at evaluating the compatibility between the radioactive wastes and the basalt host rocks. Data obtained to-date have allowed development of a hydrostratigraphic framework for the Columbia River Plateau and a preliminary understanding of the deep aquifer systems. Finally, the compilation of this information has served as a basis for planning the studies necessary to define the effectiveness of the Columbia River basalts for permanently isolating nuclear wastes from the biosphere

  18. Water resources of Rockland County, New York, 2005-07, with emphasis on the Newark Basin Bedrock Aquifer

    Science.gov (United States)

    Heisig, Paul M.

    2011-01-01

    Concerns over the state of water resources in Rockland County, NY, prompted an assessment of current (2005-07) conditions. The investigation included a review of all water resources but centered on the Newark basin aquifer, a fractured-bedrock aquifer over which nearly 300,000 people reside. Most concern has been focused on this aquifer because of (1) high summer pumping rates, with occasional entrained-air problems and an unexplained water-level decline at a monitoring well, (2) annual withdrawals that have approached or even exceeded previous estimates of aquifer recharge, and (3) numerous contamination problems that have caused temporary or long-term shutdown of production wells. Public water supply in Rockland County uses three sources of water in roughly equal parts: (1) the Newark basin sedimentary bedrock aquifer, (2) alluvial aquifers along the Ramapo and Mahwah Rivers, and (3) surface waters from Lake DeForest Reservoir and a smaller, new reservoir supply in the Highlands part of the county. Water withdrawals from the alluvial aquifer in the Ramapo River valley and the Lake DeForest Reservoir are subject to water-supply application permits that stipulate minimum flows that must be maintained downstream into New Jersey. There is a need, therefore, at a minimum, to prevent any loss of the bedrock-aquifer resource--to maintain it in terms of both sustainable use and water-quality protection. The framework of the Newark basin bedrock aquifer included characterization of (1) the structure and fracture occurrence associated with the Newark basin strata, (2) the texture and thickness of overlying glacial and alluvial deposits, (3) the presence of the Palisades sill and associated basaltic units on or within the Newark basin strata, and (4) the streams that drain the aquifer system. The greatest concern regarding sustainability of groundwater resources is the aquifer response to the seasonal increase in pumping rates from May through October (an average increase

  19. Characterization and recognition of intraflow structures, Grande Ronde Basalt

    International Nuclear Information System (INIS)

    Long, P.E.

    1978-09-01

    This investigation was carried out as part of a feasibility study for long-term storage of nuclear waste at depth in the Pasco Basin. Three general types of intraflow structures were found at Sentinel Gap: flows with stubby, irregular columns that lack a well-developed entablature; flows consisting of multiple tiers of largely entablature-type columns; and flows with a well-developed colonnade and entablature showing a sharp break between the two. Certain features occur locally in all three types of intraflow structures: variations in fracture morphology, primary platey fracture zones, pillow-palagonite zones, and tectonically induced zones of closely spaced fractures. Fractures in each of the three types of flows were logged both at the surface and in core from Core Hole DH-5, and petrographic textures of basalt sampled from surface exposures were examined. The textures of the basalt correlate with the intraflow structures and provide a technique for identifying flows as to their general type of intraflow structure, locating internal contacts between intraflow structures and possibly estimating fracture density within flows. Fracture logging, on the other hand, does not accurately delimit intraflow structures

  20. Fracture and seepage characteristics in the floor strata when mining above a confined aquifer%承压水体上开采底板岩层破断及渗流特征

    Institute of Scientific and Technical Information of China (English)

    王金安; 魏现昊; 陈绍杰

    2012-01-01

    以山西某煤矿承压水体上下组煤开采为工程背景,通过对煤层底板岩石进行全应力-应变渗透性试验及单裂隙渗透性试验,揭示了岩石应力-渗流耦合机理,获得了断裂面渗透系数的定量关系式;采用离散元流固耦合模拟方法,对承压水体上煤层开采底板岩层的应力状态及渗流特征进行模拟分析.结果表明:底板岩层"四带"中的渗透性均与水平应力密切相关,其中:直接底板受工作面矿压影响严重,岩层中的水平应力杂乱无章,破坏带厚度约13m;奥灰含水层顶部岩层为低围压区,容易形成奥灰水楔劈裂导升机理,导升带厚度为17m左右;底板中部层位受采动矿压及底板承压水直接影响相对较小,此带中水平应力自上而下呈递增状态,有效隔水层带厚度38m,是底板的关键阻水层.%A quantitative relationship for the fractured rock permeability coefficient was obtained by conducting stress-strain permeability tests on intact and fractured rock samples. The stress seepage coupling mechanism is elucidated from these results. Mining a lower coal seam located above a confined aquifer in Shanxi province motivated this research. A discrete element numerical model was used to simulate fluid-solid coupling and determine stress and seepage in the floor strata. Four typical zones appear in the floor strata that are closely related to the hori- zontal stress. The damage state and the permeability are used to define these zones. If the di- rect floor stratum is seriously affected by mining induced pressure the horizontal stress is disor- dered and the damaged zone is about 13 m thick. The confining pressure in the strata above the Ordovician aquifer is low and hydraulic splitting fractures it easily. The thickness of the zone where water rises is about 17 m. The middle of the floor strata are less affected by mining and the confined aquifer. The horizontal stresses increase with increasing depth the

  1. Delineation of aquifers in basaltic hard rock terrain using vertical ...

    Indian Academy of Sciences (India)

    In this region, groundwater is the main source of water supply ... network of small channels as shown in figure 1(b). ... (a) Geology and location map of the study area (modified after District resource ... (b) Drainage pattern and location of VES sites represented by blue solid ... In this case, two resistivity values, i.e., 47.2 and.

  2. Disseminated sulphides in basalts from the northern central Indian ridge: Implications on late-stage hydrothermal activity

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, D.

    interplay between oceanic crust fractur- ing due to tectonically active megamullions and subsequent hydrothermal alteration, accounting for the formation of dis- seminated sulphides at the NCIR. In a novel attempt, this study examines the mineralogy... of samples. Instead, the dark greyish coloured altered basalts, frequently fractured and often with a greenish tint, dominate the assemblage. Specks of sulphides are un- evenly distributed in these altered basalts as disseminated grains or fine stringers...

  3. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    DEFF Research Database (Denmark)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie Claire Claudia

    2014-01-01

    is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon......, showed a wide range in δ13C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ37Cl values for TCE...

  4. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well

  5. Moessbauer Studies of Volhynian Basalts

    International Nuclear Information System (INIS)

    Bakun-Czubarow, N.; Milczarski, J.; Galazka-Friedman, J.; Szlachta, K.; Forder, S.

    2011-01-01

    The Volhynian basalts studied belong to the effusive-tuffogenic Volhynian Series (Slawatycze Series in Poland), being the large Ediacaran continental igneous province, that covers an area of 200 000 km 2 in the western margin of East European Craton. The series is underlain by the Cryogenian terrigenous Polesie Series with doleritic sills and dikes. The Volhynian Series consists of the rock beds belonging to the three volcanic cycles with different ratios of flood basalts to pyroclastics. The aim of the study was recognition of primary and secondary Fe-bearing minerals, particularly Fe- and Fe-Ti oxides as well as determination of iron oxidation state, that is an important tool in the search for native copper deposits in these rocks. For Moessbauer studies the following rock samples were chosen: the Polesie Series dolerites, the Volhynian Series basalts from the Ukrainian quarries and drill-holes, e.g. from the Volodymir Volhynskaya drilling hole; the Slawatycze Series basalts from Kaplonosy drill-hole in Poland. In the Kaplonosy basalts the content of magnetite decreases with depth, which may be caused by magma differentiation due to fractional crystallization, when Mg content decreases as Ti and Fe - increases in basic magma. In the Kaplonosy basalts the Fe 2+ /Fe 3+ ratio increases with depth, which points to the increase of iron oxidation with the progress of basaltic magma differentiation. (authors)

  6. Assessment of Groundwater Quality in the Western Aquifers of Mauritius Using Isotope Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dindyal, D.; Brizmohun, R.; Fanny, J. O.Y. [National Environmental Laboratory, Reduit (Mauritius); Sacchi, E. [Dipartimento di Scienze della Terra e dell' Ambiente, Universita di Pavia (Italy)

    2013-07-15

    This contribution reports the results obtained in the IAEA TC project Mar/8/007, initiated in 2007. Fourteen boreholes were sampled during three sampling campaigns (rainy season, winter and summer): analyses include major ions, trace elements, stable isotopes ({delta}{sup 2}H, {delta}{sup 18}O and {delta}{sup 13}C) and a microbiological assessment (TC and E. coli). Results indicate that groundwater quality is generally good. Recharge mostly occurs in the central plateau area, but the increase in nitrates along the groundwater flow and the common presence of E. coli indicate that a minor recharge occurs all over the aquifer's extension. Infiltration is rapid and favoured by the presence of vertical fractures in the basalts. Discharge occurs at a lower altitude and is marked by a different stable isotope content and lower nitrates. In addition to validating the general groundwater circulation model, these results show that aquifers are not adequately protected against a possible input of pollutants from the surface. (author)

  7. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  8. Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos

    2011-01-01

    This paper describes the natural radioactivity of groundwater occurring in sedimentary (Bauru and Guarani) and fractured rock (Serra Geral) aquifer systems in the Parana sedimentary basin, South America that is extensively used for drinking purposes, among others. The measurements of gross alpha and gross beta radioactivity as well the activity concentration of the natural dissolved radionuclides 40 K, 238 U, 234 U, 226 Ra, 222 Rn, 210 Po and 210 Pb were held in 80 tubular wells drilled in 21 municipalities located at Sao Paulo State and its border with Mato Grosso do Sul State in Brazil. Most of the gross alpha radioactivity data were below 1 mBq/L, whereas values exceeding the gross beta radioactivity detection limit of 30 mBq/L were found. The radioelement solubility in the studied systems varied according to the sequence radon>radium>other radionuclides and the higher porosity of sandstones relatively to basalts and diabases could justify the enhanced presence of dissolved radon in the porous aquifer. The implications of the data obtained in terms of standards established for defining the drinking water quality have also been discussed. The population-weighted average activity concentration for these radionuclides was compared to the guideline value of 0.1 mSv/yr for the total effective dose and discussed in terms of the choice of the dose conversion factors. - Highlights: → Integration of distinct radiometric data acquired in groundwaters. → Radiation dose in important hydrological resources in South America. → Contribution of 226 Ra for the more accentuated radiation dose in aquifers. → Dose factors for Rn and generation of values exceeding the maximum of 0.1 mSv/yr.

  9. Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, Daniel Marcos, E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, IGCE-Instituto de Geociencias e Ciencias Exatas, UNESP-Universidade Estadual Paulista Julio de Mesquita Filho, Av. 24-A, No. 1515 - CP 178, CEP 13506-900-Rio Claro, SP (Brazil)

    2011-10-15

    This paper describes the natural radioactivity of groundwater occurring in sedimentary (Bauru and Guarani) and fractured rock (Serra Geral) aquifer systems in the Parana sedimentary basin, South America that is extensively used for drinking purposes, among others. The measurements of gross alpha and gross beta radioactivity as well the activity concentration of the natural dissolved radionuclides {sup 40}K, {sup 238}U, {sup 234}U, {sup 226}Ra, {sup 222}Rn, {sup 210}Po and {sup 210}Pb were held in 80 tubular wells drilled in 21 municipalities located at Sao Paulo State and its border with Mato Grosso do Sul State in Brazil. Most of the gross alpha radioactivity data were below 1 mBq/L, whereas values exceeding the gross beta radioactivity detection limit of 30 mBq/L were found. The radioelement solubility in the studied systems varied according to the sequence radon>radium>other radionuclides and the higher porosity of sandstones relatively to basalts and diabases could justify the enhanced presence of dissolved radon in the porous aquifer. The implications of the data obtained in terms of standards established for defining the drinking water quality have also been discussed. The population-weighted average activity concentration for these radionuclides was compared to the guideline value of 0.1 mSv/yr for the total effective dose and discussed in terms of the choice of the dose conversion factors. - Highlights: > Integration of distinct radiometric data acquired in groundwaters. > Radiation dose in important hydrological resources in South America. > Contribution of {sup 226}Ra for the more accentuated radiation dose in aquifers. > Dose factors for Rn and generation of values exceeding the maximum of 0.1 mSv/yr.

  10. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  11. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  12. lithologic characterisation of the basement aquifers of awe and ...

    African Journals Online (AJOL)

    Global Journal

    resistivity exceeded 3000 ohm-m, then the bedrock is fresh and prospect for water is low (Olayinka and. Olorunfemi, 1992; Olorunfemi and Olorunniwo, 1990). Groundwater zones are found in the weathered and fractured zones in basement areas. In Ibarapa area of SW, Nigeria the associated fractured bedrock aquifers.

  13. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    OpenAIRE

    Huang Bo; Cheng Hao; He Yidong; Fu Yanming

    2017-01-01

    The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc.), high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the ...

  14. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    Science.gov (United States)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  15. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Thangarajan, M.; Mayilswami, C.; Kulkarni, P.S.; Singh, V.P.

    2012-01-01

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  16. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  17. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  18. A petrogenetic model of basalts from the Northern Central Indian Ridge: 3-11°S

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Iyer, S.D.; Banerjee, R.; Misra, S.; Widdowson, M.

    ) to subhedral (rare) equant grains, which are almost colourless and rarely show zoning. In a few cases, olivine shows alteration along the inherent fracture to reddish- brown iddingsite. Amphiboles occur in the VT as well as in VM basalts but only as poorly... (primitive mantle normalized data from Sun and McDonough, 1989) patterns for selected samples are shown. The basalt samples collected from VT 4, VT 5 and VM 9DG locations characteristically exhibit differential variation in their trace element...

  19. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  20. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  1. A GIS-based, confined aquifer, hypothetical model of ground-water seepage into a former mining open pit

    International Nuclear Information System (INIS)

    Salama, A; Negeed, E.R.

    2010-01-01

    Groundwater seepage into a former mining site in Egypt is proposed for simulation. This site was used for basalt extraction. After the mining activities had stopped a large open pit was left over and groundwater seeped into the pit forming a lake. The pit has a dimension of approximately 1200 x 600 x 30 m. Because of the lack of field data, several scenarios may be hypothesized to explain the filling of these open pits with water. In this paper, one of these scenarios is studied. It is suggested that this water comes from an underneath confined aquifer. Through fractures in the host rock, water seeped upwards into the open pit. To estimate the rate at which water seeps into the lake, numerical study based on the finite element method is performed. Firstly, geo-referencing of the site was performed using GIS. The boundary of the lake was then digitized and elevation contours was defined. These data was then imported into grid-builder software to generate a two-dimensional triangular mesh which was then used by hydro-geosphere software to build the three-dimensional mesh and solve the problem. It was found that the set of discrete fractures was insufficient to fill the lake in the time span that was actually elapsed to fill up the lake which is on the order of two to three years.

  2. Diversity of life in ocean floor basalt

    Science.gov (United States)

    Thorseth, I. H.; Torsvik, T.; Torsvik, V.; Daae, F. L.; Pedersen, R. B.

    2001-12-01

    Electron microscopy and biomolecular methods have been used to describe and identify microbial communities inhabiting the glassy margins of ocean floor basalts. The investigated samples were collected from a neovolcanic ridge and from older, sediment-covered lava flows in the rift valley of the Knipovich Ridge at a water depth around 3500 m and an ambient seawater temperature of -0.7°C. Successive stages from incipient microbial colonisation, to well-developed biofilms occur on fracture surfaces in the glassy margins. Observed microbial morphologies are various filamentous, coccoidal, oval, rod-shaped and stalked forms. Etch marks in the fresh glass, with form and size resembling the attached microbes, are common. Precipitation of alteration products around microbes has developed hollow subspherical and filamentous structures. These precipitates are often enriched in Fe and Mn. The presence of branching and twisted stalks that resemble those of the iron-oxidising Gallionella, indicate that reduced iron may be utilised in an energy metabolic process. Analysis of 16S-rRNA gene sequences from microbes present in the rock samples, show that the bacterial population inhabiting these samples cluster within the γ- and ɛ-Proteobacteria and the Cytophaga/Flexibacter/Bacteroides subdivision of the Bacteria, while the Archaea all belong to the Crenarchaeota kingdom. This microbial population appears to be characteristic for the rock and their closest relatives have previously been reported from cold marine waters in the Arctic and Antarctic, deep-sea sediments and hydrothermal environments.

  3. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  4. Contribution to the study of Arapey Salto-Aquifer System (Department of Salto - Uruguay)

    International Nuclear Information System (INIS)

    Massa, E.

    1994-01-01

    This paper provide hydrogeological data about the Salto Arapey aquifer system constituted by sedimentary deposits and fisurate effusive rocks, respectively Tertiary and Cretacic aged. The information belongs to an area located at latitude South 31º20' West. North of the Salto city (NW of Uruguay) 500 km away from Montevideo. A regional aquifer system can be defined where the biggest flows are originated in the basaltic fisurate d rocks of the Arapey formation. Environment features are also considered and data about the main polluting agents - both organic and inorganic ones- are provided, bearing in mind that they justify an urgent safety design to protect the aquifer system

  5. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  6. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  7. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Science.gov (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  8. Preliminary analysis of some waters from the confined aquifers underlying the Hanford site

    International Nuclear Information System (INIS)

    Deju, R.A.

    1978-09-01

    This report presents results of analyses available at this time from waters from some wells sampled in or near the Hanford Site. The analyses of these wells were done for various purposes and are consolidated to help define the nature of the waters found within the Columbia Plateau basaltic sequence. Results of the analyses show the waters from the unconfined aquifers underlying the Hanford Site are characterized by a high calcium--magnesium content. These waters can be described as calcium--magnesium--bicarbonate-type. Waters from deeper basaltic confined aquifers are primarily of the sodium bicarbonate type. Two waters sampled from the Grande Ronde Formation from Rattlesnake Hills Exploratory Well Number 1 are slightly different and can be described as sodium--calcium--bicarbonate--sulfate--chloride-type. Age-dating results for these water samples lead to the conclusions that waters from the confined aquifers were entrapped 15,000 to 23,000 years ago

  9. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  10. Conceptualization of flow and transport in a limestone aquifer by multiple dedicated hydraulic and tracer tests

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    2018-01-01

    Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behav...

  11. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  12. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  13. Formation evaluation of fractured basement, Cambay Basin, India

    International Nuclear Information System (INIS)

    Gupta, Saurabh Datta; Farooqui, M Y; Chatterjee, Rima

    2012-01-01

    Unconventional reservoirs such as fractured basalts, shale gas and tight sand are currently playing an important role in producing a significant amount of hydrocarbon. The Deccan Trap basaltic rocks form the basement of the Cambay Basin, India, and hold commercially producible hydrocarbon. In this study two wells drilled through fractured basalts are chosen for evaluating the lithology, porosity and oil saturation of the reservoir sections. Well logs, such as gamma ray, high resolution resistivity, litho density, compensated neutron and elemental capture spectroscopy, have been used in cross-plotting techniques for lithology and mineral identification. Formation micro imagery log data have been analysed to quantify the fractures and porosity in the fractured reservoirs for a well in the south Ahmedabad block of the Cambay Basin. The results of the analysis of two wells are presented and discussed and they are found to be in good agreement with geological and production data. (paper)

  14. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  15. Conceptual model of fractured aquifer of Uranium Deposit in Caetité, Bahia: implications for groundwater flow; Modelo conceitual do aquífero fraturado da área da jazida de urânio de Caetité, Bahia: implicações para o fluxo subterrâneo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane Ferreira da

    2015-07-01

    The studied area is represented by the uraniferous district of Lagoa Real, located in the center-south of Bahia State, Brazil. The region is set in a semiarid climate context, with hot and dry weather parameters, with hydric deficit along all months of the year and high aridity index. Rural population is affected on drought periods since small agriculture and animal rearing are the main economic activities which are vulnerable in dry seasons. Groundwater represents the main supply source considering that most surface water sources are temporary and only exhibit flow in rainy periods. The main aquifer system present on the region is fractured, and the presence of groundwater flow occurs through the discontinuities of the rock considering that the rock mass corresponds to the set formed by the rock matrix and all its discontinuities (fractures, foliations, discordance, etc). In this sense, the main purpose of this Master Dissertation was to develop a conceptual model for the aquifer system, through the geotechnical characterization of discontinuities, once these structures allow the secondary porosity of the medium. Hydrochemical data hand out as complement for physical characterization for the behavioral interpretation of the aquifer. The aquifer system is unconfined, however, presents points of stagnation of flow forming compartments without communication with the surrounding areas. According to the International Society of Rock Mechanics ISRM method, which consist on qualitative and quantitative characterization of discontinuities of rock mass scanlines were constructed, systematically, describing, the following structure parameters: attitude, spacing, persistence, openness, infilling and roughness. From the results analysis it could be concluded that the aquifer system is composed of three discontinuities sets: one set which dips to NE, second set dipping to SW-W-NW and the last set sub-horizontal. The first and second sets are responsible for the aquifer

  16. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  17. A Generic analytical solution for modelling pumping tests in wells intersecting fractures

    Science.gov (United States)

    Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe

    2018-04-01

    The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of

  18. Determination of hydraulic characteristics of an aquifer capacity from ...

    African Journals Online (AJOL)

    Constant rate, single well pumping tests were conducted using boreholes located in four communities in the study area with the aim of determining the aquifer hydraulic properties using the Cooper Jacob method. Fractured shales yielded groundwater into the wells whose depths ranged from 26 to 35m while the static water ...

  19. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  20. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  1. Determination of dissolved gases in basalt groundwater in the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Halko, D.J.

    1986-09-01

    The determination of dissolved gases in groundwater is required for complete hydrochemical characterization of the Columbia River Basalt Group beneath the Hanford Site. A gas chromatographic method has been developed for the determination of argon, oxygen, nitrogen, carbon monoxide, carbon dioxide, and methane in groundwater. In addition to a gas chromatograph equipped with thermal conductivity and flame ionization detectors, equipment utilized consists of a purge device that strips these gases from solution for subsequent separation using Molecular Sieve 5A and porous polymer columns. This technique is capable of accommodating pressurized fluid samples collected from the deep aquifers with in situ samplers. The analysis is discussed in detail

  2. Environmental isotopic study of the Korama aquifers, south of Zinder (Niger)

    International Nuclear Information System (INIS)

    Zakara, Z.; Karbo, A.; Aranyossy, J.F.

    1993-01-01

    A first environmental isotope study has been carried out on the ''Korama'' aquifers located in the southern part of the city of Zinder (Niger). Preliminary interpretation confirms that most of the aquifers are presently recharged by direct infiltration of rainwater. Structural fractures seem to play an important role in the water circulation allowing vertical drainage of oldest water coming from deeper aquifers and facilitating the recharge by surface water in the prheatic zone. It does not appear any difference between the so-called ''superficial Korama'' and the ''Deep Korama'' aquifers on the basis of the isotopic compositions. (author). 11 refs, 7 figs, 2 tabs

  3. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Directory of Open Access Journals (Sweden)

    Kruszka Leopold

    2015-01-01

    Full Text Available Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1 and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  4. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Science.gov (United States)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  5. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  6. Geologic structure of the eastern mare basins. [lunar basalts

    Science.gov (United States)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  7. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    Science.gov (United States)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  8. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  9. Naming Lunar Mare Basalts: Quo Vadimus Redux

    Science.gov (United States)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  10. Repository site definition in basalt: Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi 2 (5180 km 2 ) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process

  11. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  12. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  13. Simulation of aquifer tests and ground-water flowpaths at the local scale in fractured shales and sandstones of the Brunswick Group and Lockatong Formation, Lansdale, Montgomery County, Pennsylvania

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.

    2000-01-01

    The U.S. Geological Survey, as part of technical assistance to the U.S. Environmental Protection Agency, has constructed and calibrated models of local-scale ground-water flow in and near Lansdale, Pa., where numerous sources of industrial contamination have been consolidated into the North Penn Area 6 Superfund Site. The local-scale models incorporate hydrogeologic structure of northwest-dipping beds with uniform hydraulic properties identified in previous studies. Computations associated with mapping the dipping-bed structure into the three-dimensional model grid are handled by a preprocessor using a programmed geographic information system (GIS). Hydraulic properties are identified by calibration of the models using measured water levels during pumping and recovery from aquifer tests at three sites. Reduced flow across low-permeability beds is explicitly simulated. The dipping high-permeability beds are extensive in the strike direction but are of limited extent in the dip direction. This model structure yields ground-water-flow patterns characteristic of anisotropic aquifers; preferred flow is in the strike direction. The transmissivities of high-permeability beds in the local-scale models range from 142 to 1,900 ft2/d (feet squared per day) (13 to 177 m2/d). The hydraulic conductivities of low-permeability parts of the aquifer range from 9.6 x 10-4 to 0.26 ft/d (feet per day) (2.9 x 10-4 to 0.079 m/d). Storage coefficients and specific storage are very low, indicating the confined nature of the aquifer system. The calibrated models are used to simulate contributing areas of wells under alternative, hypothetical ground-water-management practices. Predictive contributing areas indicate the general characteristics of ground-water flow towards wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration near the well and over an area that extends upgradient from the well. The contributing areas for two wells pumping at 10 gal

  14. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  15. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  16. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  17. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  18. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  19. Sedimentary facies control on mechanical and fracture stratigraphy in turbidites

    NARCIS (Netherlands)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Tinterri, Roberto; Bedogni, Enrico; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2017-01-01

    Natural fracture networks exert a first-order control on the exploitation of resources such as aquifers, hydrocarbons, and geothermal reservoirs, and on environmental issues like underground gas storage and waste disposal. Fractures and the mechanical stratigraphy of layered sequences have been

  20. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  1. Implications of one-year basalt weathering/reactivity study for a basalt repository environment

    International Nuclear Information System (INIS)

    Pine, G.L.; Jantzen, C.M.

    1987-03-01

    The Savannah River Laboratory is testing the performance of the Defense Waste Processing Facility glass under conditions representing potential repository environments. For a basalt repository, one of the important issues is how rapidly reducing conditions are re-established after placement of the waste. The objective of this study was to examine the factors affecting the reactivity of the basalt. Construction of a nuclear waste repository in basalt will temporarily perturb the groundwater conditions, creating more oxidizing (air-saturated) conditions than an undisturbed repository system. Reducing conditions can be beneficial to the performance of waste glass and canisters, and may limit the transport of certain radionuclides. The Basalt Waste Isolation Project intends to use a backfill containing crushed basalt to re-establish the reducing conditions of the groundwater. The reactivity of the basalt has been found to be minimal once the fresh crushed surfaces have been weathered and the reactive intergranular glass component has been leached, e.g., by long-term surface storage. Crushing of the basalt for pneumatic emplacement of the backfill should, therefore, occur shortly before placement in the repository. This backfill must contain a minimum of 5 percent reactive fines (<100 mesh), to rapidly achieve reducing conditions. 23 refs., 21 figs., 18 tabs

  2. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    Science.gov (United States)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  3. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  4. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.

    2000-01-01

    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  5. Antifriction basalt-plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  6. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  7. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... In this study, we use a new method to present fracture networks and analyse the connectivity of the .... bounded aquifers are currently the most common targets for water supply ... a conceptual model that integrates all of the available data ...... Integrated multi-scale characterization of ground-water flow and.

  8. Using enteric pathogens to assess sources of fecal contamination in the Silurian Dolomite Aquifer: Preliminary results

    Science.gov (United States)

    Muldoon, Maureen A; Borchardt, Mark A.; Spencer, Susan K.; Hunt, Randall J.; Owens, David

    2018-01-01

    The fractured Silurian dolomite aquifer is an important, but vulnerable, source of drinking water in northeast Wisconsin (Sherrill in Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite, 1978; Bradbury and Muldoon in Hydrogeology and groundwater monitoring of fractured dolomite in the Upper Door Priority Watershed, Door County, Wisconsin, 1992; Muldoon and Bradbury in Assessing seasonal variations in recharge and water quality in the Silurian aquifer in areas with thicker soil cover. p 45, 2010). Areas underlain by the Silurian dolomite aquifer are extremely vulnerable to groundwater contamination from various land-use activities, especially the disposal of human wastewater and dairy manure. Currently there is no consensus as to which source of wastewater generates the greater impact to the aquifer.

  9. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  10. The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres

    Science.gov (United States)

    Abdollahi Azghan, Mehdi; Eslami-Farsani, Reza

    2018-02-01

    The current study aimed at investigating the effects of different stacking sequences and thermal cycling on the flexural properties of fibre metal laminates (FMLs). FMLs were composed of two aluminium alloy 2024-T3 sheets and epoxy polymer-matrix composites that have four layers of basalt and/or glass fibres with five different stacking sequences. For FML samples the thermal cycle time was about 6 min for temperature cycles from 25 °C to 115 °C. Flexural properties of samples evaluated after 55 thermal cycles and compared to non-exposed samples. Surface modification of aluminium performed by electrochemical treatment (anodizing) method and aluminium surfaces have been examined by scanning electron microscopy (SEM). Also, the flexural failure mechanisms investigated by the optical microscope study of fractured surfaces. SEM images indicated that the porosity of the aluminium surface increased after anodizing process. The findings of the present study showed that flexural modulus were maximum for basalt fibres based FML, minimum for glass fibres based FML while basalt/glass fibres based FML lies between them. Due to change in the failure mechanism of basalt/glass fibres based FMLs that have glass fibres at outer layer of the polymer composite, the flexural strength of this FML is lower than glass and basalt fibres based FML. After thermal cycling, due to the good thermal properties of basalt fibres, flexural properties of basalt fibres based FML structures decreased less than other composites.

  11. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  12. Investigation of Basalt Woven Fabrics for Military Applications

    Science.gov (United States)

    2011-11-01

    investigates the use of basalt fibers in a composite along with SC-15 epoxy resin for ballistic protection. Basalt fibers are not known as a ballistic...material but rather as a structural one. Even though basalt fibers are not expected to outperform some of the higher ballistic performing materials...such as the aramid and polyethylene fibers ; however, due to the lower manufacturing costs, basalt fibers are an interesting alternative. The objective

  13. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  14. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  15. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  16. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.

    2018-01-01

    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  17. Geochemical characteristics of the Jos-Plateau Basalts, North ...

    African Journals Online (AJOL)

    The Jos Plateau basalts, present Zr/Nb ratios (2.4-3.0) comparable to those of the alkali basalts of the lower Benue valley, and of the Cameroon volcanic line, suggesting that they were possibly derived from the same mantle source. Keywords: Jos Plateau, alkali basalt, mantle, partial melting, incompatible elements.

  18. Petrology of basalts from Loihi Seamount, Hawaii

    Science.gov (United States)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  19. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    Science.gov (United States)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture

  20. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  1. Isotopic and chemical investigations of quaternary aquifer in sinai peninsula

    International Nuclear Information System (INIS)

    Sadek, M.A.; Ahmed, M.A.; Awad, M.A.

    2001-01-01

    The present study has been conducted to investigate the renewal activity and mineralization potential of the quaternary aquifer in Sinai peninsula using environmental isotopes and hydrochemistry. The quaternary aquifer is vital for development processes as it has a wide extension and shallow water table. The total dissolved salts vary greatly from one location to another and range widely between 510-7060 mg/1, reflecting all categories from fresh to saline water. The change in salinity all over Sinai can be attributed to variations in the rate of evaporation. Leaching and dissolution of terrestrial salts during floods as well as the effects of sea spray and saline water intrusion. The main sources of groundwater recharge are the infiltration of Local precipitation and surface runoff as well as lateral flow through hydraulic connection with fractured aquifers. Snow melt also contributes to aquifer recharge in some areas in the central part of southern Sinai. The environmental stable isotopic contents of the ground water in the quaternary aquifer in Sinai reflect the isotopic composition of rain water from continental and east Mediterranean precipitation and monsonal air mass which comes from Indian ocean as well as the seepage of partly evaporated floodwater. The southern samples are more suitable for drinking and irrigation purposes due to its lower salinity and sodium hazard

  2. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    Science.gov (United States)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  3. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  4. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  5. Basalts of the Khodzhirbulak Suite and Assessment their Feasibility for Basalt Fiber (Surkhantau Mountains, Southwestern Shoots of the Hissar Ridge

    Directory of Open Access Journals (Sweden)

    N. M. Khakberdyev

    2017-06-01

    Full Text Available The results of preliminary assessment of basalt of the Khodzhirbulakskoy Suite of Surkhantau Mountains for the basalt fiber production are presented. According to petrographic study, the rocks are described as basalts of amygdaloidal structure. On the base of content of the amount of glassy form and nodular calcite, three groups of basalts were identified. The inverse relationship between the bulk content of the volcanic rock and the content of calcite: the greater volume of volcanic rocks, the less content of calcite, and vice versa. The basalt material demonstrates average pH module of 3.52.

  6. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  7. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  8. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  9. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  10. Gamma radiolysis effects on basalt groundwater

    International Nuclear Information System (INIS)

    Gray, W.J.

    1983-10-01

    Gamma radiolysis of basalt groundwater containing 700 ppM methane produces a milky liquid that is a suspension of fine particles of a high molecular weight hydrocarbon somewhat like polyethylene. The ability of these polymers to chelate with, or otherwise sorb, metal ions from aqueous solution was measured using Cu +2 as a representative cation. Values in the range 0.3 to 0.8 millimoles of Cu per liter of solution were found. 5 references, 2 figures, 2 tables

  11. Iron isotopic systematics of oceanic basalts

    Science.gov (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  12. AEGIS methodology demonstration: case example in basalt

    International Nuclear Information System (INIS)

    Dove, F.H.

    1982-01-01

    The AEGIS technology has been successfully demonstrated. For the same data, similar unpublished results have been obtained by RHO and INTERA Environmental Consultants, Inc. for contaminant transport. In addition to establishing the utility of computer codes and assessment methodology, the AEGIS technology demonstration in basalt has also produced some practical guidance for future field data gathering programs. The results of this basalt demonstration indicate that the geohydrologic systems separating the nuclear waste from the natural biosphere discharge site mitigate the consequences of the postulated fault intersection event. This analysis suggests that the basalt system satisfies the 1000- and 10,000-yr proposed standards for release to the accessible environment (limited release of 129 I and 14 C). The reader should be cautioned, however, that the results are valid only for one particular set of parameters and one postulated release scenario. A complete sensitivity analysis must be performed to evaluate the range of effects that might be observed under different release conditions and for the different range in parameters

  13. Diversity of basaltic lunar volcanism associated with buried impact structures: Implications for intrusive and extrusive events

    Science.gov (United States)

    Zhang, F.; Zhu, M.-H.; Bugiolacchi, R.; Huang, Q.; Osinski, G. R.; Xiao, L.; Zou, Y. L.

    2018-06-01

    Relatively denser basalt infilling and the upward displacement of the crust-mantle interface are thought to be contributing factors for the quasi-circular mass anomalies for buried impact craters in the lunar maria. Imagery and gravity observations from the Lunar Reconnaissance Orbiter (LRO) and dual Gravity Recovery and Interior Laboratory (GRAIL) missions have identified 10 partially or fully buried impact structures where diversity of observable basaltic mare volcanism exists. With a detailed investigation of the characteristics of associated volcanic landforms, we describe their spatial distribution relationship with respect to the subsurface tectonic structure of complex impact craters and propose possible models for the igneous processes which may take advantage of crater-related zones of weakness and enable magmas to reach the surface. We conclude that the lunar crust, having been fractured and reworked extensively by cratering, facilitates substance and energy exchange between different lunar systems, an effect modulated by tectonic activities both at global and regional scales. In addition, we propose that the intrusion-caused contribution to gravity anomalies should be considered in future studies, although this is commonly obscured by other physical factors such as mantle uplift and basalt load.

  14. Application of isotope study of the hydrogeological aquifers of the Yarmouk basin

    International Nuclear Information System (INIS)

    Sharida, A.R.; Jubeili, Y.

    2001-05-01

    Environmental isotopic variations have been used to investigate the source of recharge and age in the basaltic and deep limestone aquifers system in the Yarmouk basin, SW of Syria. Isotopic results show that recharge of basaltic aquifer is directly related to infiltration of rainwater from high and transitional zones. However, the homogeneity noted of stable and radioactive isotopes values (δ 18 O= -5.58± 0.25%, 14 C=46.2± 4.45 % pmc) in Laja plateau and central zone, confirm the mechanism of common recharge and critical role of this plateau in absorbing great amount of precipitation. In addition these values indicate, to a high rate mixing taking place in this plateau and the central zone. In the Kahiel area, the groundwater is of recent age as shown from the high values of 14 C activity ( 14 C= 66.3 ± 5.3 % pcm) accompanied by enriched 18 O (δ 18 O=-4.7±0.22 %). The recharge of groundwater is related to the leakage of water from dams and drainage network. The tectonic setting in this area constitutes an additional factor in increasing this recharge. Netpath model was used to determine the age of groundwater. the age of groundwater in the basaltic aquifer is generally modern and reaches 2000 y BP in discharge area. Preliminary conclusion of deep limestone aquifer, indicate that its groundwater occur under high piezometric pressure. The salinity is less than 1g/L and the temperature water varied between 35 to 45 degreed centigrade. The low 14 C activities in deep groundwater suggest pleistocene and holocene recharge, although their stable isotopes values indicate recharge by modern meteoric precipitation. The corrected age of this groundwater determined by Netpath model indicate that this age fall between recent water in recharge area and 20 Ky BP. (author)

  15. Environmental isotope application to investigate the hydrogeological aquifers of Yarmouk basin SW of Syria

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2002-01-01

    Environmental isotopic variations have been used to investigate the source of recharge and age in the basaltic and deep limestone aquifers system in the Yarmouk basin, SW of Syria. Isotopic results show that recharge of basaltic aquifer is directly related to infiltration of rainwater from high and transitional zones. However, the homogeneity noted of stable and radioactive isotopes values (δ 18 O= -5.58± 0.25%, 14 C=46.2± 4.45 % pmc) in Laja plateau and central zone, confirm the mechanism of common recharge and critical role of this plateau in absorbing great amount of precipitation. In addition these values indicate, to a high rate mixing taking place in this plateau and the central zone. In the Kahiel area, the groundwater is of recent age as shown from the high values of 14 C activity ( 14 C= 66.3 ± 5.3 % pcm) accompanied by enriched 18 O (δ 18 O=-4.7±0.22 %). The recharge of groundwater is related to the leakage of water from dams and drainage network. The tectonic setting in this area constitutes an additional factor in increasing this recharge. Netpath model was used to determine the age of groundwater. the age of groundwater in the basaltic aquifer is generally modern and reaches 2000 y BP in discharge area. Preliminary conclusion of deep limestone aquifer, indicate that its groundwater occur under high piezometric pressure. The salinity is less than 1g/L and the temperature water varied between 35 to 45 degreed centigrade. The low 14 C activities in deep groundwater suggest pleistocene and holocene recharge, although their stable isotopes values indicate recharge by modern meteoric precipitation. The corrected age of this groundwater determined by Netpath model indicate that this age fall between recent water in recharge area and 20 Ky BP. (author)

  16. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  17. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  18. Making rhyolite in a basalt crucible

    Science.gov (United States)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  19. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  20. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  1. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites

    International Nuclear Information System (INIS)

    Zhang Yihe; Yu Chunxiao; Chu, Paul K.; Lv Fengzhu; Zhang Changan; Ji Junhui; Zhang Rui; Wang Heli

    2012-01-01

    Highlights: ► Novel basalt fiber-reinforced biodegradable poly(butylene succinate) composites have been successfully fabricated with various fiber loadings. ► The tensile and flexural properties of the PBS matrix resin are improved significantly by increasing the fiber loading in the composites. ► The impact strength of the BF/PBS composite decreases with the addition fibers primarily and increases with increasing fiber loading due to energy dissipation when the fibers are pulled out. ► Heat deflection temperature tests clearly show that the HDT of the basalt fiber reinforced PBS composites is significantly higher than the HDT of the PBS resin. - Abstract: Basalt fiber (BF) reinforced poly(butylene succinate) (PBS) composites have been fabricated with different fiber contents by a injection molding method and their tensile, flexural and impact properties, as well as thermal stability have been investigated. The tensile and flexural properties of the PBS matrix resin are improved markedly by increasing the fiber contents in the composites. The values are relatively higher than the natural fiber/PP systems reported earlier by other research groups. The heat deflection temperature (HDT) and Vicat softening temperature (VST) of the composites are significantly higher than those of the neat PBS resin. Scanning electron microscopy (SEM) conducted on the fracture surfaces of the composites reveals superior interfacial linkage between the basalt fibers and PBS matrix. The results suggest that the BF/PBS composites may be a potential candidate of PP or PP composites to manufacturing some daily commodities to solve the “white pollution” in environmental management.

  2. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    Science.gov (United States)

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  3. Magnetostratigraphy of the Grande Ronde Basalt Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Packer, D.R.; Petty, M.H.

    1979-01-01

    The paleomagnetic measurements of samples from the holes sampled have shown that there are four magnetic correlation lines, between adjacent flows in holes that have distinctly different mean stratigraphic inclinations, and two magnetic polarity boundaries that can be used for magnetic correlation in the Grande Ronde Basalt in the Pasco Basin. The results of paleomagnetic measurements of samples from the Wanapum Basalt and Saddle Mountains Basalt indicate that the potential for magnetostratigraphic correlation in these sequences is also good

  4. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    OpenAIRE

    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich

    2014-01-01

    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  5. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  6. Blast fracturing of bedrock to enhance recovery of contaminated groundwater

    International Nuclear Information System (INIS)

    Holzman, L.R.; Harvey, E.M.; McKee, R.C.E.; Katsabanis, T.

    1992-01-01

    Petroleum hydrocarbons releasd from a pipeline at a site in southern Ontario had contaminated a fractured dolostone bedrock aquifer. To remediate the site, contaminated groundwater was pumped from the downgradient edge of the hydrocarbon plume and injected into an upgradient area after treatment. Contaminant flow pathways in the fractured bedrock aquifer were found to be complex and erratic. It was anticipated that contaminated groundwater could escape the influence of a line of closely spaced recovery wells. In order to capture the migrating contaminants effectively, improve communication between recovery wells, and optimize pumping efficiencies, a rubble zone was created by drilling and blasting the rock. Using 140 blastholes, the bedrock was fractured to a depth of 4 m over a distance of 200 m. Similarly, an additional 80 blastholes were used to blast fracture 100 m of bedrock to a depth of 4 m in the recharge area to enhance injection of treated water to the aquifer. Various blasthole spacings and explosive loadings and patterns were tested to fracture the rock effectively while minimizing the impact on the nearby pipeline and neighboring residences. Vibrations were carefully monitored using several seismographs. Pump tests conducted before and after the blast indicated the hydraulic connection between the naturally occurring fractures had greatly improved. Monitoring conducted after startup of the pump-treat-and-inject system has confirmed the fracturing provides effective capture and injection of the groundwater. 3 refs., 3 figs., 1 tab

  7. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  8. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  9. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  10. Descriptive summary of the Grande Ronde Basalt type section, Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Camp, V.E.; Price, S.M.; Reidel, S.P.

    1978-10-01

    The Grande Ronde Basalt type section, located in extreme southeastern Washington, was measured, sampled, and characterized. The section is 800 meters thick and is comprised of 35 Grande Ronde Basalt flows. These flows are divisible into 3 magnetostratiographic units termed, in ascending order, the R 1 , the N 1 , and the R 2 . The R 1 unit is represented by 13 reversely polarized flows; the N 1 unit, by 13 normally polarized flows; and the R 2 , by 9 reversely polarized flows. Chemically, the Grande Ronde Basalt flows are divided into 2 major groups, termed A and B. The compositions of the lower 9 flows, members of Group A, are similar to either the high-Mg Grande Ronde chemical type, the high-Ti Grande Ronde chemical type, or the Pomona chemical type. The compositions of the upper 25 flows, members of Group B, are predominantly similar to the low-Mg Grande Ronde chemical type. Petrographically, the Grande Ronde Basalt flows are generally fine grained and aphyric, and have a intergranular or intersertal micro-texture. Major mineral phases include plagioclase (An/sub 40-60/) and augite; minor mineral phases include pigeonite, orthopyroxene, ilmenite, titanomagnetite, and olivine. Group A flows generally contain more olivine and less pigeonite than do Group B flows. 6 figures, 6 tables

  11. Origin of brackish groundwater in a sandstone aquifer on Bornholm, Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Niels Oluf; Heinemeier, Jan

    2008-01-01

    A multi-isotope approach in combination with hydrochemical data and borehole logging is applied to identify the source of brackish groundwater in a borehole in the well field of Neksø Municipal Waterworks in Bornholm, Denmark. The aquifer lithology consists of fractured Lower Cambrian sandstones...

  12. Physical and Mechanical Properties of Composites Made with Aluminous Cement and Basalt Fibers Developed for High Temperature Application

    Directory of Open Access Journals (Sweden)

    Pavel Reiterman

    2015-01-01

    Full Text Available Present paper deals with the experimental study of the composition of refractory fiber-reinforced aluminous cement based composites and its response to gradual thermal loading. Basalt fibers were applied in doses of 0.25, 0.5, 1.0, 2.0, and 4.0% in volume. Simultaneously, binder system based on the aluminous cement was modified by fine ground ceramic powder originated from the accurate ceramic blocks production. Ceramic powder was dosed as partial replacement of used cement of 5, 10, 15, 20, and 25%. Influence of composition changes was evaluated by the results of physical and mechanical testing; compressive strength, flexural strength, bulk density, and fracture energy were determined on the different levels of temperature loading. Increased dose of basalt fibers allows reaching expected higher values of fracture energy, but with respect to results of compressive and flexural strength determination as an optimal rate of basalt fibers dose was considered 0.25% in volume. Fine ground ceramic powder application led to extensive increase of residual mechanical parameters just up to replacement of 10%. Higher replacement of aluminous cement reduced final values of bulk density but kept mechanical properties on the level of mixtures without aluminous cement replacement.

  13. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  14. Conduit enlargement in an eogenetic karst aquifer

    Science.gov (United States)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.; Neuhoff, Philip S.

    2010-11-01

    SummaryMost concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10 -6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10 -7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the

  15. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    Science.gov (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  16. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  17. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  18. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  19. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    Science.gov (United States)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob

    2015-01-01

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  20. Emplacement of Columbia River flood basalt

    Science.gov (United States)

    Reidel, Stephen P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  1. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  2. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  3. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  4. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  5. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  6. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  7. Petrology of offshore basalts of Bombay harbour area, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    glass are conspicuous. The chemical data indicate that the basalts are tholeiitic. Secondary minerals encountered support the view that the basalts are spilitised. Basalts of this area show affinities to both continental and oceanic types especially...

  8. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  9. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  10. Constructibility issues associated with a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Turner, D.A.

    1981-01-01

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described

  11. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  12. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    International Nuclear Information System (INIS)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO 3 , which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs 2 MoO 4 , Cs 2 U 2 O 7 ) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO 4 , with the production of pollucite exceeding that of CsAlSiO 4 . Dissolution of β-Cs 2 U 2 O 7 implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO 3 .3H 2 O) during some experiments containing basalt phases, indicates a tendency to oxidize U 4+ to U 6+ . When diopside (nominally CaMgSi 2 O 6 ) and β-Cs 2 U 2 O 7 were hydrothermally reacted, at 300 0 C both UO 2 and UO 3 .3H 2 O were produced. Experiments on SrZrO 3 show it to be an unreactive phase

  13. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  14. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  15. Aquifer test interpretation using derivative analysis and diagnostic plots

    Science.gov (United States)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  16. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  17. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  18. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  19. Hydrogeologic characterization of basalts: The northern rim of the Columbia Plateau Physiographic Province and of the Creston Study Area, eastern Washington

    International Nuclear Information System (INIS)

    Steele, T.D.; Paschis, J.A.; Koenig, R.A.

    1988-03-01

    This report provides a general but comprehensive characterization of hydrogeologic and hydrogeochemical baseline conditions for the Creston area located along the northern rim of the Columbia Plateau physiographic province. Historical as well as recent data and other available information from previous studies and alternative sources have been considered in this baseline hydrological characterization. These include data and information on water levels, aquifer characteristics, and water quality for shallow basalt units comprising the Wanapum Formation and the Grande Ronde Formation in the Creston study area and for the general region surrounding this study area. The overall goal of this hydrologic characterization was to provide useful information leading to the selection of the Roza Member of the Wanapum Formation as the study's basalt horizon and for other related, subsequent study components of In-Situ's research project. 110 refs., 52 figs., 25 tabs

  20. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  1. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  2. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  3. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  4. Radon concentration: A tool for assessing the fracture network at ...

    African Journals Online (AJOL)

    drinie

    2003-01-01

    Jan 1, 2003 ... This work has positive implications for the location of groundwater resources in fractured-rock aquifers such as in South Africa, where most ... tool in groundwater exploration in South Africa, where the passive Radon Gas Monitor ..... rainfall infiltration, the main infiltration area can be identified;. • The method ...

  5. Study of the leakage between two aquifers in Hermosillo, Mexico, using environmental isotopes

    International Nuclear Information System (INIS)

    Payne, B.R.; Quijano, L.; Latorre, D.C.

    1980-01-01

    The Coast of Hermosillo is located in the Gulf of California, Mexico. It is a Quaternary alluvial plain of continental origin. Underlying these deposits is a layer of blue clay about 100m thick which imposes confinement to a deep aquifer in basaltic and pyroclastic rocks. Oxygen-18 and deuterium data support the occurrence of an upwardsleakage. The amount of the leakage was evaluated, on the basis of 14 C data, to a maximum of 20% of the water pumped by the irrigation wells in the upper aquifer. The stable isotope data also support the occurrence of sea-water intrusion by preferential channels in the south and in the area of Kino Bay. (author)

  6. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  7. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  8. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  9. The Thickness and Volume of Young Basalts Within Mare Imbrium

    Science.gov (United States)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu

    2018-02-01

    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  10. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  11. Physical response of backfill materials to mineralogical changes in a basalt environment

    International Nuclear Information System (INIS)

    Couture, R.A.; Seitz, M.G.

    1983-01-01

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm 3 , was determined to be 0.9 x 10 -18 m 2 in liquid water at 25 and 200 0 C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables

  12. Hydrogeology and results of aquifer tests in the vicinity of a hazardous-waste disposal site near Byron, Illinois

    Science.gov (United States)

    Kay, Robert T.; Olson, David N.; Ryan, Barbara J.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation of a Superfund Site near Byron, Illinois. The purpose of the investigation was to determine the hydrogeologic properties of the Galena-Platteville and St. Peter aquifers, the primary water-supply aquifers for domestic supply in the area. The Galena and Platteville Groups and older St. Peter Sandstone are separated by the Harmony Hill Shale Member of the Glenwood Formation. The Harmony Hill Shale Member is a semiconfining unit. Groundwater flow in the study area is from the site northwestward to the Rock River. Movement of groundwater in the dolomites is mainly through joints, fractures, and solution openings. Analysis of the Galena-Platteville aquifer-test data indicates that the calculated aquifer transmissivity ranges from 490 to 670 sq ft/day, and the calculated specific yield ranges from 0.017 to 0.140. Aquifer test data also indicate that the Galena-Platteville aquifer is heterogeneous and anisotropic. Analysis of the St. Peter aquifer-test data indicates that the calculated transmissivity of the aquifer ranges from 1,200 to 1 ,305 sq ft/day, storativity ranges from 0.000528 to 0.00128, horizontal hydraulic conductivity ranges from 2.9 to 3.1 ft/day, and leakage through the Harmony Hill Shale Member ranges from .000123 to .000217 ft/day/ft. (USGS)

  13. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs

  14. Simulating the structure of gypsum composites using pulverized basalt waste

    Directory of Open Access Journals (Sweden)

    Buryanov Аleksandr

    2017-01-01

    Full Text Available This paper examines the possibility of simulating the structure of gypsum composite modified with basalt dust waste to make materials and products based on it. Structural simulating of the topological space in gypsum modified composite by optimizing its grain-size composition highly improves its physical and mechanical properties. Strength and density tests have confirmed the results of the simulation. The properties of modified gypsum materials are improved by obtaining of denser particle packing in the presence of hemihydrate of finely dispersed basalt and plasticizer particles in the system, and by engaging basalt waste in the structuring process of modified gypsum stone.

  15. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  16. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  17. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  18. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  19. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    Science.gov (United States)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  20. Rapid solubility and mineral storage of CO2 in basalt

    DEFF Research Database (Denmark)

    Gislason, Sigurdur R.; Broecker, W.S.; Gunnlaugsson, E.

    2014-01-01

    The long-term security of geologic carbon storage is critical to its success and public acceptance. Much of the security risk associated with geological carbon storage stems from its buoyancy. Gaseous and supercritical CO2 are less dense than formation waters, providing a driving force for it to ......The long-term security of geologic carbon storage is critical to its success and public acceptance. Much of the security risk associated with geological carbon storage stems from its buoyancy. Gaseous and supercritical CO2 are less dense than formation waters, providing a driving force...... for it to escape back to the surface. This buoyancy can be eliminated by the dissolution of CO2 into water prior to, or during its injection into the subsurface. The dissolution makes it possible to inject into fractured rocks and further enhance mineral storage of CO2 especially if injected into silicate rocks...... rich in divalent metal cations such as basalts and ultra-mafic rocks. We have demonstrated the dissolution of CO2 into water during its injection into basalt leading to its geologic solubility storage in less than five minutes and potential geologic mineral storage within few years after injection [1...

  1. Demonstration of a performance assessment methodology for nuclear waste isolation in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.

    1988-01-01

    This paper summarizes the results of the demonstration of a performance assessment methodology developed by Sandia National Laboratories, Albuquerque for the US Nuclear Regulatory Commission for use in the analysis of high-level radioactive waste disposal in deep basalts. Seven scenarios that could affect the performance of a repository in basalts were analyzed. One of these scenarios, normal ground-water flow, was called the base-case scenario. This was used to demonstrate the modeling capabilities in the methodology necessary to assess compliance with the ground-water travel time criterion. The scenario analysis consisted of both scenario screening and consequence modeling. Preliminary analyses of scenarios considering heat released from the waste and the alteration of the hydraulic properties of the rock mass due to loads created by a glacier suggested that these effects would not be significant. The analysis of other scenarios indicated that those changing the flow field in the vicinity of the repository would have an impact on radionuclide discharges, while changes far from the repository may not be significant. The analysis of the base-case scenario was used to show the importance of matrix diffusion as a radionuclide retardation mechanism in fractured media. The demonstration of the methodology also included an overall sensitivity analysis to identify important parameters and/or processes. 15 refs., 13 figs., 2 tabs

  2. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  3. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  4. Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Golab, James A.; Morris, Robert R.

    2016-11-28

    forms a confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer consists of the Sligo and Hosston Formations, which do not crop out in the study area.The upper zone of the Trinity aquifer is subdivided into five informal HSUs (top to bottom): cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite. The middle zone of the Trinity aquifer is composed of the (top to bottom) Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, Honey Creek, Hensell, and Cow Creek HSUs. The underlying Hammett HSU is a regional confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer is not exposed in the study area.Groundwater recharge and flow paths in the study area are influenced not only by the hydrostratigraphic characteristics of the individual HSUs but also by faults and fractures and geologic structure. Faulting associated with the Balcones fault zone (1) might affect groundwater flow paths by forming a barrier to flow that results in water moving parallel to the fault plane, (2) might affect groundwater flow paths by increasing flow across the fault because of fracturing and juxtaposing porous and permeable units, or (3) might have no effect on the groundwater flow paths.The hydrologic connection between the Edwards and Trinity aquifers and the various HSUs is complex. The complexity of the aquifer system is a combination of the original depositional history, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas that have allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. The juxtaposition resulting

  5. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  6. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  7. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  8. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    Science.gov (United States)

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  9. Trace Element Abundances in Eucrite Basalts: Enrichment or Depletion?

    Science.gov (United States)

    Castle, N. R.

    2018-05-01

    It is not clear how incompatible trace element (ITE) variation in eucrite basalts originated. Here, mechanisms for relative ITE enrichment or depletion are experimentally evaluated in an attempt to reconcile the Stannern and main group eucrites.

  10. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts

    Science.gov (United States)

    Tselebrovskiy, Alexey; Maksimochkin, Valery

    2017-04-01

    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  11. Magnesium-rich Basalts on Mercury

    Science.gov (United States)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  12. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti

    2015-08-01

    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  13. Geochemistry of the Potassic Basalts from the Bufumbira Volcanic ...

    African Journals Online (AJOL)

    The various basalts are low in SiO2 wt %, Al2O3 wt % and Na2O wt % but high in MgO wt %, TiO2 wt %, CaO wt %, K2O wt % with K2O/Na2O = 1.08 to 2.07. These are potassic belonging to the kamafugite series. Plots discriminate two geochemical trends corresponding to the picritic and clinopyroxene rich basalts.

  14. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci, Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  15. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  16. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  17. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  18. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  19. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  20. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  1. Shallow Aquifer Methane Gas Source Assessment

    Science.gov (United States)

    Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.

    2014-12-01

    Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.

  2. Elbow Fractures

    Science.gov (United States)

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  3. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  4. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  5. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  6. Reality and confusion in the recognition of post-depositional alterations and use-wear: an experimental approach on basalt tools

    Directory of Open Access Journals (Sweden)

    Lena Asryan

    2014-03-01

    Full Text Available While many experimental studies have been done on siliceous and metamorphic rocks for both use-wear and post depositional surface modification (PDSM events, little is known about such experiments on volcanic materials (other than obsidian, and on basalt in particular. Here we present the preliminary results of several experiments related to: a evidence for basalt use (e.g., butchery and fresh hide scraping and the subsequent characteristic use-wear patterns that can be seen; and b post-depositional surface modifications caused by bear (Ursidae trampling on experimental basalt flakes and subsequent use of these flakes for a tumbling experiment in a special tumbling machine.The results of these experiments were compared to better understand some surface modifications noted on the Middle to Upper Pleistocene lithic assemblages of the Azokh Cave site (Nagorno Karabagh, Lesser Caucasus.Although some aspects of both events (use-wear and PDSM remain to be studied in depth, the experiments have improved our understanding of the effects of use-wear and post-depositional trampling and tumbling on basalt lithic artefacts. In particular, it has allowed us to recognise mechanical alterations (e.g., cracks, striations, fractures, edge damage caused by trampling and tumbling and to note differences between these modifications and those caused by use. In particular, the experiments have shown that macroscopic modifications are rarely diagnostic, especially those observed after use. Microscopic wear features such as edge rounding, polish, abrasion and striations were the most evident types of alteration on basalt flakes, although occurring at different times and from different types of use. Distribution and orientation of alterations may be key in distinguishing use-wear from post-depositional alterations on basalt artefacts.

  7. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  8. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  9. Erste Erkenntnisse zur Prospektion und Charakterisierung des Aquifers der Aroser Dolomiten, Schweiz

    Science.gov (United States)

    Regli, Christian; Kleboth, Peter; Eichenberger, Urs; Schmassmann, Silvia; Nyfeler, Peter; Bolay, Stephan

    2014-03-01

    In urban areas of the Swiss Alps the use of geothermal energy from several hundred meters depth becomes increasingly important. For this mainly open systems have priority. This work presents the first insights in the prospection and characterisation of the so far unexplored, utilizable, and abundant Aquifer of the Arosa Dolomites. Besides the use of established methods and techniques, such as seismic measurements, an exploration drilling, borehole geophysical measurements, and pumping tests, the application of the KARSYS-approach for geological and conceptual hydrogeological 3D-modelling of the aquifer is illustrated. In addition, the development of a viewer for 3D-visualization of drillings is documented. The hydrogeological and metrological approaches allow a lithological facies differentiation of the Arosa Dolomites, and a differentiation of the fractured and karstified areas within the aquifer. The results represent the basis for advanced findings optimizing and risks minimising exploration and drilling planning, and for sustainable utilization planning.

  10. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  11. Construction, Geology, and Aquifer Testing of the Maalo Road, Aahoaka Hill, and Upper Eleele Tank Monitor Wells, Kauai, Hawaii

    Science.gov (United States)

    Izuka, Scot K.

    2005-01-01

    The Maalo Road, Aahoaka Hill, and Upper Eleele Tank monitor wells were constructed using rotary drilling methods between July 1998 and August 2002 as part of a program of exploratory drilling, aquifer testing, and hydrologic analysis on Kauai. Aquifer tests were conducted in the uncased boreholes of the wells. The Maalo Road monitor well in the Lihue Basin penetrated 915 feet, mostly through mafic lava flows. Most of the rock samples from this well had chemical compositions similar to the Koloa Volcanics, but the deepest sample analyzed had a composition similar to the Waimea Canyon Basalt. Water temperature ranged from 25.6 to 27.4 degrees Celsius and specific conductance ranged from 303 to 627 microsiemens per centimeter during aquifer testing. Discharge rate ranged from 174 to 220 gallons per minute and maximum drawdown was 138.25 ft during a 7-day sustained-discharge test, but the test was affected by pump and generator problems. The Aahoaka Hill monitor well in the Lihue Basin penetrated 804 feet, mostly through mafic lava flows and possibly dikes. The well penetrated rocks having chemical compositions similar to the Waimea Canyon Basalt. During the first three hours of a sustained-discharge aquifer test in which the discharge rate varied between 92 and 117 gallons per minute, water temperature was 24.6 to 25.6 degrees Celsius, and specific conductance was 212 to 238 microsiemens per centimeter; this test was halted after a short period because drawdown was high. In a subsequent 7-day test, discharge was 8 to 23 gallons per minute, and maximum drawdown was 37.71 feet after 1,515 minutes of testing. The Upper Eleele Tank monitor well is near the Hanapepe River Valley. The well penetrated 740 feet through soil, sediment, mafic lava flows, volcanic ash, and scoria. Rocks above a depth of 345 feet had compositions similar to the Koloa Volcanics, but a sample from 720 to 725 feet had a composition similar to rocks of the Waimea Canyon Basalt. During a 7-day aquifer

  12. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    Science.gov (United States)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  13. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Allard, P.; D' Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  14. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    Science.gov (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  15. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    Grady, S.J.

    1995-01-01

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  16. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  17. Correlation between basalt flows and radiochemical and chemical constituents in selected wells in the southwestern part of the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Hodges, Mary K. V.; Champion, Duane E.

    2017-12-21

    Wastewater discharged to wells and ponds and wastes buried in shallow pits and trenches at facilities at the Idaho National Laboratory (INL) have contributed contaminants to the eastern Snake River Plain (ESRP) aquifer in the southwestern part of the INL. This report describes the correlation between subsurface stratigraphy in the southwestern part of the INL with information on the presence or absence of wastewater constituents to better understand how flow pathways in the aquifer control the movement of wastewater discharged at INL facilities. Paleomagnetic inclination was used to identify subsurface basalt flows based on similar inclination measurements, polarity, and stratigraphic position. Tritium concentrations, along with other chemical information for wells where tritium concentrations were lacking, were used as an indicator of which wells were influenced by wastewater disposal.The basalt lava flows in the upper 150 feet of the ESRP aquifer where wastewater was discharged at the Idaho Nuclear Technology and Engineering Center (INTEC) consisted of the Central Facilities Area (CFA) Buried Vent flow and the AEC Butte flow. At the Advanced Test Reactor (ATR) Complex, where wastewater would presumably pond on the surface of the water table, the CFA Buried Vent flow probably occurs as the primary stratigraphic unit present; however, AEC Butte flow also could be present at some of the locations. At the Radioactive Waste Management Complex (RWMC), where contamination from buried wastes would presumably move down through the unsaturated zone and pond on the surface of the water table, the CFA Buried Vent; Late Basal Brunhes; or Early Basal Brunhes basalt flows are the flow unit at or near the water table in different cores.In the wells closer to where wastewater disposal occurred at INTEC and the ATR-Complex, almost all the wells show wastewater influence in the upper part of the ESRP aquifer and wastewater is present in both the CFA Buried Vent flow and AEC Butte

  18. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  19. Characterization of the Cretaceous aquifer structure of the Meskala region of the Essaouira Basin, Morocco

    Science.gov (United States)

    Hanich, L.; Zouhri, L.; Dinger, J.

    2011-01-01

    The aquifer of early Cretaceous age in the Meskala region of the Essaouira Basin is defined by interpretation of geological drilling data of oil and hydrogeological wells, field measurement and analysis of in situ fracture orientations, and the application of a morphostructural method to identify lineaments. These analyzes are used to develop a stratigraphic-structural model of the aquifer delimited by fault zones of two principal orientations: NNE and WNW. These fault zones define fault blocks that range in area from 4 to 150km2. These blocks correspond either to elevated zones (horsts) or depressed zones (grabens). This structural setting with faults blocks of Meskala region is in accordance with the structure of the whole Essaouira Basin. Fault zones disrupt the continuity of the aquifer throughout the study area, create recharge and discharge zones, and create dip to the units from approximately 10?? to near vertical in various orientations. Fracture measurements and morphometric-lineament analyzes help to identify unmapped faults, and represent features important to groundwater hydraulics and water quality within fault blocks. The above geologic features will enable a better understanding of the behaviour and hydro-geo-chemical and hydrodynamics of groundwater in the Meskala aquifer. ?? 2010 Elsevier Ltd.

  20. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  1. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  2. Modeling approach to determine short- and long-term thermal and thermomechanical effects of waste emplacement in a repository in basalt

    International Nuclear Information System (INIS)

    Lehnhoff, T.F.; Thirumalai, K.; Krug, A.D.

    1982-01-01

    Basalt, in general, is characteristicaly a jointed and fractured rock. Preliminary field measurements to date, however, indicate that major portions of the deep basalt flows are highly impermeable to groundwater flow because of mineral infilling and large lithostatic pressure. For near-field considerations, the intraflow structures in jointed basalt have a governing influence on the rock mass-property parameters and their response to the repository environment. Much of the early work was done with closed-form solutions or boundary-element methods. These techniques are seen as the only reasonable and practical appraoch to scoping studies. The large number of parameter variations necessary for conceptual design of a repository preclude the initial application of elaborate and detailed finite-element methods. The thermomechanical analysis completed at the BWIP has progressed through much of the scoping phase and is now entering the detailed analysis and design phase in some areas. Methods for detailed analysis are being demonstrated and many uncertainties are being clarified. Final repository-design studies will warrant the special effort necessary to produce extensive finite-element analyses. The resulting finite-element models then permit analysis of design details and can expose various problem areas for inspection and final evaluation. Nonlinear effects of all types can be evaluated to determine if concerns exist as real problems. The detailed finite-element modeling will contribute to the basis for making rational correct decisions that will result in a safe repository in basalt for storing nuclear waste

  3. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion

    International Nuclear Information System (INIS)

    Petrucci, R.; Santulli, C.; Puglia, D.; Sarasini, F.; Torre, L.; Kenny, J.M.

    2013-01-01

    Highlights: ► For the first time, hybrid laminates with three different fibres were produced. ► Concerns are confirmed on the brittleness of hybrid laminates with basalt fibre core. ► An optimal configuration (FHB) for flexural properties was singled out. ► Differences between tensile and flexural properties of hybrids were identified. ► In general, the specific mechanical properties of the hybrids are quite high. - Abstract: This work concerns the production by vacuum infusion and the comparison of the properties of different hybrid composite laminates, based on basalt fibre composites as the inner core, and using also glass, flax and hemp fibre laminates to produce symmetrical configurations, all of them with a 21–23% fibre volume, in an epoxy resin. The laminates have been subjected to tensile, three-point flexural and interlaminar shear strength tests and their fracture surfaces have been characterised by scanning electron microscopy. The mechanical performance of all the hybrid laminates appears superior to pure hemp and flax fibre reinforced laminates and inferior to basalt fibre laminates. Among the hybrids, the best properties are offered by those obtained by adding glass and flax to basalt fibre reinforced laminates. Scanning electron microscopy (SEM) observation of hybrid laminates showed the diffuse presence of fibre pull-out in hemp and flax fibre reinforced layers and a general trend of brittle failure

  4. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  5. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    Science.gov (United States)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  6. Similar microbial communities found on two distant seafloor basalts

    Directory of Open Access Journals (Sweden)

    Esther eSinger

    2015-12-01

    Full Text Available The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR (9˚N. Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  7. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  8. High water content in primitive continental flood basalts.

    Science.gov (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-04

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  9. Corrosion phase formation on container alloys in basalt repository environments

    International Nuclear Information System (INIS)

    Johnston, R.G.; Anantatmula, R.P.; Lutton, J.M.; Rivera, C.L.

    1986-01-01

    The Basalt Waste Isolation Project is evaluating the suitability of basalt in southeastern Washington State as a possible location for a nuclear waste repository. The performance of the waste package, which includes the waste form, container, and surrounding packing material, will be affected by the stability of container alloys in the repository environment. Primary corrosion phases and altered packing material containing metals leached from the container may also influence subsequent reactions between the waste form and repository environment. Copper- and iron-based alloys were tested at 50 0 to 300 0 C in an air/steam environment and in pressure vessels in ground-water-saturated basalt-bentonite packing material. Reaction phases formed on the alloys were identified and corrosion rates were measured. Changes in adhering packing material were also evaluated. The observed reactions and their possible effects on container alloy durability in the repository are discussed

  10. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  11. On causal links between flood basalts and continental breakup

    Science.gov (United States)

    Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.

    1999-03-01

    Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.

  12. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.

    1985-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  13. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)

    1984-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  14. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  15. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    Science.gov (United States)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  16. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  17. Feasibility of storing radioactive wastes in Columbia River basalts

    International Nuclear Information System (INIS)

    Deju, R.A.

    1976-01-01

    In 1968 Atlantic Richfield Hanford Company initiated a study to assess the feasibility of final geologic storage of Hanford defense, radioactive waste in deep caverns constructed in the Columbia River flood basalts. The project, which included geologic studies, hydrologic tests, heat flow analysis, compatibility analysis, and tectonic studies, was suspended in 1972 before completion of interpretive work. In 1976 the interpretation and documentation were completed. These data may be valuable in qualifying the Columbia River flood basalts as a viable medium for final geologic storage of commercial radioactive waste. The findings to date are summarized, and the proposed future work is presented

  18. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  19. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  20. Experimental and Numerical Investigation of Rock Dynamic Fracture

    Directory of Open Access Journals (Sweden)

    Aliasghar Mirmohammadlou

    2017-06-01

    Full Text Available Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental methods are used for determination of dynamic fracture properties of materials. Among them, the Hopkinson pressure bar and the drop weight have been frequently used for rocks. On the other hand, numerical simulations are very useful in dynamic fracture studies. Among vast variety of numerical techniques, the powerful extended finite element method (XFEM enriches the finite element approximation with appropriate functions extracted from the fracture mechanics solution around a crack-tip. The main advantage of XFEM is its capability in modeling different on a fixed mesh, which can be generated without considering the existence of discontinuities. In this paper, first, the design of a drop weight test setup is presented. Afterwards, the experimental tests on igneous (basalt and calcareous (limestone rocks with single-edge-cracked bend specimen are discussed. Then, each experimental test is modeled with the XFEM code. Finally, the obtained experimental and numerical results are compared. The results indicate that the experimentally predicted dynamic fracture toughness has less than 8 percent difference with calculated dynamic fracture toughness from extended finite element method

  1. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  2. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  3. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1976-11-01

    Volume II comprises four appendices: analytical data and sample locations for basalt flow type localities; Analytical data and sample locations for measured field sections in Yakima basalts; core hole lithology and analytical data; and geophysical logs. (LK)

  4. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Mourya, B.S.; Krishnamurthi, S.; Meena, R.M.; LokaBharathi, P.A.

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral...

  5. Petrographical indicators of petrogenesis: Examples from Central Indian Ocean Basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    Petrographical features of the Central Indian Basin (CIOB) basalts were studied to understand their genetic significance. The fresh basaltic pillows show three textural zones from the top glassy (zone A) through the intermediate (zone B...

  6. Use of solar power for the production of basalt-based mineral fibers

    International Nuclear Information System (INIS)

    Gulamova, D. D.; Shevchenko, V. P.; Tokunov, S. G.; Kim, R. B.

    2012-01-01

    The possibility of obtaining basalt mineral fibers using concentrating solar power and melt-quench technique is shown. The microstructure and physicochemical properties of basalt fibers are analyzed. (author)

  7. Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a viable geothermal target? A preliminary analysis

    Science.gov (United States)

    Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole

    2016-01-01

    The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths 10-14 m2) interflows are documented at depths up to ~1,400 m. If the elevated permeability in these zones persists to greater depths, they may provide natural permeability of sufficient magnitude to allow their exploitation as conventional geothermal reservoirs. Alternatively, if the permeability in these interflow zones is less than 10-14 m2 at depth, it may be possible to use hydraulic and thermal stimulation to enhance the permeability of both the interflow zones and the natural jointing within the low-permeability interior portions of individual basalt flows in order to develop Enhanced/Engineered Geothermal System (EGS) reservoirs. The key challenge for an improved Columbia Plateau

  8. Structural control on basaltic dike and sill emplacement, Paiute Ridge mafic intrusion complex, southern Nevada

    International Nuclear Information System (INIS)

    Carter Krogh, K.E.; Valentine, G.A.

    1996-08-01

    Late Miocene basaltic sills and dikes in the Paiute Ridge area of southern nevada show evidence that their emplacement was structurally controlled. Basaltic dikes in this area formed by dilating pre-existing vertical to steeply E-dipping normal faults. Magma propagation along these faults must have required less energy than the creation of a self-propagated fracture at dike tips and the magma pressure must have been greater than the compressive stress perpendicular to the fault surface. N- to NE-trending en echelon dikes formed locally and are not obviously attached to the three main dikes in the area. The en echelon segments are probably pieces of deeper dikes, which are segmented perhaps as a result of a documented rotation of the regional stresses. Alternatively, changes in orientation of principal stresses in the vicinity of each en echelon dike could have resulted from local loads associated with paleotopographic highs or nearby structures. Sills locally branched off some dikes within 300 m of the paleosurface. These subhorizontal bodies occur consistently in the hanging wall block of the dike-injected faults, and intrude Tertiary tuffs near the Paleozoic-Tertiary contact. The authors suggest that the change in stresses near the earth's surface, the material strength of the tuff and paleozoic rocks, and the Paleozoic bedding dip direction probably controlled the location of sill formation and direction of sill propagation. The two largest sills deflected the overlying tuffs to form lopoliths, indicating that the magma pressure exceeded vertical stresses at that location and that the shallow level and large size of the sills allowed interaction with the free (earth's) surface. 32 refs., 4 figs., 1 tab

  9. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  10. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  11. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  12. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  13. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  14. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  15. Flame-resistant pure and hybrid woven fabrics from basalt

    Science.gov (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  16. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels

    2008-01-01

    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  17. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  18. Genetic aspects of basalts from the Carlsberg Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    of the CR rocks are sparse. The bulk chemical, mineral chemical and ore mineralization aspects of the dredged basalts from a segment of the CR (at 3°37¢N, 64°57¢E) are synthesized to indicate the influence of fractional crystallization coupled with magma...

  19. Gas adsorption on crushed quartz and basalt. [in vacuum

    Science.gov (United States)

    Barker, C.; Torkelson, B. E.

    1975-01-01

    The new surfaces generated by crushing rocks and minerals adsorb gases. Different gases are adsorbed to different extents so that both the total amount and composition of the released gases are changed. This affects the interpretation of the composition of the gases obtained by vacuum crushing lunar basalts, meteorites and minerals with fluid inclusions.

  20. Petrology of spinel lherzolite xenoliths in alkali basalts from Liri ...

    African Journals Online (AJOL)

    Al2O3), and Al-rich spinel occur in alkali basalts from Liri, South of the ... these spinel lherzolite xenoliths are reported, along with the analyses of ...... erupted in the Liri region. .... and temperatures with controlled activities of water, carbon.

  1. Petrography and chemistry of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    interior through a variolitic zone. The silica-alkalies relation show these basalts to be of sub-alkaline nature. Variable normative compositions and Mg number, increase in alkali index, differences in Al2O3/CaO and FeO/MgO ratios, variable trace element...

  2. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  3. Basalt Waste Isolation Project. Annual report, fiscal year 1979

    International Nuclear Information System (INIS)

    1979-11-01

    This project is aimed at examining the feasibility and providing the technology to design and construct a radwaste repository in basalt formations beneath and within the Hanford Site. The project is divided into seven areas: systems integration, geosciences, hydrologic studies, engineered barriers, near-surface test facility, engineering testing, and repository engineering. This annual report summarizes key investigations in these seven areas

  4. Evaluation of basalt flows as a waste isolation media

    International Nuclear Information System (INIS)

    Deju, R.A.

    1978-01-01

    Activities in basalt waste isolation programs in the Columbia River basin are reported. Work during the period is summarized for the overall program which is divided into systems integration, geology, hydrology, engineered barriers studies, engineering testing, and the construction of a near-surface test facility

  5. Nature and composition of interbedded marine basaltic pumice in the

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  6. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  7. Hydrologic testing methodology and results from deep basalt boreholes

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A.; Jackson, R.L.; Pidcoe, W.W.

    1982-05-01

    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes

  8. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    Science.gov (United States)

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  9. Depleted basaltic lavas from the proto-Iceland plume, Central East Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Baker, Joel A.

    2012-01-01

    New geochemical and isotopic data are presented for volumetrically minor, depleted low-Ti basalts that occur in the Plateau Basalt succession of central East Greenland (CEG), formed during the initial stages of opening of the North Atlantic at 55 Ma. The basalts have MORB-like geochemistry (e.g. ...

  10. Behaviour of rare earth elements, as natural analogues of transuranium elements, during weathering of basaltic glasses

    International Nuclear Information System (INIS)

    Daux, V.; Crovisier, J.L.; Petit, J.C.

    1991-01-01

    Subglacial basaltic glasses from Iceland have been studied in order to investigate REE behaviour low-temperature weathering. Just as actinides accumulate in the hydrated superficial corrosion layer of borosilicate glasses, REEs are found to be enriched in the natural corrosion layer of basaltic glasses (palagonite). However, this enrichment is only relative for basaltic glasses [fr

  11. Geochemistry of the Springfield Plateau aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA

    Science.gov (United States)

    Adamski, J.C.

    2000-01-01

    Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict

  12. Defining the natural fracture network in a shale gas play and its cover succession: The case of the Utica Shale in eastern Canada

    Science.gov (United States)

    Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.

    2018-03-01

    In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.

  13. The fluoride in the groundwater of Guarani Aquifer System: the origin associated with black shales of Paraná Basin

    Science.gov (United States)

    Kern, M. L.; Vieiro, A. P.; Machado, G.

    2008-09-01

    This work presents petrological and geochemical results of the black shales interval from Permian and Devonian strata of the Paraná Basin, Brazil and its relationships with fluoride of groundwater from Guarani Aquifer System. The Guarani Aquifer, located in South Brazil, Uruguay, Paraguay and Argentine, presents contents of fluoride higher than the Brazilian accepted potability limits. Several hypotheses have been presented for the origin of the fluoride in the groundwater of the Guarani Aquifer. Microcrystalline fluorite was registered in black shales of Ponta Grossa and Irati formations from Paraná Basin. The results shown in this work suggest that fluoride present in groundwater of Guarani Aquifer can be originated in deeper groundwater that circulates in Ponta Grossa and Irati formations. The interaction of the groundwater coming from deeper black shales with the groundwater-bearing Aquifer Guarani System occurs through regional fragile structures (faults and fractures) that constitute excellent hydraulic connectors between the two sedimentary packages. The microcrystalline fluorite registered in Ponta Grossa and Irati Formations can be dissolved promoting fluoride enrichment in groundwater of these black shales and Guarani Aquifer System.

  14. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  15. Internal Flow Structures in Columnar Jointed Basalt from HREPPHÓLAR, Iceland

    Science.gov (United States)

    Mattsson, H. B.; Bosshard, S. A.; Hetenyi, G.; Almqvist, B.; Hirt, A. M.; Caricchi, L.; Caddick, M.

    2010-12-01

    Columnar jointed basalt from Hrepphólar in southern Iceland display spectacular internal structures when cut. These structures follow the overall orientation of the columns and display semi-circular to circular features when cross-cut. It was previously believed that these internal structures formed as a result of alteration due to circulation of meteoric water within the column-bounding fractures after emplacement. However, new field observations of viscous fingering within the columns and the fact that approximately 80% of the semi-circular features are found within the column whereas the remaining 20% are cut by the column-bounding fractures clearly shows that these internal structures must have formed prior to crack-propagation (and are thus primary features). Here we present the results of textural and petrological analyses through a cross-section of a column, in combination with magnetic susceptibility and anisotropy measurements of the same samples. The variation in textures and geochemistry can be attributed to the presence of diffuse banding caused by variations in the modal proportions of the main phenocryst phases (i.e., plagioclase, clinopyroxene, olivine and titanomagnetite/ilmenite). Orientation of plagioclase laths and titanomagnetite crystals (based on measurements in thin sections and AMS-measurements) are consistent with vertical flow alignment. Nowhere in the column can evidence for downwards flow be found (excluding the possibility of small-scale convection cells generating these features). It is proposed here, that the volume decrease associated with solidification (typically 10-15 vol.% for basaltic systems) and the increasing weight of the overlying crust results in upwelling of partially crystallized material into the centre of the columns. Preliminary numerical modeling indicates that the isotherms within individual columns become steeper with increasing depth in a lava flow (allowing for larger displacement distances). We propose that

  16. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers.

    Science.gov (United States)

    Fry, N K; Fredrickson, J K; Fishbain, S; Wagner, M; Stahl, D A

    1997-04-01

    Microbial communities of two deep (1,270 and 316 m) alkaline (pH 9.94 and 8.05), anaerobic (Eh, -137 and -27 mV) aquifers were characterized by rRNA-based analyses. Both aquifers, the Grande Ronde (GR) and Priest rapids (PR) formations, are located within the Columbia River Basalt Group in south-central Washington, and sulfidogenesis and methanogenesis characterize the GR and PR formations, respectively. RNA was extracted from microorganisms collected from groundwater by ultrafiltration through hollow-fiber membranes and hybridized to taxon-specific oligonucleotide probes. Of the three domains, Bacteria dominated both communities, making up to 92.0 and 64.4% of the total rRNA from the GR and PR formations, respectively. Eucarya comprised 5.7 and 14.4%, and Archaea comprised 1.8% and 2.5%, respectively. The gram-positive target group was found in both aquifers, 11.7% in GR and 7.6% in PR. Two probes were used to target sulfate- and/or metal-reducing bacteria within the delta subclass of Proteobacteria. The Desulfobacter groups was present (0.3%) only in the high-sulfate groundwater (GR). However, comparable hybridization to a probe selective for the desulfovibrios and some metal-reducing bacteria was found in both aquifers, 2.5 and 2.9% from the GR and PR formations, respectively. Selective PCR amplification and sequencing of the desulfovibrio/metal-reducing group revealed a predominance of desulfovibrios in both systems (17 of 20 clones), suggesting that their environmental distribution is not restricted by sulfate availability.

  17. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    Science.gov (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  18. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  19. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    Science.gov (United States)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  20. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  1. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  2. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  3. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  4. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  5. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  6. Basaltic magmatism at the Juan de Fuca Ridge, NE Pacific ocean (ODP Leg 168): geological control on chemical zonation

    Science.gov (United States)

    Cortesogno, L.; Gaggero, L.; Marescotti, P.

    2003-04-01

    Basalts, from around 0.8 to 3.5 Ma in age, were recovered during Leg 168 from nine sites (Sites 1023-1029 and 1031-1032), drilled across the eastern flank of the Juan de Fuca Ridge (JdFR). The sites are located from about 20 km to roughly 100 km east of the ridge axis and were subdivided into the Hydrothermal Transition (HT, Sites 1023-1025), Buried Basement (BB, Sites 1028-1031), and Rough Basement (RB, Sites 1026 and 1027) transects, described in the Leg 168 Initial Reports (Davis, Fisher, Firth, et al., 1997). The igneous rocks mainly consists of aphyric to moderately phyric pillow basalt (Sites 1023-1029 and 1031-1032), subordinate aphyric massive basalt (Site 1025), basalt-hyaloclastite breccia (Site 1026), and fine- to medium-grained diabase (Site 1027). On the whole, samples are weakly altered: the alteration style and intensity vary systematically from Site to Site being related to several factors, including the ageing of the igneous crust, the increase of temperatures from younger to older Sites (from 15.5 ^oC at the youngest 1023 Site to 62.8^oC at the oldest 1027 Site), the local and regional variations in lithology and primary porosity, and the degree of fracturing. Over 90 samples of basalts representative of the nine Sites were studied for mineralogy and petrography; 30 selected samples, representative of the igneous chemistry were analyzed for major, minor, trace and rare earth elements by XRF, ICP, ICP-MS, and INAA. An overall MORB high-Ti tholeiitic affinity arises from the Ti - LaN/SmN, Ti/Cr-Ni, Cr - Y diagrams. The sequence ranges from very primitive (Sites 1023, 1027: Mg# ≈ 70, Zr ≈ 60 ppm) to highly evolved Fe-basaltic compositions (Mg# up to 46). The FMM-normalized patterns of the most primitive compositions compared with the melting models for major oceans (Pearce & Parkinson, 1993) evidence a good analogy with magmas from 10-15% partial melting of a Fertile MORB Mantle source. The progressive decrease of compatible elements and the

  7. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: wooawt@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  8. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  9. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  10. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  11. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    Science.gov (United States)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  12. New extractive technologies for unconventional hydrocarbon exploitation and potential environmental hazards to the Guarani aquifer

    International Nuclear Information System (INIS)

    Meroni, E.; Pineiro, G.

    2014-01-01

    This investigation presents a scientific approach about the impact of hydraulic fracturing (f racking) in North America. We focus on the impacts to groundwater, to ascertain whether this technology would produce a similar impact if applied to Norte Basin of Uruguay and a possible impact on the Guarani aquifer. The non- conventional methodologies for hydrocarbon exploitation are described and analysed, taking into account in particular, the characteristics and the profitability of the geological formations that might be potential sources in the Norte Basin of Uruguay. By several in-depth interviews to academic, technic and politic personalities we explored the amount and quality of information that Uruguayan people have about the presence of shale oil and gas resources in the country, as well as on the current normative for their eventual exploitation, and on the contracts that the Uruguayan government has already signed with international oil companies pending the studies required by the current pertinent environmental regulation. The risks for the Guarani Aquifer System if applying hydraulic fracture in rocks directly related to those containing the aquifer, is also analysed

  13. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  14. Magnetotellurics applied to the study of the Guaraní aquifer in Entre Ríos Province, N-E Argentina

    Science.gov (United States)

    Favetto, Alicia; Curcio, Ana; Pomposiello, Cristina

    2011-07-01

    The South American Guaraní Aquifer System covers the entire Parana basin and part of the Chaco-Parana basin. This system is one of the most important groundwater reservoirs; it is shared by four neighboring countries covering an area larger than one million square kilometers. The geological units closely related to the Guaraní Aquifer are the Piramboia and Botucatu Formations that consist of Triassic-Jurassic aeolian, fluvial and lacustrine sandstones, and the Serra Geral basalts with clastic intercalations. Serra Geral, an effusive Cretaceous complex, covers the sandstones and provides a high degree of confinement to the system. This paper presents the interpretation of magnetotelluric (MT) data collected during 2007-2008 in Entre Ríos Province, Argentina. These data, recorded in three profiles, mainly provide the depth to the crystalline basement, determinant for the presence of aquifer-related sediments. Models showed that the discrimination of the basalts strongly depends on local electrical characteristics. Model information is quite consistent with the information from oil and thermal wells located close to the profiles.

  15. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  16. Preliminary scenarios for the release of radioactive waste from a hypothetical repository in basalt of the Columbia Plateau

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1983-10-01

    Nine release phenomena - normal flow of water, tectonic disturbance of the fracture network, intersection of a new fault with the repository, glaciation, fluvia erosion, thermomechanical disturbances, subsidence, seal failure, and drilling - give rise to 318 preliminary scenarios for the release of waste from a hypothetical high-level-waste repository in basalt. The scenarios have relative probabilities that range over several orders of magnitude. The relative probabilities provide a means of screening the scenarios for the more limited set to be subjected to consequence analysis. Lack of data and of preliminary modeling, however, lead to great uncertainties in the highly conservative probabilities assigned here. As a result, the recommendations in this report are directed at resolution of the major uncertainties in the relative probabilities of the preliminary scenarios. The resolution of some of the uncertainties should help in the selection of the suite of scenarios for final consequence analysis. 38 references, 22 figures, 18 tables

  17. Geochemistry and petrogenesis of Rajahmundry trap basalts of Krishna-Godavari Basin, India

    Directory of Open Access Journals (Sweden)

    C. Manikyamba

    2015-05-01

    Full Text Available The Rajahmundry Trap Basalts (RTB are erupted through fault-controlled fissures in the Krishna-Godavari Basin (K-G Basin of Godavari Triple Junction, occurring as a unique outcrop sandwiched between Cretaceous and Tertiary sediments along the east coast of India. Detailed geochemical studies have revealed that RTB are mid-Ti (1.74–1.92 to high-Ti (2.04–2.81 basalts with a distinct quartz tholeiitic parentage. MgO (6.2–13.12 wt.%, Mg# (29–50 and Zr (109–202 ppm suggest that these basalts evolved by fractional crystallization during the ascent of the parent magma along deep-seated fractures. Moderate to high fractionation of HREE, as indicated by (Gd/YbN ratios (1.71–2.31 of RTB, suggest their generation through 3–5% melting of a Fe-rich mantle corresponding to the stability fields of spinel and garnet peridotite at depths of 60–100 km. Low K2O/P2O5 (0.26–1.26, high TiO2/P2O5 (6.74–16.79, La/Nb (0.89–1.45, Nb/Th > 8 (8.35–13, negative anomalies at Rb reflect minimum contamination by granitic continental crust. (Nb/LaPM ratios (0.66–1.1 of RTB are attributed to endogenic contamination resulted through recycling of subducted oceanic slab into the mantle. Pronounced Ba enrichment with relative depletion in Rb indicates assimilation of Infra- and Inter-trappean sediments of estuarine to shallow marine character. Geochemical compositions such as Al2O3/TiO2 (3.88–6.83, medium to high TiO2 (1.74–2.81 wt.%, positive Nb anomalies and LREE enrichment of these RTB attest to their mantle plume origin and indicate the generation of parent magma from a plume-related enriched mantle source with EM I signature. Ba/Th (46–247, Ba/La (3.96–28.51 and Th/Nb (0.08–0.13 ratios suggest that the source enrichment process was marked by recycling of subduction-processed oceanic crust and lithospheric components into the mantle. Zr/Hf (37–41 and Zr/Ba (0.51–3.24 indicate involvement of an asthenospheric mantle source. The

  18. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale.

    Science.gov (United States)

    Mangeret, A; De Windt, L; Crançon, P

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO(2) concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5×10(-5) mol(chalk)L (-1) water year (-1). Sensitivity analysis indicates that the CO(2) partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.; Carman, J.D.

    1993-01-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site

  20. Environmental effects of aquifer overexploitation: a case study in the highlands of Mexico.

    Science.gov (United States)

    Esteller, Maria Vicenta; Diaz-Delgado, Carlos

    2002-02-01

    There are several environmental processes occurring under aquifer overexploitation conditions. These processes include groundwater table decline, subsidence, attenuation and drying of springs, decrease of river flow, and increased pollution vulnerability, among others processes. Some of these effects have been observed on the Upper Basin of the Lerma River. The Lerma River begins in the SE of the Valley of Toluca at 2,600 m asl, in the wetland known as Lagoons of Almoloya del Río. This wetland is made up of a group of lagoons, which are an important aquatic system from an environmental point of view. The water inflow of this wetland is a discharge of springs, which occur between the fractured volcanic material of the mountain range and granular volcanic-continental deposits of the Valley of Toluca aquifer. The intensive exploitation of the Valley of Toluca aquifer to supply urban and industrial water to Mexico City and Toluca began in 1950 and is responsible for a steady decline of piezometric levels of 1-3.5 m/yr. Other effects of this exploitation--the drying of the wetland, the decrease of river flow and the land subsidence--caused serious ecological and social impacts. The authorities declared this aquifer as overexploited in order to reduce the exploitation and preserve the availability of water resources in this important region.

  1. Recharge quantification with radiocarbon: Independent corroboration in three Karoo aquifer studies in Botswana

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Bredenkamp, D.B.; Janse van Rensburg, H.; Farr, J.L.

    1999-01-01

    Environmental isotope data from a 'snapshot' sampling hold out the promise of producing acceptable estimates of ground water recharge for resource management purposes. In three major ground water developments in Botswana, estimates of recharge to the Karoo aquifers in the Kalahari, were based on residence times derived from radiocarbon data. In the assessment, three factors needed to be considered: 1) the model leading to acceptable values of residence times 2) the initial, or recharge, radiocarbon value and 3) appropriate values of aquifer porosity. In the three studies, porosity had been measured on numerous drill cores obtained from the principal fractured sandstone aquifers. The resulting isotope-based recharge values correspond reasonably with independent recharge assessments using the equal volume method to analyse long-term rest level observations in two cases; in the third, recharge was independently assessed on the basis of chloride balance in both unsaturated and saturated zones. It is concluded that a) the isotope snapshot approach can give acceptable values for recharge in the development of ground water resources, providing rational management information early in the life of a ground water supply scheme; b) the exponential model and an initial radiocarbon values of 85% atmospheric are realistic in this environment and c) the total porosity appears to be the appropriate parameter in the calculation of recharge. This also provides an insight into the behaviour of the aquifers. (author)

  2. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  3. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  4. Americium migration in basalt and implications to repository risk analysis

    International Nuclear Information System (INIS)

    Rickert, P.G.

    1980-01-01

    Experiments were performed with americium as a minor component in groundwater. Batch adsorption, migration through column, and filtration experiments were performed. It was determined in batch experiments that americium is strongly adsorbed from solution. It was determined with filtration experiments that large percentages of the americium concentrations suspended by the contact solutions in batch experiments and suspended by the infiltrating groundwater in migration experiments were associated with particulate. Filtration was determined to be the primary mode of removal of americium from infiltrating groundwater in a column of granulated basalt (20 to 50 mesh) and an intact core of permeable basalt. Fractionally, 0.46 and 0.22 of the americium component in the infiltrating groundwater was transported through the column and core respectively. In view of these filtration and migration experiment results, the concept of K/sub d/ in the chromatographic sense is meaningless for predicting americium migration in bedrock by groundwater transport at near neutral pH

  5. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  6. Environmental resistance and mechanical performance of basalt and glass fibers

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  7. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  8. Stress generation and hierarchical fracturing in reactive systems

    Science.gov (United States)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  9. A new basaltic glass microanalytical reference material for multiple techniques

    Science.gov (United States)

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  10. Basalt-trachybasalt samples in Gale Crater, Mars

    International Nuclear Information System (INIS)

    Edwards, Peter H.; Anderson, Ryan B.; Dyar, Darby

    2017-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  11. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma

    Science.gov (United States)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2016-01-01

    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  12. Rock mass deformation properties of closely jointed basalt

    International Nuclear Information System (INIS)

    Kim, K.; Cramer, M.L.

    1982-12-01

    The deformational behavior of the Columbia River basalt is being investigated as part of a comprehensive site characterization program intended to determine the feasibility of constructing a nuclear waste repository in basalt at Hanford, Washington. Direct field measurements were conducted in a 2-m cube of basalt to obtain truly representative rock mass deformation properties. Load was applied to the test block in three orthogonal directions through the use of flat jacks in two perpendicular planes and a cable anchor system in the third. This configuration allowed the block to be placed in a simulated triaxial stress state at stress levels up to 12.5 MPa. The deformation at the center of the test block was monitored through the use of an optical measurement system developed for this project. The results indicate that the vertically oriented columnar joints have a significant influence on the deformation behavior of the basalt. The modulus in the direction parallel to the column axis was approx. 30 GPa, while the modulus value perpendicular to the columns was approx. 20 GPa. Laboratory measurements of intact specimens taken from this area yielded a value of 80 GPa with no indication of anisotropy. Hysteresis was observed in all loading cycles, but was distinctly more pronounced perpendicular to the column axis, indicative of significant joint displacement in this direction. The results of this test represent the first true rock mass modulus data obtained in closely jointed rock on a large scale. These measurement methods have eliminated many of the ambiguities associated with borehole jacking and surface measurement techniques

  13. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  14. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs

  15. The Age of Rift-Related Basalts in East Antarctica

    Science.gov (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  16. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    International Nuclear Information System (INIS)

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies

  17. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  18. Characterization of iron-enriched synthetic basalt for transuranic containment

    International Nuclear Information System (INIS)

    Flinn, J.E.; Henslee, S.P.; Kelsey, P.V.; Tallman, R.L.; Welch, J.M.

    1980-01-01

    In the slagging pyrolytic incineration process, combustibles are burned and noncombustibles, including metals, are oxidized into a molten , an electromelter, where the molten slag, with further processing conducted in a heated tundish, e.g. is allowed to homogenize (within a reasonable time period) and then cast into large, cylindrical metal containers. Analyses of Idaho National Engineering Laboratory waste slags show them similar in composition and appearance to natural basalts, but rich in iron. The electromelt process and the resulting iron-rich castings offer great promise for rendering nuclear waste into a stable form. The process offers great flexibility with regard to both compositional variation of the incoming waste and the high rates at which the waste can be introduced and cast. The cast product, a fine-grained basalt-like material, shows excellent homogeneity with little or no reaction to the steel containment. The preliminary mechanical and chemical durability data show the form to have adequate containment properties for TRU waste. However, work presently underway to improve these properties through additives and controlled cooling cycles has greatly enhanced the durability of the waste form. Furthermore, recent evidence indicates that divalent iron (Fe 2+ ) included in the crystalline phases of granites and basalts imparts a resistance to leaching of uranium and other actinide ions

  19. Seismic reflection and structuring characterization of deep aquifer system in the Dakhla syncline (Cap Bon, North-Eastern Tunisia)

    Science.gov (United States)

    Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad

    2018-04-01

    The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the

  20. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973-1991

    Science.gov (United States)

    Tilling, R.I.; Jones, B.F.

    1996-01-01

    Chemical and isotopic analyses of samples collected from a 1262-m-deep research borehole at the summit of Kilauea Volcano provide unique time-series data for composition of waters in the uppermost part of its hydrothermal system. These waters have a distinctive geochemical signature: a very low proportion of chloride relative to other anions compared with other Hawaiian wa-ters - thermal (???30 ??C) or nonthermal (eruption (December 31, 1974) and associated intense seismicity. Following the initial sharp increase, the PCO2 then decreased, approaching preemption values in April 1976. Beginning in mid-1975, solute concentrations of the borehole waters decreased substantially, from ???45 meq/L to <25 meq/L in only eight months; by 1991, total solute concentrations were <17 meq/L. This decline in solutes cannot be attributed to rainfall dilution and is inferred to reflect the decreasing availability with time of the easily leachable salts of alkali metals and sulfate, which originated in sublimates and fumarolic encrustations in fractures and cavities of rocks along the hydrologic flow paths. The overall chemistry of the summit-borehole waters is largely determined by hydrolysis reactions associated with normal weathering of host tholeiitic basalts on a geologic time scale, despite short-term perturbations in composition caused by rainfall dilution or volcanic activity.

  1. Review: Groundwater development and management in the Deccan Traps (basalts) of western India

    Science.gov (United States)

    Limaye, Shrikant Daji

    2010-05-01

    The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1-100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.

  2. Diagnostic Tools for Performance Evaluation of Innovative In-Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites

    Science.gov (United States)

    2011-11-01

    Electronic down-hole sensors with data loggers, or fiber optic sensors, can also provide information on the pore pressure, temperature, conductivity...of a dechlorinating community resulting from in-situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to...dechlorinating community resulting from in-situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a

  3. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  4. Strontium isotopic and trace element geochemistry of the saddle mountains and Grande Ronde Basalts of the Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Nelson, D.O.

    1980-01-01

    The Columbia River Basalt (CRB) group displays significant variations in major and trace element and Sr isotopic compositions. These compositions reflect complex and variable origins for the CRB magmas. Among the most varied is the Saddle Mountains Basalt (SMB) in which Sr ratios vary from 0.7078 to 0.7147 +- 0.002. The higher ratios reflect contamination through consistent correlations with major element compositions. Modeling suggests contamination by assimilation of 4.4 to 9.4 wt % of radiogenic crustal rocks. High delta 18 O values (up to +7.68 per mil) support the model. Age and field relations suggest that the contamination flowrocks are not the result of progressive contamination of a single magma, but rather reflect the contamination of independent magmas during this ascent

  5. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    Science.gov (United States)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  6. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  7. Groundwater sources and geochemical processes in a crystalline fault aquifer

    Science.gov (United States)

    Roques, Clément; Aquilina, Luc; Bour, Olivier; Maréchal, Jean-Christophe; Dewandel, Benoît; Pauwels, Hélène; Labasque, Thierry; Vergnaud-Ayraud, Virginie; Hochreutener, Rebecca

    2014-11-01

    The origin of water flowing in faults and fractures at great depth is poorly known in crystalline media. This paper describes a field study designed to characterize the geochemical compartmentalization of a deep aquifer system constituted by a graben structure where a permeable fault zone was identified. Analyses of the major chemical elements, trace elements, dissolved gases and stable water isotopes reveal the origin of dissolved components for each permeable domain and provide information on various water sources involved during different seasonal regimes. The geochemical response induced by performing a pumping test in the fault-zone is examined, in order to quantify mixing processes and contribution of different permeable domains to the flow. Reactive processes enhanced by the pumped fluxes are also identified and discussed. The fault zone presents different geochemical responses related to changes in hydraulic regime. They are interpreted as different water sources related to various permeable structures within the aquifer. During the low water regime, results suggest mixing of recent water with a clear contribution of older water of inter-glacial origin (recharge temperature around 7 °C), suggesting the involvement of water trapped in a local low-permeability matrix domain or the contribution of large scale circulation loops. During the high water level period, due to inversion of the hydraulic gradient between the major permeable fault zone and its surrounding domains, modern water predominantly flows down to the deep bedrock and ensures recharge at a local scale within the graben. Pumping in a permeable fault zone induces hydraulic connections with storage-reservoirs. The overlaid regolith domain ensures part of the flow rate for long term pumping (around 20% in the present case). During late-time pumping, orthogonal fluxes coming from the fractured domains surrounding the major fault zone are dominant. Storage in the connected fracture network within the

  8. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    Science.gov (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  9. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  10. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  11. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  12. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  13. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  14. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  15. Fracture response of SiOC based composites on dynamic loading

    Czech Academy of Sciences Publication Activity Database

    Halasová, Martina; Černý, Martin; Strachota, Adam; Chlup, Zdeněk; Dlouhý, Ivo

    2015-01-01

    Roč. 50, č. 11 (2015), s. 1547-1554 ISSN 0021-9983 R&D Projects: GA ČR GAP107/12/2445 Institutional support: RVO:68081723 ; RVO:61389013 ; RVO:67985891 Keywords : SiOC glass * basalt reinforcement * woven fabric * impact strength * energy consumption * fracture surface Subject RIV: JL - Materials Fatigue, Friction Mechanics; JH - Ceramics, Fire-Resistant Materials and Glass (USMH-B); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 1.242, year: 2015

  16. Multiple-scale hydraulic characterization of a surficial clayey aquitard overlying a regional aquifer in Louisiana

    Science.gov (United States)

    Chapman, Steven W.; Cherry, John A.; Parker, Beth L.

    2018-03-01

    The vertical hydraulic conductivity (Kv) of a 30-m thick surficial clayey aquitard overlying a regional aquifer at an industrial site in the Mississippi River Valley in Louisiana was investigated via intensive hydraulic characterization using high resolution vertical hydraulic head profiles with temporal monitoring and laboratory tests. A study area was instrumented with a semi-circular array of piezometers at many depths in the aquitard at equal distance from a large capacity pumping well including replicate piezometers. Profiles showed negligible head differential to 20 m bgs, below which there was an abrupt change in vertical gradients over the lower 8-10 m of the aquitard. Hydraulic characteristics are strongly associated with depositional environment; the upper zone of minimal head differentials with depth and minimal variation over time correlates with Paleo-Mississippi River backswamp deposits, while the lower zone with large head differentials and slow but moderate head changes correlates with lacustrine deposits. The lower zone restricts groundwater flow between the surface and underlying regional aquifer, which is hydraulically connected to the Mississippi River. Lab tests on lacustrine samples show low Kv (8 × 10-11-4 × 10-9 m/s) bracketing field estimates (6 × 10-10 m/s) from 1-D model fits to piezometric data in response to large aquifer head changes. The slow response indicates absence of through-going open fractures in the lacustrine unit, consistent with geotechnical properties (high plasticity, normal consolidation), suggesting high integrity that protects the underlying aquifer from surficial contamination. The lack of vertical gradients in the overlying backswamp unit indicates abundant secondary permeability features (e.g. fractures, rootholes) consistent with depositional and weathering conditions. 2-D stylized transient flow simulations including both units supports this interpretation. Other published reports on surficial aquitards in the

  17. Basaltic ring structures of the Serra Geral Formation at the southern Triângulo Mineiro, Água Vermelha region, Brazil

    Science.gov (United States)

    Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos

    2018-04-01

    The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures

  18. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  19. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  20. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  1. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  2. Fracture toughness correlations

    International Nuclear Information System (INIS)

    Wallin, Kim

    1986-09-01

    In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented

  3. Rib fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  4. Sprains, Strains and Fractures

    Science.gov (United States)

    ... fractures. Many fractures and sprains occur during sports. Football players are particularly vulnerable to foot and ankle ... feet and ankles and take a complete medical history. He or she will also order tests, including ...

  5. Infant skull fracture (image)

    Science.gov (United States)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  6. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...

  7. Steam Injection For Soil And Aquifer Remediation

    Science.gov (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  8. Hydrogeologic characterization of devonian aquifers in Uruguay

    International Nuclear Information System (INIS)

    Massa, E.

    1988-01-01

    This article carried out the assistance research project implementation in devonian sedimentary units as a potentials aquifers and their best use to school supplying and rural population in central area of U