WorldWideScience

Sample records for fractional exhaled nitric

  1. Effect of Shisha (Waterpipe Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi Young Adult Shisha Smokers

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2014-09-01

    Full Text Available Shisha (waterpipe smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers. The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM range 17–33 years. The control group consisted of similar number (73 of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75–85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group.

  2. Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates.

    Science.gov (United States)

    Pedroletti, Christophe; Zetterquist, Wilhelm; Nordvall, Lennart; Alving, Kjell

    2002-09-01

    Nitric oxide (NO) in exhaled air is believed to reflect allergic inflammation in the airways. Measured levels of exhaled NO vary with the exhaled flow rate, which therefore must be standardized. The aim of this study was to estimate the optimal exhalation flow rate when measuring NO in exhaled air. We studied 15 asthmatic children (8-18 y) with elevated NO levels and 15 age-matched controls and focused on how the quality of the NO curve profile, the discriminatory power, and the reproducibility were influenced by the exhalation flow rate. We used an on-line system for NO measurements at six different exhalation flow rates in the interval of 11-382 mL/s. The fraction of exhaled nitric oxide (FENO) was highly flow-dependent as was expected. Intermediate flow rates yielded a flat and stable NO plateau and were considerably easier to interpret than those obtained at the highest and lowest flow rates. The ratio of FENO between asthmatics and controls was lower at higher flow rates and a considerable overlap in NO values was demonstrated at all flow rates except 50 mL/s. The reproducibility was much lower at more extreme flow rates and was best at 50 mL/s. We conclude that a target exhalation flow rate of approximately 50 mL/s is to be preferred using the single-breath method for on-line NO measurements in schoolchildren.

  3. Symptom- and fraction of exhaled nitric oxide-driven strategies for asthma control: A cluster-randomized trial in primary care

    NARCIS (Netherlands)

    Honkoop, Persijn J.; Loijmans, Rik J. B.; Termeer, Evelien H.; Snoeck-Stroband, Jiska B.; van den Hout, Wilbert B.; Bakker, Moira J.; Assendelft, Willem J. J.; ter Riet, Gerben; Sterk, Peter J.; Schermer, Tjard R. J.; Sont, Jacob K.

    2015-01-01

    Aiming at partly controlled asthma (PCa) instead of controlled asthma (Ca) might decrease asthma medication use. Biomarkers, such as the fraction of exhaled nitric oxide (Feno), allow further tailoring of treatment. We sought to assess the cost-effectiveness and clinical effectiveness of pursuing

  4. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults

    NARCIS (Netherlands)

    Thijs, Willemien; de Mutsert, Renée; le Cessie, Saskia; Hiemstra, Pieter S.; Rosendaal, Frits R.; Middeldorp, Saskia; Rabe, Klaus F.

    2014-01-01

    Exhaled nitric oxide is a noninvasive measure of airway inflammation that can be detected by a handheld device. Obesity may influence the reproducibility of exhaled nitric oxide measurements, by - for instance - decreased expiratory reserve volume. We analyzed triple exhaled nitric oxide

  5. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility

    DEFF Research Database (Denmark)

    Price, David B; Buhl, Roland; Chan, Adrian

    2018-01-01

    BACKGROUND: Chronic non-specific respiratory symptoms are difficult to manage. This trial aimed to evaluate the association between baseline fractional exhaled nitric oxide (FeNO) and the response to inhaled corticosteroids in patients with non-specific respiratory symptoms. METHODS: In this doub...

  6. Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants

    DEFF Research Database (Denmark)

    van der Valk, Ralf J P; Duijts, Liesbeth; Timpson, Nicolas J

    2014-01-01

    BACKGROUND: The fraction of exhaled nitric oxide (Feno) value is a biomarker of eosinophilic airway inflammation and is associated with childhood asthma. Identification of common genetic variants associated with childhood Feno values might help to define biological mechanisms related to specific ...

  7. Prognostic Role of Exhaled Breath Condensate pH and Fraction Exhaled Nitric Oxide in Systemic Sclerosis Related Interstitial Lung Disease.

    Science.gov (United States)

    Guillen-Del Castillo, Alfredo; Sánchez-Vidaurre, Sara; Simeón-Aznar, Carmen P; Cruz, María J; Fonollosa-Pla, Vicente; Muñoz, Xavier

    2017-03-01

    Interstitial lung disease (ILD) is one of the major causes of death in systemic sclerosis (SSc). This study investigated exhaled breath (EB) and exhaled breath condensate (EBC) biomarkers in patients with SSc and analyzed their role as a prognostic tool in SSc-related ILD. Fraction exhaled nitric oxide (FeNO) and exhaled carbon monoxide (eCO) measured in EB, together with pH, nitrite, nitrate and interleukin-6 levels measured in EBC were prospectively analyzed in 35 patients with SSc. Twelve patients had established ILD by chest high-resolution computed tomography (HRCT), and 23 patients showed no evidence of ILD. EB and EBC biomarkers were determined at inclusion, and pulmonary function tests were annually performed during 4 years of follow-up. No differences at baseline biomarkers levels were found between groups. In all patients studied, low EBC pH levels were associated with a decreased diffusing capacity for carbon monoxide (DLCO) during follow-up. Low FeNO levels were correlated with lower forced vital capacity (FVC) at baseline, 4years of follow-up and with a decrease in FVC and DLCO during monitoring. Among ILD patients, high eCO levels were correlated with lower baseline FVC. In the global cohort, a worse progression-free survival was identified in patients with EBC pH values lower than 7.88 and FeNO levels lower than 10.75ppb (Log Rank P=.03 and P<.01, respectively). EB and EBC could help to detect patients likely to present a deterioration on lung function during follow up. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Early childhood growth patterns and school-age respiratory resistance, fractional exhaled nitric oxide and asthma.

    Science.gov (United States)

    Casas, Maribel; den Dekker, Herman T; Kruithof, Claudia J; Reiss, Irwin K; Vrijheid, Martine; de Jongste, Johan C; Jaddoe, Vincent W V; Duijts, Liesbeth

    2016-12-01

    Greater infant weight gain is associated with lower lung function and increased risk of childhood asthma. The role of early childhood peak growth patterns is unclear. We assessed the associations of individually derived early childhood peak growth patterns with respiratory resistance, fractional exhaled nitric oxide, wheezing patterns, and asthma until school-age. We performed a population-based prospective cohort study among 5364 children. Repeated growth measurements between 0 and 3 years of age were used to derive standard deviation scores (s.d.s) of peak height and weight velocities (PHV and PWV, respectively), and body mass index (BMI) and age at adiposity peak. Respiratory resistance and fractional exhaled nitric oxide were measured at 6 years of age. Wheezing patterns and asthma were prospectively assessed by annual questionnaires. We also assessed whether any association was explained by childhood weight status. Greater PHV was associated with lower respiratory resistance [Z-score (95% CI): -0.03 (-0.04, -0.01) per s.d.s increase] (n = 3382). Greater PWV and BMI at adiposity peak were associated with increased risks of early wheezing [relative risk ratio (95% CI): 1.11 (1.06, 1.16), 1.26 (1.11, 1.43), respectively] and persistent wheezing [relative risk ratio (95% CI): 1.09 (1.03, 1.16), 1.37 (1.17, 1.60), respectively] (n = 3189 and n = 3005, respectively). Childhood weight status partly explained these associations. No other associations were observed. PWV and BMI at adiposity peak are critical for lung developmental and risk of school-age wheezing. Follow-up studies at older ages are needed to elucidate whether these effects persist at later ages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Exhaled nitric oxide in diagnosis and management of respiratory diseases

    Directory of Open Access Journals (Sweden)

    Abba Abdullah

    2009-01-01

    Full Text Available The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  10. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms

    DEFF Research Database (Denmark)

    Malinovschi, Andrei; Backer, Vibeke; Harving, Henrik

    2012-01-01

    The fraction of nitric oxide in exhaled air (FeNO) is used in asthma diagnosis and management. Smoking reduces FeNO and 20-35% of asthmatics are smoking. However no guidelines exist on the diagnostic value of FeNO in smokers. Therefore we assessed the value of FeNO to diagnose asthma in a populat...... in a population of subjects with asthma-like symptoms and different smoking habits.......The fraction of nitric oxide in exhaled air (FeNO) is used in asthma diagnosis and management. Smoking reduces FeNO and 20-35% of asthmatics are smoking. However no guidelines exist on the diagnostic value of FeNO in smokers. Therefore we assessed the value of FeNO to diagnose asthma...

  11. Alveolar-derived exhaled nitric oxide is reduced in obstructive sleep apnea syndrome.

    Science.gov (United States)

    Foresi, Antonio; Leone, Clementina; Olivieri, Dario; Cremona, George

    2007-09-01

    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular diseases, in particular systemic arterial hypertension. We postulated that intermittent nocturnal hypoxia in OSAS may be associated to decreased fractional exhaled nitric oxide (FENO) levels from distal airspaces. Multiple flow rate measurements have been used to fractionate nitric oxide (NO) from alveolar and bronchial sources in 34 patients with OSAS, in 29 healthy control subjects, and in 8 hypertensive non-OSAS patients. The effect of 2 days of treatment with nasal continuous positive airway pressure (nCPAP) on FENO was examined in 18 patients with severe OSAS. We found that the mean [+/- SE] concentrations of exhaled NO at a rate of 50 mL/s was 21.8 +/- 1.9 parts per billion (ppb) in patients with OSAS, 25.1 +/- 3.3 ppb in healthy control subjects, and 15.4 +/- 1.7 ppb in hypertensive control patients. The mean fractional alveolar NO concentration (CANO) in OSAS patients was significantly lower than that in control subjects (2.96 +/- 0.48 vs 5.35 +/- 0.83 ppb, respectively; p bronchial FENO, is impaired in patients with OSAS and that this impairment is associated with an increased risk of hypertension. NO production within the alveolar space is modified by treatment with nCPAP.

  12. Non-asthmatic patients show increased exhaled nitric oxide concentrations

    Directory of Open Access Journals (Sweden)

    Beatriz M. Saraiva-Romanholo

    2009-01-01

    Full Text Available OBJECTIVE: Evaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm. INTRODUCTION: Intraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation. METHODS: A total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group, 12 asthmatics (Asthma group and 10 subjects with no previous airway disease or symptoms (Control group. All subjects were submitted to exhaled nitric oxide measurements (parts/billion, spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test. RESULTS: The normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05. The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83] compared with either the Bronchospasm [0.55 (0-1.26] or the Control group [0.0 (0] (p <0.05; exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7] (p< 0.05. CONCLUSIONS: Non-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.

  13. Exhaled nitric oxide in stable chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Beg Mohammed F S; Alzoghaibi, Mohammad A; Habib, Syed S; Abba, Abdullah A

    2009-01-01

    The objective of the study was to test the hypothesis that fraction of exhaled nitric oxide (FENO) is elevated in nonsmoking subjects with stable chronic obstructive pulmonary disease (COPD) and compare it with the results in patients with asthma and a control population. Pulmonology Clinic at a University Hospital. Twenty five control subjects, 25 steroid naive asthmatics and 14 COPD patients were studied. All the patients were nonsmokers and stable at the time of the study. All subjects completed a questionnaire and underwent spirometry. Exhaled nitric oxide was measured online by chemiluminescence, using single-breath technique. All the study subjects were males. Subjects with stable COPD had significantly higher values of FENO than controls (56.54+ - 28.01 vs 22.00 + -6.69; P =0.0001) but lower than the subjects with asthma (56.54+ - 28.01 vs 84.78+ - 39.32 P 0.0285). The FENO values in COPD subjects were inversely related to the FEV 1 /FVC ratio. There was a significant overlap between the FENO values in COPD and the control subjects. There is a significant elevation in FENO in patients with stable COPD, but the elevation is less than in asthmatic subjects. Its value in clinical practice may be limited by the significant overlap with control subjects. (author)

  14. Importance of fractional exhaled nitric oxide in the differentiation of asthma–COPD overlap syndrome, asthma, and COPD

    Directory of Open Access Journals (Sweden)

    Chen FJ

    2016-09-01

    Full Text Available Feng-jia Chen,* Xin-yan Huang,* Yang-li Liu, Geng-peng Lin, Can-mao Xie Department of Respiratory Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Fractional exhaled nitric oxide (FeNO is an easy, sensitive, reproducible, and noninvasive marker of eosinophilic airway inflammation. Accordingly, FeNO is extensively used to diagnose and manage asthma. Patients with COPD who share some of the features of asthma have a condition called asthma–COPD overlap syndrome (ACOS. The feasibility of using FeNO to differentiate ACOS patients from asthma and COPD patients remains unclear. Methods: From February 2013 to May 2016, patients suspected with asthma and COPD through physician’s opinion were subjected to FeNO measurement, pulmonary function test (PFT, and bronchial hyperresponsiveness or bronchodilator test. Patients were divided into asthma alone group, COPD alone group, and ACOS group according to a clinical history, PFT values, and bronchial hyperresponsiveness or bronchodilator test. Receiver operating characteristic (ROC curves were obtained to elucidate the clinical functions of FeNO in diagnosing ACOS. The optimal operating point was also determined. Results: A total of 689 patients were enrolled in this study: 500 had asthma, 132 had COPD, and 57 had ACOS. The FeNO value in patients with ACOS was 27 (21.5 parts per billion (ppb; median [interquartile range], which was significantly higher than that in the COPD group (18 [11] ppb. The area under the ROC curve was estimated to be 0.783 for FeNO. Results also revealed an optimal cutoff value of >22.5 ppb FeNO for differentiating ACOS from COPD patients (sensitivity 70%, specificity 75%.Conclusion: FeNO measurement is an easy, noninvasive, and sensitive method for differentiating ACOS from COPD. This technique is a new perspective for the management of COPD patients. Keywords

  15. Effect of Nanoparticles Exposure on Fractional Exhaled Nitric Oxide (FENO in Workers Exposed to Nanomaterials

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2014-01-01

    Full Text Available Fractional exhaled nitric oxide (FENO measurement is a useful diagnostic test of airway inflammation. However, there have been few studies of FENO in workers exposed to nanomaterials. The purpose of this study was to examine the effect of nanoparticle (NP exposure on FENO and to assess whether the FENO is increased in workers exposed to nanomaterials (NM. In this study, both exposed workers and non-exposed controls were recruited from NM handling plants in Taiwan. A total of 437 subjects (exposed group = 241, non-exposed group = 196 completed the FENO and spirometric measurements from 2009–2011. The authors used a control-banding (CB matrix to categorize the risk level of each participant. In a multivariate linear regression analysis, this study found a significant association between risk level 2 of NP exposure and FENO. Furthermore, asthma, allergic rhinitis, peak expiratory flow rate (PEFR, and NF-κB were also significantly associated with FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO2 in all of the NM exposed categories had a significantly increased risk in FENO > 35 ppb. This study found associations between the risk level of NP exposure and FENO (particularly noteworthy for Nano-TiO2. Monitoring FENO in the lung could open up a window into the role nitric oxide (NO may play in pathogenesis.

  16. Exhaled nitric oxide measurements in the first 2 years of life: Methodological issues, clinical and epidemiological applications

    NARCIS (Netherlands)

    C. Gabriele (Carmelo); F.M. de Benedictis (Fernando Maria); J.C. de Jongste (Johan)

    2009-01-01

    textabstractFractional exhaled nitric oxide (FeNO) is a useful tool to diagnose and monitor eosinophilic bronchial inflammation in asthmatic children and adults. In children younger than 2 years of age FeNO has been successfully measured both with the tidal breathing and with the single breath

  17. New method for single-breath fraction of exhaled nitric oxide measurement with improved feasibility in preschool children with asthma.

    Science.gov (United States)

    Heijkenskjöld-Rentzhog, Charlotte; Kalm-Stephens, Pia; Nordvall, Lennart; Malinovschi, Andrei; Alving, Kjell

    2015-11-01

    Respiratory societies recommend use of standardized methodologies for fraction of exhaled nitric oxide (FeNO) measurements in adults and children, but in preschoolers, feasibility remains a problem. The exhalation time needed to obtain steady-state FeNO is unclear. Our primary aim was to study the feasibility of an adapted single-breath FeNO method with age-adjusted exhalation times. We also studied the association between time to steady-state NO level and height, as well as FeNO in relation to asthma and current treatment with inhaled corticosteroids (ICS). Sixty-three children aged 3-10 years performed FeNO measurements with a hand-held electrochemical device with a newly developed flow-control unit. Exhalation times were pre-adapted to age. Exhaled air was simultaneously sampled to a chemiluminescence analyzer to measure time to steady-state NO level. Eighty-one percent of the children achieved at least one approved measurement. From 4 years upwards, success rate was high (96%). Time to steady-state [NO] (median and interquartile range) was 2.5 s (2.4-3.5) at the age of 3-4 years and 3.5 s (2.7-3.8) at the age of 5-6 years. Height was associated with time to steady state (r(2) = 0.13, p = 0.02). FeNO (geometric mean [95% CI]) was higher in ICS-naïve asthmatic children (n = 19): 15.9 p.p.b. (12.2-20.9), than in both healthy controls (n = 8) 9.1 p.p.b. (6.6-12.4) and asthmatic subjects on treatment (n = 24) 11.5 p.p.b. (9.7-13.6). We found this adapted single-breath method with age-adjusted exhalation times highly feasible for children aged 4-10 years. ICS-naïve asthmatic children had FeNO levels under the current guideline cutoff level (20 p.p.b.), highlighting the importance of taking age into account when setting reference values. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: a pilot study

    Directory of Open Access Journals (Sweden)

    Donohue JF

    2014-07-01

    Full Text Available James F Donohue,1 Nancy Herje,2 Glenn Crater,2 Kathleen Rickard2 1Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; 2Aerocrine, Inc., Morrisville, NC, USA Objective: To characterize fractional exhaled nitric oxide (FeNO levels that may be indicative of Th2-mediated airway inflammation in patients with chronic obstructive pulmonary disease (COPD. Methods: This single-visit, outpatient study was conducted in 200 patients aged 40 years and older with COPD. All patients underwent spirometry and FeNO testing. COPD severity was classified according to the Global initiative for chronic Obstructive Lung Disease (GOLD 2010 guidelines. Results: Patients who participated in the study had a mean age of 63.9±11.3 years and a mean smoking history of 46±29 pack years. Patients had a mean forced expiratory volume in 1 second % predicted of 53.9%±22.1%. The percentage of patients classified with COPD severity Stage I, II, III, and IV was 13%, 40%, 39%, and 8%, respectively. In addition, according to current procedural terminology codes, 32% of patients were classified as mixed COPD/asthma, 26% as COPD/emphysema, and 42% as all other codes. The mean FeNO level for all patients was 15.3±17.2 parts per billion (ppb. Overall, 89% of patients had a FeNO <25 ppb, 8% had a FeNO 25–50 ppb, and 3% had a FeNO >50 ppb. The percentages of patients with FeNO in the intermediate or high ranges of FeNO were greatest among patients with mixed COPD/asthma (intermediate, 11.5%; high, 6.6% compared with COPD/emphysema (intermediate, 8%; high, 0 and all other codes (intermediate, 6.3%; high, 1.3%. Conclusion: Increases in FeNO were identified in a subset of patients with COPD, particularly in those previously diagnosed with both COPD and asthma. Since FeNO is useful for identifying patients with airway inflammation who will have a beneficial response to treatment with an inhaled corticosteroid, these data may have important

  19. Daily life negative mood and exhaled nitric oxide in asthma.

    Science.gov (United States)

    Ritz, Thomas; Kullowatz, Antje; Bill, Michelle N; Rosenfield, David

    2016-07-01

    Psychosocial stress and negative affect have been linked to asthma exacerbations, but longitudinal studies demonstrating a daily life association between negative affect and airway nitric oxide are missing. The longitudinal association between negative mood fluctuations, exhaled nitric oxide, and lung function in asthma was examined. Self-assessments of the fraction of exhaled nitric oxide (FeNO), spirometry (forced expiratory volume in the first second, FEV1), negative mood, and daily activities were obtained from 20 patients with asthma for 2 months, resulting in 1108 assessments for the analyses (approximately 55 per patient). Concurrent and prospective associations between FeNO, FEV1, and negative mood were analyzed using mixed effects regression models for longitudinal data. Negative mood was positively associated with changes in FeNO during the same day, and to a stronger extent when prior day negative mood was included in the prediction. FeNO and negative mood were positively associated with same-day FEV1, with the latter relation being partially mediated by changes in FeNO. Associations between FeNO and FEV1 were stronger in younger patients, with earlier onset of asthma, or with lower asthma control. Findings were not changed when controlling for physical activity, medication, cold symptoms, air pollution, and hours spent outside. Daily life changes of negative mood in asthma are positively associated with FeNO changes and FeNO increases are associated with a mild bronchodilation. These findings indicate that psychological influences need to be considered when using FeNO as indicator of airway inflammation and guide for treatment decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fractional exhaled nitric oxide has a good correlation with asthma control and lung function in latino children with asthma.

    Science.gov (United States)

    Soto-Ramos, Mario; Castro-Rodríguez, Jose A; Hinojos-Gallardo, Luis Carlos; Hernández-Saldaña, Raul; Cisneros-Castolo, Martin; Carrillo-Rodríguez, Victor

    2013-08-01

    Although the measurement of fractional exhaled nitric oxide (FE(NO)) has been recommended for observational studies and clinical trials of asthma, FE(NO) has not been examined in studies of childhood asthma in Latin America, To examine the relationship between FE(NO) and indicators of disease control or severity [asthma control test/childhood asthma control test (ACT/C-ACT), lung function, and exercise challenge test (ECT)] in Mexican children with persistent asthma, Children (6-18 years of age) with persistent asthma were consecutively recruited in a tertiary asthma clinic and divided into two groups, e.g. FE(NO) children, Children with FE(NO)children with FE(NO) ≥20 ppb, those with FE(NO) children with persistent asthma, low levels of FE(NO) ( asthma control, and higher lung function.

  1. Fraction of exhaled nitric oxide measurements in the diagnoses of asthma in elderly patients

    Directory of Open Access Journals (Sweden)

    Godinho Netto AC

    2016-05-01

    Full Text Available Antonio Carlos Maneira Godinho Netto,1,2 Túlio Gonçalves dos Reis,1,2 Cássia Franco Matheus,1,2 Beatriz Julião Vieira Aarestrup,3,4 Fernando Monteiro Aarestrup1,2,4 1School of Medical and Health Sciences – SUPREMA, 2Maternity Hospital Terezinha de Jesus, 3Morphology Department, Federal University of Juiz de Fora, Institute of Biological Sciences, 4Laboratory of Immunopathology and Experimental Pathology, Federal University of Juiz de Fora, Reproductive Biology Center (CBR, Juiz de Fora, Brazil Objective: To assess the value of fraction of exhaled nitric oxide (FeNO measurements in the diagnosis of asthma in elderly patients. Methods: The clinical symptoms of 202 elderly patients were assessed with the asthma module of the International Study of Asthma and Allergies in Childhood test, which had been modified for the elderly patients, and the diagnostic routine for chronic obstructive pulmonary disease (COPD, which was based on the Global initiative for chronic Obstructive Lung Disease criteria. Of the 202 patients assessed, 43 were subjected to pulmonary function evaluations (spirometry and FeNO measurements. Results: Of the 202 elderly patients, 34 had asthma (23 definite and eleven probable, 20 met COPD criteria, 13 presented with an overlap of asthma and COPD, and 135 did not fit the criteria for obstructive pulmonary disease. Among the 43 elderly patients who were subjected to FeNO measurements, ten showed altered results (23.2% and 33 had normal results (76.7%. The average value of FeNO in patients with definite and probable asthma undergoing this procedure was 29.2 parts per billion whereas that in nonasthmatic patients was 17.5 parts per billion (P=0.0002. Conclusion: We show a clear relationship between FeNO levels and asthma symptoms and previous asthma diagnoses in elderly patients. Keywords: asthma, chronic obstructive pulmonary disease, elderly patients, nitric oxide

  2. Exhaled nitric oxide measure using multiple flows in clinically relevant subgroups of COPD

    DEFF Research Database (Denmark)

    Roberts, Nassim Bazeghi; Gerds, Thomas A; Budtz-Jørgensen, Esben

    2011-01-01

    Although there is widespread interest in fractional exhaled nitric oxide (FeNO) as a non-invasive, time and cost effective biomarker for assessing airway inflammation in chronic obstructive pulmonary disease (COPD), its usefulness is still controversial. We examined the FeNO levels in clinically...... (Caw). All patients had spirometry, assessment of symptoms with questionnaires and low-dose CT scan as well as assessment of weight and body composition. We examined the following subgroups of COPD: Patients with 1) Severe emphysema, 2) Chronic bronchitis, 3) Frequent exacerbations, 4) Loss of lean...

  3. Increased exhaled nitric oxide predicts new-onset rhinitis and persistent rhinitis in adolescents without allergic symptoms.

    Science.gov (United States)

    Malinovschi, A; Alving, K; Kalm-Stephens, P; Janson, C; Nordvall, L

    2012-03-01

    The fraction of nitric oxide in exhaled air (FE(NO)) is increased in rhinitis and asthma. We have previously suggested that elevated FE(NO) levels in the absence of asthma symptoms may be a sign of 'early asthma'. In the present study, we hypothesize that elevated exhaled NO levels may also precede rhinitis symptoms. To investigate in a cohort of adolescents whether or not increased exhaled NO levels at the age of 13-14 years predicted new-onset or persistent rhinitis within a 4-year period. A total of 959 randomly selected adolescents (13-14 years) completed a questionnaire on respiratory symptoms at baseline and follow-up, 4 years later. Exhaled NO was measured at baseline. After exclusion of subjects with asthma diagnosis or asthma symptoms at baseline, 657 participants were eligible for the present study. Higher FE(NO) levels at baseline were associated with increased risk for new-onset (P = 0.009) and persistent rhinitis (P = 0.03) within a 4-year period. The risk of new-onset rhinitis was 2.32 (1.23, 4.37) [OR (95% CI)] times higher if FE(NO) > 90th percentile of the group without rhinitis at baseline. This increased risk for new-onset rhinitis was significant [2.49 (1.24, 5.01)] after excluding subjects with allergic symptoms. The risk of persistent rhinitis was 5.11 (1.34, 19.57) times higher if FE(NO) > 90th percentile of the group without rhinitis at baseline. Elevated exhaled nitric oxide levels predicted incident and persistent rhinitis in this population-based study of adolescents. Moreover, these findings were consistent after excluding subjects with allergic symptoms. Thus, it appears that elevation of exhaled NO precedes airway symptoms and predicts development of rhinitis in subjects without allergic symptoms or family history of allergic disease. © 2011 Blackwell Publishing Ltd.

  4. Storage conditions for stability of offline measurement of fractional exhaled nitric oxide after collection for epidemiologic research.

    Science.gov (United States)

    Yoda, Yoshiko; Otani, Naruhito; Hasunuma, Hideki; Kanegae, Hiroshi; Shima, Masayuki

    2012-11-02

    The measurement of fractional concentration of nitric oxide in exhaled air (FeNO) is valuable for the assessment of airway inflammation. Offline measurement of FeNO has been used in some epidemiologic studies. However, the time course of the changes in FeNO after collection has not been fully clarified. In this study, the effects of storage conditions on the stability of FeNO measurement in exhaled air after collection for epidemiologic research were examined. Exhaled air samples were collected from 48 healthy adults (mean age 43.4 ± 12.1 years) in Mylar bags. FeNO levels in the bags were measured immediately after collection. The bags were then stored at 4°C or room temperature to measure FeNO levels repeatedly for up to 168 hours. In the bags stored at room temperature after collection, FeNO levels were stable for 9 hours, but increased starting at 24 hours. FeNO levels remained stable for a long time at 4°C, and they were 99.7% ± 7.7% and 101.3% ± 15.0% relative to the baseline values at 24 and 96 hours, respectively. When the samples were stored at 4°C, FeNO levels gradually decreased with time among the subjects with FeNO ≥ 51 ppb immediately after collection, although there were almost no changes among the other subjects. FeNO levels among current smokers increased even at 4°C, although the values among ex-smokers decreased gradually, and those among nonsmokers remained stable. The rate of increase was significantly higher among current smokers than among nonsmokers and ex-smokers from 9 hours after collection onwards. Storage at 4°C could prolong the stability of FeNO levels after collection. This result suggests that valid measurements can be performed within several days if the samples are stored at 4°C. However, the time course of the changes in FeNO levels differed in relation to initial FeNO values and cigarette smoking.

  5. Fractional exhaled nitric oxide for the management of asthma in adults: a systematic review.

    Science.gov (United States)

    Essat, Munira; Harnan, Sue; Gomersall, Tim; Tappenden, Paul; Wong, Ruth; Pavord, Ian; Lawson, Rod; Everard, Mark L

    2016-03-01

    The aim of this review was to evaluate the clinical effectiveness of fractional exhaled nitric oxide (FeNO) measured in a clinical setting for the management of asthma in adults.13 electronic databases were searched and studies were selected against predefined inclusion criteria. Quality assessment was conducted using QUADAS-2. Class effect meta-analyses were performed.Six studies were included. Despite high levels of heterogeneity in multiple study characteristics, exploratory class effect meta-analyses were conducted. Four studies reported a wider definition of exacerbation rates (major or severe exacerbation) with a pooled rate ratio of 0.80 (95% CI 0.63-1.02). Two studies reported rates of severe exacerbations (requiring oral corticosteroid use) with a pooled rate ratio of 0.89 (95% CI 0.43-1.72). Inhaled corticosteroid use was reported by four studies, with a pooled standardised mean difference of -0.24 (95% CI -0.56-0.07). No statistically significant differences for health-related quality of life or asthma control were found.FeNO guided management showed no statistically significant benefit in terms of severe exacerbations or inhaled corticosteroid use, but showed a statistically significant reduction in exacerbations of any severity. However, further research is warranted to clearly define which management protocols (including cut-off points) offer best efficacy and which patient groups would benefit the most. Copyright ©ERS 2016.

  6. Exhaled nitric oxide concentration in patients after heart transplantation.

    Science.gov (United States)

    Nadziakiewicz, P; Knapik, P; Zakliczyński, M; Zembala, M; Urbańska, E; Pacholewicz, J

    2007-11-01

    Nitric oxide (NO) is present in exhaled air in humans and its level may decrease in heart diseases. In the present study we prospectively investigated how heart transplantation treated with oral immunosuppresive drugs based on ciclosporine A influences the exhaled NO concentration (exNO). The study was performed in 17 patients after heart transplantation in various time after procedure and 15 nonsmoking healthy volunteers as a control group. Patients after heart transplantation were free of clinical signs of rejection. End-tidal concentration of exNO was measured by the use of a chemiluminescence method. We found no statistically significant differences in the exNO level between patients after heart transplantation and healthy controls (6.81+/-2.70 part per billion (ppb) in the transplant group vs. 6.01+/-3.43 ppb in the control group). We conclude that heart transplantation and immunosuppresive therapy do not influence the exhaled NO concentration.

  7. Exhaled nitric oxide in paediatric asthma and cystic fibrosis.

    Science.gov (United States)

    Lundberg, J O; Nordvall, S L; Weitzberg, E; Kollberg, H; Alving, K

    1996-01-01

    Nitric oxide (NO) is present in exhaled air of humans. This NO is mostly produced in the upper airways, whereas basal NO excretion in the lower airways is low. Children with Kartagener's syndrome have an almost total lack of NO in nasally derived air, whereas adult asthmatics have increased NO in orally exhaled air. NO excretion was measured in the nasal cavity and in orally exhaled air in 19 healthy children, in 36 age matched subjects with asthma, and in eight children with cystic fibrosis. NO levels in orally exhaled air were similar in controls and in children with cystic fibrosis, at 4.8 (SD 1.2) v 5.8 (0.8) parts per billion (ppb), but were increased in asthmatic children who were untreated or were being treated only with low doses of inhaled steroids (13.8 (2.5) ppb). Nasal NO levels were reduced by about 70% in children with cystic fibrosis compared to controls and asthmatics. Measurements of airway NO release in different parts of the airways may be useful in non-invasive diagnosis and monitoring of inflammatory airway diseases. PMID:8984919

  8. Effect of exposure to an Asian dust storm on fractional exhaled nitric oxide in adult asthma patients in Western Japan.

    Science.gov (United States)

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Shimizu, Eiji

    2015-01-01

    Epidemiological investigations indicate that an Asian dust storm (ADS) can aggravate respiratory disorders. However, the effects of ADS on airway inflammation remain unclear. The aim of this study was to investigate the association of exposure to ADS with airway inflammation. The subjects were 33 adult patients with asthma who measured daily peak flow expiratory (PEF) from March to May 2012. Fractional exhaled nitric oxide (FeNO) was measured before and after ADS. The FeNO values were 13.8±13.7 ppb before the ADS and 20.3±19.0 ppb after the ADS, with no significant difference. There was also no significant association of PEF with ADS exposure. However, the increase of FeNO after ADS exposure was proportional to the decrease of PEF (R=-0.78, P<0.0001). These results suggest that airway inflammation aggravated by ADS exposure may induce a decrease in pulmonary function in some adult patients with asthma.

  9. Variations in exhaled nitric oxide concentration after three types of dives

    NARCIS (Netherlands)

    van Ooij, Pieter-Jan; Houtkooper, Antoinette; van Hulst, Rob

    2010-01-01

    An increase in exhaled nitric oxide concentration (FENO) occurs during an exacerbation of chronic obstructive lung disease or other inflammatory processes of the airway. Raised FENO levels are also observed during normobaric, mild hyperoxic exposures, whereas after hyperbaric hyperoxic exposure the

  10. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Hermansen, Mette N; Nielsen, Kim G

    2005-01-01

    BACKGROUND: Exercise-induced bronchoconstriction (EIB) is of particular importance in children with asthma. It is an important measure of asthma control and should be monitored by exercise testing. However, exercise testing puts a large demand on health-care resources and is therefore not widely...... used in routine monitoring of pediatric asthma control. The fractional concentration of exhaled nitric oxide (FeNO) also reflects uncontrolled asthma. We hypothesized that FeNO may be used for prescreening of asthmatic children to exclude those with good asthma control unlikely to have EIB, thereby...... reducing the need for exercise testing. OBJECTIVE: The aim of this study was to estimate the value of FeNO as a predictor of EIB in asthmatic children. METHODS: Stable outpatient asthmatic school children performed standard exercise challenge tests and measurement of FeNO. RESULTS: FeNO and response...

  11. Exhaled nitric oxide in a population-based study of asthma and allergy in schoolchildren.

    Science.gov (United States)

    Nordvall, S L; Janson, C; Kalm-Stephens, P; Foucard, T; Torén, K; Alving, K

    2005-04-01

    Exhaled nitric oxide (NO) reflects inflammation in the lower airways and is well adapted for use in children. The aims of this study were to investigate the distribution of the fraction of expired NO (FENO) in school children and to compare FENO and spirometry in relation to the International Study of Asthma and Allergies in Childhood questionnaire. The study was performed in 959 randomly selected 13-14-year-old school children in Uppsala, Sweden. Exhaled NO was measured at an inhalation rate of 0.1 l/s (FENO0.1) and a spirometric test was performed and data from these measurements were related to questionnaire data. Exhaled NO was measured according to American Thoracic Society recommendations, except the use of a mouth wash and an exhalation flow rate of 0.1 l/s. The distribution of the mean FENO0.1 values was skewed, with a preponderance of very low levels and a widespread tail of values ranging up to 102 parts per billion (ppb). Boys exhibited significantly higher mean FENO0.1 values than girls, 5.2 (4.7-5.7) vs 4.4 (4.0-4.8) ppb (geometric mean and 95% CI), P <0.01). Children who reported wheezing in the last year had higher FENO0.1 values than children that had not, 8.5 (7.1-10.2) vs 4.3 (4.0-4.6) ppb, P <0.001). The same association was found to most symptoms indicating hay fever and eczema. In contrast to this, only weak or inconsistent associations were found between asthma and spirometric indices. Exhaled NO levels were found to be independently related to male gender, wheeze and rhinoconjuctivitis but not to current eczema. In conclusion, exhaled NO was closely associated with reported asthma and allergy symptoms whereas spirometric indices such as percent predicted forced expiratory volume in 1 s were not. As most asthma cases in a population are mild, the findings suggest that exhaled NO is a sensitive marker of asthma and allergy.

  12. Environmental exposure to polycyclic aromatic hydrocarbons, kitchen ventilation, fractional exhaled nitric oxide, and risk of diabetes among Chinese females.

    Science.gov (United States)

    Hou, J; Sun, H; Zhou, Y; Zhang, Y; Yin, W; Xu, T; Cheng, J; Chen, W; Yuan, J

    2018-05-01

    Diabetes is related to exposure to polycyclic aromatic hydrocarbons (PAHs), inflammation in the body, and housing characters. However, associations of urinary monohydroxy-PAHs (OH-PAHs) or fractional exhaled nitric oxide (FeNO) with diabetes risk in relation to housing characters are unclear. In this study, 2645 individuals were drawn from the baseline survey of the Wuhan-Zhuhai Cohort Study. Associations of diabetes with urinary OH-PAHs or FeNO among cooking participants were estimated using logistic regression models. Among women with self-cooking meals, urinary OH-PAH levels were positively associated with diabetes risk (P kitchen exhaust fans/hoods had a 52% decrease in the risk of diabetes (OR: 0.48, 95% CI: 0.27, 0.84), compared with those with nonuse of kitchen exhaust fans/hoods. The results indicated that the cooking women had an elevated risk of diabetes, which may be partly explained by an increase in the PAH body burden and higher inflammatory responses. Use of kitchen exhaust fan/hood can be associated with a lower risk of diabetes. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases

    Directory of Open Access Journals (Sweden)

    Manna Angelo

    2012-12-01

    Full Text Available Summary Fractional exhaled nitric oxide (FeNO is a non invasive method for assessing the inflammatory status of children with airway disease. Different ways to measure FeNO levels are currently available. The possibility of measuring FeNO levels in an office setting even in young children, and the commercial availability of portable devices, support the routine use of FeNO determination in the daily pediatric practice. Although many confounding factors may affect its measurement, FeNO is now widely used in the management of children with asthma, and seems to provide significantly higher diagnostic accuracy than lung function or bronchial challenge tests. The role of FeNO in airway infection (e.g. viral bronchiolitis and common acquired pneumonia, in bronchiectasis, or in cases with diffuse lung disease is less clear. This review focuses on the most recent advances and the current clinical applications of FeNO measurement in pediatric lung disease.

  14. Effect of drinking Arabian Qahwa on fractional exhaled nitric oxide levels in healthy nonsmoking Saudi adults

    Directory of Open Access Journals (Sweden)

    Syed Shahid Habib

    2012-01-01

    Full Text Available Objectives: Fractional exhaled nitric oxide (FENO is an emerging marker of inflammation in respiratory diseases. However, it is affected by a number of confounding factors. We aimed to study the effect of drinking Arabian Qahwa on FENO in non-smoking Saudi healthy adults. Methods: We recruited 12 nonsmoker healthy male adults aged 36.6 ± 2.7 (21-50 years. All subjects were free from acute respiratory infections or allergies and had normal ventilatory functions and serum IgE levels. At 8 am in the morning, their baseline values of FENO were recorded. They had not taken tea or coffee in the morning and had taken similar light breakfast. They were given three cups of Arabian Qahwa to drink and then after every 30 minutes, serial levels of FENO were recorded. Results: Average FENO levels at baseline were 28.73 ± 9.33 (mean ± SD parts per billion (ppb. The mean FENO levels started to decrease significantly after 30 minutes of drinking Arabian Qahwa (P=0.002. This decrease in FENO level was further observed till two hours after Qahwa drinking and then it started to increase in next 90 minutes but still was significantly lower than the baseline (P=0.002. The mean FENO level recorded after 4 hours was 27.22 ± 10.22 (P=0.039. Conclusions: FENO levels were significantly lowered by intake of Arabian Qahwa and this effect remains for about 4 hours. Therefore, history of recent Qahwa intake and abstinence is essential before performance of FENO and its interpretation.

  15. MODERN APPROACHES TO FRACTIONAL EXHALED NITRIC OXIDE AS A USEFUL BIOMARKER FOR ALLERGIC ASTHMA PHENOTYPING AND MANAGEMENT.

    Science.gov (United States)

    Mgaloblishvili, N; Gotua, M

    2017-12-01

    Asthma is a pathologically heterogeneous disease, consisting of several phenotypes. Different types of airway inflammation are the cornerstone feature of this condition. Fraction of nitric oxide in exhaled air (FENO) has been proposed as a noninvasive, specific biomarker for eosinophilic airway inflammation and has been shown to be elevated in patients with allergic asthma phenotype. More recent studies indicate that FeNO identifies T-helper cell type 2 (Th2)-mediated airway inflammation with a high predictive value for identifying inhaled corticosteroid (ICS) responsive airway inflammation. Taking into account the accumulated evidence,it is possible to consider, that FeNO testing has an important role in the assessment of patients with suspected asthma and in the management of established asthmadiagnosis. In conjunction with symptom scores and lung function tests, FeNO measurement could provide a more useful and effective approach for asthma in terms of: (1) detecting the presence of Th2-mediated airway inflammation, (2) determining the likelihood of ICS responsive (and lack of course), (3) monitoring of airway inflammation to determine risk for future impairment or loss of asthma control during reduction/cessation of ICS treatment, (4) unmasking (otherwise unsuspected) non-adherence to corticosteroid therapy and (5) in severe asthma cases tailoring treatment with biological drugs. However, more work is still needed to address outstanding questions about its exact role in guiding asthma management and better define the use of FENO in different clinical settings.

  16. Study of the correlations between fractional exhaled nitric oxide in exhaled breath and atopic status, blood eosinophils, FCER2 mutation, and asthma control in Vietnamese children

    Directory of Open Access Journals (Sweden)

    Nguyen-Thi-Bich H

    2016-09-01

    Full Text Available Hanh Nguyen-Thi-Bich,1 Huong Duong-Thi-Ly,2 Vu Thi Thom,2 Nhung Pham-Thi-Hong,2 Long Doan Dinh,2 Huong Le-Thi-Minh,1 Timothy John Craig,3 Sy Duong-Quy3,4 1Department of Immunology, Allergology, and Rheumatology, National Hospital of Pediatrics, Hanoi, Vietnam; 2School of Medicine and Pharmacy, Vietnam National University Hanoi, Vietnam; 3Department of Medicine, Penn State University, Hershey, PA, USA; 4Department of Respiratory Diseases, Lam Dong Medical College, Dalat, Vietnam Introduction: Fractional exhaled nitric oxide (FENO is a biomarker of airway inflammation in asthma. The measurement of FENO is utilized to assist in the diagnosis and treatment of children with asthma, especially for those treated with inhaled corticosteroids. Objectives: The aims of this study were to evaluate the correlations between FENO and atopic status, blood eosinophil levels, FCER2 mutation, and asthma control in Vietnamese children. Subjects and methods: This was a prospective and descriptive study approved by the local Ethical Board. All children with uncontrolled asthma, seen in the National Hospital of Pediatrics (Hanoi, Vietnam, were included. Exhaled breath FENO, blood eosinophils, skin prick test, total IgE, asthma control test (ACT, and FCER2 gene polymorphism were performed at inclusion. They were followed up at 3 months to evaluate clinical status, FENO levels, and ACT. Results: Forty-two children with uncontrolled asthma with a mean age of 10±3 years (6–16 years were included. The male/female ratio was 2.5/1. The mean FENO levels were 26±25 ppb. FENO was significantly higher in patients with a positive skin prick test for respiratory allergens (P<0.05. FENO was significantly correlated with blood eosinophil levels (r=0.5217; P=0.0004. Five of the 32 subjects (15.6% had a mutation of FCER2 gene (rs28364072 SNP. In this group, the levels of FENO were highest (37±10 ppb; P<0.05. The levels of FENO were significantly decreased after 3 months of

  17. Reference values of fractional excretion of exhaled nitric oxide among non-smokers and current smokers.

    Science.gov (United States)

    Torén, Kjell; Murgia, Nicola; Schiöler, Linus; Bake, Björn; Olin, Anna-Carin

    2017-08-25

    Fractional exhaled nitric oxide (FE NO ) is used to assess of airway inflammation; diagnose asthma and monitor adherence to advised therapy. Reliable and accurate reference values for FE NO are needed for both non-smoking and current smoking adults in the clinical setting. The present study was performed to establish reference adult FE NO values among never-smokers, former smokers and current smokers. FE NO was measured in 5265 subjects aged 25-75 years in a general-population study, using a chemiluminescence (Niox ™) analyser according to the guidelines of the American Thoracic Society and the European Respiratory Society. Atopy was based on the presence of immunoglobulin E (IgE) antibodies to common inhalant allergens (measured using Phadiatop® test). Spirometry without bronchodilation was performed and forced vital capacity (FVC), forced expired volume in 1 s (FEV 1 ) and the ratio of FEV 1 to FVC values were obtained. After excluding subjects with asthma, chronic bronchitis, spirometric airway obstruction and current cold, 3378 subjects remained. Equations for predictions of FE NO values were modelled using nonparametric regression models. FE NO levels were similar in never-smokers and former smokers, and these two groups were therefore merged into a group termed "non-smokers". Reference equations, including the 5th and 95th percentiles, were generated for female and male non-smokers, based on age, height and atopy. Regression models for current smokers were unstable. Hence, the proposed reference values for current smokers are based on the univariate distribution of FE NO and fixed cut-off limits. Reference values for FE NO among respiratory healthy non-smokers should be outlined stratified for gender using individual reference values. For current smokers separate cut-off limits are proposed.

  18. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  19. Exhaled nitric oxide in spray painters exposed to isocyanates : Effect modification by atopy and smoking

    NARCIS (Netherlands)

    Jonaid, Badri Sadat; Pronk, Anjoeka; Doekes, Gert; Heederik, Dick

    2014-01-01

    Background: Isocyanate asthma is one of the most frequently identified forms of occupational asthma in industrialised countries. The underlying mechanisms have not been clarified. There is only limited information about the relationship between exhaled nitric oxide (eNO) and occupational exposure to

  20. Exhaled nitric oxide in spray painters exposed to isocyanates: Effect modification by atopy and smoking

    NARCIS (Netherlands)

    Jonaid, B.S.; Pronk, A.; Doekes, G.; Heederik, D.

    2014-01-01

    Background: Isocyanate asthma is one of the most frequently identified forms of occupational asthma in industrialised countries. The underlying mechanisms have not been clarified. There is only limited information about the relationship between exhaled nitric oxide (eNO) and occupational exposure to

  1. Reduction in exhaled nitric oxide tracks improved patient inhaler compliance in difficult asthma-a case study.

    Science.gov (United States)

    Hunt, Eoin; Flynn, Deirdre; MacHale, Elaine; Costello, Richard W; Murphy, Desmond M

    2017-12-26

    Exhaled nitric oxide is believed be a useful surrogate for airways inflammation while non-adherence with therapy is known to be associated with worsening of asthma control. We present the case of a 49-year-old female with steroid-dependent asthma and an exacerbation rate of >20/year. She was enrolled in a 3-month-long prospective study using a validated diagnostic inhaler device that provided objective evidence of inhaler compliance. Fractional exhaled nitric oxide (FeNO), peak expiratory flow rates, asthma control questionnaires were measured throughout the study period. Peripheral eosinophil count was obtained prior to the study, during the study, and immediately afterwards. Improvement in compliance at the end of the study led to significant improvements in lung function peak expiratory flow rate (PEFR), and objective scores of asthma. There was an observed improvement in PEFR after 4 weeks, with an associated decrease in FeNO from 92 to 9 ppb that plateaued over the remainder of the study. Her eosinophil count was 0.79 × 10 9 /litre prior to starting in the study, 0.37 × 10 9 /litre after 2 months, and 0.1 × 10 9 /litre at the end of the study. We believe that this is the first case study to objectively prove that improvements in compliance can lead to dramatic reductions in the overall inflammatory airway response and in particular that improvements in patient compliance are mirrored by marked reduction in FeNO levels. These changes occurred in tandem with an observed clinical improvement in our patient.

  2. Importance of fractional exhaled nitric oxide in the differentiation of asthma-COPD overlap syndrome, asthma, and COPD.

    Science.gov (United States)

    Chen, Feng-Jia; Huang, Xin-Yan; Liu, Yang-Li; Lin, Geng-Peng; Xie, Can-Mao

    2016-01-01

    Fractional exhaled nitric oxide (FeNO) is an easy, sensitive, reproducible, and noninvasive marker of eosinophilic airway inflammation. Accordingly, FeNO is extensively used to diagnose and manage asthma. Patients with COPD who share some of the features of asthma have a condition called asthma-COPD overlap syndrome (ACOS). The feasibility of using FeNO to differentiate ACOS patients from asthma and COPD patients remains unclear. From February 2013 to May 2016, patients suspected with asthma and COPD through physician's opinion were subjected to FeNO measurement, pulmonary function test (PFT), and bronchial hyperresponsiveness or bronchodilator test. Patients were divided into asthma alone group, COPD alone group, and ACOS group according to a clinical history, PFT values, and bronchial hyperresponsiveness or bronchodilator test. Receiver operating characteristic (ROC) curves were obtained to elucidate the clinical functions of FeNO in diagnosing ACOS. The optimal operating point was also determined. A total of 689 patients were enrolled in this study: 500 had asthma, 132 had COPD, and 57 had ACOS. The FeNO value in patients with ACOS was 27 (21.5) parts per billion (ppb; median [interquartile range]), which was significantly higher than that in the COPD group (18 [11] ppb). The area under the ROC curve was estimated to be 0.783 for FeNO. Results also revealed an optimal cutoff value of >22.5 ppb FeNO for differentiating ACOS from COPD patients (sensitivity 70%, specificity 75%). FeNO measurement is an easy, noninvasive, and sensitive method for differentiating ACOS from COPD. This technique is a new perspective for the management of COPD patients.

  3. Leukotrienes in Exhaled Breath Condensate and Fractional Exhaled Nitric Oxide in Workers Exposed to TiO2 Nanoparticles.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Felclová, Z.; Vlčková, Š.; Komarc, M.; Navrátil, Tomáš; Schwarz, Jaroslav; Zíková, Naděžda; Makeš, Otakar; Syslová, K.; Běláček, J.; Zakharov, S.

    2016-01-01

    Roč. 10, č. 3 (2016), s. 036004 ISSN 1752-7155 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : nanoparticles * TiO2 * exhaled breath condensate Subject RIV: CF - Physical ; Theoretical Chemistry; CG - Electrochemistry (UFCH-W) Impact factor: 4.318, year: 2016

  4. Nasal nitric oxide is associated with exhaled NO, bronchial responsiveness and poor asthma control.

    Science.gov (United States)

    Krantz, C; Janson, C; Borres, M P; Nordvall, L; Alving, K; Malinovschi, A

    2014-06-01

    The fraction of exhaled nitric oxide (FeNO) is an established marker of airway inflammation in asthma. Nasal nitric oxide (nNO) has initially been regarded as a promising marker of inflammation of nasal mucosa. However, due to its dual origins, paranasal sinuses and nasal mucosa, the clinical use of nNO is controversial. There is an inflammatory link between inflammation in the upper and lower airways within the united airways' paradigm, but the study of the clinical value of nNO in asthma has been limited. The objective of this study is to analyse nNO in asthmatics and its relationship to FeNO, bronchial hyperresponsiveness, allergic sensitization and asthma control. A total of 371 children and young adults from an asthma cohort were included in this study, which performed measurements of nNO (through aspiration at 5 mL s(-1)), FeNO, bronchial responsiveness to methacholine, blood eosinophil count (B-Eos) and IgE sensitization. The asthma control test (ACT) and a questionnaire regarding medical treatment, symptoms of asthma, rhinitis and chronic rhinosinusitis were completed by all subjects. An association was found between higher nNO levels and increased bronchial responsiveness (p < 0.001), FeNO (p < 0.001) and B-Eos (p = 0.002). Sensitization to furry animals related to higher levels of nNO (p < 0.001). Subjects with poorly controlled asthma (ACT < 15) had lower levels of nNO than subjects with a higher ACT score (619 ± 278 ppb, versus 807 ± 274 ppb, p = 0.002). Loss of smell showed the strongest association with lower nNO levels among the upper airway symptoms recorded. In patients with asthma, nNO was positively correlated with exhaled NO, bronchial responsiveness and asthma control. This study suggests clinical utility of nNO in subjects with asthma, but in order to get better understanding of the nNO determinants, simultaneous mapping of upper airway comorbidities by clinical examination is appropriate.

  5. Obesity disproportionately impacts lung volumes, airflow and exhaled nitric oxide in children.

    Science.gov (United States)

    Yao, Tsung-Chieh; Tsai, Hui-Ju; Chang, Su-Wei; Chung, Ren-Hua; Hsu, Jing-Ya; Tsai, Ming-Han; Liao, Sui-Ling; Hua, Man-Chin; Lai, Shen-Hao; Chen, Li-Chen; Yeh, Kuo-Wei; Tseng, Yu-Lun; Lin, Wan-Chen; Chang, Su-Ching; Huang, Jing-Long

    2017-01-01

    The current literature focusing on the effect of obesity and overweight on lung function and fraction of exhaled nitric oxide (FeNO) in children, particularly among healthy children of non-European descent, remains controversial. Furthermore, whether the relationship of obesity and overweight with lung function and FeNO in children is modified by atopy is unclear. The objective of this study was to examine the effect of excess weight on lung function parameters and FeNO among Asian children, with a particular focus on exploring the potential effect modification by atopy. We investigated the effect of excess weight on lung function and FeNO in a population sample of 1,717 children aged 5 to 18 years and explored the potential modifying effect of atopy. There were positive associations of body mass index (BMI) z-score with forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75% (FEF25-75) (all Pchildren from the general population, independent of atopic status. Excess weight inversely affects FeNO in atopic but not in non-atopic children.

  6. Spirometry effects on conventional and multiple flow exhaled nitric oxide in children.

    Science.gov (United States)

    Eckel, Sandrah P; Linn, William S; Salam, Muhammad T; Bastain, Theresa M; Zhang, Yue; Rappaport, Edward B; Liu, Meng; Berhane, Kiros

    2015-03-01

    Clinical and research settings often require sequencing multiple respiratory tests in a brief visit. Guidelines recommend measuring the concentration of exhaled nitric oxide (FeNO) before spirometry, but evidence for a spirometry carryover effect on FeNO is mixed. Only one study has investigated spirometry carryover effects on multiple flow FeNO analysis. The objective of this study was to evaluate evidence for carryover effects of recent spirometry on three exhaled NO summary measures: FeNO at 50 ml/s, airway wall NO flux [J'awNO] and alveolar NO concentration [CANO] in a population-based sample of schoolchildren. Participants were 1146 children (191 with asthma), ages 12-15, from the Southern California Children's Health Study who performed spirometry and multiple flow FeNO on the same day. Approximately, half the children performed spirometry first. Multiple linear regression was used to estimate differences in exhaled NO summary measures associated with recent spirometry testing, adjusting for potential confounders. In the population-based sample, we found no evidence of spirometry carryover effects. However, for children with asthma, there was a suggestion that exhaled NO summary measures assessed ≤6 min after spirometry were lower (FeNO: 25.8% lower, 95% CI: -6.2%, 48.2%; J'awNO: 15.1% lower 95% CI: -26.5%, 43.0%; and CANO 0.43 parts per billion lower, 95% CI: -0.12, 0.98). In clinical settings, it is prudent to assess multiple flow FeNO before spirometry. In studies of healthy subjects, it may not be necessary to assess FeNO first.

  7. Environmental factors associated with baseline and serial changes in fractional exhaled nitric oxide (FeNO) in spice mill workers.

    Science.gov (United States)

    Van der Walt, Anita; Baatjies, Roslynn; Singh, Tanusha; Jeebhay, Mohamed F

    2016-09-01

    This study evaluated the determinants of high fractional exhaled nitric oxide (FeNO; >50 ppb) and serial changes in FeNO over a 24-hour period in spice mill workers at risk of work-related allergic respiratory disease and asthma. A cross-sectional study of 150 workers used European Community Respiratory Health Survey (ECRHS) questionnaires, Phadiatop, serum-specific IgE (garlic, chilli pepper, wheat; Phadia, ImmunoCAP), spirometry and FeNO. A hand-held portable nitric oxide sampling device (NIOX MINO, Aerocrine AB) measured FeNO before and after the 8-hour shift and after 24 hours from baseline. The mean age of workers was 33 years; 71% were male, 46% current smokers and 45% atopic. Among workers with garlic sensitisation, 13% were monosensitised and 6% were co-sensitised to chilli pepper. Baseline preshift FeNO geometric mean (GM=14.9 ppb) was similar to the mean change across shift (GM=15.4 ppb) and across the 24-hour period (GM=15.8 ppb). In multivariate linear models, smoking (β=-0.507) and atopy (β=0.433) were strongly associated with FeNO. High FeNO (>50 ppb) was significantly associated with asthma-like symptoms due to spice dust (OR=5.38, CI 1.01 to 28.95). Sensitisation to chilli pepper was more strongly correlated with FeNO (r=0.32) and FeNO>50 ppb (OR=17.04, p=0.005) than garlic. FeNO increase (>12%) across 24 hours demonstrated a strong association with elevated exposures to spice dust particulate (OR=3.77, CI 1.01 to 14.24). This study suggests that chilli pepper sensitisation is associated with high FeNO (>50 ppb), more strongly compared with garlic, despite the low prevalence of sensitisation to chilli. Elevated inhalant spice dust particulate is associated with a delayed elevation of FeNO across the 24-hour period. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Fractional exhaled nitric oxide and multiple breath nitrogen washout in preschool healthy and asthmatic children

    DEFF Research Database (Denmark)

    Vilmann, Lea; Buchvald, Frederik; Green, Kent

    2017-01-01

    Introduction Objectively assessing pulmonary disease is challenging in preschool children with asthma. We evaluated the feasibility of measuring fractional exhaled nitrogen oxide (FeNO) and multiple breath nitrogen washout (N2MBW) in children. We compared their capacities for discriminating between...... children with asthma and healthy controls. Methods We measured FeNO and N2MBW-derived indices of lung clearance (LCI2.5) and conductive and acinar ventilation heterogeneity (Scond and Sacin) in 65 preschool children; 35 with physician-diagnosed asthma and 30 healthy. FeNO was measured with a portable.......023), but similar FeNO, LCI2.5 and Sacinvalues. Conclusion The feasibility of measuring FeNO was highly age-dependent and not applicable in children under age 4. N2MBW was feasible in the majority of preschool children. Scond, but not FeNO, could discriminate between children with asthma and healthy controls....

  9. Utility of serum periostin in combination with exhaled nitric oxide in the management of asthma

    Directory of Open Access Journals (Sweden)

    Tadao Nagasaki

    2017-07-01

    Full Text Available Type-2/eosinophilic inflammation plays a pivotal role in asthma. The identification of severe type-2/eosinophilic asthma is important for improving the management of patients with asthma. Therefore, efforts to develop non-invasive biomarkers for type-2/eosinophilic airway inflammation have been made during this decade. Currently, fraction of exhaled nitric oxide (FeNO and serum periostin levels are considered markers of type-2/eosinophilic inflammation in asthma. However, a single-marker approach has limited the ability to diagnose severe type-2/eosinophilic asthma accurately and predict disease outcomes precisely. The present article reviews the utility of FeNO and serum periostin levels in a single-marker approach and in a multiple-marker approach in identifying patients with severe type-2/eosinophilic asthma. Furthermore, based on a sub-analysis of the Kinki Hokuriku Airway disease Conference (KiHAC, geno-endo-phenotypes of patients were stratified into four groups according to the FeNO and serum periostin levels.

  10. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Baraldi, Eugenio; Carraro, Silvia

    2005-01-01

    to almost 100% from the age of 10 years. The repeatability of 3 approved measurements was 1.6 ppb (95% CI, 1.49-1.64 ppb). CONCLUSION: FE NO in healthy children is below 15 to 25 ppb depending on age and self-reported atopy. Measurement of FE NO by NIOX is simple and safe and has a good repeatability...... NO was measured in healthy subjects of 4 to 17 years according to American Thoracic Society guidelines (single breath online, exhalation flow 50 mL/s) with a chemiluminescence analyzer (NIOX Exhaled Nitric Oxide Monitoring System, Aerocrine, Sweden) in 3 European and 2 US centers. Each child performed 3...... NO in 405 children was 9.7 ppb, and the upper 95% confidence limit was 25.2 ppb. FE NO increased significantly with age, and higher FE NO was seen in children with self-reported rhinitis/conjunctivitis or hay fever. The success rate was age-dependent and improved from 40% in the children 4 years old...

  11. Cost-effectiveness and Budget Impact of Routine Use of Fractional Exhaled Nitric Oxide Monitoring for the Management of Adult Asthma Patients in Spain.

    Science.gov (United States)

    Sabatelli, L; Seppälä, U; Sastre, J; Crater, G

    Fractional exhaled nitric oxide (FeNO) is a marker for type 2 airway inflammation. The objective of this study was to evaluate the cost-effectiveness and budget impact of FeNO monitoring for management of adult asthma in Spain. A cost-effectiveness analysis model was used to evaluate the effect on costs of adding FeNO monitoring to asthma management. Over a 1-year period, the model estimated the incremental cost per quality-adjusted life year and incremental number of exacerbations avoided when FeNO monitoring was added to standard guideline-driven asthma care compared with standard care alone. Univariate and multivariate sensitivity analyses were applied to explore uncertainty in the model. A budget impact model was used to examine the impact of FeNO monitoring on primary care costs across the Spanish health system. The results showed that adding FeNO to standard asthma care saved €62.53 per patient-year in the adult population and improved quality-adjusted life years by 0.026 per patient-year. The budget impact analysis revealed a potential net yearly saving of €129 million if FeNO monitoring had been used in primary care settings in Spain. The present economic model shows that adding FeNO to the treatment algorithm can considerably reduce costs and improve quality of life when used to manage asthma in combination with current treatment guidelines.

  12. Exhaled nitric oxide levels in school children in relation to IgE sensitisation and window pane condensation.

    Science.gov (United States)

    Janson, Christer; Kalm-Stephens, Pia; Foucard, Tony; Norbäck, Dan; Alving, Kjell; Nordvall, S Lennart

    2005-08-01

    A positive relation between exhaled nitric oxide (NO) levels and allergen exposure has been found in some studies whereas there is less information on how non-allergen environmental factors influences exhaled NO. To study the relationship between exhaled NO levels in schoolchildren in relation to IgE sensitisation and allergenic and non-allergenic environmental factors. This study comprised 374 schoolchildren (13-14 years of age) who performed exhaled NO-measurements and skin prick tests. Exposure to allergens, respiratory infections, environmental tobacco smoke and home window pane condensation, the latter an indicator of high humidity and poor ventilation was evaluated through questionnaires. In IgE-sensitised children sensitisation to pets was a more important determinant of exhaled NO than sensitisation to pollen. Higher NO levels were found in cat-sensitised children with a cat or other furred pets at home compared to cat-sensitised children without pets (geometric mean, 24.0 vs. 13.9 ppb, P=0.03). Significantly higher exhaled NO levels were found in non-sensitised children that reported having a cold (5.7 vs. 3.8 ppb, P<0.001) or lived in homes with window pane condensation (7.1 vs. 4.4 ppb, P=0.01) than in non-sensitised children without a cold and window pane condensation, respectively. These associations were not found in children that were sensitised to inhalation allergens. Allergen exposure seems to be the most important determinant for exhaled NO levels in IgE-sensitised children whereas in non-sensitised children NO levels were associated with respiratory infections and home window pane condensation.

  13. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  14. Exhaled and nasal nitric oxide in chronic rhinosinusitis patients with nasal polyps in primary care

    DEFF Research Database (Denmark)

    Frendø, M; Håkansson, K; Schwer, S

    2018-01-01

    BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder associated with lower airway disease. However, only few studies of CRSwNP from outside secondary/tertiary care centres have been published. We recently reported an asthma frequency of 44% and 65...... patients. Compared with controls, a high level of exhaled NO was significantly more prevalent in CRSwNP irrespective of asthma-status. Nasal NO was significantly lower in patients with CRSwNP compared with controls. CONCLUSION: Subclinical eosinophilic lower airway inflammation is common in CRSwNP......% in primary and secondary care patients respectively. Therefore, we hypothesise that inflammation of the lower airways could be present in all CRSwNP patients, even without asthma. Here, we assessed the degree of lower and upper airway inflammation using exhaled and nasal nitric oxide (NO) in primary care...

  15. Genetic influence on the relation between exhaled nitric oxide and pulse wave reflection.

    Science.gov (United States)

    Tarnoki, David Laszlo; Tarnoki, Adam Domonkos; Medda, Emanuela; Littvay, Levente; Lazar, Zsofia; Toccaceli, Virgilia; Fagnani, Corrado; Stazi, Maria Antonietta; Nisticó, Lorenza; Brescianini, Sonia; Penna, Luana; Lucatelli, Pierleone; Boatta, Emanuele; Zini, Chiara; Fanelli, Fabrizio; Baracchini, Claudio; Meneghetti, Giorgio; Koller, Akos; Osztovits, Janos; Jermendy, Gyorgy; Preda, Istvan; Kiss, Robert Gabor; Karlinger, Kinga; Lannert, Agnes; Horvath, Tamas; Schillaci, Giuseppe; Molnar, Andrea Agnes; Garami, Zsolt; Berczi, Viktor; Horvath, Ildiko

    2013-06-01

    Nitric oxide has an important role in the development of the structure and function of the airways and vessel walls. Fractional exhaled nitric oxide (FE(NO)) is inversely related to the markers and risk factors of atherosclerosis. We aimed to estimate the relative contribution of genes and shared and non-shared environmental influences to variations and covariation of FE(NO) levels and the marker of elasticity function of arteries. Adult Caucasian twin pairs (n = 117) were recruited in Hungary, Italy and in the United States (83 monozygotic and 34 dizygotic pairs; age: 48 ± 16 SD years). FE(NO) was measured by an electrochemical sensor-based device. Pulse wave reflection (aortic augmentation index, Aix(ao)) was determined by an oscillometric method (Arteriograph). A bivariate Cholesky decomposition model was applied to investigate whether the heritabilities of FE(NO) and Aix(ao) were linked. Genetic effects accounted for 58% (95% confidence interval (CI): 42%, 71%) of the variation in FE(NO) with the remaining 42% (95%CI: 29%, 58%) due to non-shared environmental influences. A modest negative correlation was observed between FE(NO) and Aix(ao) (r = -0.17; 95%CI:-0.32,-0.02). FE(NO) showed a significant negative genetic correlation with Aix(ao) (r(g) = -0.25; 95%CI:-0.46,-0.02). Thus in humans, variations in FE(NO) are explained both by genetic and non-shared environmental effects. Covariance between FE(NO) and Aix(ao) is explained entirely by shared genetic factors. This is consistent with an overlap among the sets of genes involved in the expression of these phenotypes and provides a basis for further genetic studies on cardiovascular and respiratory diseases.

  16. Exhaled nitric oxide - circadian variations in healthy subjects

    Directory of Open Access Journals (Sweden)

    Antosova M

    2009-12-01

    Full Text Available Abstract Objective Exhaled nitric oxide (eNO has been suggested as a marker of airway inflammatory diseases. The level of eNO is influenced by many various factor including age, sex, menstrual cycle, exercise, food, drugs, etc. The aim of our study was to investigate a potential influence of circadian variation on eNO level in healthy subjects. Methods Measurements were performed in 44 women and 10 men, non-smokers, without respiratory tract infection in last 2 weeks. The eNO was detected at 4-hour intervals from 6 a.m. to 10 p.m. using an NIOX analyzer. We followed the ATS/ERS guidelines for eNO measurement and analysis. Results Peak of eNO levels were observed at 10 a.m. (11.1 ± 7.2 ppb, the lowest value was detected at 10 p.m. (10.0 ± 5.8 ppb. The difference was statistically significant (paired t-test, P Conclusions The daily variations in eNO, with the peak in the morning hours, could be of importance in clinical practice regarding the choice of optimal time for monitoring eNO in patients with respiratory disease.

  17. Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide.

    Science.gov (United States)

    Hu, Ying; Chen, Zhiqiang; Jin, Ling; Wang, Mei; Liao, Wei

    2017-11-01

    The tryptophan metabolic pathway mediated by indolamine 2,3-dioxygenase (IDO), a tryptophan-degrading enzyme, plays an important role in controlling the development of allergic inflammation. The fractional concentration of exhaled nitric oxide (FeNO) is closely associated with the allergic state and is extensively used for the clinical evaluation of airway allergic inflammation. Clinical trials have rarely assessed the expression of IDO in childhood allergic asthma and its correlation with FeNO. To evaluate the IDO level in children with childhood allergic asthma and the relation between IDO levels and FeNO. Thirty children older than 5 years who were diagnosed the first time with allergic asthma were selected from the pediatric outpatient department. Another 30 healthy children were selected as controls. The subjects were evaluated by complete medical history, pulmonary function test results, skin prick test reaction, FeNO concentration test result, eosinophil count, and a disease severity score. Peripheral venous blood and induced sputum were obtained to measure the concentrations of IDO metabolites (ie, tryptophan and kynurenine). The IDO levels in the peripheral blood and induced sputum were significantly lower in patients with childhood allergic asthma than in children in the control group. The IDO level was negatively correlated with FeNO but was not significantly correlated with age, sex, blood eosinophil count, or disease severity scale. The expression of IDO was significantly lower in childhood allergic asthma, particularly in children with high FeNO levels. There was no significant relation between IDO levels and asthma severity. Chinese Clinical Trial Register (www.chictr.org.cn) Identifier: ChiCTR-COC-15006080. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Nitric oxide production in the exhaled air of patients with pulmonary tuberculosis in relation to HIV co-infection

    Directory of Open Access Journals (Sweden)

    Melese Endalkachew

    2008-10-01

    Full Text Available Abstract Background Nitric oxide (NO is essential for host defense in rodents, but the role of NO during tuberculosis (TB in man remains controversial. However, earlier observations that arginine supplementation facilitates anti-TB treatment, supports the hypothesis that NO is important in the host defense against TB. Local production of NO measured in fractional exhaled air (FeNO in TB patients with and without HIV co-infection has not been reported previously. Thus, our aim was to investigate levels of FeNO in relation to clinical symptoms and urinary NO metabolites (uNO. Methods In a cross sectional study, FeNO and uNO were measured and clinical symptoms, chest x-ray, together with serum levels of arginine, tumor necrosis factor alpha (TNF-alpha and interleukin 12 (IL-12 were evaluated in sputum smear positive TB patients (HIV+/TB, n = 36, HIV-/TB, n = 59, their household contacts (n = 17 and blood donors (n = 46 from Gondar University Hospital, Ethiopia. Results The proportion of HIV-/TB patients with an increased FeNO level (> 25 ppb was significantly higher as compared to HIV+/TB patients, but HIV+/TB patients had significantly higher uNO than HIV-/TB patients. HIV+ and HIV-/TB patients both had lower levels of FeNO compared to blood donors and household contacts. The highest levels of both uNO and FeNO were found in household contacts. Less advanced findings on chest x-ray, as well as higher sedimentation rate were observed in HIV+/TB patients as compared to HIV-/TB patients. However, no significant correlation was found between FeNO and uNO, chest x-ray grading, clinical symptoms, TNF-alpha, IL-12, arginine levels or sedimentation rate. Conclusion In both HIV negative and HIV co infected TB patients, low levels of exhaled NO compared to blood donors and household were observed. Future studies are needed to confirm whether low levels of exhaled NO could be a risk factor in acquiring TB and the relative importance of NO in human TB.

  19. Exhaled nitric oxide levels in asthma: Personal best versus reference values.

    Science.gov (United States)

    Smith, Andrew D; Cowan, Jan O; Taylor, D Robin

    2009-10-01

    Factors affecting the fraction of nitric oxide in exhaled air (FE(NO)) are multiple. Interpreting values when assessing airways disease may be problematic. Clinically optimum levels have not been defined. We aimed to establish the relationship between predicted values for FE(NO) obtained from equations by Olin et al, Travers et al, and Dressel et al, and normalized levels after oral prednisone. We also compared postprednisone FE(NO) levels with those obtained during optimized treatment with inhaled fluticasone. Data were obtained before and after a trial of oral prednisone (30mg/d for 14 days), and also from a previously published study in which patients had their dose of inhaled corticosteroid adjusted using either FE(NO) or symptoms/lung function to optimize treatment. Seventy-three patients completed the study. The geometric mean FE(NO) after prednisone (17.7 parts per billion [ppb]; 95% CI, 15.5-20.2) was significantly lower than mean FE(NO) at the optimized fluticasone dose (20.2 ppb; 95% CI, 17.1-23.8; P=.04) and at loss of control (27.6 ppb; 95% CI, 22.8-33.4; P values of Olin et al (16.8 ppb, 95% CI, 16.0-17.5; P=.44), but were significantly lower than values of Travers et al (predicted, 21.5 ppb; 95% CI, 20.9-22.2; P=.005) and Dressel et al (predicted, 27.8 ppb; 95% CI, 26.7-28.9; P values from the reference equation by Olin et al. However, at optimized doses of inhaled corticosteroid, although FE(NO) levels were higher than predicted, asthma was well controlled. Targeting FE(NO) on reference values is not justified.

  20. Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices.

    Science.gov (United States)

    Tossa, Paul; Paris, Christophe; Zmirou-Navier, Denis; Demange, Valérie; Acouetey, Dovi-Stéphanie; Michaely, Jean-Pierre; Bohadana, Abraham

    2010-09-15

    Airway inflammation is a hallmark of asthma. Several studies have validated the use of the fractional concentration of exhaled nitric oxide (Fe(NO)) as a surrogate marker of airway inflammation in asthma. We examined how the change in Fe(NO) levels, since the beginning of occupational exposure, could be associated with the incidence of bronchial hyperresponsiveness (BHR) among baker, pastry maker, and hairdresser apprentices during their 2-year training. A standardized questionnaire was administered; skin prick tests for common and specific occupational allergens were done; methacholine challenge and measurement of Fe(NO) were performed 6, 12, and 15 months after the first examination. Of 441 apprentices initially included, 351 completed the study. The increase in Fe(NO), since the beginning of exposure, was associated with the incidence of BHR (odds ratio, 2.00 [95% confidence interval, 1.21-3.32] per unit increase in log parts per billion) both in atopic and nonatopic subjects. The average increase in Fe(NO) was similar in atopic and nonatopic subjects and was unrelated to past or current smoking habits, sex, or training track. Atopy in bakers/pastry makers and sensitization to alkaline persulfates in hairdressers were also independently associated with the incidence of BHR. BHR occurred sooner among bakers/pastry makers than among hairdressers, but its incidence leveled off later. Our results suggest that measurement of Fe(NO), a simple and reproducible test, could be useful in the screening of BHR in workers newly exposed to agents known to cause occupational asthma.

  1. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  2. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide

    International Nuclear Information System (INIS)

    Marini, Sara; Buonanno, Giorgio; Stabile, Luca; Ficco, Giorgio

    2014-01-01

    The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10 9 , 5.1 ± 0.1 × 10 9 , and 3.1 ± 0.6 × 10 9 part. cm −3 for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10 10 , 5.2 × 10 10 and 2.3 × 10 10 particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number concentrations and size distributions

  3. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Sara, E-mail: s.marini@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy); Buonanno, Giorgio [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy); Queensland University of Technology, Brisbane (Australia); Stabile, Luca; Ficco, Giorgio [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy)

    2014-07-01

    The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10{sup 9}, 5.1 ± 0.1 × 10{sup 9}, and 3.1 ± 0.6 × 10{sup 9} part. cm{sup −3} for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10{sup 10}, 5.2 × 10{sup 10} and 2.3 × 10{sup 10} particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number

  4. Impact of chorioamnionitis on exhaled nitric oxide and endotracheal aspirate levels of nitrites-nitrates and interleukin-8 in mechanically ventilated preterm neonates.

    Science.gov (United States)

    Figueras-Aloy, Josep; Salvia-Roiges, Maria Dolors; Rodriguez-Miguélez, J Manuel; Miracle-Echegoyen, Xavier; Botet-Mussons, Francesc; Marín-Soria, J Luís; Carbonell-Estrany, Xavier

    2011-06-01

    To assess the influence of maternal chorioamnionitis on early exhaled nitric oxide (NO) and levels of nitrites-nitrates and interleukin (IL)-8 in endotracheal aspirate fluid in mechanically ventilated preterm neonates. Cross-sectional study. PATIENT-SUBJECT SELECTION: Between September 2007 and August 2009, 54 mechanically ventilated preterm neonates were included. Patients were divided into two groups according to the presence or absence of maternal chorioamnionitis, and those without chorioamnionitis (controls) were further stratified into two subgroups by birth weight nitrates were significantly higher in the chorioamnionitis group than in controls (3.6 vs. 1.07 µmol/L; P = 0.035). Nitrites-nitrates levels were positively correlated with exhaled NO in ppb (ρ = 0.367; P = 0.006). Minute exhaled endogenous NO was significantly higher in the chorioamnionitis group (0.48 vs. 0.27 nl/min/kg; P = 0.021). In mechanically ventilated preterm infants weighing nitrates in endotracheal aspirate fluid. Copyright © 2011 Wiley-Liss, Inc.

  5. AIR POLLUTION INFLUENCES ON EXHALED NITRIC OXIDE AMONG PEOPLE WITH TYPE II DIABETES.

    Science.gov (United States)

    Peng, Cheng; Luttmann-Gibson, Heike; Zanobetti, Antonella; Cohen, Allison; De Souza, Celine; Coull, Brent A; Horton, Edward S; Schwartz, Joel; Koutrakis, Petros; Gold, Diane R

    2016-04-01

    In a population with type 2 diabetes mellitus (T2DM), we examined associations of short-term air pollutant exposures with pulmonary inflammation, measured as fraction of exhaled pulmonary nitric oxide (FeNO). Sixty-nine Boston Metropolitan residents with T2DM completed up to 5 bi-weekly visits with 321 offline FeNO measurements. We measured ambient concentrations of particle mass, number and components at our stationary central site. Ambient concentrations of gaseous air pollutants were obtained from state monitors. We used linear models with fixed effects for participants, adjusting for 24-hour mean temperature, 24-hour mean water vapor pressure, season, and scrubbed room NO the day of the visit, to estimate associations between FeNO and interquartile range increases in exposure. Interquartile increases in the 6-hour averages of black carbon (BC) (0.5 μg/m 3 ) and particle number (PN) (1,000 particles/cm 3 ) were associated with increases in FeNO of 3.84% (95% CI 0.60% to 7.18%) and 9.86 % (95% CI 3.59% to 16.52%), respectively. We also found significant associations of increases in FeNO with increases in 24-hour moving averages of BC, PN and nitrogen oxides (NOx). Recent studies have focused on FeNO as a marker for eosinophilic pulmonary inflammation in asthmatic populations. This study adds support to the relevance of FeNO as a marker for pulmonary inflammation in diabetic populations, whose underlying chronic inflammatory status is likely to be related to innate immunity and proinflammatory adipokines.

  6. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    Science.gov (United States)

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  7. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    Directory of Open Access Journals (Sweden)

    Janson C

    2006-04-01

    Full Text Available Abstract Background Exhaled nitric oxide (NO measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO was compared with a standard stationary chemiluminescence unit (NIOX. Methods A total of 71 subjects (6–60 years; 36 males, both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots, measurement feasibility (success rate with 6 attempts and repeatability (intrasubject SD. Results Success rate was high (≥ 84% in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb. When comparing the mean of three measurements (n = 61, the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO and the stationary system (NIOX are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO is used. The hand-held device shows good repeatability, and it

  8. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    Science.gov (United States)

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children

  9. Exhaled nitric oxide and urinary EPX levels in infants: a pilot study

    Directory of Open Access Journals (Sweden)

    Olin Anna-Carin

    2011-05-01

    Full Text Available Abstract Background Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO and urinary eosinophilic protein X (uEPX are a two such interesting markers. Objective To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA. Methods Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used. Results FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p Conclusion The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.

  10. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Juliet L Kroll

    Full Text Available Nitric oxide (NO plays an important role in the airways' innate immune response, and the fraction of exhaled NO at a flow rate of 50mL per second (FENO50 has been utilized to capture NO. Deficits in NO are linked to loss of bronchoprotective effects in airway challenges and predict symptoms of respiratory infection. While beetroot juice supplements have been proposed to enhance exercise performance by increasing dietary nitrate consumption, few studies have examined the impact of beetroot juice or nitrate supplementation on airway NO in contexts beyond an exercise challenge, which we know influences FENO50.We therefore examined the influence of a beetroot juice supplement on FENO50 in healthy males and females (n = 38 during periods of rest and in normoxic conditions. FENO50, heart rate, blood pressure, and state affect were measured at baseline, 45 minutes, and 90 minutes following ingestion of 70ml beetroot juice (6.5 mmol nitrate. Identical procedures were followed with ingestion of 70ml of water on a control day.After beetroot consumption, average values of the natural log of FENO50 (lnFENO50 increased by 21.3% (Cohen's d = 1.54, p < .001 45 minutes after consumption and by 20.3% (Cohen's d = 1.45, p < .001 90 min after consumption. On the other hand, only very small increases in FENO50 were observed after consumption of the control liquid (less than 1% increase. A small subset (n = 4 of participants completed an extended protocol lasting over 3 hours, where elevated levels of FENO50 persisted. No significant changes in cardiovascular measures were observed with this small single dose of beetroot juice.As NO serves a key role in innate immunity, future research is needed to explore the potential clinical utility of beetroot and dietary nitrate to elevate FENO50 and prevent respiratory infection.

  11. Fractionated breath condensate sampling: H2O2 concentrations of the alveolar fraction may be related to asthma control in children

    Directory of Open Access Journals (Sweden)

    Trischler Jordis

    2012-02-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airways but recent studies have shown that alveoli are also subject to pathophysiological changes. This study was undertaken to compare hydrogen peroxide (H2O2 concentrations in different parts of the lung using a new technique of fractioned breath condensate sampling. Methods In 52 children (9-17 years, 32 asthmatic patients, 20 controls measurements of exhaled nitric oxide (FENO, lung function, H2O2 in exhaled breath condensate (EBC and the asthma control test (ACT were performed. Exhaled breath condensate was collected in two different fractions, representing mainly either the airways or the alveoli. H2O2 was analysed in the airway and alveolar fractions and compared to clinical parameters. Results The exhaled H2O2 concentration was significantly higher in the airway fraction than in the alveolar fraction comparing each single pair (p = 0.003, 0.032 and 0.040 for the whole study group, the asthmatic group and the control group, respectively. Asthma control, measured by the asthma control test (ACT, correlated significantly with the H2O2 concentrations in the alveolar fraction (r = 0.606, p = 0.004 but not with those in the airway fraction in the group of children above 12 years. FENO values and lung function parameters did not correlate to the H2O2 concentrations of each fraction. Conclusion The new technique of fractionated H2O2 measurement may differentiate H2O2 concentrations in different parts of the lung in asthmatic and control children. H2O2 concentrations of the alveolar fraction may be related to the asthma control test in children.

  12. Investigating fractional exhaled nitric oxide (FeNO) in chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO): a scoping review protocol.

    Science.gov (United States)

    Mostafavi-Pour-Manshadi, Seyed-Mohammad-Yousof; Naderi, Nafiseh; Barrecheguren, Miriam; Dehghan, Abolfazl; Bourbeau, Jean

    2017-12-21

    During the last decade, many articles have been published, including reviews on fractional exhaled nitric oxide (FeNO) use and utility in clinical practice and for monitoring and identifying eosinophilic airway inflammation, especially in asthma, and evaluating corticosteroid responsiveness. However, the exact role of FeNO in patients with chronic obstructive pulmonary disease (COPD) and its ability to distinguish patients with COPD and those having concomitant asthma, that is, asthma-COPD overlap (ACO) is still unclear and needs to be defined. Due to the broad topics of FeNO in chronic airway disease, we undertook a scoping review. The present article describes the protocol of a scoping review of peer-reviewed published literature specific to FeNO in COPD/ACO over the last decade. We used Joanna Briggs Institute Reviewers' Manual scoping review methodology as well as Levac et al 's and Arksey et al 's framework as guides. We searched a variety of databases, including Medline, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Web of Science, and BioSciences Information Service (BIOSIS) on 29 June 2016. Additional studies will be recognised by exploring the reference list of identified eligible studies. Screening of eligible studies will be independently performed by two reviewers and any disagreement will be solved by the third reviewer. We will analyse the gathered data from article bibliographies and abstracts. To investigate the body of published studies regarding the role of FeNO in patients with COPD and its usefulness in the clinical setting, a scoping review can be used as a modern and pioneer model, which does not need ethics approval. By this review, new insights for conducting new research specific to FeNO in COPD/ACO population will emerge. The results of this study will be reported in the scientific meetings and conferences, which aim to provide information to the clinicians, primary care providers and basic

  13. Sick building syndrome (SBS) among office workers in a Malaysian university--Associations with atopy, fractional exhaled nitric oxide (FeNO) and the office environment.

    Science.gov (United States)

    Lim, Fang-Lee; Hashim, Zailina; Md Said, Salmiah; Than, Leslie Thian-Lung; Hashim, Jamal Hisham; Norbäck, Dan

    2015-12-01

    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Exhaled nitric oxide collected with two different mouthpieces: a study in asthmatic patients

    Directory of Open Access Journals (Sweden)

    A.S. Leme

    2002-10-01

    Full Text Available Techniques for collecting exhaled nitric oxide (ENO recommend the use of antibacterial filters of 0.3 µm. The aim of the present study was to compare the measurements of ENO obtained with two different filtering devices. Air samples from 17 asthmatic and 17 non-asthmatic subjects were collected by a recommended off-line technique using two different mouthpieces: 1 the Sievers disposable tool (A under a breathing pressure of 18 cmH2O, and 2 a mouthpiece containing a HEPA filter (B under a breathing pressure of 12 cmH2O. The nitric oxide samples were collected into an impermeable reservoir bag. Values for ENO were compared using two-way repeated measures ANOVA followed by the Tukey test. Agreement was assessed by Bland-Altman analysis. ENO values obtained with mouthpieces A and B were comparable for asthmatic (mean ± SEM, 42.9 ± 6.9 vs 43.3 ± 6.6 ppb and non-asthmatic (13.3 ± 1.3 vs 13.7 ± 1.1 ppb subjects. There was a significant difference in ENO between asthmatics and non-asthmatics using either mouthpiece A (P<0.001 or B (P<0.001. There was a positive correlation between mouthpiece A and mouthpiece B for both groups. The Bland-Altman limits of agreement were considered to be acceptable. Mouthpiece B was less expensive than A, and these data show that it can be used without compromising the result. Our data confirm reports of higher ENO values in the presence of airway inflammation.

  15. Monitoring asthma control in children with allergies by soft computing of lung function and exhaled nitric oxide.

    Science.gov (United States)

    Pifferi, Massimo; Bush, Andrew; Pioggia, Giovanni; Di Cicco, Maria; Chinellato, Iolanda; Bodini, Alessandro; Macchia, Pierantonio; Boner, Attilio L

    2011-02-01

    Asthma control is emphasized by new guidelines but remains poor in many children. Evaluation of control relies on subjective patient recall and may be overestimated by health-care professionals. This study assessed the value of spirometry and fractional exhaled nitric oxide (FeNO) measurements, used alone or in combination, in models developed by a machine learning approach in the objective classification of asthma control according to Global Initiative for Asthma guidelines and tested the model in a second group of children with asthma. Fifty-three children with persistent atopic asthma underwent two to six evaluations of asthma control, including spirometry and FeNO. Soft computing evaluation was performed by means of artificial neural networks and principal component analysis. The model was then tested in a cross-sectional study in an additional 77 children with allergic asthma. The machine learning method was not able to distinguish different levels of control using either spirometry or FeNO values alone. However, their use in combination modeled by soft computing was able to discriminate levels of asthma control. In particular, the model is able to recognize all children with uncontrolled asthma and correctly identify 99.0% of children with totally controlled asthma. In the cross-sectional study, the model prospectively identified correctly all the uncontrolled children and 79.6% of the controlled children. Soft computing analysis of spirometry and FeNO allows objective categorization of asthma control status.

  16. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  17. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients.

    Science.gov (United States)

    Pasha, M Asghar; Jourd'heuil, David; Jourd'heuil, Francis; Mahon, Lori; Romero, Francisco; Feustel, Paul J; Evans, Mary; Smith, Thomas; Mitchell, Jesse; Gendapodi, Pradeep; Demeyere-Coursey, Kelly C; Townley, Robert G

    2014-01-01

    Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels. This study investigates the effects of omalizumab, when added to an inhaled corticosteroid (ICS) ± long-acting beta-adrenergic agonist (LABA) treatment, on peripheral small airway/alveolar inflammation reflected by FENO measurements at higher flow rates. We hypothesized that compared with placebo, omalizumab would decrease CalvNO levels in asthmatic patients on ICS ± LABA. Forty-two patients with moderate-to-severe asthma were randomly assigned 2:1 to either omalizumab (n = 29) or placebo treatment (n = 13) for 16 weeks. Selection criteria included moderate-to-severe asthmatic patients on an ICS ± LABA, positive skin test to one or more perennial allergen, screening FENO of >13 ppb, and a baseline IgE of 30-700 IU/mL. FENO measured at multiple flow rates was used to calculate CalvNO over the course of 16 weeks. FENO levels decrease with increasing flow rates (p < 0.05 repeated measures ANOVA) but no differences between the placebo and treatment groups in overall CalvNO levels or in the changes of CalvNO with time were found. Omalizumab did not lower the CalvNO, which could have been caused by the initial low CalvNO in this asthmatic population. The model used may not be completely sufficient and/or sensitive enough to detect small changes in CalvNO.

  18. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were...... exposed to 2 commonly occurring indoor air pollutants and to a clean reference condition for 4.5 hours. Assessments of the environment were obtained using questionnaires. The polluted conditions were perceived as worse than the reference condition. After exposure to the two polluted conditions a small...... increase in NO concentration (+2.7% and +7.2%) in exhaled air was observed. After exposure to the reference condition the mean NO concentration was significantly reduced (-14.3%) compared to before exposure. NO in nasal air was unaffected by the exposures. The results indicate an association between...

  19. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  20. Exhaled Nitric Oxide Is Useful in Symptomatic Radioactive Pneumonia: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Jiancheng Li

    2017-01-01

    Full Text Available The aim was to defect the exhaled nitric oxide (eNO prediction value of symptomatic radioactive pneumonia (SRP. 64 cases of lung cancer or esophagus cancer, who had the primary radiotherapy (intensity-modulated radiation therapy, were included from 2015 June to 2016 January. During the following, the patients were divided: the symptomatic radiation pneumonia group (SRP, with the CTCAE v4.0 score > 2 and the asymptomatic radiation pneumonia group (ASRP, with CTCAE v4.0 score ≤ 1. All the patients were measured eNO before and at the end of thoracic radiotherapy and gain the posttherapy eNO value and the eNO ratio (posttherapy eNO value/pretherapy eNO value, then the predictive values of eNO toward SRP were measured using the receiver-operating characteristic (ROC. 17 cases were included in the SRP group and the other 47 were included in the ASRP group. The posttherapy eNO was 29.35 (19~60 bbp versus 20.646 (11~37 (P<0.001, and the ratio was 1.669 (0.61~3.5 versus 0.920 (0.35~1.5 (P<0.01 (symptomatic versus asymptomatic. ROC showed that the cutoff value of SRP was 19.5 bbp (posttherapy eNO, area under concentration-time curve (AUC = 0.879 and 1.305 (eNO ratio, AUC = 0.774, which meant that posttherapy eNO and eNO ratio were useful in finding SRP.

  1. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys?

    Science.gov (United States)

    van Mastrigt, E; de Jongste, J C; Pijnenburg, M W

    2015-07-01

    Current monitoring strategies for respiratory diseases are mainly based on clinical features, lung function and imaging. As airway inflammation is the hallmark of many respiratory diseases in childhood, noninvasive methods to assess the presence and severity of airway inflammation might be helpful in both diagnosing and monitoring paediatric respiratory diseases. At present, the measurement of fractional exhaled nitric oxide is the only noninvasive method available to assess eosinophilic airway inflammation in clinical practice. We aimed to evaluate whether the analysis of volatile organic compounds (VOCs) in exhaled breath (EB) and biomarkers in exhaled breath condensate (EBC) is helpful in diagnosing and monitoring respiratory diseases in children. An extensive literature search was conducted in Medline, Embase and PubMed on the analysis and applications of VOCs in EB and EBC in children. We retrieved 1165 papers, of which nine contained original data on VOCs in EB and 84 on biomarkers in EBC. These were included in this review. We give an overview of the clinical applications in childhood and summarize the methodological issues. Several VOCs in EB and biomarkers in EBC have the potential to distinguish patients from healthy controls and to monitor treatment responses. Lack of standardization of collection methods and analysis techniques hampers the introduction in clinical practice. The measurement of metabolomic profiles may have important advantages over detecting single markers. There is a lack of longitudinal studies and external validation to reveal whether EB and EBC analysis have added value in the diagnostic process and follow-up of children with respiratory diseases. In conclusion, the use of VOCs in EB and biomarkers in EBC as markers of inflammatory airway diseases in children is still a research tool and not validated for clinical use. © 2014 John Wiley & Sons Ltd.

  2. Exhaled nitric oxide measurements in the first 2 years of life: methodological issues, clinical and epidemiological applications

    Directory of Open Access Journals (Sweden)

    de Benedictis Fernando M

    2009-07-01

    Full Text Available Abstract Fractional exhaled nitric oxide (FeNO is a useful tool to diagnose and monitor eosinophilic bronchial inflammation in asthmatic children and adults. In children younger than 2 years of age FeNO has been successfully measured both with the tidal breathing and with the single breath techniques. However, there are a number of methodological issues that need to be addressed in order to increase the reproducibility of the FeNO measurements within and between infants. Indeed, a standardized method to measure FeNO in the first 2 years of life would be extremely useful in order to meaningfully interpret FeNO values in this age group. Several factors related to the measurement conditions have been found to influence FeNO, such as expiratory flow, ambient NO and nasal contamination. Furthermore, the exposure to pre- and postnatal risk factors for respiratory morbidity has been shown to influence FeNO values. Therefore, these factors should always be assessed and their association with FeNO values in the specific study population should be evaluated and, eventually, controlled for. There is evidence consistently suggesting that FeNO is increased in infants with family history of atopy/atopic diseases and in infants with recurrent wheezing. These findings could support the hypothesis that eosinophilic bronchial inflammation is present at an early stage in those infants at increased risk of developing persistent respiratory symptoms and asthma. Furthermore, it has been shown that FeNO measurements could represent a useful tool to assess bronchial inflammation in other airways diseases, such as primary ciliary dyskinesia, bronchopulmonary dysplasia and cystic fibrosis. Further studies are needed in order to improve the reproducibility of the measurements, and large prospective studies are warranted in order to evaluate whether FeNO values measured in the first years of life can predict the future development of asthma or other respiratory diseases.

  3. Postprandial changes in the exhalation of radon from the environment

    International Nuclear Information System (INIS)

    Rundo, J.; Markun, F.; Plondke, N.J.

    1978-01-01

    The exhalation of radon originally inhaled from the home environment and dissolved in body fluids and tissues has been studied serially for periods of several hours in six persons. The observation of a pronounced postprandial peak in the rate of exhalation of radon shows that the similar peak observed in the exhalation of radon produced from radium in vivo results from the flushing of a reservoir in soft tissue and not from a change in the fraction lost from bone

  4. Personal factors affecting thoron exhalation from occupationally acquired thorium body burdens

    International Nuclear Information System (INIS)

    Stebbings, J.H.

    1985-01-01

    Thorium workers with thorium body burdens (primarily thoracic) above 0.7 nCi 224 Ra equivalent are shown to exhale about 15% of thoron produced in vivo, compared to 5% exhaled by subjects with body burdens in the range of 0.4 to 0.7 nCi 224 Ra. There was a false negative correlation between average adult daily cigarettes smoked and thoron exhalation. White blood cell counts that were about 85% of expected were observed in seven subjects exhaling greater than or equal to 100 pCi of thoron above predicted; no other variable examined showed a clear pattern of association. These differences in fractional thoron exhalation, and their consequences, are discussed. 3 references, 4 figures, 8 tables

  5. Comparison of Select Analytes in Exhaled Aerosol from E-Cigarettes with Exhaled Smoke from a Conventional Cigarette and Exhaled Breaths

    Directory of Open Access Journals (Sweden)

    Gerald A. Long

    2014-10-01

    Full Text Available Exhaled aerosols were collected following the use of two leading U.S. commercial electronic cigarettes (e-cigarettes and a conventional cigarette by human subjects and analyzed for phenolics, carbonyls, water, glycerin and nicotine using a vacuum-assisted filter pad capture system. Exhaled breath blanks were determined for each subject prior to each product use and aerosol collection session. Distribution and mass balance of exhaled e-cigarette aerosol composition was greater than 99.9% water and glycerin, and a small amount (<0.06% of nicotine. Total phenolic content in exhaled e-cigarette aerosol was not distinguishable from exhaled breath blanks, while total phenolics in exhaled cigarette smoke were significantly greater than in exhaled e-cigarette aerosol and exhaled breaths, averaging 66 µg/session (range 36 to 117 µg/session. The total carbonyls in exhaled e-cigarette aerosols were also not distinguishable from exhaled breaths or room air blanks. Total carbonyls in exhaled cigarette smoke was significantly greater than in exhaled e-cigarette aerosols, exhaled breath and room air blanks, averaging 242 µg/session (range 136 to 352 µg/session. These results indicate that exhaled e-cigarette aerosol does not increase bystander exposure for phenolics and carbonyls above the levels observed in exhaled breaths of air.

  6. Liquid chromatography/mass spectrometry analysis of exhaled leukotriene B4 in asthmatic children

    Directory of Open Access Journals (Sweden)

    Barnes Peter J

    2005-10-01

    Full Text Available Abstract Background The role of leukotriene (LT B4, a potent inflammatory mediator, in atopic asthmatic and atopic nonasthmatic children is largely unknown. The lack of a gold standard technique for measuring LTB4 in exhaled breath condensate (EBC has hampered its quantitative assessment in this biological fluid. We sought to measure LTB4 in EBC in atopic asthmatic children and atopic nonasthmatic children. Exhaled nitric oxide (NO was measured as an independent marker of airway inflammation. Methods Fifteen healthy children, 20 atopic nonasthmatic children, 25 steroid-naïve atopic asthmatic children, and 22 atopic asthmatic children receiving inhaled corticosteroids were studied. The study design was of cross-sectional type. Exhaled LTB4 concentrations were measured using liquid chromatography/mass spectrometry-mass spectrometry (LC/MS/MS with a triple quadrupole mass spectrometer. Exhaled NO was measured by chemiluminescence with a single breath on-line method. LTB4 values were expressed as the total amount (in pg of eicosanoid expired in the 15-minute breath test. Kruskal-Wallis test was used to compare groups. Results Compared with healthy children [87.5 (82.5–102.5 pg, median and interquartile range], exhaled LTB4 was increased in steroid-naïve atopic asthmatic [255.1 (175.0–314.7 pg, p 4 than steroid-naïve asthmatics [125.0 (25.0–245.0 pg vs 255.1 (175.0–314.7 pg, p Conclusion In contrast to exhaled NO concentrations, exhaled LTB4 values are selectively elevated in steroid-naïve atopic asthmatic children, but not in atopic nonasthmatic children. Although placebo control studies are warranted, inhaled corticosteroids seem to reduce exhaled LTB4 in asthmatic children. LC/MS/MS analysis of exhaled LTB4 might provide a non-invasive, sensitive, and quantitative method for airway inflammation assessment in asthmatic children.

  7. Evaluation of a new simple collection device for sampling of microparticles in exhaled breath.

    Science.gov (United States)

    Seferaj, Sabina; Ullah, Shahid; Tinglev, Åsa; Carlsson, Sten; Winberg, Jesper; Stambeck, Peter; Beck, Olof

    2018-03-12

    The microparticle fraction of exhaled breath is of interest for developing clinical biomarkers. Exhaled particles may contain non-volatile components from all parts of the airway system, formed during normal breathing. This study aimed to evaluate a new, simple sampling device, based on impaction, for collecting microparticles from exhaled breath. Performance of the new device was compared with that of the existing SensAbues membrane filter device. The analytical work used liquid chromatography-tandem mass spectrometry methods. The new device collected three subsamples and these were separately analysed from eight individuals. No difference was observed between the centre position (0.91 ng/sample) and the side positions (1.01 ng/sample) using major phosphatidylcholine (PC) 16:0/16:0 as the analyte. Exhaled breath was collected from eight patients on methadone maintenance treatment. The intra-individual variability in measured methadone concentration between the three collectors was 8.7%. In another experiment using patients on methadone maintenance treatment, the sampling efficiency was compared with an established filter device. Compared to the existing device, the efficiency of the new device was 121% greater for methadone and 1450% greater for DPPC. The data from lipid analysis also indicated that a larger fraction of the collected material was from the distal parts. Finally, a study using an optical particle counter indicated that the device preferentially collects the larger particle fraction. In conclusion, this study demonstrates the usefulness of the new device for collecting non-volatile components from exhaled breath. The performance of the device was superior to the filter device in several aspects.

  8. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-03-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment.

  9. Nitrites and nitrates in exhaled breath condensate in cystic fibrosis: relation to clinical parameters.

    Science.gov (United States)

    Fila, L; Chladek, J; Maly, M; Musil, J

    2013-01-01

    To evaluate correlation of exhaled breath condensate (EBC) nitrite and nitrate concentrations with disease severity in cystic fibrosis (CF) patients. Nitrites and nitrates are products of oxidative metabolism of nitric oxide. Impaired metabolism of nitric oxide plays a role in pathogenesis of CF. EBC was collected from 46 stable CF patients and from 21 healthy controls. EBC concentrations of nitrites and nitrates were correlated with parameters of lung disease and nutritional status and with systemic inflammatory markers. EBC nitrates concentrations in CF patients were lower than in healthy subjects (5.8 vs 14.3 μmol/l, pnitrates concentrations correlate with disease severity in CF patients and are lower than in healthy subjects (Tab. 4, Fig. 1, Ref. 48).

  10. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  11. Carboxyhemoglobin formation secondary to nitric oxide therapy in the setting of interstitial lung disease and pulmonary hypertension.

    Science.gov (United States)

    Ruisi, Phillip; Ruisi, Michael

    2011-01-01

    Carbon monoxide (CO) has been widely recognized as an exogenous poison, although endogenous mechanisms for its formation involve heme-oxygenase (HO) isoforms, more specifically HO-1, in the setting of oxidative stress such as acute respiratory distress syndrome, sepsis, trauma, and nitric oxide use have been studied. In patients with refractory hypoxemia, inhaled nitric oxide (iNO) therapy is used to selectively vasodilate the pulmonary vasculature and improve ventilation-perfusion match. Inhaled nitric oxide is rapidly inactivated on binding to hemoglobin in the formation of nitrosyl- and methemoglobin in the pulmonary vasculature. Hence, inhaled nitric oxide has minimal systemic dissemination. Several experimental design studies involving lab rats have demonstrated increased levels of carboxyhemoglobin and exhaled CO as a result of nitric oxide HO-1 induction.

  12. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    volcanic plumes, and Cd and Tl are enriched relative to the others. Indium is much more abundant in the plume of the hotspot volcano Kilauea than in the Etna plume (probably non-hotspot in character). It may be a useful indicator of the tapping of deep mantle zones, or could aid in the interpretation of reports of Pt group metals in exhalations from hot spot volcanoes. Indium in old glacial ice strata could help assess magnitude and variability of exhalations from hotspot volcanoes in past time. Strong melt-vapor fractionation of the alkali and alkaline earth metals may only be observed in plumes during quiescent degassing of volcanoes; when large amounts of ash or spatter (undifferentiated lava) enter the plume, its alkali and alkaline earth metal composition may approach that of the melt. Ratios among the chalcophile metals may not be much changed by addition of ash, because their concentrations in melt are so small, and masses of them in any plume may remain dominated by transfer across the melt-vapor interface. Radon daughter nuclides give information about state of volcanic activity at time of sampling. The precisely known origins, ultratrace detectability, decay systematics, and wide variations in volatility of these species provide information about residence times, degassing and travel histories, and identities of melt bodies in volcanic systems. ?? 1994.

  13. Radium-226 body burden in U miners by measurement of Rn in exhaled breath.

    Science.gov (United States)

    Srivastava, G K; Raghavayya, M; Kotrappa, P; Somasundaram, S

    1986-02-01

    Uranium miners were made to inhale Rn-free medical O2 and exhale through a 5.2-1 A1 chamber before reporting to work. The chamber was sealed and isolated from the sampling circuit. An electrostatic plate collected the freshly formed Rn-decay products. The subsequent programmed alpha counting of the plate yielded a Rn concentration in the exhaled breath. Assuming that the exhaled breath represents a certain fraction of the Rn produced inside the body, the body burden of 226Ra was calculated. Standardisation of this procedure and the data collected on 310 miners are discussed. The procedure is simple and applicable for routine measurements. The miner needs to be in the laboratory for only 10 min. The system is also portable for field application. For routine use, the minimum detectable concentration is 3.87 Bq X m-3 which corresponds to a body burden of 0.26 kBq in a typical miner, if one assumes the Rn release fraction from the body as 84%. The system offers a more convenient and sensitive alternative to whole-body counting of workers for 226Ra.

  14. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers - Is There a Specific Role for Mast Cells?

    Directory of Open Access Journals (Sweden)

    Yvonne Nussbaumer-Ochsner

    Full Text Available Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath.Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test, measurement of fractional exhaled nitric oxide (FeNO and pH/8-isoprostane in exhaled breath condensate (EBC. Lung tissue sections containing cancer-free large (LA and small airways (SA were stained for inflammatory cells. Mucosal (MCT respectively connective tissue mast cells (MCTC and interleukin-17A (IL-17A expression by mast cells was analysed using a double-staining protocol.The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances. IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39, for the FEV1% pred. (rs= 0.37 and for FEV1/FVC ratio (rs=0.38 with MCT in SA (P<0.05 for all instances. 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44, there was no correlation for pH or FeNO with cellular distribution in SA.Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking-induced lung injury, despite the

  15. The fraction of NO in exhaled air and estimates of alveolar NO in adolescents with asthma: methodological aspects.

    Science.gov (United States)

    Heijkenskjöld-Rentzhog, Charlotte; Alving, Kjell; Kalm-Stephens, Pia; Lundberg, Jon O; Nordvall, Lennart; Malinovschi, Andrei

    2012-10-01

    This study investigated the oral contribution to exhaled NO in young people with asthma and its potential effects on estimated alveolar NO (Calv(NO) ), a proposed marker of inflammation in peripheral airways. Secondary aims were to investigate the effects of various exhalation flow-rates and the feasibility of different proposed adjustments of (Calv(NO) ) for trumpet model and axial diffusion (TMAD). Exhaled NO at flow rates of 50-300 ml/sec, and salivary nitrite was measured before and after antibacterial mouthwash in 29 healthy young people (10-20 years) and 29 with asthma (10-19 years). Calv(NO) was calculated using the slope-intercept model with and without TMAD adjustment. Exhaled NO at 50 ml/sec decreased significantly after mouthwash, to a similar degree in asthmatic and healthy subjects (8.8% vs. 9.8%, P = 0.49). The two groups had similar salivary nitrite levels (56.4 vs. 78.4 µM, P = 0.25). Calv(NO) was not significantly decreased by mouthwash. Calv(NO) levels were similar when flow-rates between 50-200 or 100-300 ml/sec were used (P = 0.34 in asthmatics and P = 0.90 in healthy subjects). A positive association was found between bronchial and alveolar NO in asthmatic subjects and this disappeared after the TMAD-adjustment. Negative TMAD-adjusted Calv(NO) values were found in a minority of the subjects. Young people with and without asthma have similar salivary nitrite levels and oral contributions to exhaled NO and therefore no antibacterial mouthwash is necessary in routine use. TMAD corrections of alveolar NO could be successfully applied in young people with asthma and yielded negative results only in a minority of subjects. Copyright © 2012 Wiley Periodicals, Inc.

  16. Exhalation of radon and thoron from phosphogypsum uses as building material

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1996-01-01

    The radioactive properties of two types of phosphogypsum, were determined. Gypsum plates with different thickness were produced. The 226 Ra and 232 Th concentrations were measured by means of high resolution gamma spectrometry. The results are for type 1 226 Ra: 75 Bq/kg and 232 Th 230 Bq/kg and for type 2 226 Ra: 155 Bq/kg and 232 Th: 160 Bq/kg. The radon ( 222 Rn) exhalation rate was evaluated by closing the plates in airtight barrels and measuring the radon concentration. The exhalation rate of type 1 is 1.2 10-5 Bq/(kg s) and type 2 4.7 10-5 Bq/(kg s). In combination with the 226 Ra concentration an emanating fraction of respectively 7.6% and 14% is obtained. The 222 Rn (thoron) exhalation of the plates was determined by measuring the concentration of the decay products in a chamber of 1 m 3 with normal aerosol concentrations. The exhalation rate was found to be independent of the thickness of the plates, as expected from the short half-life of 220 Rn. Covering the entire surface of the plates with two layers of a common Latex paint decreased the thoron exhalation by a factor of 10 to 20. The laboratory results for the radon and thoron exhalation were converted using realistic assumptions for a room. The contribution of phosphogypsum to the average radon concentration in a room is found to be about 1 Bq/m 3 for type 1 and 4 Bq/m 3 for type 2 resulting in an annual effective dose of the order of 0.1 mSv/year. The contribution to the effective dose from the thoron exhalation is much greater, namely, 1.8 mSv/year for type I and 0.9 mSv/year for type 2. Painting the gypsum lowers the thoron dose by a factor of 10 to 20 making the thoron dose comparable to that of radon. (author)

  17. Diagnosing asthma in general practice with portable exhaled nitric oxide measurement – results of a prospective diagnostic study

    Directory of Open Access Journals (Sweden)

    Laux Gunter

    2009-03-01

    Full Text Available Abstract Background To evaluate the sensitivity, specificity and predictive values of fractional exhaled nitric oxide (FENO for the diagnosis of asthma in general practice. Methods Prospective diagnostic study with 160 patients attending 10 general practices for the first time with complaints suspicious of obstructive airway disease (OAD. Patients were referred to a lung function laboratory for diagnostic investigation. The index test was FENO measured with a portable FENO analyser based on electrochemical sensor. The reference standard was the Tiffeneau ratio (FEV1/VC as received by spirometric manoeuvre and/or results of bronchial provocation. Bronchial provocation with methacholine was performed to determine bronchial hyper-responsiveness (BHR in the event of inconclusive spirometric results. Results 88 (55% were female; their average age was 43.9 years. 75 (46.9% patients had asthma, 25 (15.6% had COPD, 8 (5.0% had an overlap of COPD and asthma, and 52 (32.5% had no OAD. At a cut-off level of 46 parts per billion (ppb (n = 30; 18.8%, sensitivity was 32% (95%CI 23–43%, specificity 93% (95%CI 85–97%, positive predictive value (PPV 80% (95%CI 63–91%, negative predictive value (NPV 61% (95%CI 52–69% when compared with a 20% fall in FEV1 from the baseline value (PC20 after inhaling methacholine concentration ≤ 16 mg/ml. At 76 ppb (n = 11; 6.9% specificity was 100% (95%CI 96–100% and PPV was 100% (95%CI 72–100. At a cut-off level of 12 ppb (n = 34; 21.3%, sensitivity was 90% (95%CI 79–95%, specificity 25% (95%CI 17–34%, PPV 40% (95%CI 32–50, NPV 81% (95%CI 64–91% when compared with a 20% fall of FEV1 after inhaling methacholine concentration ≤ 4 mg/ml. Three patients with unsuspicious spirometric results have to be tested with FENO to save one bronchial provocation test. Conclusion Asthma could be ruled in with FENO > 46 ppb. Mild and moderate to severe asthma could be ruled out with FENO ≤ 12 ppb. FENO measurement with

  18. Modeling of the Nitric Oxide Transport in the Human Lungs.

    Science.gov (United States)

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  19. Short-Term Changes in Respiratory Biomarkers after Swimming in a Chlorinated Pool

    OpenAIRE

    Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; G?mez, Federico P.; Barreiro, Esther; Nieuwenhuijsen, Mark J.; Fernandez, Pilar; Lourencetti, Carolina; P?rez-Olabarr?a, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. Objectives We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. Methods We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled...

  20. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  1. Discussion on the formula of electrostatic collection radon exhalation rate monitor

    International Nuclear Information System (INIS)

    Gou Quanlu; Zhang Zhihui

    1998-01-01

    The formula for calculating radon exhalation rate from the surface of materials are deduced based the theory of radioactivity decay by considering factors which effect the change of radon and its decay products. The selection of value of Z in the formula are also discussed and some problems that exist in the available formula used to calculate the radon exhalation rate are explicated. The practical formula are deduced by adopting the effective decay constant λ e of radon in the collector. The fraction of α particles emitted by radon which effects the measurement results and the contribution of radon decay products left in the former measurement to the next measurement are also considered, and the correction factors are given respectively. The method is more complete and more practical

  2. Effect of a smoking ban on respiratory health in nonsmoking hospitality workers: a prospective cohort study.

    Science.gov (United States)

    Rajkumar, Sarah; Stolz, Daiana; Hammer, Jürg; Moeller, Alexander; Bauer, Georg F; Huynh, Cong Khanh; Röösli, Martin

    2014-10-01

    The aim of this study was to examine the effect of a smoking ban on lung function, fractional exhaled nitric oxide, and respiratory symptoms in nonsmoking hospitality workers. Secondhand smoke exposure at the workplace, spirometry, and fractional exhaled nitric oxide were measured in 92 nonsmoking hospitality workers before as well as twice after a smoking ban. At baseline, secondhand smoke-exposed hospitality workers had lung function values significantly below the population average. After the smoking ban, the covariate-adjusted odds ratio for cough was 0.59 (95% confidence interval, 0.36 to 0.93) and for chronic bronchitis 0.75 (95% confidence interval, 0.55 to 1.02) compared with the preban period. The below-average lung function before the smoking ban indicates chronic damages from long-term exposure. Respiratory symptoms such as cough decreased within 12 months after the ban.

  3. Thoron exhalation rate monitor with absorber

    International Nuclear Information System (INIS)

    Xiao Detao; Zhao Guizhi

    2003-01-01

    A measurement method of thoron exhalation rate is developed based on the characteristic of thorium C' which emits a α particle with higher energy than those of α particles released from radon and radon progenies. The principles of discriminating radon and realizing thoron exhalation rate measurement on the material surface with absorber, the passive and integrated thoron exhalation rate monitor studied, and its calibration coefficient determination method are introduced. The effectiveness of mitigating thoron exhalation rate of wall surface by depressurization inside wall and thoron exhalation rates on some materials surfaces were measured by using the studied monitors. The calibration coefficient of the studied monitor is R=0.246 cm -2 ·(kBq·m -3 ·h) -1 . The lower limit of detection is LLD=18.4 mBq·m -2 ·s -1 when the sampling period is 7 days and the standard deviation of background track densities of the adopted CR-39 SSNTD is s T =1.6 cm -2

  4. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis.

    Science.gov (United States)

    Petsky, Helen L; Cates, Chris J; Kew, Kayleigh M; Chang, Anne B

    2018-06-01

    Asthma guidelines guide health practitioners to adjust treatments to the minimum level required for asthma control. As many people with asthma have an eosinophilic endotype, tailoring asthma medications based on airway eosinophilic levels (sputum eosinophils or exhaled nitric oxide, FeNO) may improve asthma outcomes. To synthesise the evidence from our updated Cochrane systematic reviews, for tailoring asthma medication based on eosinophilic inflammatory markers (sputum analysis and FeNO) for improving asthma-related outcomes in children and adults. Cochrane reviews with standardised searches up to February 2017. The Cochrane reviews included randomised controlled comparisons of tailoring asthma medications based on sputum analysis or FeNO compared with controls (primarily clinical symptoms and/or spirometry/peak flow). The 16 included studies of FeNO-based management (seven in adults) and 6 of sputum-based management (five in adults) were clinically heterogeneous. On follow-up, participants randomised to the sputum eosinophils strategy (compared with controls) were significantly less likely to have exacerbations (62 vs 82/100 participants with ≥1 exacerbation; OR 0.36, 95% CI 0.21 to 0.62). For the FeNO strategy, the respective numbers were adults OR 0.60 (95% CI 0.43 to 0.84) and children 0.58 (95% CI 0.45 to 0.75). However, there were no significant group differences for either strategy on daily inhaled corticosteroids dose (at end of study), asthma control or lung function. Adjusting treatment based on airway eosinophilic markers reduced the likelihood of asthma exacerbations but had no significant impact on asthma control or lung function. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Recent Marijuana Use and Associations With Exhaled Nitric Oxide and Pulmonary Function in Adults in the United States.

    Science.gov (United States)

    Papatheodorou, Stefania I; Buettner, Hannah; Rice, Mary B; Mittleman, Murray A

    2016-06-01

    The medical and recreational use of marijuana is now legal in some parts of the United States; the health effects are unknown. We aimed to evaluate associations between recent marijuana use and exhaled nitric oxide (eNO) and pulmonary function. We performed a cross-sectional study of 10,327 US adults participating in the National Health and Nutrition Examination Survey in the years 2007 to 2012. We examined associations between marijuana use and eNO, FEV1, FVC, the FEV1/FVC ratio, and forced expiratory flow (midexpiratory phase) (FEF25%-75%) by weighted linear regression. In the study population, there were 4,797 never users, 4,084 past marijuana users, 555 participants who used marijuana 5 to 30 days before the examination, and 891 participants who used marijuana 0 to 4 days before the examination. Current marijuana use in the past 4 days was associated with 13% lower eNO (95% CI, -18% to 8%). FVC was higher in past users (75 mL; 95% CI, 38-112) and current users in the past 5 to 30 days (159 mL; 95% CI, 80-237) and in users within 0 to 4 days of the examination (204 mL; 95% CI, 139-270) compared with never users. All associations remained unchanged and statistically significant in sensitivity analyses excluding current and past tobacco users. Current marijuana use was associated with lower levels of eNO and higher FVC. The lower eNO in marijuana smokers suggests that short-term exposure to marijuana may, like tobacco, acutely affect the pulmonary vascular endothelium and impair airflow through the small airways. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath

    International Nuclear Information System (INIS)

    Riess, Ulrich; Tegtbur, Uwe; Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen; Salthammer, Tunga

    2010-01-01

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO x , total volatile organic compounds (TVOC PAS ), carbon dioxide (CO 2 ), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO x signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC PAS are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  7. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  8. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  9. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NO{sub x} in exhaled human breath

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Ulrich; Tegtbur, Uwe [Hannover Medical School, Sports Physiology and Sports Medicine, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany); Salthammer, Tunga, E-mail: tunga.salthammer@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany)

    2010-06-11

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO{sub x}, total volatile organic compounds (TVOC{sub PAS}), carbon dioxide (CO{sub 2}), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO{sub x} signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC{sub PAS} are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  10. The origin of mouth-exhaled ammonia.

    Science.gov (United States)

    Chen, W; Metsälä, M; Vaittinen, O; Halonen, L

    2014-09-01

    It is known that the oral cavity is a production site for mouth-exhaled NH3. However, the mechanism of NH3 production in the oral cavity has been unclear. Since bacterial urease in the oral cavity has been found to produce ammonia from oral fluid urea, we hypothesize that oral fluid urea is the origin of mouth-exhaled NH3. Our results show that under certain conditions a strong correlation exists between oral fluid urea and oral fluid ammonia (NH4(+)+NH3) (rs = 0.77, p oral fluid NH3 and mouth-exhaled NH3 (rs = 0.81, p oral fluid pH. Bacterial urease catalyses the hydrolysis of oral fluid urea to ammonia (NH4(+)+NH3). Oral fluid ammonia (NH4(+)+NH3) and pH determine the concentration of oral fluid NH3, which evaporates from oral fluid into gas phase and turns to mouth-exhaled NH3.

  11. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells.

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D; George, Steven C

    2007-07-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl.s(-1.)cm(-2)) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air-liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 +/- 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13-stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS.

  12. L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m.

    Science.gov (United States)

    Mansoor, Jim K; Morrissey, Brian M; Walby, William F; Yoneda, Ken Y; Juarez, Maya; Kajekar, Radhika; Severinghaus, John W; Eldridge, Marlowe W; Schelegle, Edward S

    2005-01-01

    We examined the effect of dietary supplementation with L-arginine on breath condensate VEGF, exhaled nitric oxide (NO), plasma erythropoietin, symptoms of acute mountain sickness, and respiratory related sensations at 4,342 m through the course of 24 h in seven healthy male subjects. Serum L-arginine levels increased in treated subjects at time 0, 8, and 24 h compared with placebo, indicating the effectiveness of our treatment. L-arginine had no significant effect on overall Lake Louise scores compared with placebo. However, there was a significant increase in headache within the L-arginine treatment group at 12 h compared with time 0, a change not seen in the placebo condition between these two time points. There was a trend (p = 0.087) toward greater exhaled NO and significant increases in breath condensate VEGF with L-arginine treatment, but no L-arginine effect on serum EPO. These results suggest that L-arginine supplementation increases HIF-1 stabilization in the lung, possibly through a NO-dependent pathway. In total, our observations indicate that L-arginine supplementation is not beneficial in the prophylactic treatment of AMS.

  13. Exhaled CO, a predictor of lung function?

    DEFF Research Database (Denmark)

    Fabricius, Peder; Scharling, Henrik; Løkke, Anders

    2007-01-01

    and whether CO could provide additional information to usual measures of smoking regarding prediction of present lung function and decline in lung function over an extended period of time. METHOD: Cigarette smokers from the Copenhagen City Heart Study with valid measures of lung function and exhaled CO......; in total 3738 subjects, 2096 women and 1642 men. RESULTS: Subjects not inhaling had slightly lower exhaled CO values than those inhaling, but substantially higher values than non-smokers (PSmokers of plain cigarettes had slightly lower CO values than smokers of filter cigarettes (P...BACKGROUND: Smoking is associated with an accelerated loss of lung function and inhalation accelerates the decline further. Exhaled CO reflects the exposure of smoke to the lungs. AIM: To investigate whether self-reported inhalation and type of cigarette influenced the level of exhaled CO...

  14. Exhalation of radon and thoron from ground surface

    International Nuclear Information System (INIS)

    Megumi, Kazuko

    1978-01-01

    When radon and thoron in the environment are considered, the exhalations of radon and thoron from the ground surface are important. The following matters are described: a method of measuring directly the quantities of radon and thoron exhaled from the ground surface, the respective quantities measured by the method in summer and winter, and the dependence of the exhalations upon soil particle sizes. In this direct method, to obtain the exhalation quantities, radon and thoron from the ground surface are adsorbed in granular active carbon, and the γ-ray spectra are measured. The method is capable of measuring radon and thoron simultaneously in direct and inexpensive manner. For continuous measurement, however, it needs further improvement. The measurements by the method revealed the difference between summer and winter, the effect of rainfall, the dependence on soil particle size and on soil moisture of radon and thoron exhalations. (J.P.N.)

  15. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  16. Measurement of thoron exhalation rates from building materials.

    Science.gov (United States)

    de With, G; de Jong, P; Röttger, A

    2014-09-01

    Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (220Rn), limited information on thoron exposure is available. The purpose of this study is to develop a test method for the determination of the thoron exhalation rate from building materials. The method is validated, and subsequently the thoron exhalation rates from 10 widely-applied concretes, gypsums, brick, limestone, and mortar are determined. The measured thoron exhalation rates of these materials range from 0.01 Bq m-2 s-1 to 0.43 Bq m-2 s-1, with relative standard uncertainties between 6% to 14%.

  17. Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D.; George, Steven C.

    2007-01-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl·s−1.cm−2) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air–liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 ± 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13–stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS. PMID:17347445

  18. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway

    Directory of Open Access Journals (Sweden)

    Marcelo Franchin

    2013-01-01

    Full Text Available The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1 was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity.

  19. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway.

    Science.gov (United States)

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity.

  20. Radon exhalation from building materials for decorative use

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing, E-mail: jing.chen@hc-sc.gc.c [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada); Rahman, Naureen M.; Atiya, Ibrahim Abu [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2010-04-15

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m{sup -2} d{sup -1}. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m{sup -2} d{sup -1} for slate tiles and 42 Bq m{sup -2} d{sup -1} for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m{sup -2} d{sup -1}, it would contribute only 18 Bq m{sup -3} to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  1. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    Science.gov (United States)

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  2. Exhaled Nitric Oxide is Decreased by Exposure to the Hyperbaric Oxygen Therapy Environment

    Directory of Open Access Journals (Sweden)

    Zudin A. Puthucheary

    2006-01-01

    or 40% oxygen, 1 ATA. In an in vitro study, nitrate/nitrite release decreased after 90 minutes HBOT in airway epithelial (A549 cells. Conclusion. HBO exposure causes a fall in eNO. Inducible nitric oxide synthase (iNOS may cause elevated eNO in patients secondary to inflammation, and inhibition of iNOS may be the mechanism of the reduction of eNO seen with HBOT.

  3. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  4. Dispersal of Exhaled Air and Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter Vilhelm

    2002-01-01

    The influence of the human exhalation on flow fields, contaminant distributions, and personal exposures in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins....... Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow...

  5. The exhalant jet of mussels Mytilus edulis

    DEFF Research Database (Denmark)

    Riisgard, Hans Ulrik; Jørgensen, Bo Hoffmann; Lundgreen, Kim

    2011-01-01

    shell lengths. Here, we present results of a detailed study of fully open mussels Mytilus edulis in terms of filtration rate, exhalant siphon aperture area, jet velocity, gill area and body dry weight, all as a function of shell length (mean +/- SD) over the range 16.0 +/- 0.4 to 82.6 +/- 2.9 mm...... detailed 2-component velocity distributions near the exhalant siphon in 5 planes parallel to the axis of the jet and the major axis of the oval aperture, and hence estimates of momentum and kinetic energy flows in addition to mean velocity. Data obtained on particles inside the exhalant jet of filtered...

  6. Exhalation of Rn-222 from soil: some aspects of variations

    International Nuclear Information System (INIS)

    Raghavayya, M.; Khan, A.H.; Padmanabhan, N.; Srivastava, G.K.

    1982-01-01

    The exhalation of radon from soil and uranium mill tailings piles is discussed. This process is a complex phenomenon. The exhalation rate depends on such variables as radium content, moisture content and porosity of soil, variation of atmospheric pressure, humidity, temperature, wind speed, etc. In an attempt to eliminate variations introduced by geographical location the exhalation rate is estimated at a fixed location. Measurements were carried out almost daily over a one year period. Exhalation rate has shown a wide variation, from almost zero to plus 900 pCi/m 2 .min. Measurements are still being continued. It was seen that exhalation rate fell drastically soon after a heavy shower when the ground was soaking wet. Emanation was found to increase as the ground began to dry and fall again when the ground was bone dry. Radon exhalation rates were also measured at different locations on a uranium tailings pile. Here also wide variation was observed

  7. Uniformity in radon exhalation from construction materials using can technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Amri, E.A.; Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2003-06-01

    The uniformity in radon exhalation rates for 46 tiles of granite, marble and ceramic used as construction materials were determined using 'Can Technique' employing CR-39 nuclear track detectors (NTDs). On each tile, two sealed cans, each enclosing one NTD fixed at the center of the tile surface area covered by the can, were mounted at two different locations of each individual tiles. The track production rates on the NTDs representing radon exhalation rates were measured. The radon exhalation rates from the surface of individual tiles showed uniform exhalations within the calculated uncertainties of the measured values. This makes Can Technique an alternative simple method to measure radon exhalation rates. Calibration required to convert track production rates into radon exhalation rates for the used can and NTD was done using an active technique. The correlation between the measurements by the two techniques shows a good linear correlation coefficient (0.83)

  8. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  9. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  10. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas; Doering, Che

    2016-01-01

    Radon-222 exhalation flux densities from two different substrates of several metres thickness, waste rock and waste rock mixed with approximately 30% lateritic material, were measured over a period of five years in the wet-dry tropics of Northern Australia. Fourteen measurement campaigns using activated charcoal canisters (n > 1000) covered both dry and wet seasons and showed differences in seasonal and long term trends of the "2"2"2Rn exhalation flux densities normalised to the "2"2"6Ra activity concentrations of the substrate. Dry season "2"2"2Rn exhalation was generally higher for the mixed substrate, due to the larger fraction of fines. Seasonality established within the first year of landform construction on the mixed substrate, due to the higher water holding capacity of the lateritic material. In contrast, waste rock only shows no seasonality until years four and five after construction, when average normalised dry season "2"2"2Rn exhalation flux densities from waste rock increase to values (0.47 ± 0.06 mBq m"−"2 s"−"1 per Bq kg"−"1) similar to the mixed substrate (0.64 ± 0.08 mBq m"−"2 s"−"1 per Bq kg"−"1), likely due to an increase in fines from rapid weathering of the schistose waste rock. Volumetric water content has been used to parametrize relative "2"2"2Rn exhalation and we determined that wet season "2"2"2Rn exhalation is about 40% of the dry season exhalation. - Highlights: • We determined "2"2"2Rn exhalation flux densities normalised to "2"2"6Ra activity concentrations (R_E_-_R) for two substrates. • R_E_-_R was lower for waste rock only compared to waste rock blended with 30% fine grained lateritic material. • Seasonality in waste rock "2"2"2Rn exhalation flux densities established 4 years after construction. • Wet season R_E_-_R was about 40% of the dry season R_E_-_R.

  11. Fractal characters and hurst exponent of radon exhalation rate from uranium Tailings

    International Nuclear Information System (INIS)

    Hu Hanqiao; Tan Kaixuan; Li Chunguang; Lv Junwen; Liu Dong

    2010-01-01

    The uranium tailings radon exhalation is an important environmental problem. The change of the radon exhalation rate of uranium tailings with the time through laboratory experiments is measured, and the results show that the radon exhalation rate of the tailings change obviously with time in non-periodic oscillations. Applying fractal analysis to the radon exhalation rate time-series data by R/S method, the Hurst exponent of the entire time series data is 0.83, the fractal dimension is 1.17. Mobile Hurst exponent is between 0.5 and 0.8 in most cases. The Hurst exponent of the experiments in the later part are below 0.5. The exhalation rate of uranium tailings radon does not meet the long-term trend of random walk theory, the radon exhalation rate has long-term memory, but the short-term memory is not distinct. The radon exhalation from uranium tailings is a deterministic chaotic dynamics. (authors)

  12. Radon exhalation study in cements and other building materials

    International Nuclear Information System (INIS)

    Singh, J.; Sharma, N.

    2012-01-01

    Radon is a radioactive inert gas, which is produced during the decay of radium, an element present in the naturally occurring uranium series. In the recent past, environmental scientists all over the world have been expressing great concern about the radiation hazard from radon and its short lived daughter products inside buildings. The radon concentration inside a building depends upon the radon exhalation from the building materials used for the construction and the soil underneath the building. In the present investigations, a comparative study for radon exhalation rate has been carried out in some Indian and Pakistani cements and other building materials being used locally such as sand, soil, bricks, marbles, CaCO 3 , POPs by using Track Etch Technique. The Pakistani cement with the trade name 'Elephant' shows the minimum mass exhalation rate while the Indian 'Birla White' cement has shown the maximum. Among the other building materials studied, CaCO 3 has shown the minimum, while local soil the maximum mass exhalation rate. Out of the fired clay bricks, roof tiles, floor tiles and different marbles, floor tiles have the minimum areal exhalation rate while roof tiles the maximum. (author)

  13. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    Science.gov (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  14. Fraction of Exhaled Nitric Oxide (FeNO Norms in Healthy Tunisian Adults

    Directory of Open Access Journals (Sweden)

    Sonia Rouatbi

    2014-01-01

    Full Text Available Aims. To establish FeNO norms for healthy Tunisian adults aged 18–60 years and to prospectively assess their reliability. Methods. This was a cross-sectional analytical study. A convenience sample of healthy Tunisian adults was recruited. Subjects responded to a medical questionnaire, and then FeNO levels were measured by an online method (Medisoft, Sorinnes (Dinant, Belgium. Clinical, anthropometric, and plethysmographic data were collected. All analyses were performed on natural logarithm values of FeNO. Results. 257 adults (145 males were retained. The proposed reference equation to predict FeNO value is lnFeNO (ppb = 3.47−0.56× height (m. After the predicted FeNO value for a given adult was computed, the upper limit of normal could be obtained by adding 0.60 ppb. The mean ± SD (minimum-maximum of FeNO (ppb for the total sample was 13.54±4.87 (5.00–26.00. For Tunisian and Arab adults of any age and height, any FeNO value greater than 26.00 ppb may be considered abnormal. Finally, in an additional group of adults prospectively assessed, we found no adult with a FeNO higher than 26.00 ppb. Conclusion. The present FeNO norms enrich the global repository of FeNO norms that the clinician can use to choose the most appropriate norms.

  15. Radon exhalations of rock samples from the Muellenbach uranium test mine

    International Nuclear Information System (INIS)

    Keller, G.; Dudler, R.

    1985-01-01

    Radiation exposure of workers in underground mines with high U/Ra concentration is mostly due to inhalation of the short-lived radioactive decay products of the noble gas radon. Knowledge of the Rn-222 exhalation rates of walls and rocks as well as the contributing influencing parameters is therefore of interest for radiation protection purposes. Measurements showed that in the hours following shortfiring operations, the fresh dirt and the new walls had several times the exhalation rates of older dirt and walls. Measurements of exhalation rates on drill cores can help to assess exhalation for an adequate layout of the mine ventilation system. (orig./PW) [de

  16. Influence of building materials process technology on radon exhalation

    International Nuclear Information System (INIS)

    Liu Fudong; Wang Chunhong; Liu Senlin; Ji Dong; Zhang Yonggui; Pan Ziqiang

    2009-01-01

    The building materials were produced through changing raw material ingredient, baking temperature, pressure difference between surface and interior of building material, grain diameter etc. Experiment indicates that change of raw material ingredient ratio can obviously influence the radon exhalation from building material, followed by baking temperature; and pressure difference does not have significant influence on radon exhalation. For the factory to produce shale-brick, the radon exhalation is relatively low under the condition that coal gangue accounts for 40%-50%, the grain diameter is less than 2 mm, the baking temperature is about 960 degree C or 1 020 degree C and the pressure difference is 85 kPa. (authors)

  17. Determination of radon exhalation rates from tiles using active and passive techniques

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-01-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m -2 h -1 , which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile

  18. Radon Exhalation from some Finishing Materials Frequently used in Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.

    2011-01-01

    Building materials are one of the main radon sources in dwellings. Therefore, the determination of radon exhalation from these materials will help in prediction the existence of dwelling with potential radon risk. Ceramic tiles and marble samples were collected from Syrian local market. The correlation between radon exhalation from these materials and radium-226 content was studied. Results showed that there is no clear relation between radium content and radon exhalation rate, and the exhalation of radon did not exceed the permissible limits of American Environment Protection Agency (EPA). In addition, the additional annual dose from radon and gamma of the natural radioactivity in ceramic and marble when used as finishing materials in houses was also estimated and found to be not exceeding 20 μSv and 35 μSv from radon and gamma respectively. (author)

  19. Radon exhalation from some Finishing Materials frequently used in Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.

    2009-02-01

    Building materials are one of the main radon sources in dwellings. Therefore, the determination of radon exhalation from these materials will help in prediction the existence of dwelling with potential radon risk. Ceramic tiles and marble samples were collected from Syrian local market. The correlation between radon exhalation from these materials and radium-226 content were studied. Results showed that there is no clear relation between radium content and radon exhalation rate, and the exhalation of radon did not exceed the permissible limits of American Environment Protection Agency (EPA). In addition, the additional annual dose from radon and gamma of the natural radioactivity in ceramic and marble when used as finishing materials in houses were also estimated and found to be not exceeding 20 μSv and μ35 Sv from radon and gamma respectively. (author)

  20. Eosinophilic airway inflammation is increased in children with asthma and food allergies.

    Science.gov (United States)

    Kulkarni, Neeta; Ragazzo, Vincenzo; Costella, Silvia; Piacentini, Giorgio; Boner, Attilio; O'Callaghan, Christopher; Fiocchi, Alessandro; Kantar, Ahmad

    2012-02-01

    Asthma is associated with food allergies in a significant number of children, with evidence linking allergies to asthma severity and morbidity. In this study, we tested our hypothesis that the eosinophilic lower airway inflammation is higher in asthmatic children with food allergies. The aims of the study were to compare the eosinophilic inflammatory markers in asthmatic children with and without food allergies. Children with asthma, with (n = 22) and (n = 53) without food allergies were included. All subjects were classified according to the GINA guidelines (2009) and had received at least 3 months of anti-inflammatory therapy prior to testing. Fractional exhaled nitric oxide and sputum differential counts were performed using standard techniques.   Children with asthma and food allergies had significantly higher fractional exhaled nitric oxide median (range) [(22.4 (6.1-86.9) vs. 10.3 (2.7-38.7) (p = 0.01)] and sputum eosinophil percentage [15.5 (5.0-53.0) vs. 2.0 (0-20) (p allergies. These results suggest that the children with asthma and food allergies have increased eosinophilic inflammation of the airways. © 2011 John Wiley & Sons A/S.

  1. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain

    Energy Technology Data Exchange (ETDEWEB)

    López-Coto, I., E-mail: israel.lopez@dfa.uhu.es [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain); Mas, J.L. [Dpto. Física Aplicada I. Escuela Politécnica Superior, University of Sevilla, C/Virgen de Africa 7, 41012 Sevilla (Spain); Vargas, A. [Universitat Politècnica de Catalunya, Instituto de Técnicas Energéticas, Campus Sud Edificio ETSEIB, Planta 0, Pabellón C, Av. Diagonal 647, 08028 Barcelona (Spain); Bolívar, J.P. [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain)

    2014-09-15

    Highlights: • Variability of radon exhalation rates from PG piles has been studied using numerical simulation supported by experimental data. • Most relevant parameters controlling the exhalation rate are radon potential and moisture saturation. • Piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. • A proposed cover here is expected to allow exhalation rates reductions up to 95%. - Abstract: Nearly 1.0 × 10{sup 8} tonnes of phosphogypsum were accumulated during last 50 years on a 1200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by {sup 226}Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bq m{sup −2} s{sup −1}) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bq m{sup −2} s{sup −1})

  2. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren.

    Science.gov (United States)

    Pedroletti, Christophe; Högman, Marieann; Meriläinen, Pekka; Nordvall, Lennart S; Hedlin, Gunilla; Alving, Kjell

    2003-10-01

    Asthmatic patients show increased concentrations of nitric oxide (NO) in exhaled air (Feno). The diffusing capacity of NO in the airways (Dawno), the NO concentrations in the alveoli and the airway wall, and the maximal airway NO diffusion rate have previously been estimated noninvasively by measuring Feno at different exhalation flow rates in adults. We investigated these variables in 15 asthmatic schoolchildren (8-18 y) and 15 age-matched control subjects, with focus on their relation to exhaled NO at the recommended exhalation flow rate of 0.05 L/s (Feno0.05), age, and volume of the respiratory anatomic dead space. NO was measured on-line by chemiluminescence according to the European Respiratory Society's guidelines, and the NO plateau values at three different exhalation flow rates (11, 99, and 382 mL/s) were incorporated in a two-compartment model for NO diffusion. The NO concentration in the airway wall (p < 0.001), Dawno (p < 0.01), and the maximal airway NO diffusion rate (p < 0.001) were all higher in the asthmatic children than in control children. In contrast, there was no difference in the NO concentration in the alveoli (p = 0.13) between the groups. A positive correlation was seen between the volume of the respiratory anatomic dead space and Feno0.05 (r = 0.68, p < 0.01), the maximal airway NO diffusion rate (r = 0.71, p < 0.01), and Dawno (r = 0.56, p < 0.01) in control children, but not in asthmatic children. Feno0.05 correlated better with Dawno in asthmatic children (r = 0.65, p < 0.01) and with the NO concentration in the airway wall in control subjects (r < 0.77, p < 0.001) than vice versa. We conclude that Feno0.05 increases with increasing volume of the respiratory anatomic dead space in healthy children, suggesting that normal values for Feno0.05 should be related to age or body weight in this age group. Furthermore, the elevated Feno0.05 seen in asthmatic children is related to an increase in both Dawno and NO concentration in the airway

  3. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  4. Determination of radon exhalation rates from tiles using active and passive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-06-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m{sup -2} h{sup -1}, which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile.

  5. Electret filter collects more exhaled albumin than glass condenser

    Science.gov (United States)

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-01-01

    Abstract In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method. Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated. The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P albumin than nonsmokers were also observed (P albumin than nonsmokers. PMID:29384875

  6. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  7. The influence of thoron on measurement results of radon exhalation rate

    CERN Document Server

    Xiao De Tao; Ling Qiu; Leung, J K C

    2002-01-01

    Because of thoron exhalation, the measurement results of radon exhalation rate using a local still method is usually larger than the true value of radon flux rate of the monitored material surface. The influence of sup 2 sup 1 sup 6 Po(ThA) on radon exhalation rate can be eliminated for sensitive radon monitors. Theoretical evaluations of the influence of sup 2 sup 1 sup 2 Bi(ThC) and sup 2 sup 1 sup 2 Po(ThC')on radon exhalation rate are carried out in a sampler with diameter of 188 mm, and height of 125 mm, and supplied electrostatic field inside (generated by high voltage and electret) under following conditions: the sampling time are 1, 2, 3 h, respectively, thoron exhalation rate is 100 times of radon's. The calculation results indicate that the measurement results of radon flux rate are possibly 35.5% larger than true value due to the influence of thoron for fast and multifunctional radon monitors with electret, high voltage, respectively and using CR-39 SSNTD as detector, but this influence is negligib...

  8. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  9. Hydrogen peroxide in exhaled air of healthy children: reference values

    NARCIS (Netherlands)

    Q. Jobsis (Quirijn); R.H. Raatgeep (Rolien); S.L. Schellekens; W.C.J. Hop (Wim); P.W.M. Hermans (Peter); J.C. de Jongste (Johan)

    1998-01-01

    textabstractAn increased content of hydrogen peroxide (H2O2), a marker of inflammation, has been described in the condensate of exhaled air from adults and children with inflammatory lung disorders, including asthma. However, the normal range of [H2O2] in the exhaled

  10. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  11. Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents

    DEFF Research Database (Denmark)

    Tsushima, S.; Wargocki, Pawel; Tanabe, S.

    2018-01-01

    Conditions in which exhaled and dermally emitted bioeffluents could be sampled separately or together (whole-body emission) were created. Five lightly dressed males exhaled the air through a mask to another, identical chamber or without a mask to the chamber in which they were sitting; the outdoor......) was less acceptable, and the odor intensity was higher than when only exhaled bioeffluents were present. The presence or absence of exhaled bioeffluents in the unoccupied chamber made no significant difference to sensory assessments. At 28°C and with ozone present, the odor intensity increased and the PAQ...... was less acceptable in the chambers with whole-body bioeffluents. The concentrations of nonanal, decanal, geranylacetone, and 6-MHO were higher when dermally emitted bioeffluents were present; they increased further when ozone was present. The concentration of squalene then decreased and increased again...

  12. Natural radioactivity and radon specific exhalation rate of zircon sands

    International Nuclear Information System (INIS)

    Righi, S.; Verita, S.; Bruzzi, L.; Albertazzi, A.

    2006-01-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using γ-spectrometry. Methods used for determining radon consisted in determining the 222 Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of 238 U and 232 Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The 222 Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  13. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    DEFF Research Database (Denmark)

    Gorham, Katrine A; Andersen, Mads Peter Sulbæk; Meinardi, Simone

    2009-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were...... found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled...... hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway...

  14. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect.

    Science.gov (United States)

    Gorham, Katrine A; Sulbaek Andersen, Mads P; Meinardi, Simone; Delfino, Ralph J; Staimer, Norbert; Tjoa, Thomas; Rowland, F Sherwood; Blake, Donald R

    2009-02-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.

  15. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath.

    Science.gov (United States)

    Beck, Olof; Olin, Anna-Carin; Mirgorodskaya, Ekaterina

    2016-01-01

    Exhaled breath contains nonvolatile substances that are part of aerosol particles of submicrometer size. These particles are formed and exhaled as a result of normal breathing and contain material from distal airways of the respiratory system. Exhaled breath can be used to monitor biomarkers of both endogenous and exogenous origin and constitutes an attractive specimen for medical investigations. This review summarizes the present status regarding potential biomarkers of nonvolatile compounds in exhaled breath. The field of exhaled breath condensate is briefly reviewed, together with more recent work on more selective collection procedures for exhaled particles. The relation of these particles to the surfactant in the terminal parts of the respiratory system is described. The literature on potential endogenous low molecular weight compounds as well as protein biomarkers is reviewed. The possibility to measure exposure to therapeutic and abused drugs is demonstrated. Finally, the potential future role and importance of mass spectrometry is discussed. Nonvolatile compounds exit the lung as aerosol particles that can be sampled easily and selectively. The clinical applications of potential biomarkers in exhaled breath comprise diagnosis of disease, monitoring of disease progress, monitoring of drug therapy, and toxicological investigations. © 2015 American Association for Clinical Chemistry.

  16. Exhalation velocity of radon-222 of Dutch building materials and the influence of paint systems

    International Nuclear Information System (INIS)

    Dijk, W. van; Jong, P. de

    1989-02-01

    In order to achieve a better insight concerning the source terms of radon in the Dutch dwelling in the framework of the RENA-programme an investigation has been performed into the exhalation velocity of radon-222 from building materials. From this investigation it turned out that the ventilation factor does not have any influence upon the exhalation velocity, neither an influence of alteration of air pressure could be demonstrated. The influence of air humidity upon the exhalation velocity showed a twofold picture; for gypsum a linear increase of the exhalation velocity with vapour pressure was found, while for concrete a linear decrease with vapour pressure was observed. Further it has been investigated in how far paint systems diminish the exhalation velocity of the Rn-222 from gypsum and concrete. Acryl paints, mostly used in the Dutch dwelling, did not show a decrease of the exhalation velocity and structure paints did even cause an increase of the exhalation velocity. Other types of paint based on chlorous rubber, epoxy resins and poly-urethane, in contrast, showed a clear reduction. From these those based on poly-urethane showed the largest reduction (60-75%) at a double sided treatment of the wall. With the help of a mathematical modelling of the exhalation estimations have been made of the exhalation velocity of Rn-222 at single sided treatment of a wall and for the exhalation velocity of Rn-220. For the fore mentioned poly-urethane-paints this yelds, at an estimate, a reduction of respectively 90-95% and 100%. (author). 40 refs.; 15 figs.; 8 tabs

  17. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers.

    Science.gov (United States)

    Lettéron, P; Duchatelle, V; Berson, A; Fromenty, B; Fisch, C; Degott, C; Benhamou, J P; Pessayre, D

    1993-01-01

    Ethane exhalation was measured in 42 control subjects, 52 patients with various non-alcoholic liver diseases, and 89 alcohol abusers who had been admitted to hospital for alcohol withdrawal and assessment of liver disease (six with normal liver tests, 10 with steatosis with or without fibrosis, six with alcoholic hepatitis, 29 with cirrhosis, 34 with both cirrhosis and alcoholic hepatitis, and four with both cirrhosis and a hepatocellular carcinoma). Ethane exhalation was similar in control subjects and in patients with non-alcoholic liver diseases, but was five times higher in alcohol abusers. Ethane exhalation in alcohol abusers was significantly, but very weakly, correlated with the daily ethanol intake before hospital admission, and the histological score for steatosis, but not with the inflammation or alcoholic hepatitis scores. Ethane exhalation was inversely correlated with the duration of abstinence before the test. In nine alcoholic patients, the exhalation of ethane was measured repeatedly, and showed slow improvement during abstinence. Ethane exhalation was significantly but weakly correlated with the Pugh's score in patients with alcoholic cirrhosis. It is concluded that the mean ethane exhalation is increased in alcohol abusers. One of the possible mechanisms may be the presence of oxidizable fat in the liver. The weak correlation with the Pugh's score is consistent with the contribution of many other factors in the progression to severe liver disease. PMID:8472992

  18. Oral bacteria--the missing link to ambiguous findings of exhaled nitrogen oxides in cystic fibrosis.

    Science.gov (United States)

    Zetterquist, Wilhelm; Marteus, Helena; Kalm-Stephens, Pia; Näs, Elisabeth; Nordvall, Lennart; Johannesson, Marie; Alving, Kjell

    2009-02-01

    Nitrite in exhaled breath condensate (EBC) has been shown to be elevated in cystic fibrosis (CF), while exhaled nitric oxide (FENO) is paradoxically low. This has been argued to reflect increased metabolism of NO while its diffusion is obstructed by mucus. However, we wanted to study the possible influence of salivary nitrite and bacterial nitrate reduction on these parameters in CF patients by the intervention of an anti-bacterial mouthwash. EBC and saliva were collected from 15 CF patients (10-43 years) and 15 controls (9-44 years) before and 5 min after a 30s chlorhexidine mouthwash, in parallel with measurements of FENO. Nitrite and nitrate concentrations were measured fluorometrically. EBC nitrite, but not nitrate, was significantly higher in the CF patients (median 3.6 vs 1.3 microM in controls, p<0.05) and decreased after mouthwash in both groups (3.6-1.4 microM, p<0.01; 1.3-0.5 microM, p<0.01). Salivary nitrite correlated significantly to EBC nitrite (r=0.60, p<0.001) and decreased correspondingly after chlorhexidine, whereas salivary nitrate increased. FENO was lower in CF and the difference between patients and controls was accentuated after mouthwash (5.4 vs 8.4 ppb in controls, p<0.05). EBC nitrite mainly originates in the pharyngo-oral tract and its increase in CF is possibly explained by a regional change in bacterial activity. The limited lower airway contribution supports the view of a genuinely impaired formation and metabolism of NO in CF, rather than poor diffusion of the molecule.

  19. Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0328 TITLE: Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk PRINCIPAL INVESTIGATOR: Dr...4. TITLE AND SUBTITLE Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk 5b. GRANT NUMBER W81XWH 16-1-0328 5c. PROGRAM...devise a non-invasive airway based exhaled microRNA metric for lung cancer risk, initial work to be tested in a case control study. We expanded the

  20. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  1. Radon exhalation rate on the Sivrice (Elazig ) fault zone

    International Nuclear Information System (INIS)

    Sahin, S.; Kuluoeztuerk, M. F.; Dogru, M.

    2009-01-01

    Four radon monitoring stations were built on the Sivrice Fault Zone which is a part of the East Anatolian Fault System that one of the very important two fault systems which tends to produce earthquake in Turkey. Radon exhalation rate were analyzed in the soil and water samples which collected around the stations. Radon exhalation rate in the soil and water samples were determined by using CR-39 that it is plastic detector.

  2. Radium and radon exhalation rate in soil samples of Hassan district of South Karnataka, India

    International Nuclear Information System (INIS)

    Jagadeesha, B.G.; Narayana, Y.

    2016-01-01

    The radon exhalation rate was measured in 32 soil samples collected from Hassan district of South Karnataka. Radon exhalation rate of soil samples was measured using can technique. The results show variation of radon exhalation rate with radium content of the soil samples. A strong correlation was observed between effective radium content and radon exhalation rate. In the present work, an attempt was made to assess the levels of radon in the environment of Hassan. Radon activities were found to vary from 2.25±0.55 to 270.85±19.16 Bq m"-"3 and effective radium contents vary from 12.06±2.98 to 1449.56±102.58 mBq kg"-"1. Surface exhalation rates of radon vary from 1.55±0.47 to 186.43±18.57 mBq m"-"2 h"-"1, and mass exhalation rates of radon vary from 0.312±0.07 to 37.46±2.65 mBq kg"-"1 h"-"1. (authors)

  3. Circulating nitric oxide products do not solely reflect nitric oxide release in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Afzelius, P.; Bazeghi, N.; Bie, P.

    2011-01-01

    (x) and exhaled NO were determined in the supine and sitting positions and related to haemodynamics, RAAS and lung diffusing capacity (D(L)CO). Eight matched healthy individuals served as controls. Results: All patients with cirrhosis had portal hypertension. We found no significant difference in exhaled...... NO between patients and controls and no changes from the supine to the sitting position. Exhaled NO in the patients correlated significantly with plasma volume, heart rate and DLCO. NO(x) concentrations were not significantly increased in the patients. NO(x) correlated with portal pressure and haemodynamic...

  4. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.

    Science.gov (United States)

    Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B

    2015-08-01

    Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (pacoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.

  5. Change of Exhaled Acetone Concentration in a Diabetic Patient with Acute Decompensated Heart Failure.

    Science.gov (United States)

    Yokokawa, Tetsuro; Ichijo, Yasuhiro; Houtsuki, Yu; Matsumoto, Yoshiyuki; Oikawa, Masayoshi; Yoshihisa, Akiomi; Sugimoto, Koichi; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Shimouchi, Akito; Takeishi, Yasuchika

    2017-10-21

    In heart failure patients, exhaled acetone concentration, a noninvasive biomarker, is increased according to heart failure severity. Moreover, exhaled acetone concentration is also known to be affected by diabetes mellitus. However, there have been no reports on exhaled acetone concentration in heart failure patients with diabetes mellitus. A 77-year old man was admitted to our hospital with acute decompensated heart failure and atrioventricular block. He had controlled diabetes mellitus under insulin treatment with hemoglobin A1c of 6.5%. He underwent treatment of diuretics and permanent pacemaker implantation. His condition improved and he was discharged at Day 12. Due to the heart failure improvement, his levels of exhaled acetone concentration decreased from 1.623 ppm at admission to 0.664 ppm at discharge. This is the first report to reveal a change of exhaled acetone concentration in a diabetic patient with acute decompensated heart failure.

  6. Exhalation of I-131 after radioiodine therapy: time dependence and chemical form

    International Nuclear Information System (INIS)

    Schomaecker, K.; Fischer, T.; Eschner, W.; Gaidouk, M.I.; Schicha, H.

    2001-01-01

    Aim: The change of both amount and chemical forms of radioiodine exhaled in the air of rooms with patients on the therapy ward should be investigated depending on radioactivity applied, time after application, and kind of thyroid disease. Methods: The air of ward-rooms of 62 patients with thyroid carcinoma, Graves' Disease, and autonomy which received different therapy doses, was investigated with an portable constant air flow sampler. Different chemical iodine species (organic, elemental, aerosol bound) were collected during 8 hr in various filters until 3 days after application of the radioiodine capsule, according to their chemical form. The radioactivity in the filters was measured with a well counter on defined time points after application. Results: The radioactivity exhaled was between 0,008 and 0,03% related to activity of radioiodine applied. The percentage of radioiodine exhaled related to the activity applied, differed significantly depending on disease and changed as follows: Grave's disease > autonomy > carcinoma. The exhalation of radioiodine became stronger with increasing applied activities and showed an exponential decrease with time. The most part of radioiodine was present in organic bound form. This organic portion decreased with time in favour of the other iodine species. Conclusion: The degree of accumulation of radioiodine orally applied within thyroid seems to be in direct proportion to the extend of its exhalation. Further measurements directly in the breathing air of RIT-patients are necessary, in order to clarify the relationship between degree of thyroid uptake and quantity as well as chemical form of radioiodine exhaled. (orig.) [de

  7. Human exhaled air energy harvesting with specific reference to PVDF film

    Directory of Open Access Journals (Sweden)

    Manisha Rajesh Mhetre

    2017-02-01

    Full Text Available Spirometer is a medical equipment used to measure lung capacity of a human being. It leads to diagnosis of several diseases. The researchers worked on harvesting energy from human exhalation while carrying out measurements using spirometer. A prototype has been developed using piezoelectric material i.e. PVDF (polyvinylidene fluoride film as sensor. This paper presents the methodology and experimentation carried out for exhaled air energy harvesting using PVDF film. Experimental results obtained are encouraging. Measurements are also carried out on various subjects having different height, weight, age and gender. Data analysis shows variation in the energy harvested with different physical parameters and gender. Experimentation shows that voltage generated due to exhaled air is promising for harvesting.

  8. Radon exhalation rates of concrete modified with fly ash and silica fumes

    International Nuclear Information System (INIS)

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  9. Analysis of the role of nitric oxide in the relaxant effect of the crude extract and fractions from Eugenia uniflora in the rat thoracic aorta.

    Science.gov (United States)

    Wazlawik, E; Da Silva, M A; Peters, R R; Correia, J F; Farias, M R; Calixto, J B; Ribeiro-Do-Valle, R M

    1997-04-01

    This study has evaluated the possible role played by the L-arginine-nitric oxide pathway in the vasorelaxant action of the hydroalcoholic extract from Eugenia uniflora, and fractions from the extract, in rings of rat thoracic aorta. The addition of an increasing cumulative concentration of hydroalcoholic extract from E. uniflora (1-300 micrograms mL-1) caused a concentration-dependent relaxation response in intact endothelium-thoracic aorta rings pre-contracted with noradrenaline (30-100 nM). The IC50 value, with its respective confidence limit, and the maximum relaxation (Rmax) were 7.02 (4.77-10.00) micrograms mL-1 and 83.94 +/- 3.04%, respectively. The removal of the endothelium completely abolished these responses. The nitric oxide synthase inhibitors N omega-nitro-L-arginine (L-NOARG, 30 microM) and N omega-nitro-L-arginine methyl ester (L-NAME, 30 microM), inhibited the relaxation (Rmax) to -10.43 +/- 7.81% and -3.69 +/- 2.62%, respectively. In addition, L-arginine (1 mM), but not D-arginine (1 mM), completely reversed inhibition by L-NOARG. Methylene blue (30 microM), a soluble guanylate cyclase inhibitor, reduced the relaxation induced by the extract to 14.60 +/- 7.40%. These data indicate that in the rat thoracic aorta the hydroalcoholic extract, and its fractions, from the leaves of E. uniflora have graded and endothelium-dependent vasorelaxant effects.

  10. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  11. Variation in radon exhalation from the ground on the active fault in Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, Y.; Shinogi, M. [Kobe Pharmaceutical Univ., Kobe, Hyogo (Japan)

    1998-12-31

    Since 27 January 1997, the measurements of radon (Rn-222) exhaled from the ground have been made continuously by the use of PICO-RAD detector (Packard instrument Co.) at monitoring stations on Ashiya active fault. The fault may have been slipped by the Kobe earthquake (magnitude 7.2, 17 January 1995). The variation of relative radon exhalation on the fault was large. We guessed the large variation of relative radon exhalation on the fault was caused by not only the influence of meteorology but also the influence of other factors. (author)

  12. Experimental and Numerical Investigation of Effect of Air Stability on Exhaled Air Dispersion

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter Vilhelm

    2014-01-01

    studies. As the thermal stratification under displacement ventilation blocks the vertical movement of exhaled air, the exhaled contaminant may be trapped between temperature stratifications. As the dispersion of contaminant is closely related to the health of human indoors, the temperature structure...... was used for experimental study, and a numerical person was built to simulate the manikin. The velocity, temperature and concentration of tracer gas in exhaled air are affected by air stability to different degrees. The similarity of this effect among these parameters can also be observed through numerical...

  13. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  14. Exhaled methane concentration profiles during exercise on an ergometer

    Science.gov (United States)

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  15. Development of method for quantification of 222Rn exhalation ratio at radioactive waste dam and soil study as mitigator material

    International Nuclear Information System (INIS)

    Macacini, Jose Flavio

    2008-01-01

    The Brazilian uranium mining company (INB) processed 2.32 10 6 tons of uranium ore in its ore treatment unit (UTM - Caldas), located in the Pocos de Caldas plateau. During 16 years of operation, this unit discarded 2.39 10 6 tons of solid waste in a tailing dam, with an average activity concentration of 226 Ra of 7311 ± 184 Bq kg -1 . Most of the atoms of 222 Rn generated from the radioactive waste of the tailing dam remain bounded to the mineral structure. However, a fraction of these atoms can be released from the mineral structure and then emanate. Reaching the porous space of the waste piles, the 222 Rn moves towards the interface waste-atmosphere, exhaling into the atmosphere. The featuring properties of the 222 Rn transport and the biological damage caused by its progeny transform this small chain of radionuclides into a scourge of nature. Because of that, the dry area of the tailing dam was the scope of this work. A methodology was developed for quantifying the exhalation rate of 222 Rn. Moreover, the soil from its surroundings was experimentally evaluated as a cover material to reduce the exhalation of 222 Rn. A collector of 222 Rn was developed, being denominated 607. This collector was proved to be exact and precise after laboratory tests, when a standard for 222 Rn exhalation was prepared with caldasite, an uranium ore with high concentration of 226 Ra (26611 ± 581 Bq kg -1 ), crushed to the granulometric interval from 1.168 mm to 0.589 mm. The results of 222 Rn exhalation rate using the collector 607 were not influenced by the adsorption of water steam, considering sampling periods lower than 5 days and mass of water steam lower than 7 g. Sampling for measuring 222 Rn exhalation rates in the dry area of the tailing dam was carried out using the collector 607, following the experimental design established by the United States Environmental Protection Agency (US EPA). The average exhalation rate in the west part of the tailing dam was 1.30 ± 1.24 Bq m

  16. Uranium distribution and radon exhalation from Brazilian dimension stones

    International Nuclear Information System (INIS)

    Amaral, P.G.Q.; Galembeck, T.M.B.; Bonotto, D.M.; Artur, A.C.

    2012-01-01

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espírito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of 222 Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the 222 Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: ► Integration of distinct radiometric data acquired in dimension stones. ► Dimension stones are extensively commercialized abroad. ► Rn exhalation above the EPA threshold limit of 4 pCi/L.

  17. Uranium distribution and radon exhalation from Brazilian dimension stones

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, P.G.Q.; Galembeck, T.M.B. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2012-04-15

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espirito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of {sup 222}Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the {sup 222}Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: Black-Right-Pointing-Pointer Integration of distinct radiometric data acquired in dimension stones. Black-Right-Pointing-Pointer Dimension stones are extensively commercialized abroad. Black-Right-Pointing-Pointer Rn exhalation above the EPA threshold limit of 4 pCi/L.

  18. Distribution of Exhaled Contaminants and Personal Exposure in a Room using Three Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2012-01-01

    The level of exposure to human exhaled contaminants in a room depends not only on the air distribution system but also on people’s different positions, the distance between them, people’s activity level and height, direction of exhalation, and the surrounding temperature and temperature gradient...... between the manikins are changed to study the influence on the level of exposure. The results show that the air exhaled by a manikin flows a longer distance with a higher concentration in case of displacement ventilation than in the other two cases, indicating a significant exposure to the contaminants....... Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance...

  19. Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Balter, James M.; Lam, Kwok L.; McGinn, Cornealeus J.; Lawrence, Theodore S.; Haken, Randall K. ten

    1998-01-01

    Purpose: CT-based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. Methods and Materials: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. A subsequent clinical protocol was developed for treatment based on exhale CT models. CT scans (typically 3.5-mm slice thickness) were acquired at normal exhale using a spiral scanner. The scan volume was divided into two to three segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. Results: The average patient's diaphragm remained within 25% of the range of ventilatory excursion from the average exhale position for 42% of the typical breathing cycle, and within 25% of the range from the average inhale position for 15% of the cycle. The reproducibility of exhale position over multiple breathing cycles was 0.9 mm (2σ), as opposed to 2.6 mm for inhale. Combining the variation of exhale position and the uncertainty in diaphragm position from CT slices led to typical margins of 10 mm superior to the target, and 19 mm inferior to the target, compared to margins of 19 mm in both directions under our prior protocol of margins based on free-breathing CT studies. For a typical intrahepatic target, these smaller volumes resulted in a 3.6% reduction in V eff for the liver. Analysis of portal films shows proper

  20. Thoron (RN-220) interference in the determination of RN-222 exhalation rate of soils

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Déric S.; Farias, Emerson E.G.; Santos, Mariana L.O.; Silva, Karolayne E.M.; Hazin, Clovis A.; França, Elvis J., E-mail: emersonemiliano@yahoo.com [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Souza Neto, João A., E-mail: adauto@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Geologia

    2017-07-01

    The transport of Rn-222 from the soil to the atmosphere known as exhalation is influenced by meteorological conditions and soil geophysical parameters. In closed and poorly ventilated rooms, this radioactive gas can reach high activity concentrations, in which the energy of alpha particles released by this radionuclide and its progeny is the second leading cause of lung cancer. Soil exhalation rate is an important parameter for assessing human health risks associated with radon. For radon determination using an exhalation chamber, an ionization chamber detector is used to count the electrical pulses generated by the interaction between the alpha particles produced by Rn-222 and its progeny and the air inside the chamber. In this work, the interference of thoron (Rn-220) in the determination of soil exhalation rate of Rn-222 was studied. For this, the RadonBOX exhalation chamber and the AlphaGuard ionization chamber detector were utilized for analyzing the same soil during two hours on different days under similar meteorological conditions. From zero up to approximately 2,400 s, the radon activity concentrations decreased. After 40 minutes, the radon concentrations started to increase, thereby allowing the calculation of soil exhalation rate. This initial decreasing could be explained by a high Rn-220 than Rn-222 presence in the soil, in which, because of its short half-life, after 40 minutes, most thoron present in the chamber has undergone so that the main alpha emitter become Rn-222. In order to confirm this, Rn-220 activity was estimated by the Ra-228 concentration in the soil determined after 30 days using High Resolution Gamma-Ray Spectrometry with HPGe detectors. Therefore, the thoron interference in the determination of soil radon exhalation rate was considered negligible after 40 minutes of measurement time for the analyzed soil. (author)

  1. Impact of structural parameters on the radon exhalation of building materials: Preliminary study

    International Nuclear Information System (INIS)

    Roelofs, L.M.M.

    1993-01-01

    Samples of mortar and sand-lime pieces with different percentages of fly ash are hardened at different relative humidities. The porosity distribution, the moisture and the radon exhalation of these samples are determined. Based on the data of the above-mentioned analyses, the thickness of the adsorbed water layer in the water-filled pores is estimated. The correlation between the structural parameters and the radon exhalation is investigated. If the radon exhalation process can be modelled, the radiation risk of applying fly ash in building materials can be controlled or reduced. The results do not yet show a clear indication. The applied methods have to be considered in more detail

  2. Improvement of CT-based treatment planning models of abdominal targets using static exhale imaging

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Balter, J.M.; Lam, K.L.; McGinn, C.J.; Lawrence, T.S.

    1996-01-01

    PURPOSE: CT based models of the patient that do not account for the motion of ventilation may not accurately predict the shape and position of critical abdominal structures. Without knowledge of the patient's ventilatory status during the CT scan, a planning target volume margin for the entire range of ventilation is required both inferior and superior to abdominal target volumes to ensure coverage. Also, dose-volume histograms and normal tissue complication probability (NTCP) estimates may be uncertain. Respiratory gating technology for imaging and treatment is not yet widely available. The purpose of the current study is to explore an intermediate step to improve the veracity of the patient model and reduce the treated volume by acquiring the CT data with the patients holding their breath at normal exhale. MATERIALS AND METHODS: The ventilatory time courses of diaphragm movement for 15 patients (with no special breathing instructions) were measured using digitized movies from the fluoroscope during simulation. On repeat simulations, the reproducibility of the diaphragm position at exhale was determined. A clinical protocol was developed for treatment based on exhale CT models. CT scans were acquired at normal exhale using a spiral scanner. Typical volumes were acquired using 5 mm slice thickness and a 1:1 pitch. The scan volume was divided into 2-3 segments, to allow the patient to breathe in between. Margins were placed about intrahepatic target volumes based on the ventilatory excursion inferior to the target, and on only the reproducibility of exhale position superior to the target. RESULTS: The average patient's diaphragm was located within 2 mm of the average exhale position for 50% of the typical ventilatory cycle. For inhale, this value was reduced to 10%, and for mid ventilation, 15%. The reproducibility of exhale position over multiple breathing cycles was 2 mm (2σ), as opposed to 4 mm for inhale. Combining the variation of exhale position and the

  3. Comparison of active and passive methods for radon exhalation from a high-exposure building material

    International Nuclear Information System (INIS)

    Abbasi, A.; Mirekhtiary, F.

    2013-01-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 x 35.0 m area x 32.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of 226 Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg -1 . The radon exhalation rate from the calculation of the 226 Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m -2 h -1 . The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m -3 with a mean of 625 Bq m -3 . Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22% higher than the passive method. (authors)

  4. CONTINUOUS EXHALED BREATH ANALYSIS ON THE ICU

    International Nuclear Information System (INIS)

    Bos, Lieuwe D. J.; Sterk, Peter J.; Schultz, Marcus J.

    2011-01-01

    During admittance to the ICU, critically ill patients frequently develop secondary infections and/or multiple organ failure. Continuous monitoring of biological markers is very much needed. This study describes a new method to continuously monitor biomarkers in exhaled breath with an electronic nose.

  5. Natural radioactivity and radon exhalation rate of soil in southern Egypt

    International Nuclear Information System (INIS)

    Sroor, A.; El-Bahi, S.M.; Ahmed, F.; Abdel-Haleem, A.S.

    2001-01-01

    The level of natural radioactivity in soil of 30 mining samples collected from six locations in southern Egypt was measured. Concentrations of radionuclides in samples were determined by γ-ray spectrometer using HPGe detector with a specially designed shield. The obtained results of uranium and thorium series as well as potassium (K-40) are discussed. The present data were compared with data obtained from different areas in Egypt. Also, a solid state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The radon concentrations were found to vary from 1.54 to 5.37 Bq/kg. The exhalation rates were found to vary from 338.81 to 1426.47 Bq/m 2 d. The values of the radon exhalation rate are found to correspond with the uranium concentration values measured by the germanium detector in the corresponding soil samples

  6. Characteristics of radon and thoron exhalation rates in Okinawa, subtropical region of Japan

    International Nuclear Information System (INIS)

    Shiroma, Y.; Kina, S.; Fujitani, T.; Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Sahoo, S. K.; Tokonami, S.; Furukawa, M.

    2012-01-01

    Radon and thoron exhalation rates from the ground surface were estimated in three islands of Okinawa Prefecture, a subtropical region of Japan. In situ measurements of the exhalation rates were conducted at a total of 88 points using an accumulation technique with a ZnS(Ag) scintillation detector. The radon and thoron exhalation rates were calculated to be 1-137(arithmetic mean: 21) mBq m -2 s -1 and 32-6244 (1801) mBq m -2 s -1 , respectively. In the surface soil samples collected at 53 measurement points, 238 U and 232 Th series concentrations were estimated to be 17.9-254.0 (64.0) Bq kg -1 dry and 17.8-136.1 (58.8) Bq kg -1 dry, respectively. The maximum rates and concentrations were observed in the dark red soil area. Recent studies strongly suggest that the base material of the soils may be the eolian dust derived from the southeastern part of China, a high background radiation area. The eolian dust is, therefore, considered to be an enhancer for the radon and thoron exhalations in Okinawa. (authors)

  7. EXHALED AND PLASMA NITRITE: a comparative study among healthy, cirrhotic and liver transplant patients

    Directory of Open Access Journals (Sweden)

    Viviane S AUGUSTO

    2014-03-01

    Full Text Available Context There is a relative lack of studies about exhaled nitrite (NO2- concentrations in cirrhotic and transplanted patients. Objective Verify possible differences and correlations between the levels of NO2-, measured in plasma and exhaled breath condensate collected from patients with cirrhosis and liver transplant. Method Sixty adult male patients, aged between 27 and 67 years, were subdivided into three groups: a control group comprised of 15 healthy volunteers, a cirrhosis group composed of 15 volunteers, and a transplant group comprised of 30 volunteers. The NO2- concentrations were measured by chemiluminescence. Results 1 The analysis of plasma NO2- held among the three groups showed no statistical significance. 2 The comparison between cirrhotic and control groups, control and transplanted and cirrhotic and transplanted was not statistically significant. 3 The measurements performed on of NO2- exhaled breath condensate among the three groups showed no statistical difference. 4 When comparing the control group samples and cirrhotic, control and transplanted and cirrhotic and transplanted, there was no significant changes in the concentrations of NO2-. Conclusion No correlations were found between plasma and exhaled NO2-, suggesting that the exhaled NO2- is more reflective of local respiratory NO release than the systemic circulation.

  8. A possible way to assess tidal exhaled nitric oxide in neonates and infants treated with nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Schmidt, Birgitte Johanne; Reim, Pauline Schibler; Pedersen, Ole Find

    2018-01-01

    The endogenous compound nitric oxide (NO) is released into the airways via inducible NO synthase (1),which has the capacity to produce NO when up-regulated by pro-inflammatory cytokines or exogenous factors, like hypoxia, bacterial toxins and viruses (2). Prematurely born infants are susceptible...

  9. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  10. Measurement of 222Rn and 220Rn exhalation rate from soil samples of Kumaun Hills, India

    Science.gov (United States)

    Semwal, Poonam; Singh, Kuldeep; Agarwal, T. K.; Joshi, Manish; Pant, Preeti; Kandari, Tushar; Ramola, R. C.

    2018-03-01

    The source terms, i.e., exhalation and emanation from soil and building materials are the primary contributors to the radon (222Rn)/thoron (220Rn) concentration levels in the dwellings, while the ecological constraints like ventilation rate, temperature, pressure, humidity, etc., are the influencing factors. The present study is focused on Almora District of Kumaun, located in Himalayan belt of Uttarakhand, India. For the measurement of 222Rn and 220Rn exhalation rates, 24 soil samples were collected from different locations. Gamma radiation level was measured at each of these locations. Chamber technique associated with Smart Rn Duo portable monitor was employed for the estimation of 222Rn and 220Rn exhalation rates. Radionuclides (226Ra, 232Th and 40K) concentrations were also measured in soil samples using NaI(Tl) scintillation based gamma ray spectrometry. The mass exhalation rate for 222Rn was varying between 16 and 54 mBq/kg/h, while the 220Rn surface exhalation rate was in the range of 0.65-6.43 Bq/m2/s. Measured gamma dose rate for the same region varied from 0.10 to 0.31 µSv/h. Inter-correlation of exhalation rates and intra-correlation with background gamma levels were studied.

  11. Assessing the efficacy of immunotherapy with a glutaraldehyde-modified house dust mite extract in children by monitoring changes in clinical parameters and inflammatory markers in exhaled breath.

    Science.gov (United States)

    Lozano, Jaime; Cruz, María-Jesús; Piquer, Mónica; Giner, Maria-Teresa; Plaza, Ana María

    2014-01-01

    The aim of this study was to evaluate the effectiveness of specific immunotherapy (SIT) management with allergoids in children with allergic asthma by monitoring changes in clinical parameters and inflammatory markers in exhaled breath. The study population included 43 patients (24 males) of 6-14 years of age, who had allergic asthma and were sensitized to mites. Twenty-three individuals were treated with subcutaneous SIT (PURETHAL® Mites, HAL Allergy) for 8 months, i.e. the SIT group, and 20 were given medication to treat symptoms only, i.e. the control group. Before treatment and after 4 and 8 months, several clinical parameters, the levels of exhaled nitric oxide and the pH of exhaled breath condensate (EBC) were determined. The SIT group presented with an improvement in asthma classification, a reduction in maintenance drug therapy and improved scores on the quality-of-life questionnaire. These changes were not observed in the control group. Both groups presented significant decreases in EBC pH values at 4 and 8 months after treatment compared to at baseline. However, analysis of the variable 'ratio' showed an increase in the EBC pH values after 8 months of treatment in the SIT group compared with the values at 4 months. SIT with standardized mite extract reduces asthma symptoms in children. A decrease in EBC pH values was observed in both groups, although the SIT group presented a tendency of recovered values after 8 months. Future studies of EBC pH monitoring in the longer term are needed to determine the effectiveness of this marker. © 2014 S. Karger AG, Basel.

  12. Increased asymmetric dimethylarginine in severe falciparum malaria: association with impaired nitric oxide bioavailability and fatal outcome.

    Directory of Open Access Journals (Sweden)

    Tsin W Yeo

    2010-04-01

    Full Text Available Asymmetrical dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase (NOS, is a predictor of mortality in critical illness. Severe malaria (SM is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1 increased in proportion to disease severity, 2 associated with impaired vascular and pulmonary NO bioavailability and 3 independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM and 19 healthy controls (HC. Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 microM; 95% CI 0.74-0.96 compared to those with MSM (0.54 microM; 95%CI 0.5-0.56 and HCs (0.64 microM; 95%CI 0.58-0.70; p<0.001. ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0-181; p = 0.01. ADMA was independently associated with decreased exhaled NO (r(s = -0.31 and endothelial function (r(s = -0.32 in all malaria patients, and with reduced exhaled NO (r(s = -0.72 in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria.

  13. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  14. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  15. Determination of Polycyclic Aromatic Hydrocarbons In Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available The retention by humans of 20 polycyclic aromatic hydrocarbons (PAHs from mainstream cigarette smoke was evaluated. The analysis was done by a new technique using solid phase extraction (SPE for the cleanup and the concenration of PAHs. The new technique has excellent sensitivity and accuracy, which were necessary for the analysis of the very low levels of PAHs present in the exhaled cigarette smoke. The study was done on a common commercial cigarette with 10.6 mg ‘tar’ by U.S. Federal Trade Commission (FTC recommendation. The results were obtained from ten human subjects, each smoking three cigarettes. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling. The study showed that the PAHs with a molecular weight lower than about 170 Daltons are retained with high efficiency. The heavier molecules are less retained, but even compounds such as indeno[1,2,3-cd]pyrene, dibenz[a, h]anthracene, and benzoperylene are retained with efficiencies around 50%. The dependence of retention efficiency for PAHs (in % on their octanol-water partition coefficient (LogPow was found to be nonlinear and showed considerable variability for several compounds that have very close LogPow values. Better correlation was obtained between the retention efficiency and PAHs vapor pressure (Log VP.

  16. Determination of exhalation rate of radon from walls and indoor radon by CR-39 detectors

    International Nuclear Information System (INIS)

    Vasidov, A.; Tillaev, T.S.

    2007-01-01

    Full text: The knowledge of true value exhalation rate of radon gas from building materials represents scientific and practical interest in environmental radiation protection. This point of view in the paper exhalation rate of radon gas from building materials and a surface of walls with different constructions were determined by detectors CR-39. The values of the exhalation rate of radon per unit area of the granite, concrete, fired and unfired bricks, sand, cement, alabaster varied 0.091 - 0.1 Bq·m -2 ·h -1 . The surface of walls of dwellings constructed from different building materials the exhalation rate of radon are within in limits of 0.083-1.12 Bq·m -2 ·h -1 . Were measurements with CR-39 detectors a level of radon within 50-520 Bq/m 3 in air of rooms constructed of the different building materials

  17. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of aging on the concentrations of nitrous oxide in exhaled air

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, T.; Shimaoka, K.; Miyamura, M. [Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya (Japan); Kato, N. [Chukyo Women`s University, Obu (Japan)

    1997-12-03

    Trace gases in exhaled air have been used as a simple means of assessing metabolic reactions. The investigations of trace gases derived from bacteria in human exhalation are usually hydrogen (H{sub 2}) or methane (CH{sub 4}). On the other hand, nitrous oxide (N{sub 2}O) is also derived from microorganisms, especially denitrifying bacteria. Although many kinds of denitrifying bacteria have been isolated on and in the human body, there has been few concerning N{sub 2}O. We studied 222 healthy people from the age of 5 to 85 years. The analysis of N{sub 2}O in exhaled air was carried out by a infrared-photoacoustic (IR-PAS) analyzer. It was found that N{sub 2}0 ranged from 0 to 1670 ppbv in exhaled air and that 59% (131) of the subjects were producers N{sub 2}O. A highly significant relationship was observed between age and concentrations of N{sub 2}O (r=0.40, P<0.01). The rate of production in young children and in the aged was significantly higher than that in adults aged 20-39 years (P<0.01), and less than 30% were producers during puberty. The change of normal microflora and in human body with aging may have caused the significant relationship between age and emissions of N{sub 2}O

  19. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    Science.gov (United States)

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  20. A simple trapping method of exhaled water using an ice-cooled tube to monitor the tritium level in human body

    International Nuclear Information System (INIS)

    Nogawa, Norio; Makide, Yoshihiro

    1994-01-01

    A convenient and efficient method is developed for the trapping of water in exhaled air. A bent-V-shaped glass sampling tube was immersed in iced water and exhaled air was introduced into the tube through a plastic straw. The trapping efficiency of exhaled water was equivalent to those with more complex and troublesome methods. Using anywhere available ice, the water in exhaled air can be rapidly collected with this method and the tritium level in the body will be quickly obtained. (author)

  1. Natural radioactivity content and radon exhalation from materials used for construction and decoration

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Scruzzi, E.; Kwato Njock, M.G.; Nourreddine, A.

    2007-02-01

    The present work deals with the measurement of radioactivity and radon exhalation rate from geological samples manufactured in Douala city and used as building materials. Nine types of building materials were surveyed for their natural radioactivity content using a hyper purity germanium (HPGe) detector. The absorbed dose rate in the samples investigated ranged from 28.5 to 66.6 nGy h -1 for brick samples, from 32.4 to 63.1 nGy h -1 for roofing tiles and was 30.3 nGy h -1 for concrete. External and internal hazard indexes were also estimated as defined by the European Commission. The study of radon exhalation rate from building materials is important for well understanding the individual contribution of each material to the total indoor radon exposure. Solid state nuclear track detectors, CR-39 were used for measuring the radon concentration from different materials. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. Exploring the one-dimension radon transport equation, we derived the radon exhalation rate from the experimental measurement of α-track densities. The radon exhalation varied from (5.77±0.06) x 10 -5 to (7.61±0.07) x 10 -5 Bq cm -2 h -1 in bricks, from (5.79±0.05) x 10 -5 to (11.6±0.12) x 10 -5 in tiles and was (6.95±0.03) x 10 -5 Bq cm -2 h -1 in concrete. A positive correlation was found between uranium concentration measured with HPGe detector radon exhalation rate and radium content obtained using nuclear track detectors. (author)

  2. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    International Nuclear Information System (INIS)

    Andersen, C.E.

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm 3 . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h -1 kg -1 . Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m -3 . (au)

  3. Uranium, radium and radon exhalation study in some soil samples using track etch technique

    International Nuclear Information System (INIS)

    Harmanjit, Singh; Joga, Singh; Surinder, Singh; Bajwa, B.S.

    2006-01-01

    Full text of publication follows: Uranium, radium concentration and radon exhalation rates have been determined in the soil samples collected from some areas of Punjab using the L.R.-115 nuclear track detectors. Radium concentration in these samples has been found to be varying from 0.80 to 5.34 Bq Kg-1. The radon exhalation rate in these samples has been found to be varying from 0.99 to 6.60 mBq Kg -1 h -1 (32.82 to 218.49 mBqm -2 h -1 ). A good correlation has been observed between radon exhalation rate and radium concentration observed in the soil samples. The uranium concentration in all these samples is being carried out and the other correlations will also be established. (authors)

  4. Design of the exhale airway stents for emphysema (EASE) trial : an endoscopic procedure for reducing hyperinflation

    NARCIS (Netherlands)

    Shah, Pallav L.; Slebos, Dirk-Jan; Cardoso, Paulo F. G.; Cetti, Edward J.; Sybrecht, Gerhard W.; Cooper, Joel D.

    2011-01-01

    Background: Airway Bypass is a catheter-based, bronchoscopic procedure in which new passageways are created that bypass the collapsed airways, enabling trapped air to exit the lungs. The Exhale Airway Stents for Emphysema (EASE) Trial was designed to investigate whether Exhale (R) Drug-Eluting

  5. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems

    DEFF Research Database (Denmark)

    Qian, H.; Li, Y.; Nielsen, Peter V.

    2006-01-01

    hospital ward with three ventilation systems, i.e. mixing, downward and displacement ventilation. Two life-size breathing thermal manikins were used to simulate a source patient and a receiving patient. The exhalation jet from a bed-lying manikin was visualized using smoke. N2O was used as tracer gas...... are well mixed in the ward. Bed distance does not affect the personal exposure of the receiving patient. For displacement ventilation, the exhaled jet can penetrate a long distance. A high concentration layer of exhaled droplet nuclei because of thermal stratification locking has also been observed...

  6. Influence of air pollution on exhaled carbon monoxide levels in smokers and non-smokers. A prospective cross-sectional study.

    Science.gov (United States)

    Maga, Mikołaj; Janik, Maciej K; Wachsmann, Agnieszka; Chrząstek-Janik, Olga; Koziej, Mateusz; Bajkowski, Mateusz; Maga, Paweł; Tyrak, Katarzyna; Wójcik, Krzysztof; Gregorczyk-Maga, Iwona; Niżankowski, Rafał

    2017-01-01

    The poor air quality and cigarette smoking are the most important reasons for increased carbon monoxide (CO) level in exhaled air. However, the influence of high air pollution concentration in big cities on the exhaled CO level has not been well studied yet. To evaluate the impact of smoking habit and air pollution in the place of living on the level of CO in exhaled air. Citizens from two large cities and one small town in Poland were asked to complete a survey disclosing their place of residence, education level, work status and smoking habits. Subsequently, the CO level in their exhaled air was measured. Air quality data, obtained from the Regional Inspectorates of Environmental Protection, revealed the differences in atmospheric CO concentration between locations. 1226 subjects were divided into 4 groups based on their declared smoking status and place of living. The average CO level in exhaled air was significantly higher in smokers than in non-smokers (p<0.0001) as well as in non-smokers from big cities than non-smokers from small ones (p<0.0001). Created model showed that non-smokers from big cities have odds ratio of 125.3 for exceeding CO cutoff level of 4ppm compared to non-smokers from small towns. The average CO level in exhaled air is significantly higher in smokers than non-smokers. Among non-smokers, the average exhaled CO level is significantly higher in big city than small town citizens. These results suggest that permanent exposure to an increased concentration of air pollution and cigarette smoking affect the level of exhaled CO. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing......Experiments are conducted in a full-scale chamber equipped with whole floor and whole ceiling supply or exhaust to form approximately zero and larger temperature gradients corresponding to unstable and stable air conditions. It can be observed that the air with smoke exhaled from a life...

  8. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  9. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  10. Variability in the exhalation rate of radon

    International Nuclear Information System (INIS)

    Rundo, J.; Markun, F.; Sha, J.Y.; Cameron, P.

    1976-01-01

    In a day-long study, twenty-eight 10-min samples of breath were collected from a former radium dial painter and were analyzed for radon. The radon exhalation rate showed good short-term reproducibility, but there was a dramatic short-lived increase in the first samples collected after lunch and a slow but steady increase during the course of the day

  11. Determination of Carbonyl Compounds in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu S

    2014-12-01

    Full Text Available This paper presents the findings on a quantitative evaluation of carbonyl levels in exhaled cigarette smoke from human subjects. The cigarettes evaluated include products with 5.0 mg ‘tar’, 10.6 mg ‘tar’ and 16.2 mg ‘tar’, where ‘tar’ is defined as the weight of total wet particulate matter (TPM minus the weight of nicotine and water, and the cigarettes are smoked following U.S. Federal Trade Commission (FTC recommendations. The measured levels of carbonyls in the exhaled smoke were compared with calculated yields of carbonyls in the inhaled smoke and a retention efficiency was obtained. The number of human subjects included a total of ten smokers for the 10.6 mg ‘tar’, five for the 16.2 mg ‘tar’, and five for the 5.0 mg ‘tar’ product, each subject smoking three cigarettes. The analyzed carbonyl compounds included several aldehydes (formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde and n-butyraldehyde, and two ketones (acetone and 2-butanone. The smoke collection from the human subjects was vacuum assisted. Exhaled smoke was collected on Cambridge pads pretreated with a solution of dinitrophenylhydrazine (DNPH followed by high performance liquid chromatography (HPLC analysis of the dinitrophenylhydrazones of the carbonyl compounds. The cigarette butts from the smokers were collected and analyzed for nicotine. The nicotine levels for the cigarette butts from the smokers were used to calculate the level of carbonyls in the inhaled smoke, based on calibration curves. These were generated separately by analyzing the carbonyls in smoke and the nicotine in the cigarette butts obtained by machine smoking under different puffing regimes. The comparison of the level of carbonyl compounds in exhaled smoke with that from the inhaled smoke showed high retention of all the carbonyls. The retention of aldehydes was above 95% for all three different ‘tar’ levels cigarettes. The ketones were retained with a

  12. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  13. Radon mass exhalation rate in soil samples at South Bengaluru city, Karnataka, India

    International Nuclear Information System (INIS)

    Poojitha, C.G.; Pranesha, T.S.; Ganesh, K.E.; Sahoo, B.K.; Sapra, B.K.

    2017-01-01

    Radon mass exhalation rate in soil samples collected from different locations of South Bengaluru city were measured using scintillation based Smart radon thoron monitor (RnDuo). It has been observed that the mass exhalation rate estimated due to presence of radon concentration in soil samples ranges from 39.18 - 265.58 mBq/kg/h with an average value of 115.64 mBq/kg/h. Finally we compare our results with similar investigation from different parts of India. (author)

  14. Calibration of track detectors and measurement of radon exhalation rate from solid samples

    International Nuclear Information System (INIS)

    Singh, Ajay Kumar; Jojo, P.J.; Prasad, Rajendra; Khan, A.J.; Ramachandran, T.V.

    1997-01-01

    CR-39 and LR-115 type II track detectors to be used for radon exhalation measurements have been calibrated. The configurations fitted with detectors in Can technique in the open cup mode are cylindrical plastic cup (PC) and conical plastic cup (CPC). The experiment was performed in radon exposure chamber having monodisperse aerosols of 0.2 μm size, to find the relationship between track density and the radon concentration. The calibration factors for PC and CPC type dosimeters with LR-115 type II detector were found to be 0.056 and 0.083 tracks cm -2 d -1 (Bqm -3 ) -1 respectively, while with CR-39 detector the values were 0.149 and 0.150 tracks cm -2 d -1 (Bq m -3 ) -1 . Employing the Can technique, measurements of exhalation rates from solid samples used as construction materials, are undertaken. Radon exhalation rate is found to be minimum in cement samples while in fly ash it is not enhanced as compared to coal samples. (author)

  15. Is it possible to claim or refute sputum eosinophils ≥ 3% in asthmatics with sufficient accuracy using biomarkers?

    Science.gov (United States)

    Demarche, Sophie F; Schleich, Florence N; Paulus, Virginie A; Henket, Monique A; Van Hees, Thierry J; Louis, Renaud E

    2017-07-03

    The concept of asthma inflammatory phenotypes has proved to be important in predicting response to inhaled corticosteroids. Induced sputum, which has been pivotal in the development of the concept of inflammatory phenotypes, is however not widely available. Several studies have proposed to use surrogate exhaled or blood biomarkers, like fractional exhaled nitric oxide (FENO), blood eosinophils and total serum immunoglobulin E (IgE). However, taken alone, each of these biomarkers has moderate accuracy to identify sputum eosinophilia. Here, we propose a new approach based on the likelihood ratio to study which thresholds of these biomarkers, taken alone or in combination, were able to rule in or rule out sputum eosinophils ≥3%. We showed in a large population of 869 asthmatics that combining FENO, blood eosinophils and total serum IgE could accurately predict sputum eosinophils ≥ or <3% in 58% of our population.

  16. Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis.

    Science.gov (United States)

    van Mastrigt, E; Reyes-Reyes, A; Brand, K; Bhattacharya, N; Urbach, H P; Stubbs, A P; de Jongste, J C; Pijnenburg, M W

    2016-04-08

    Exhaled breath analysis is a potential non-invasive tool for diagnosing and monitoring airway diseases. Gas chromatography-mass spectrometry and electrochemical sensor arrays are the main techniques to detect volatile organic compounds (VOC) in exhaled breath. We developed a broadband quantum cascade laser spectroscopy technique for VOC detection and identification. The objective of this study was to assess the repeatability of exhaled breath profiling with broadband quantum cascade laser-based spectroscopy and to explore the clinical applicability by comparing exhaled breath samples from healthy children with those from children with asthma or cystic fibrosis (CF). Healthy children and children with stable asthma or stable CF, aged 6-18 years, were included. Two to four exhaled breath samples were collected in Tedlar bags and analyzed by quantum cascade laser spectroscopy to detect VOCs with an absorption profile in the wavenumber region between 832 and 1262.55 cm(-1). We included 35 healthy children, 39 children with asthma and 15 with CF. Exhaled breath VOC profiles showed poor repeatability (Spearman's rho  =  0.36 to 0.46) and agreement of the complete profiles. However, we were able to discriminate healthy children from children with stable asthma or stable CF and identified VOCs that were responsible for this discrimination. Broadband quantum cascade laser-based spectroscopy detected differences in VOC profiles in exhaled breath samples between healthy children and children with asthma or CF. The combination of a relatively easy and fast method and the possibility of molecule identification makes broadband quantum cascade laser-based spectroscopy attractive to investigate the diagnostic and prognostic potential of volatiles in exhaled breath.

  17. A Pilot Study to Assess Solanesol Levels in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available This paper describes the results obtained during the measurement of the level of solanesol in exhaled cigarette smoke from human subjects. The study was performed with three different cigarettes with U.S. Federal Trade Commission (FTC ‘tar’ values of 5.0 mg, 10.6 mg, and 16.2 mg. The number of human subjects was ten smokers for each of the evaluated products, each subject smoking three cigarettes within one hour. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling, and the solanesol was analyzed using an original high performance liquid chromatography (HPLC technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol delivered to the smoker, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of solanesol delivered to the smoker and the exhaled levels it was possible to calculate the retention and retention % of this compound from mainstream smoke for different cigarettes types. The amount of retained solanesol is the lowest for the 5.0 mg ‘tar’ product, and the highest for the 16.2 mg ‘tar’ product, although there is not much difference between the 10.6 mg ‘tar’ product and the 16.2 mg ‘tar’ product. For the 10.6 mg ‘tar’ cigarettes the retention % was between 60% and 72%, for the 5.0 mg product the retention % was slightly lower ranging between 53% and 70%, while for the 16.2 mg ‘tar’ product, the retention % was slightly higher ranging between 62% and 82%.

  18. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    International Nuclear Information System (INIS)

    Na, Young Ho; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup; Kumar, Naresh

    2015-01-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development. (paper)

  19. Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Musazay, M.S. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Aksoy, A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Measurements of radon exhalation for a total of 205 selected samples of construction materials used in Saudi Arabia were carried out using an active radon gas analyzer with an emanation container. It was found that granite samples were the main source of radon exhalation. The radon exhalation rates per unit area from these granite samples varied from below the minimum detection limit up to 13.1Bqm{sup -2}h{sup -1} with an average of 1.5 +/-1.9(1{sigma})Bqm{sup -2}h{sup -1}. The radium contents of 27 granite samples were measured using an HPGe-based {gamma} spectroscopy setup. The {sup 226}Ra content of the granites varied from below the minimum detection limit up to 297Bqkg{sup -1}, with an average of 83+/-73(1{sigma})Bqkg{sup -1}. The linear correlation coefficient between exhaled radon and radium content was found to be 0.90.

  20. Exhaled Breath Condensate: Technical and Diagnostic Aspects.

    Science.gov (United States)

    Konstantinidi, Efstathia M; Lappas, Andreas S; Tzortzi, Anna S; Behrakis, Panagiotis K

    2015-01-01

    The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  1. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF. One Year of Clinical Follow-up.

    Directory of Open Access Journals (Sweden)

    Fabiana G Marcondes-Braga

    Full Text Available The identification of new biomarkers of heart failure (HF could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis.To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF.After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months.The composite endpoint death and heart transplantation (HT were observed in 35 patients (39.3%: 29 patients (32.6% died and 6 (6.7% were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001. Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56-6.80, p = 0.002 within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels.High EBA levels could be associated to poor prognosis in HFrEF patients.

  2. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF). One Year of Clinical Follow-up

    Science.gov (United States)

    Saldiva, Paulo H. N.; Mangini, Sandrigo; Issa, Victor S.; Ayub-Ferreira, Silvia M.; Bocchi, Edimar A.

    2016-01-01

    Background The identification of new biomarkers of heart failure (HF) could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA) is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis. Objectives To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF). Methods After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months. Results The composite endpoint death and heart transplantation (HT) were observed in 35 patients (39.3%): 29 patients (32.6%) died and 6 (6.7%) were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile) were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001). Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56–6.80, p = 0.002) within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels. Conclusions High EBA levels could be associated to poor prognosis in HFrEF patients. PMID:28030609

  3. Data on the oral CRTh2 antagonist QAW039 (fevipiprant in patients with uncontrolled allergic asthma

    Directory of Open Access Journals (Sweden)

    Veit J. Erpenbeck

    2016-12-01

    Full Text Available This article contains data on clinical endpoints (Peak Flow Expiratory Rate, fractional exhaled nitric oxide and total IgE serum levels and plasma pharmacokinetic parameters concerning the use of the oral CRTh2 antagonist QAW039 (fevipiprant in mild to moderate asthma patients. Information on experimental design and methods on how this data was obtained is also described. Further interpretation and discussion of this data can be found in the article “The oral CRTh2 antagonist QAW039 (fevipiprant: a phase II study in uncontrolled allergic asthma” (Erpenbeck et al., in press [1].

  4. Environmental variables and levels of exhaled carbon monoxide and carboxyhemoglobin in elderly people taking exercise.

    Science.gov (United States)

    Salicio, Marcos Adriano; Mana, Viviane Aparecida Martins; Fett, Waléria Christiane Rezende; Gomes, Luciano Teixeira; Botelho, Clovis

    2016-04-01

    This article aims to analyze levels of exhaled carbon monoxide, carboxyhemoglobinand cardiopulmonary variables in old people practicing exercise in external environments, and correlate them with climate and pollution factors. Temporal ecological study with118 active elderly people in the city of Cuiabá, in the state of Mato Grosso, Brazil. Data were obtained on use of medication, smoking, anthropometric measurements, spirometry, peak flow, oxygen saturation, heart rate, exhaled carbon monoxide, carboxyhemoglobin, climate, number of farm fires and pollution. Correlations were found between on the one hand environmental temperature, relative humidity of the air and number of farmers' fires, and on the other hand levels of carbon monoxide exhaled and carboxyhemoglobin (p carboxyhemoglobin and heart rate. There is thus a need for these to be monitored during exercise. The use of a carbon monoxide monitor to evaluate exposure to pollutants is suggested.

  5. Exhaled breath condensate metabolome clusters for endotype discovery in asthma

    NARCIS (Netherlands)

    Sinha, Anirban; Desiraju, Koundinya; Aggarwal, Kunal; Kutum, Rintu; Roy, Siddhartha; Lodha, Rakesh; Kabra, S. K.; Ghosh, Balaram; Sethi, Tavpritesh; Agrawal, Anurag

    2017-01-01

    Asthma is a complex, heterogeneous disorder with similar presenting symptoms but with varying underlying pathologies. Exhaled breath condensate (EBC) is a relatively unexplored matrix which reflects the signatures of respiratory epithelium, but is difficult to normalize for dilution. Here we

  6. Estimation of the radon dose in buildings by measuring the exhalation rate from building materials

    International Nuclear Information System (INIS)

    Steiner, V.; Kovler, K.; Perevalov, A.; Kelm, H.

    2004-01-01

    We review the accumulator technique using active (CRM) and passive detectors (activated charcoal and electret). We describe the ERS2 detector, an electrostatic radon sampler followed by alpha spectrometry, with improved algorithm and adapted to measure the exhalation rate from walls. The technique produces accurate results over a broad range of materials: concrete, Pumice, ceramics, tiles, granite, etc. The measured exhalation rate is the same, within errors, as measured by the standard detectors

  7. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  8. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Study of radon exhalation from phosphogypsum plates and blocks from different origins

    International Nuclear Information System (INIS)

    Costa, Lucas Jose Pereira da

    2011-01-01

    Phosphogypsum is a waste of the fertilizer industry that concentrates radionuclides. In this work, the 222 Rn exhalation rate from phosphogypsum plates and blocks from different origins used at dwellings construction was studied. The 222 Rn exhalation rate was determined through the accumulation chamber technique with solid state nuclear track detectors (SSNTD). The effective dose for an individual living in a residence built with phosphogypsum based materials was evaluated. It also was calculated the 222 Rn exhalation rate through the UNSCEAR model, from the 226 Ra concentration in the materials, in order to compare the experimental results. It was evaluated the contribution of building component (paint) to the reduction of 222 Rn exhalation rate. The plates and blocks were manufactured with phosphogypsum from Bunge Fertilizantes, Ultrafertil and Fosfertil. Blocks manufactured with ordinary gypsum was also evaluated. The average results obtained were 0.19 ± 0.06 Bq m-2 h-1, 1.3 ± 0.3 Bq m -2 h -1 and 0.41 ± 0.07 Bq m -2 h -1 for plates manufactured with phosphogypsum from Bunge Fertilizer, Ultrafertil and Fosfertil, respectively. For the phosphogypsum blocks the values were 0.11 ± 0.01 Bq m -2 h-1, 1.2 ± 0.6 Bq m -2 h -1 , 0.47 ± 0.15 Bq m -2 h -1 , for Bunge, Ultrafertil and Fosfertil. The blocks manufactured with ordinary gypsum presented average value of 0.18 ± 0.08 Bq m -2 h'- 1 . All phosphogypsum plates and blocks evaluated in this study presented effective dose for radon inhalation lower than the recommended value of 1mSv y -1 , the annual effective dose limit for public exposure by International Commission on Radiological Protection. (author)

  10. Measurement of Radon Exhalation Rate in Sand Samples from Gopalpur and Rushikulya Beach Orissa, Eastern India

    Science.gov (United States)

    Mahur, Ajay Kumar; Sharma, Anil; Sonkawade, R. G.; Sengupta, D.; Sharma, A. C.; Prasad, Rajendra

    Natural radioactivity is wide spread in the earth's environment and exists in various geological formations like soils, rocks, water and sand etc. The measurement of activities of naturally occurring radionuclides 226Ra, 232Th and 40K is important for the estimation of radiation risk and has been the subject of interest of research scientists all over the world. Building construction materials and soil beneath the house are the main sources of radon inside the dwellings. Radon exhalation rate from building materials like, cement, sand and concrete etc. is a major source of radiation to the habitants. In the present studies radon exhalation rates in sand samples collected from Gopalpur and Rushikulya beach placer deposit in Orissa are measured by using "Sealed Can technique" with LR-115 type II nuclear track detectors. In Samples from Rushikulya beach show radon activities varying from 389 ± 24 to 997 ± 38 Bq m-3 with an average value of 549 ±28 Bq m-3. Surface exhalation rates in these samples are found to vary from 140 ± 9 to 359 ± 14 mBq m-2 h-1with an average value of 197 ±10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 14 ± 0.5 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1. Samples from Gopalpur radon activities are found to vary from 371 ± 23 to 800 ± 34 Bq m-3 with an average value of 549 ± 28 Bq m-3. Surface exhalation rates in these samples are found to vary from 133 ± 8 to 288 ± 12 mBq m-2h-1 with an average value of 197 ± 10 mBq m-2 h-1, whereas, mass exhalation rates vary from 5 ± 0.3 to 11 ± 1 mBq kg-1 h-1 with an average value of 8 ± 0.4 mBq kg-1 h-1.

  11. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.

    Science.gov (United States)

    Youngquist, Tiffany M; Richardson, C Peter; Diblasi, Robert M

    2013-11-01

    Bubble CPAP is frequently used in spontaneously breathing infants with lung disease. Often bubble CPAP systems lack pressure alarms and pressure-release valves. We observed a large volume of condensate in the exhalation limb of a patient circuit and conducted a series of experiments to test the hypothesis that accumulated condensate could affect delivered pressures. An anatomically accurate nasal airway model of a preterm infant was attached to a spontaneously breathing lung model. A bubble CPAP system was attached to the nasal airway with bi-nasal short prongs, and the rate of fluid condensation was measured. Next, tracheal pressures were monitored digitally to detect changes in airway pressure related to condensate accumulation. Measurements were obtained with volumes of 0, 5, 10, 15, and 20 mL of water in the exhalation limb, at flows of 4, 6, 8, and 10 L/min. Measurements with 20 mL in the exhalation limb were recorded with and without a pressure-relief valve in the circuit. The rate of condensate accumulation was 3.8 mL/h. At volumes of ≥ 10 mL, noticeable alterations in the airway pressure waveforms and significant increases in mean tracheal pressure were observed. The pressure-relief valve effectively attenuated peak tracheal pressure, but only decreased mean pressure by 0.5-1.5 cm H2O. Condensate in the exhalation limb of the patient circuit during bubble CPAP can significantly increase pressure delivered to the patient. The back and forth movement of this fluid causes oscillations in airway pressure that are much greater than the oscillations created by gas bubbling out the exhalation tube into the water bath. We recommend continuously monitoring pressure at the nasal airway interface, placing an adjustable pressure-relief valve in the circuit, set to 5 cm H2O above the desired mean pressure, and emptying fluid from the exhalation limb every 2-3 hours.

  12. Exhaled breath analysis discriminates phenotypes of acute lung injury (ALI)

    NARCIS (Netherlands)

    Bos, L.D.J.; Hemmes, S.N.T.; Nijsen, T.M.E.; Sterk, P.J; Schultz, M.J.

    2012-01-01

    Introduction It has been postulated that the pathophysiology and clinical presentation of ALI based on pulmonary and non-pulmonary etiology represent different phenotypes1. Until now, little biological evidence on the molecular level has been presented to support this hypothesis. Exhaled air

  13. Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Juliane Obermeier

    Full Text Available Monitoring metabolic adaptation to chronic kidney disease (CKD early in the time course of the disease is challenging. As a non-invasive technique, analysis of exhaled breath profiles is especially attractive in children. Up to now, no reports on breath profiles in this patient cohort are available. 116 pediatric subjects suffering from mild-to-moderate CKD (n = 48 or having a functional renal transplant KTx (n = 8 and healthy controls (n = 60 matched for age and sex were investigated. Non-invasive quantitative analysis of exhaled breath profiles by means of a highly sensitive online mass spectrometric technique (PTR-ToF was used. CKD stage, the underlying renal disease (HUS; glomerular diseases; abnormalities of kidney and urinary tract or polycystic kidney disease and the presence of a functional renal transplant were considered as classifiers. Exhaled volatile organic compound (VOC patterns differed between CKD/ KTx patients and healthy children. Amounts of ammonia, ethanol, isoprene, pentanal and heptanal were higher in patients compared to healthy controls (556, 146, 70.5, 9.3, and 5.4 ppbV vs. 284, 82.4, 49.6, 5.30, and 2.78 ppbV. Methylamine concentrations were lower in the patient group (6.5 vs 10.1 ppbV. These concentration differences were most pronounced in HUS and kidney transplanted patients. When patients were grouped with respect to degree of renal failure these differences could still be detected. Ammonia accumulated already in CKD stage 1, whereas alterations of isoprene (linked to cholesterol metabolism, pentanal and heptanal (linked to oxidative stress concentrations were detectable in the breath of patients with CKD stage 2 to 4. Only weak associations between serum creatinine and exhaled VOCs were noted. Non-invasive breath testing may help to understand basic mechanisms and metabolic adaptation accompanying progression of CKD. Our results support the current notion that metabolic adaptation occurs early during the time

  14. Toward a hydrogen peroxide sensor for exhaled breath analysis

    NARCIS (Netherlands)

    Wiedemair, Justyna; van Dorp, Henriëtte; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a chip-integrated amperometric sensor for the detection of H2O2 in exhaled breath condensate (EBC) is reported. The electrode chip is characterized, and detection of H2O2 in an aqueous phase is shown by means of cyclic voltammetry (CV) and amperometry. Variation of conditions

  15. Hydrogen peroxide in exhaled breath condensate: A clinical study

    Directory of Open Access Journals (Sweden)

    C Nagaraja

    2012-01-01

    Full Text Available Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient′s lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization; the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

  16. Radon exhalation and its dependence on moisture content from samples of soil and building materials

    International Nuclear Information System (INIS)

    Faheem, Munazza; Matiullah

    2008-01-01

    Indoor radon has long been recognized as a potential health hazard for mankind. Building materials are considered as one of the major sources of radon in the indoor environment. To study radon exhalation rate and its dependence on moisture content, samples of soil and some common types of building materials (sand, cement, bricks and marble) were collected from Gujranwala, Gujrat, Hafizabad, Sialkot, Mandibahauddin and Narowal districts of the Punjab province (Pakistan). After processing, samples of 200 g each were placed in plastic vessels. CR-39 based NRPB detector were placed at the top of these vessels and were then hermetically sealed. After exposing to radon for 30 days within the closed vessels, the CR-39 detectors were processed. Radon exhalation rate was found to vary from 122±19 to 681±10mBqm -2 h -1 with an average of 376±147mBqm -2 h -1 in the soil samples whereas an average of 212±34, 195±25, 231±30 and 292±35mBqm -2 h -1 was observed in bricks, sand, cement and marble samples, respectively. Dependence of exhalation on moisture content has also been studied. Radon exhalation rate was found to increase with an increase in moisture, reached its maximum value and then decreased with further increase in the water content

  17. Exhaled Breath Condensate: Technical and Diagnostic Aspects

    Directory of Open Access Journals (Sweden)

    Efstathia M. Konstantinidi

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC, biomarkers, pH, asthma, gastroesophageal reflux (GERD, smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH, idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA, and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  18. Diagnostic utility of fractional exhaled nitric oxide in prolonged and chronic cough according to atopic status

    Directory of Open Access Journals (Sweden)

    Takamitsu Asano

    2017-04-01

    Conclusions: Although high FeNO levels suggested the existence of AC, lower FeNO levels had limited diagnostic significance. Atopic status affects the utility of FeNO levels in the differential diagnosis of prolonged and chronic cough.

  19. The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A. F.; Rajaa, G.

    2002-09-01

    Portland cement was mixed with different kind of sand (calcite and silica) in different ratio to produce radioactive specimens with radium chloride. The release of radon from these samples was studied. The results showed that radon release from the calcite-cement samples increased with the increases of the sand mixed ratio until fixed value (about 20%) then decreased to less than its release from the beginning, and the release changed with the sand size also. Radon release from silica-cement samples had the same observations of calcite-cement samples. It was found that calcite-cement reduced the radon exhalation quantity rather than the silica-cement samples. The decreases of the radon exhalation from the cement-sand may be due to the creation of free spaces in the samples, which gave the possibility to radon to decay into these free spaces rather than radon exhalation. The daughters of the radon decay 214 Bi and 214 Pb reported by gamma measurements of the cement-sand samples. (author)

  20. In situ measurements of thoron exhalation rate in Okinawa (Japan)

    International Nuclear Information System (INIS)

    Shiroma, Y.; Isa, N.; Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Furukawa, M.

    2010-01-01

    Thoron exhalation rates from the ground surface were measured at 57 sites on Okinawa Island (Japan), using a ZnS(Ag) scintillation detector equipped with photomultiplier. The arithmetic means ± SD, median ± SD, minimum and maximum of the rates (unit: Bq m -2 s -1 ) were estimated to be 1.9 ± 1.4, 1.6 ± 0.3, 0.04 and 6.2, respectively. The soils distributed on the island are generally classified into dark red soils, residual regosols, as well as red and yellow soils. While it was assumed that the soils were originated from the bedrock, recent studies suggested that the main material of dark red soils is the East Asian eolian dust. In the dark red soils area, the exhalation rate is relatively higher than that in the other areas. This suggested that the eolian dust was an enhancer for the environmental thoron concentration on Okinawa Island. (authors)

  1. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  2. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  3. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  4. Immunization with PIII, a fraction of Schistosoma mansoni soluble adult worm antigenic preparation, affects nitric oxide production by murine spleen cells

    Directory of Open Access Journals (Sweden)

    Diana Magalhães de Oliveira

    1998-01-01

    Full Text Available Nitric oxide (NO is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP, named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.

  5. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  6. Blood and exhaled air can be used for biomonitoring of hydrofluorocarbon exposure.

    Science.gov (United States)

    Ernstgård, Lena; Sjögren, Bengt; Gunnare, Sara; Johanson, Gunnar

    2014-02-10

    Various hydrofluorocarbons (HFCs) have replaced the ozone-depleting chlorofluorocarbons and hydrochlorofluorocarbons during the last decades. The objective of this study was to examine the usefulness of blood and breath for exposure biomonitoring of HFCs. We compared data on blood and exhaled air from a series of experiments where healthy volunteers were exposed to vapors of four commonly used HFCs; 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, and 1,1,1,3,3-pentafluoropropane. All four HFCs had similar toxicokinetic profiles in blood with a rapid initial increase and an apparent steady-state reached within a few minutes. For all HFCs, the inhalation uptake during exposure was low (less than 6%), most of which was exhaled post-exposure. No metabolism could be detected and only minor amounts were excreted unchanged in urine. The observed time courses in blood and breath were well described by physiologically-based pharmacokinetic (PBPK) modeling. Simulations of 8-h exposures show that the HFC levels in both blood and breath drop rapidly during the first minutes post-exposure, whereafter the decline is considerably slower and mainly reflects washout from fat tissues. We conclude that blood and exhaled air can be used for biological exposure monitoring. Samples should not be taken immediately at the end of shift but rather 20-30 min later. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  8. Morphological and functional determinants of fluoxetine (Prozac)-induced pulmonary disease in an experimental model.

    Science.gov (United States)

    Capelozzi, Marco A; Leick-Maldonado, Edna A; Parra, Edwin R; Martins, Mílton A; Tibério, Iolanda F L C; Capelozzi, Vera L

    2007-05-14

    Fluoxetine treatment effects were determined by evaluating respiratory mechanics (elastance/resistance) and exhaled nitric oxide, as well as mononuclear and polymorphonuclear cell recruitment into the lungs, in an experimental guinea pig model. Guinea pigs were divided into four groups: Fl (fluoxetine only, n=7); Fl+Sw (fluoxetine and forced swimming, n=7); Ns+Sw (normal saline and forced swimming, n=8); and Ns (normal saline only, n=8). Treated animals received oral fluoxetine (10 mg/(kg day)) for 30 consecutive days. On day 31, all animals were anesthetized and mechanically ventilated so that respiratory system elastance and resistance, as well exhaled nitric oxide, could be determined. The lungs were then excised en bloc for histological and immunohistochemical evaluation. Forced swimming induced bronchodilation in untreated animals and bronchoconstriction in fluoxetine-treated animals. Fluoxetine treatment was also associated with mononuclear infiltration (predominantly into alveolar walls) and neutrophil recruitment. In addition, levels of exhaled nitric oxide, an inflammatory marker, were higher in fluoxetine-treated animals. Swimming-induced stress also amplified mononuclear cell recruitment to the lungs. These results show that, in this experimental model, fluoxetine treatment reproduces the pathology of chronic interstitial pneumonia in humans.

  9. Inhaled Nitric Oxide for the Prevention of Impaired Arterial Oxygenation during Myocardial Revascularization with Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2011-01-01

    Full Text Available Objective: to study the efficacy of inhaled nitric oxide used intraoperatively to prevent lung oxygenating dysfunction in patients with coronary heart disease after myocardial revascularization under extracorporeal circulation (EC. Subjects and methods. Thirty-two patients aged 55.0±2.0 years were examined. The inclusion criteria were the standard course of surgical intervention (the absence of hemorrhage, acute cardiovascular insufficiency, perioperative myocardial infarction, etc., a pulmonary artery wedge pressure of less than 15 – mm Hg throughout the study, and the baseline arterial partial oxygen tension/inspired mixture oxygen fraction (PaO2/FiO2 ratio of at least 350 mm Hg. There was a control group (n=21; Group 1 that used no special measures to prevent and/or to correct lung oxygenating dysfunction and Group 2 (n=11 that received inhaled nitric oxide. Ihe administration of inhaled nitric oxide at a concentration of 10 ppm was initiated after water anesthesia, stopped during EC, and resumed in the postperfusion period. Results. At the end, PaO2/FiO2 and intrapulmonary shunt fraction did not differ between the groups (p>0.05. Before EC, the patients receiving inhaled nitric oxide had a lower intrapulmonary blood shunting (8.9±0.7 and 11.7±1.0%; p<0.05. There were no intergroup differences in the values of PaO2/FiO2 at this stage. In the earliest postperfusion period, PaO2/FiO2 was higher in Group 2 than that in Group 1. At the end of operations, Groups 1 and 2 had a PaO2/FiO2 of 336.0±16.8 and 409.0±24.3 mm Hg, respectively (p<0.05 and an intrapulmonary shunt fraction of 14.5±1.0 and 10.4±1.0% (p<0.05. At the end of surgery, the rate of a reduction in PaO2/FiO2 to the level below 350 mm Hg was 52.4±11.1% in Group 1 and 18.2±11.6% in Group 2 (p<0.05. Six hours after surgery, PaO2/FiO2 values less than 300 mm Hg were diagnosed in 61.9±10.5% of Group 1 patients and in 27.3±13.4% of Group 2 ones (p<0.05. Conclusion. The

  10. Studies on radon exhalation rate from building materials of Mysuru district, Karnataka

    International Nuclear Information System (INIS)

    Chandini, M.; Lavanya, B.S.K.; Chandrashekara, M.S.; Pruthvi Rani, K.S.

    2017-01-01

    In the present study, mass exhalation rate of 222 Rn from soil and building materials was studied using scintillation based Smart Radon Monitor (SRM) and also using Solid State Nuclear Track Detectors (SSNTD) employing Can Technique, following standard procedure. Mass exhalation rate of 222 Rn from various building material samples such as brick, sand, cement, concrete and from different types of flooring materials was determined. The results obtained from these methods were compared and analysed. The samples of construction materials were collected from various locations of Mysuru city. The city has an area of about 128 sq km with population of about 1 million. Mining industries of magnetite, dunite and lime stone are located around Mysuru city. In addition to this, quarrying and crushing of granite stones for building activities also exist nearby

  11. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, P<0.001). Totally, forty VOCs were found in all exhaled breath samples. Among the VOCs, the mean of peak area acetaldehyde, hexanal, nonanal, decane, pentad cane, 2-propanol and 3-hydroxy-2-butanone were higher in exhaled breath of the workers exposed to silica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (P<0.05). The analysis of some VOCs in exhaled breath of subjects is appropriate biomarker to determine of exposure to silica.

  12. Quantifying Aerosol Delivery in Simulated Spontaneously Breathing Patients With Tracheostomy Using Different Humidification Systems With or Without Exhaled Humidity.

    Science.gov (United States)

    Ari, Arzu; Harwood, Robert; Sheard, Meryl; Alquaimi, Maher Mubarak; Alhamad, Bshayer; Fink, James B

    2016-05-01

    Aerosol and humidification therapy are used in long-term airway management of critically ill patients with a tracheostomy. The purpose of this study was to determine delivery efficiency of jet and mesh nebulizers combined with different humidification systems in a model of a spontaneously breathing tracheotomized adult with or without exhaled heated humidity. An in vitro model was constructed to simulate a spontaneously breathing adult (tidal volume, 400 mL; breathing frequency, 20 breaths/min; inspiratory-expiratory ratio, 1:2) with a tracheostomy using a teaching manikin attached to a test lung through a collecting filter (Vital Signs Respirgard II). Exhaled heat and humidity were simulated using a cascade humidifier set to deliver 37°C and >95% relative humidity. Albuterol sulfate (2.5 mg/3 mL) was administered with a jet nebulizer (AirLife Misty Max) operated at 10 L/min and a mesh nebulizer (Aeroneb Solo) using a heated pass-over humidifier, unheated large volume humidifier both at 40 L/min output and heat-and-moisture exchanger. Inhaled drug eluted from the filter was analyzed via spectrophotometry (276 nm). Delivery efficiency of the jet nebulizer was less than that of the mesh nebulizer under all conditions (P < .05). Aerosol delivery with each nebulizer was greatest on room air and lowest when heated humidifiers with higher flows were used. Exhaled humidity decreased drug delivery up to 44%. The jet nebulizer was less efficient than the mesh nebulizer in all conditions tested in this study. Aerosol deposition with each nebulizer was lowest with the heated humidifier with high flow. Exhaled humidity reduced inhaled dose of drug compared with a standard model with nonheated/nonhumidified exhalation. Further clinical research is warranted to understand the impact of exhaled humidity on aerosol drug delivery in spontaneously breathing patients with tracheostomy using different types of humidifiers. Copyright © 2016 by Daedalus Enterprises.

  13. Inflammation is a Continuous Trait in Children regardless of Asthma Symptoms

    DEFF Research Database (Denmark)

    Schoos, Ann-Marie Malby; Chawes, Bo Lund Krogsgaard; Bønnelykke, Klaus

    2011-01-01

    asymptomatic children to children with intermittent asthmatic symptoms and children with persistent asthma. Methods: An unselected group of 196 six-year-old children were included from the Copenhagen Prospective Study on Asthma in Childhood (COPSAC) birth cohort born of mothers with asthma. Bronchial...... for a dichotomized approach to asthma diagnosis. Childhood asthma remains a clinical diagnosis and surrogate markers may only be used cautiously as supportive evidence.......Rationale: Elevated fractional exhaled nitric oxide (FeNO) and bronchial hyperresponsiveness are used as surrogate markers of asthma. Objective: To investigate the association between FeNO and bronchial responsiveness in a population of high risk children including the full spectrum from...

  14. Predictors of neutrophilic airway inflammation in young smokers with asthma

    DEFF Research Database (Denmark)

    Westergaard, Christian Grabow; Munck, Christian; Helby, Jens

    2014-01-01

    by a higher degree of neutrophilic inflammation than in non-smokers. A state of neutrophilic inflammation may lead to increased steroid resistance and an accelerated loss of lung function owing to tissue destruction. The aim of this study was to elucidate predictors of neutrophilic inflammation in young...... asthmatic smokers not on steroid treatment, including analysis of tobacco history and bacterial colonization. Methods: In a cross-sectional study, 52 steroid-free, current smokers with asthma were examined with induced sputum, fractional exhaled nitric oxide (FeNO), lung function, ACQ6 score, mannitol...... smokers, neutrophilia may be induced when a certain threshold of tobacco consumption is reached....

  15. Study of different factors which can explain the radon exhalation potential of soils; Recherche de differents parametres caracterisant le potentiel d`exhalation en radon des sols

    Energy Technology Data Exchange (ETDEWEB)

    Demongeot, St

    1997-10-27

    Radon is a natural radioactive gas belonging to the Uranium-238 chain, which is present in the earth crust and produced by the disintegration of radium-226. It is considered as the major source of radiological exposure of man to natural radiation because it can accumulate in indoor atmosphere. So, this health risk must be take into account.The aim of this study is to find some tools in order to identify high radon level area. The first part of this study has consisted in measurement of radon emission from different not sufficient for the estimation of the radon exhalation potential in a given area. In the second part of this work, we have studied the variations of in situ radon concentration as a function of different geological and pedologic parameters of the site. With the results obtained, we have determined the data which have to be considered, and the methodology to be applied for the determination of the radon exhalation of a given area. Furthermore, by the mean of numerical simulations (TRACH Model), it was possible to know the scale of radon flux variation in a given point versus the hydric state of the ground and thus the permeability: these parameters are not easy to measure because of their variabilities with time. The methodology ESPERAS (EStimation du Potential d`Exhalation en Radon des Sols) developed during this work was applied first, at a local scale and then to greater area. The values estimated by this way are in a good agreement with the results of measurements. So, we can determine the areas which are affected by high radon levels. (author)

  16. Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects.

    Science.gov (United States)

    Högman, M; Thornadtsson, A; Liv, P; Hua-Huy, T; Dinh-Xuan, A T; Tufvesson, E; Dressel, H; Janson, C; Koskela, K; Oksa, P; Sauni, R; Uitti, J; Moilanen, E; Lehtimäki, L

    2017-09-13

    The lung just like all other organs is affected by age. The lung matures by the age of 20 and age-related changes start around middle age, at 40-50 years. Exhaled nitric oxide (F E NO) has been shown to be age, height and gender dependent. We hypothesize that the nitric oxide (NO) parameters alveolar NO (C A NO), airway flux (J aw NO), airway diffusing capacity (D aw NO) and airway wall content (C aw NO) will also demonstrate this dependence. Data from healthy subjects were gathered by the current authors from their earlier publications in which healthy individuals were included as control subjects. Healthy subjects (n = 433) ranged in age from 7 to 78 years. Age-stratified reference values of the NO parameters were significantly different. Gender differences were only observed in the 20-49 age group. The results from the multiple regression models in subjects older than 20 years revealed that age, height and gender interaction together explained 6% of variation in F E NO at 50 ml s -1 (F E NO 50 ), 4% in J aw NO, 16% in C aw NO, 8% in D aw NO and 12% in C A NO. In conclusion, in this study we have generated reference values for NO parameters from an extended NO analysis of healthy subjects. This is important in order to be able to use these parameters in clinical practice.

  17. A Full-Scale Study of Exhaled Droplet Dispersion in the Microenvironment around one and two Persons

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Li, Yuguo; Khalegi, Farzad

    Airborne cross infection is based on transmission of microorganisms attached to exhaled droplets or particles. Traditionally two transmission routes are considered, namely via droplet nuclei ( 5-10 μm), and they correspond to two infection routes: droplet infection...... and airborne infection. A transition may take place from droplet-borne infection to airborne infection, because the exhaled droplets may evaporate in the air and droplets become droplet nuclei. Full-scale experiments on the movement of droplet nuclei (airborne infection) have been performed in a number...

  18. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Zeng, Qian; Li, Penghui; Cai, Yunfeng; Zhou, Wei; Wang, Haidong; Luo, Jiao; Ding, Jianhua; Chen, Huanwen

    2016-02-09

    Exhaled breath contains chemicals that have a diagnostic value in human pathologies. Here in vivo breath analysis of creatinine has been demonstrated by constructing a novel platform based on extractive electrospray ionization mass spectrometry (EESI-MS) without sample pretreatment. Under optimized experimental conditions, the limit of creatinine detection in breath was 30.57 ng L(-1), and the linear range of detection was from 0.3 μg L(-1) to 100 μg L(-1). The concentration range of creatinine in the exhaled breath of 50 volunteers with chronic kidney disease was from 42 pptv to 924 pptv, and the range of the relative standard deviations was from 9.3% to 19.2%. The method provides high sensitivity, high specificity and high speed for semi-quantitative analysis of creatinine in exhaled human breath.

  19. Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis.

    Science.gov (United States)

    de Vries, R; Brinkman, P; van der Schee, M P; Fens, N; Dijkers, E; Bootsma, S K; de Jongh, F H C; Sterk, P J

    2015-10-15

    New 'omics'-technologies have the potential to better define airway disease in terms of pathophysiological and clinical phenotyping. The integration of electronic nose (eNose) technology with existing diagnostic tests, such as routine spirometry, can bring this technology to 'point-of-care'. We aimed to determine and optimize the technical performance and diagnostic accuracy of exhaled breath analysis linked to routine spirometry. Exhaled breath was collected in triplicate in healthy subjects by an eNose (SpiroNose) based on five identical metal oxide semiconductor sensor arrays (three arrays monitoring exhaled breath and two reference arrays monitoring ambient air) at the rear end of a pneumotachograph. First, the influence of flow, volume, humidity, temperature, environment, etc, was assessed. Secondly, a two-centre case-control study was performed using diagnostic and monitoring visits in day-to-day clinical care in patients with a (differential) diagnosis of asthma, chronic obstructive pulmonary disease (COPD) or lung cancer. Breathprint analysis involved signal processing, environment correction based on alveolar gradients and statistics based on principal component (PC) analysis, followed by discriminant analysis (Matlab2014/SPSS20). Expiratory flow showed a significant linear correlation with raw sensor deflections (R(2)  =  0.84) in 60 healthy subjects (age 43  ±  11 years). No correlation was found between sensor readings and exhaled volume, humidity and temperature. Exhaled data after environment correction were highly reproducible for each sensor array (Cohen's Kappa 0.81-0.94). Thirty-seven asthmatics (41  ±  14.2 years), 31 COPD patients (66  ±  8.4 years), 31 lung cancer patients (63  ±  10.8 years) and 45 healthy controls (41  ±  12.5 years) entered the cross-sectional study. SpiroNose could adequately distinguish between controls, asthma, COPD and lung cancer patients with cross-validation values

  20. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells.

    Science.gov (United States)

    Friedl, R; Moeslinger, T; Kopp, B; Spieckermann, P G

    2001-12-01

    1. In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. 2. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 - 0.8 microg microl(-1)) showed a dose dependent stimulation of inducible nitric oxide synthesis. 3. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. 4. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-kappaB DNA binding activity. 5. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase.

  1. Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma

    NARCIS (Netherlands)

    Fens, Niki; Zwinderman, Aeilko H.; van der Schee, Marc P.; de Nijs, Selma B.; Dijkers, Erica; Roldaan, Albert C.; Cheung, David; Bel, Elisabeth H.; Sterk, Peter J.

    2009-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) and asthma can exhibit overlapping clinical features. Exhaled air contains volatile organic compounds (VOCs) that may qualify as noninvasive biomarkers. VOC profiles can be assessed using integrative analysis by electronic nose, resulting in

  2. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room

    Energy Technology Data Exchange (ETDEWEB)

    He, Qibin; Gao, Naiping; Zhu, Tong; Wu, Jiazheng [Institute of Refrigeration and Thermal Engineering, School of Mechanical Engineering, Tongji University, Siping Road 1239, Shanghai (China); Niu, Jianlei [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (China)

    2011-02-15

    This paper investigated the transmission of respiratory droplets between two seated occupants equipped with one type of personalized ventilation (PV) device using round movable panel (RMP) in an office room. The office was ventilated by three different total volume (TV) ventilation strategies, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD) system respectively as background ventilation methods. Concentrations of particles with aerodynamic diameters of 0.8 {mu}m, 5 {mu}m, and 16 {mu}m as well as tracer gas were numerically studied in the Eulerian frame. Two indexes, i.e. intake fraction (IF) and concentration uniformity index R{sub C} were introduced to evaluate the performance of ventilation systems. It was found that without PV, DV performed best concern protecting the exposed manikin from the pollutants exhaled by the polluting manikin. In MV when the exposed manikin opened RMP the inhaled air quality could always be improved. In DV and UFAD application of RMP might sometimes, depending on the personalized airflow rate, increase the exposure of the others to the exhaled droplets of tracer gas, 0.8 {mu}m particles, and 5 {mu}m particles from the infected occupants. Application of PV could reduce R{sub C} for all the three TV systems of 0.8 {mu}m and 5 {mu}m particles. PV enhanced mixing degree of particles under DV and UFAD based conditions much stronger than under MV based ones. PV could increase the average concentration in the occupied zone of the exposed manikin as well as provide clean personalized airflow. Whether inhaled air quality could be improved depended on the balance of pros and cons of PV. (author)

  3. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Using exhaled carbon monoxide and carboxyhemoglobin to evaluate the effectiveness of a chimney stove model in Peru.

    Science.gov (United States)

    Eppler, Adam R; Fitzgerald, Christopher; Dorner, Stephen C; Aguilar-Villalobos, Manuel; Rathbun, Stephen L; Adetona, Olorunfemi; Naeher, Luke P

    2013-01-01

    Measurement of biological indicators of physiological change may be useful in evaluating the effectiveness of stove models, which are intended to reduce indoor smoke exposure and potential health effects. We examined changes in exhaled carbon monoxide (CO), percentage carboxy-hemoglobin, and total hemoglobin in response to the installation of a chimney stove model by the Juntos National Program in Huayatan, Peru in 2008. Biomarkers were measured in a convenience sample comprising 35 women who met requirements for participation, and were measured before and three weeks after installation of a chimney stove. The relationships between exposure to indoor smoke and biomarker measurements were also analyzed using simple linear regression models. Exhaled CO reduced from 6.71 ppm (95% CI 5.84-7.71) to 3.14 ppm (95% CI 2.77-3.66) three weeks after stove installation (P < 0.001) while % COHb reduced from 1.76% (95% CI 1.62-1.91) to 1.18% (95% CI 1.12-1.25; P < 0.001). Changes in exhaled CO and % COHb from pre- to post-chimney stove installation were not correlated with corresponding changes in exposure to CO and PM2.5 even though the exposures also reduced after stove installation. Exhaled CO and % COHb both showed improvement with reduction in concentration after the installation of the chimney cook stoves, indicating a positive physiological response subsequent to the intervention.

  5. Prevalence and risk factors for allergic rhinitis in two resource-limited settings in Peru with disparate degrees of urbanization.

    Science.gov (United States)

    Baumann, L M; Romero, K M; Robinson, C L; Hansel, N N; Gilman, R H; Hamilton, R G; Lima, J J; Wise, R A; Checkley, W

    2015-01-01

    Allergic rhinitis is a disease with a high global disease burden, but risk factors that contribute to this condition are not well understood. To assess the prevalence and risk factors of allergic rhinitis in two Peruvian populations with disparate degrees of urbanization. We conducted a population-based, cross-sectional study on 1441 children aged 13-15 years at enrollment (mean age 14.9 years, 51% boys) to investigate the prevalence of allergic disease. We used a standardized, Spanish validated questionnaire to determine the prevalence of allergic rhinitis and asked about sociodemographics and family history of allergies. Children also underwent spirometry, exhaled nitric oxide, allergy skin testing to 10 common household allergens and provided a blood sample for measurement of 25OH vitamin D and total serum IgE. Overall prevalence of allergic rhinitis was 18% (95% CI 16% to 20%). When stratified by site, the prevalence of allergic rhinitis was 23% Lima vs. 13% in Tumbes (P overweight (1.5, 1.0-2.3); exhaled nitric oxide ≥ 20 ppb (1.9, 1.3-2.7); and total serum IgE ≥ 95th percentile (2.4, 1.2-4.8). Population attributable risk of important factors for allergic rhinitis were 25% for high exhaled nitric oxide, 22% for allergic sensitization to common household aeroallergens, 22% for paternal rhinitis, 10% for being overweight and 7% for an elevated total serum IgE. Allergic rhinitis was prevalent in both settings, and important risk factors include elevated exhaled nitric oxide, allergic sensitization to common household aeroallergens, parental rhinitis, being overweight and high total serum IgE. When considering subject-specific factors, the difference in prevalence between the urban and rural settings became non-important. © 2014 John Wiley & Sons Ltd.

  6. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  7. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  8. Exhaled Breath Condensate for Proteomic Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Sean W. Harshman

    2014-07-01

    Full Text Available Exhaled breath condensate (EBC has been established as a potential source of respiratory biomarkers. Compared to the numerous small molecules identified, the protein content of EBC has remained relatively unstudied due to the methodological and technical difficulties surrounding EBC analysis. In this review, we discuss the proteins identified in EBC, by mass spectrometry, focusing on the significance of those proteins identified. We will also review the limitations surrounding mass spectral EBC protein analysis emphasizing recommendations to enhance EBC protein identifications by mass spectrometry. Finally, we will provide insight into the future directions of the EBC proteomics field.

  9. New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate

    National Research Council Canada - National Science Library

    Montuschi, Paolo

    2005-01-01

    ... diseases might be relevant to differential diagnosis. Given its noninvasiveness, this method might be suitable for longitudinal studies in patients with lung disease, including children. This book provides an introduction to the analysis of exhaled breath condensate. To provide an overview of lung inflammation, basic and clinical pharmacology of leukotrie...

  10. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  11. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

    Directory of Open Access Journals (Sweden)

    Yuichi Sakumura

    2017-02-01

    Full Text Available Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs at very low concentrations (ppb level. We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls using gas chromatography/mass spectrometry (GC/MS, and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  12. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm.

    Science.gov (United States)

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-02-04

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH₃CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  13. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    Science.gov (United States)

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Differences in the Chemical Composition of the Particulate Phase of Inhaled and Exhaled Cigarette Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available In this study, a comparison between the chemical composition of the particulate-phase of exhaled smoke and that of smoke generated with a smoking machine has been performed. For this purpose, eight human subjects smoked a common Lights (10.6 mg ‘tar’/cig commercial cigarette and the exhaled particulate-phase smoke from three cigarettes was collected on Cambridge pads for each smoker. The smoke collection from the human subjects was vacuum assisted. The cigarette butts from the smokers were collected and analyzed for nicotine. The machine smoking was performed with a Borgwaldt RM20 CSR smoking machine working under conditions recommended by the U.S. Federal Trade Commission (FTC. The nicotine levels for the cigarette butts from the smokers were used to normalize the level of exhaled smoke condensate to that of the FTC smoking conditions. The smoke condensates from exhaled smoke as well as that from the machine smoking were analyzed by a gas chromatographic technique with mass spectral peak identification. The retention efficiency for 160 compounds was calculated from the ratio of the compound peak areas in the exhaled smoke (normalized by the corresponding butt nicotine level vs. the areas of the corresponding peaks from the chromatogram of the smoke generated by the smoking machine. In the calculation of the results, it was assumed that the composition of mainstream smoke remains practically constant at different smoking regimes. All compounds found in the machine-generated smoke were also present in the exhaled smoke, but at different levels. About one third of the compounds were retained more than 66% by the smoker. Another third of the compounds were retained between 33% and 66%, and the rest of the compounds were retained very little from the mainstream particulate-phase of the cigarette smoke. The compounds retained more than 66% were in general compounds with lower molecular weight and with higher water solubility, which eluted first

  15. Internal exposure from building materials exhaling (222)Rn and (220)Rn as compared to external exposure due to their natural radioactivity content.

    Science.gov (United States)

    Ujić, Predrag; Celiković, Igor; Kandić, Aleksandar; Vukanac, Ivana; Durasević, Mirjana; Dragosavac, Dusan; Zunić, Zora S

    2010-01-01

    The main scope of this paper is to point out the importance of introducing radon and thoron exhalation measurements from building materials in the regulating frame. Currently (2009), such a regulation of this kind of exposure is not explicitly included in the Serbian regulating network. To this end, this work reports concentration measurements of (226)Ra, (232)Th and (40)K and radon and thoron exhalation rates from building materials used in Serbia. Following detailed analysis, it was noticed that both internal exposures to radon and/or thoron exhaling from building materials may exceed external exposures to their precursors contained therein.

  16. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    Science.gov (United States)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  17. Effect of a passive exhalation port on tracheostomy ventilation in amyotrophic lateral sclerosis patients: a randomized controlled trial.

    Science.gov (United States)

    Vianello, Andrea; Arcaro, Giovanna; Molena, Beatrice; Iovino, Silvia; Gallan, Federico; Turato, Cristian; Marchese-Ragona, Rosario

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) patients often require long-term tracheostomy ventilation (LT-TV) because of progressive ventilatory failure. Although widely used for non-invasive ventilation (NIV), passive exhalation port systems have not been gaining popularity for TV because of the possibility of carbon dioxide (CO 2 ) rebreathing. The current study set out to investigate the effect of a Whisper Swivel connector in comparison to an active exhalation valve on gas exchange and symptoms in ALS patients requiring LT-TV. A prospective randomized controlled trial was carried out to compare the clinical outcome of ten ALS patients receiving LT-TV by means of a Trilogy 100 ventilator with a Whisper Swivel passive exhalation port (group A) and of 10 ALS patients connected to an Airox Legendair ventilator with an active exhalation valve (group B). The study's main outcome measure was CO 2 retention at the 30-day follow-up assessment. One patient in each of the two cohorts showed significant CO 2 retention. At the 30-day assessment, scores on the following measures were not significantly different in the two groups: the Borg dyspnea scale {2 [1-3] vs. 1 [1-3]; P=0.2891}, the visual analogue scale (VAS) dyspnea {20 [10-85] vs. 20 [0-50]; P=0.8571}, the Epworth sleepiness scale (ESS) {8 [4-10] vs. 5.5 [0-12]; P=0.1443}, the EuroQol-VAS (EQ-VAS) {55 [50-80] vs. 50 [30-80]; P=0.4593} and the relative stress scale (RSS) {49 [30-65] vs. 52 [25-64]; P=0.8650}. At the 3-month follow-up assessment, the numbers of hospitalizations and deaths were likewise similar in the two groups. The efficacy of the Whisper Swivel connector is similar to that of an active exhalation valve in ALS patients undergoing LT-TV.

  18. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    Science.gov (United States)

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Effect of exhalation exercise on trunk muscle activity and oswestry disability index of patients with chronic low back pain

    OpenAIRE

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] This study investigated the effect of exhalation exercises on trunk muscle activity and Oswestry Disability Index by inducing trunk muscle activity through increasing intra-abdominal pressure and activating muscles, contributing to spinal stability. [Subjects and Methods] This intervention program included 20 male patients with chronic low back pain. A total of 10 subjects each were randomly assigned to an exhalation exercise group as the experimental group and a spinal stabilizatio...

  20. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  1. Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Haffez, A.-F.; Hunyadi, I.; Toth-Szilagyi, M.

    1986-01-01

    There are large discrepancies in data available in the literature for the exhalation and diffusion behaviour of radon in various materials. Therefore there is a need for more studies in this field. For this purpose we have developed and used track methods to measure mass and areal exhalation rates of radon from different fly ashes and sand. In addition, methods were also developed to determine the diffusion length of radon and the porosity of materials. For getting the radon emanation coefficient we have applied the autoradiographic method and the ''can-technique'' for determining the real and effective radium contents. The disturbing effect expected from the geometry of measuring cans and samples is discussed. Relations are derived for the correction of such effect.

  2. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Bavarnegin, E.; Fathabadi, N.; Vahabi Moghaddam, M.; Vasheghani Farahani, M.; Moradi, M.; Babakhni, A.

    2013-01-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m −2 h −1 . The 226 Ra, 232 Th and 40 K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of 226 Ra, 232 Th and 40 K content varied from below the minimum detection limit up to 86,400 Bq kg −1 , 187 Bq kg −1 and 1350 Bq kg −1 , respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. -- Highlights: ► In the selection process of local samples, portable scintillometer (NaI) was used. ► The activity concentration of 226 Ra varied from below the MDL up to 86400 Bq kg −1 . ► The activity concentration of 232 Th varied from below the MDL up to 187 Bq kg −1 . ► The activity concentration of 40 K varied from below the MDL up to 1350 Bq kg −1

  3. Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma.

    Science.gov (United States)

    Phipatanakul, Wanda; Mauger, David T; Sorkness, Ronald L; Gaffin, Jonathan M; Holguin, Fernando; Woodruff, Prescott G; Ly, Ngoc P; Bacharier, Leonard B; Bhakta, Nirav R; Moore, Wendy C; Bleecker, Eugene R; Hastie, Annette T; Meyers, Deborah A; Castro, Mario; Fahy, John V; Fitzpatrick, Anne M; Gaston, Benjamin M; Jarjour, Nizar N; Levy, Bruce D; Peters, Stephen P; Teague, W Gerald; Fajt, Merritt; Wenzel, Sally E; Erzurum, Serpil C; Israel, Elliot

    2017-06-01

    Phenotypic distinctions between severe asthma (SA) and nonsevere asthma (NONSA) may be confounded by differential adherence or incorrect use of corticosteroids. To determine if there are persistent phenotypic distinctions between SA (as defined by 2014 American Thoracic Society/European Respiratory Society guidelines) and NONSA after intramuscular triamcinolone acetonide (TA), and to identify predictors of a corticosteroid response in these populations. A total of 526 adults age 18 years and older (315 SA) and 188 children age 6 to less than 18 years (107 SA) in the NHLBI Severe Asthma Research Program III were characterized before and 3 weeks after TA. The primary outcome for corticosteroid response was defined as greater than or equal to 10-point improvement in percent predicted FEV 1 . Adult asthma groups exhibited a small but significant mean FEV 1 % predicted improvement after TA (SA group mean difference, 3.4%; 95% confidence interval, 2.2-4.7%; P = 0.001), whereas children did not. Adult SA continued to manifest lower FEV 1 and worse asthma control as compared with NONSA after TA. In children, after TA only prebronchodilator FEV 1 distinguished SA from NONSA. A total of 21% of adults with SA and 20% of children with SA achieved greater than or equal to 10% improvement after TA. Baseline bronchodilator response and fractional exhaled nitric oxide had good sensitivity and specificity for predicting response in all groups except children with NONSA. One in five patients with SA exhibit greater than or equal to 10% improvement in FEV 1 with parenteral corticosteroid. Those likely to respond had greater bronchodilator responsiveness and fractional exhaled nitric oxide levels. In adults, differences in airflow obstruction and symptoms between SA and NONSA persist after parenteral corticosteroids, suggesting a component of corticosteroid nonresponsive pathobiology in adults with SA that may differ in children. Clinical trial registered with www

  4. The concentration distributions of some metabolites in the exhaled breath of young adults

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    2007-01-01

    Roč. 1, - (2007), 026001 ISSN 1752-7155 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : metabolites * exhaled breath * concentration distributions Subject RIV: CF - Physical ; Theoretical Chemistry

  5. Radon exhalation from samples of Danish soils, subsoils and sedimentary rocks

    International Nuclear Information System (INIS)

    Korsbech, U.

    1985-01-01

    For some years it has been known that the ground below a house could be the major source of radon and radon daughters in the indoor air. Th amount of radon penetrating into buildings from the ground depends on several factors e.g. the amount of radon produced in the ground, the amount of cracks and holes in the foundation of buildings, and the pressure difference between the air in the ground (sol air) and the indoor air. As a first step in determining the influence of the ground below Danish buildings 60 samples of soils, subsoils, and sedimentary rocks have been measured for their exhalation rates of radon i.e. the amount of radon escaping the sample per mass unit and per second (Bq.kg -1 .s -1 or radon atoms per kg and per sec.). The results of the measurements of the radon exhalation are presented and commented, and a conclusion concerning the methods for finding geological deposits with a high radon halation rate is presented. (author)

  6. Device for adsorbing exhaled radioactive gases and process

    International Nuclear Information System (INIS)

    Glasser, H.; Panetta, P.F.

    1976-01-01

    Sorption means are provided for sorbing radioactive gases, as in the exhalations of a living subject, especially for nuclear diagnostic test studies, comprising means for adsorbing the radioactive gas onto activated carbon, the carbon being contained in a plurality of independent, series-connected, chambers. The sorption means are especially adapted for the adsorption of radioactive inert gases such as xenon-133 ( 133 Xe). There can also be provided indicator means for indicating the flow-through of xenon comprising an indicator which changes color upon contact with xenon, such as dioxygenylhexafluoroantimoniate. 14 claims, 7 drawing figures

  7. Non-invasive biomarkers and pulmonary function in smokers

    OpenAIRE

    Borrill, Zo? L; Roy, Kay; Vessey, Rupert S; Woodcock, Ashley A; Singh, Dave

    2008-01-01

    Zoë L Borrill1, Kay Roy1, Rupert S Vessey2, Ashley A Woodcock1, Dave Singh11Medicines Evaluation Unit, University of Manchester, Wythenshawe Hospital, Southmoor Rd, Manchester, UK; 2Glaxo Smith Kline, Philadelphia, USAAbstract: Limited information exists regarding measurement, reproducibility and interrelationships of non-invasive biomarkers in smokers. We compared exhaled breath condensate (EBC) leukotriene B4 (LTB4) and 8-isoprostane, exhaled nitric oxide, induced sputum, spirometr...

  8. Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Di Donato Michele

    2009-12-01

    Full Text Available Abstract Background High levels of exhaled carbon monoxide (eCO are a marker of airway or lung inflammation. We investigated whether hypo- or hyperventilation can affect measured values. Methods Ten healthy volunteers were trained to achieve sustained end-tidal CO2 (etCO2 concentrations of 30 (hyperventilation, 40 (normoventilation, and 50 mmHg (hypoventilation. As soon as target etCO2 values were achieved for 120 sec, exhaled breath was analyzed for eCO with a photoacoustic spectrometer. At etCO2 values of 30 and 40 mmHg exhaled breath was sampled both after a deep inspiration and after a normal one. All measurements were performed in two different environmental conditions: A ambient CO concentration = 0.8 ppm and B ambient CO concentration = 1.7 ppm. Results During normoventilation, eCO mean (standard deviation was 11.5 (0.8 ppm; it decreased to 10.3 (0.8 ppm during hyperventilation (p 2 changes (hyperventilation: 10% Vs 25% decrease; hypoventilation 3% Vs 25% increase. Taking a deep inspiration before breath sampling was associated with lower eCO values (p Conclusions eCO measurements should not be performed during marked acute hyperventilation, like that induced in this study, but the influence of less pronounced hyperventilation or of hypoventilation is probably negligible in clinical practice

  9. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Directory of Open Access Journals (Sweden)

    Thamires Marques de Lima

    2013-12-01

    Full Text Available OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study. RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively. Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.

  10. Anti-inflammatory effects of chloroform soluble fraction from Perilla frutescens britton leaves produced by radiation breeding in RAW264.7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Yun Ho; So, Yang Kang; Kim, Jin Baek; Jin, Chang Hyun [Advance Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Jun Soo [Dept. Food Science and Technology Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Lee, Seung Young [Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju (Korea, Republic of)

    2016-11-15

    The present study aimed to determine the anti-inflammatory effects of each solvent fraction of a mutant Perilla frutescens produced by radiation breeding. Following extraction with 80% methanol, P. frutescens was fractionated in the order of hexane, chloroform, ethyl acetate, and butanol; the chloroform fraction exhibited less cytotoxicity, the greatest inhibitory effect on the production of nitric oxide (NO), and the highest rate of inhibition on the generation of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and interferon-β (IFN-β). The chloroform fraction also suppressed the mRNA and protein levels of inducible nitric oxide synthase (iNOS) and reduced the activation of nuclear factor-{sub κ}B (NF-{sub κ}B) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Finally, the presence of corosolic acid in the chloroform fraction was identifed. Taken together, the present fndings indicate that the chloroform fraction obtained from mutant P. frutescens inhibited NO production in LPSstimulated RAW264.7 cells via the suppression of iNOS expression and the inactivation of NF-{sub κ}B.

  11. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    Science.gov (United States)

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the

  12. Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: the EGEA study.

    Science.gov (United States)

    Havet, Anaïs; Zerimech, Farid; Sanchez, Margaux; Siroux, Valérie; Le Moual, Nicole; Brunekreef, Bert; Stempfelet, Morgane; Künzli, Nino; Jacquemin, Bénédicte; Matran, Régis; Nadif, Rachel

    2018-04-01

    Associations between outdoor air pollution and asthma in adults are still scarce, and the underlying biological mechanisms are poorly understood. Our aim was to study the associations between 1) long-term exposure to outdoor air pollution and current asthma, 2) exhaled 8-isoprostane (8-iso; a biomarker related to oxidative stress) and current asthma, and 3) outdoor air pollution and exhaled 8-iso.Cross-sectional analyses were conducted in 608 adults (39% with current asthma) from the first follow-up of the French case-control and family study on asthma (EGEA; the Epidemiological study of the Genetic and Environmental factors of Asthma). Data on nitrogen dioxide, nitrogen oxides, particulate matter with a diameter ≤10 and ≤2.5 µm (PM 10 and PM 2.5 ), road traffic, and ozone (O 3 ) were from ESCAPE (European Study of Cohorts for Air Pollution Effects) and IFEN (French Institute for the Environment) assessments. Models took account of city and familial dependence.The risk of current asthma increased with traffic intensity (adjusted (a)OR 1.09 (95% CI 1.00-1.18) per 5000 vehicles per day), with O 3 exposure (aOR 2.04 (95% CI 1.27-3.29) per 10 µg·m -3 ) and with exhaled 8-iso concentration (aOR 1.50 (95% CI 1.06-2.12) per 1 pg·mL -1 ). Among participants without asthma, exhaled 8-iso concentration increased with PM 2.5 exposure (adjusted (a)β 0.23 (95% CI 0.005-0.46) per 5 µg·m -3 ), and decreased with O 3 and O 3-summer exposures (aβ -0.20 (95% CI -0.39- -0.01) and aβ -0.52 (95% CI -0.77- -0.26) per 10 µg·m -3 , respectively).Our results add new insights into a potential role of oxidative stress in the associations between outdoor air pollution and asthma in adults. Copyright ©ERS 2018.

  13. Measurement of radon exhalation rates in some soil samples collected near the international monument Taj Mahal, Agra

    International Nuclear Information System (INIS)

    Sharma, Jyoti; Kumar, Rupesh; Indolia, R.S.; Swarup, R.; Mahur, A.K.; Singh, Hargyan; Sonkawade, R.G.

    2011-01-01

    Human beings are exposed to ionizing radiation from natural sources due to the occurrence of natural radioactive elements in solids, rocks, sand, soil etc. used as building construction materials and to the internal exposure from radioactive elements through good, water and air. Radon exhalation rate is of prime importance for the estimation of radiation risk from various materials. In the present study soil samples collected near the Tajmahal Agra. Sealed Can Technique was adopted for radon exhalation measurements. All the soil samples collected were grinded, dried and sieved through a 100 mesh sieve. Equal amount of each sieved (100μm grain size) sample (100 gm) was placed at the base of the Cans of 7.5 cm height and 7.0 cm diameter similar to those used in the calibration experiment (Singh et al., 1997). LR-115 type II plastic track detector (2 cm x 2 cm) was fixed on the top inside of the cylindrical Can. Radon exhalation rate varies from 529 mBqm -2 h -1 to 1254 mBqm -2 h -1 . The results will be presented. (author)

  14. Aspergillus spp. colonization in exhaled breath condensate of lung cancer patients from Puglia Region of Italy.

    Science.gov (United States)

    Carpagnano, Giovanna E; Lacedonia, Donato; Palladino, Grazia Pia; Logrieco, Giuseppe; Crisetti, Elisabetta; Susca, Antonia; Logrieco, Antonio; Foschino-Barbaro, Maria P

    2014-02-18

    Airways of lung cancer patients are often colonized by fungi. Some of these colonizing fungi, under particular conditions, produce cancerogenic mycotoxins. Given the recent interest in the infective origin of lung cancer, with this preliminary study we aim to give our small contribution to this field of research by analysing the fungal microbiome of the exhaled breath condensate of lung cancer patients from Puglia, a region of Italy. We enrolled 43 lung cancer patients and 21 healthy subjects that underwent exhaled breath condensate and bronchial brushing collection. The fungal incidence and nature of sample collected were analysed by using a selected media for Aspergillus species. For the first time we were able to analyse the fungal microbioma of the exhaled breath condensate. 27.9% of lung cancer patients showed a presence of Aspergillus niger, or A. ochraceus or Penicillium ssp. while none of the healthy subjects did so. The results confirmed the high percentage of fungal colonization of the airways of lung cancer patients from Puglia, suggesting the need to conduct further analyses in this field in order to evaluate the exact pathogenetic role of these fungi in lung cancer as well as to propose efficient, empirical therapy.

  15. Radionuclide content in some building materials and their radon exhalation

    International Nuclear Information System (INIS)

    Holy, K.; Sykora, I.; Chudy, M.; Polaskova, A.; Hola, O.

    1995-01-01

    The activity concentrations of natural radionuclides in sands, gravels, cements and in different kinds of concretes were measured by γ-spectrometric methods. The 222 Rn exhalation rate from concretes was measured by closed chamber method and the emanation coefficient was calculated. Both used methods are described in detail and obtained results are discussed from point of view of allowed hygienic limits. (author) 11 refs.; 2 figs.; 5 tabs

  16. Exhaled nitric oxide and asthma in childhood

    NARCIS (Netherlands)

    R.J.P. van der Valk (Ralf)

    2013-01-01

    textabstractAsthma was first described in the medical literature of Greek antiquity. It is difficult to determine whether by referring to “asthma”, Hippocrates and his school (460-360 B.C.) meant an autonomous clinical entity or a symptom. The clinical presentation of asthma nowadays has probably

  17. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...

  18. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  19. Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children

    International Nuclear Information System (INIS)

    Long, F.R.; Castile, R.G.

    2001-01-01

    Background. The inability of young children to cooperate with breath holding limits the usefulness of chest CT. Objective. To describe the technique and utility of a non-invasive method called controlled-ventilation CT (CVCT) for obtaining motion-free full-inflation and end-exhalation images of the lung in infants and young children. Materials and methods. Eighty-seven children (ages 1 week to 5 years, mean 2 years) underwent CVCT of the chest during suspended respiration at full-lung inflation and end-exhalation for a variety of clinical indications. Respiratory pauses were produced using conscious sedation and positive-pressure face-mask ventilation. Forty-one of 87 children had recordings of respiratory motion during CVCT. Results. Respiratory pause lengths increased with age (P < 0.003), were highly reproducible (r = 0.85), and lasted sufficiently long to be practical for full-inflation (24 ± 9 s) and end-exhalation (12 ± 5 s) CT scanning. Full-inflation CVCT was useful in evaluating tracheal and bronchial stenosis, bronchial wall thickening, early bronchiectasis, bronchial fistula, extent of interstitial fibrosis, and lung nodules. End-exhalation CVCT was useful in evaluating tracheomalacia and air trapping. Conclusion. Controlled-ventilation chest CT is a practical and reliable technique that promises to be clinically useful for a number of clinical indications in infants and young children. (orig.)

  20. Geomagnetic control of mesospheric nitric oxide concentration from simultaneous D and F region ionization measurements

    International Nuclear Information System (INIS)

    Pradhan, S.N.; Shirke, J.S.

    1978-01-01

    Investigations are made of D-region electron density profiles derived from 'partial reflection' measurements over a low latitude station (Ahmedabad) during a year of low solar activity. The index relating the electron density with the solar zenith angle is found to increase towards lower zenith angles suggesting both diurnal and seasonal variations in the Nitric oxide concentration. A close correlation is also found between the electron density at 80 km and the maximum ionization density in the F region above. This is interpreted as due to concomitant variation of a sizeable fraction of the Nitric oxide concentration in the mesosphere and lower thermosphere with the overhead F region ionization. A simplified global model is presented for the mesospheric Nitric oxide concentration based on the morphological features of F region and the relationship existing between the ionization levels in F and D regions. Many observed features of the D region ionization including the solar zenith angle dependence, latitudinal and geomagnetic anomaly and long term variability are explained on the basis of this model

  1. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Fryer, A. A.; Hanna, F.; Ferns, G. A. A.

    2011-01-01

    Roč. 5, č. 2 (2011), 022001 ISSN 1752-7155 Institutional research plan: CEZ:AV0Z40400503 Keywords : exhaled breath * diabetes mellitus * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.541, year: 2011

  2. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    Science.gov (United States)

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    International Nuclear Information System (INIS)

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25 0 C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations

  4. Assessment of radon and thoron exhalation from Indian cement samples using smart radon and thoron monitors

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K; Agarwal, T.K.; Babu, D.A.R.

    2015-01-01

    It has been established that primarily, there exist two important sources that contribute to indoor radon/thoron namely, the exhalation from ground and building materials. The contribution from ground, although significant, is treated as a case of existing exposure. Then, the only source that can be controlled during the construction is the choice of building materials. Cement is an important building material used in the construction of houses and buildings in India. The housing sector is the largest cement consumer with 53% of the total Indian cement demand followed by the infrastructure sector. India with a production capacity of 165 million tones (MT) (in 2007), was the second largest cement producer in the world after China. The industry produces various types of cement like ordinary portland cement (OPC), Portland pozzolana cement (PPC), portland slag cement (PSC), rapid hardening portland cement (RHPC), sulphate resistant cement (SRC) and white cement (WC). Several studies have been undertaken on cement in various countries because it is commonly used in bulk quantities in the construction of houses and other civil structures. However, detailed information regarding the radon and thoron exhalation into indoor air from various types of cements produced in India is scarce. In the present work, an attempt has been made to systematically determine the radon and thoron exhalation from 50 cement samples (17 OPC, 15 PPC, 04 PSC, 06 RHPC, 04 WC and 04 SRC). The data thus obtained is used to calculate the indoor radon and thoron source term and the contributed inhalation dose based on a model room structure. The measured values of radon and thoron exhalation from cement samples were comparable with the reported values in other countries. This study showed that the cement samples used in civil constructions do not pose any radiological hazard to the Indian population. (author)

  5. Wearable Personal Exhaust Ventilation, WPEV: Improved Indoor Air Quality and Reduced Exposure to Air Exhaled from a Sick Doctor

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho D.; Barova, Maria; Melikov, Arsen K.

    2015-01-01

    pause) and a tidal flow rate of 6 L/min. A second thermal manikin and heated dummy were used to resemble lying patients. Exhaled air by the doctor was mixed with tracer gas to mimic pathogens. The wearable personal exhaust unit was positioned frontally by the mouth of the doctor at three distances: 0.......02, 0.04, and 0.06 m. It was operated at 0.25 or 0.50 L/s under mixing background ventilation at three air changes per hour. The effect of the wearable exhaust unit geometry by modifying the exhaust surface, as well as the posture of the doctor, standing or seated, was also studied. The use...... of the wearable personal exhaust resulted in cleaner air in the room compared to mixing alone at 12 air changes per hour, reducing the exposure of the two patients. The nozzle geometry and posture of the doctor affected the indoor exposure to exhaled air. The high potential to capture exhaled air makes the device...

  6. Modelling radiation exposure in homes from siporex blocks by using exhalation rates of radon

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available Building materials are the second major source of indoor radon, after soil. The contribution of building materials to indoor radon amount depends upon the radium content and exhalation rates, which can be used as a primary index for radon levels in the dwellings. This paper presents the results of using the experimentally determined exhalation rates of siporex blocks and concrete plates, to assess the radiation exposure in dwellings built of siporex blocks. The annual doses in rooms have been estimated depending on the established modes of ventilation. Realistic scenario was created to predict an annual effective dose for an old person, a housewife, a student, and an employed tenant, who live in the same apartment, spending different periods of time in it. The results indicate the crucial importance of good ventilation of the living space.

  7. Development of a predictive methodology for identifying high radon exhalation potential areas

    International Nuclear Information System (INIS)

    Ielsch, G.

    2001-01-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  8. SIFT-MS Analysis of Nose-Exhaled Breath; Mouth Contamination and the Influence of Exercise

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Chippendale, T. W. E.; Dryahina, Kseniya; Španěl, Patrik

    2013-01-01

    Roč. 9, č. 2013 (2013), s. 565-575 ISSN 1573-4110 Institutional support: RVO:61388955 Keywords : selected ion flow tube mass spectrometry * breath analysis * nose exhalation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.194, year: 2013

  9. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene.

    Science.gov (United States)

    Kim, David; Andersen, Melvin E; Chao, Yi-Chun E; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2007-06-01

    Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures.

  10. Breath Tests in Respiratory and Critical Care Medicine: From Research to Practice in Current Perspectives

    Directory of Open Access Journals (Sweden)

    Attapon Cheepsattayakorn

    2013-01-01

    Full Text Available Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.

  11. Measurement of radon activity, exhalation rate and radiation dose in fly ash and coal samples from NTPC, Badarpur, Delhi, India

    International Nuclear Information System (INIS)

    Gupta, Mamta; Verma, K.D.; Mahur, A.K.; Prasad, R.; Sonkawade, R.G.

    2013-01-01

    In the present study radon activities and exhalation rates from fly ash and coal samples from NTPC (National Thermal Power Corporation) situated at Badarpur, Delhi, India, have been measured. 'Sealed Can Technique' using LR-115 type II track detectors was employed. In fly ash samples, radon activity has been found to vary from 400.0 ± 34.7 to 483.9 ± 38.1Bqm -3 with an average value of 447.1 ± 36.6 Bqm -3 and in coal samples, radon activity has been found to vary from 504.0 ± 39.0 to 932.1 ± 52.9 Bqm -3 with an average value of 687.2 ± 45.2 Bqm -3 . Radon exhalation rate from coal is found to be higher than radon exhalation rate from its ash products, whereas the opposite is expected. Indoor inhalation exposure (radon) effective dose has also been estimated. (author)

  12. Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy

    OpenAIRE

    Tessari, Paolo; Cecchet, Diego; Cosma, Alessandra; Vettore, Monica; Coracina, Anna; Millioni, Renato; Iori, Elisabetta; Puricelli, Lucia; Avogaro, Angelo; Vedovato, Monica

    2010-01-01

    OBJECTIVE Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS We measured NOx fractional (FSR) and absolute (A...

  13. An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate.

    NARCIS (Netherlands)

    Beurden, W.J.C van; Harff, G.A.; Dekhuijzen, P.N.R.; Bosch, M.J. van den; Creemers, J.P.H.M.; Smeenk, F.J.M.W.

    2002-01-01

    We investigated the sensitivity and reproducibility of a test procedure for measuring hydrogen peroxide (H202) in exhaled breath condensate and the effect of storage of the condensate on the H2O2 concentration, and compared the results to previous studies.Twenty stable COPD patients breathed into

  14. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  15. Study of different factors which can explain the radon exhalation potential of soils

    International Nuclear Information System (INIS)

    Demongeot, St.

    1997-01-01

    Radon is a natural radioactive gas belonging to the Uranium-238 chain, which is present in the earth crust and produced by the disintegration of radium-226. It is considered as the major source of radiological exposure of man to natural radiation because it can accumulate in indoor atmosphere. So, this health risk must be take into account.The aim of this study is to find some tools in order to identify high radon level area. The first part of this study has consisted in measurement of radon emission from different not sufficient for the estimation of the radon exhalation potential in a given area. In the second part of this work, we have studied the variations of in situ radon concentration as a function of different geological and pedologic parameters of the site. With the results obtained, we have determined the data which have to be considered, and the methodology to be applied for the determination of the radon exhalation of a given area. Furthermore, by the mean of numerical simulations (TRACH Model), it was possible to know the scale of radon flux variation in a given point versus the hydric state of the ground and thus the permeability: these parameters are not easy to measure because of their variabilities with time. The methodology ESPERAS (EStimation du Potential d'Exhalation en Radon des Sols) developed during this work was applied first, at a local scale and then to greater area. The values estimated by this way are in a good agreement with the results of measurements. So, we can determine the areas which are affected by high radon levels. (author)

  16. Nitrogen isotope exchange between nitric oxide and nitric acid

    International Nuclear Information System (INIS)

    Axente, D.; Abrudean, M.; Baldea, A.

    1996-01-01

    The rate of nitrogen isotope exchange between NO and HNO 3 has been measured as a function of nitric acid concentration of 1.5-4M x 1 -1 . The exchange rate law is shown to be R=k[HNO 3 ] 2 [N 2 O 3 ] and the measured activation energy is E=67.78 kJ x M -1 (16.2 kcal x M -1 ). It is concluded that N 2 O 3 participates in 15 N/ 14 N exchange between NO and HNO 3 at nitric acid concentrations higher than 1.5M x 1 -1 . (author). 7 refs., 3 figs., 4 tabs

  17. Trace Analysis in End-Exhaled Air Using Direct Solvent Extraction in Gas Sampling Tubes: Tetrachloroethene in Workers as an Example

    Directory of Open Access Journals (Sweden)

    Chris-Elmo Ziener

    2014-01-01

    Full Text Available Simple and cost-effective analytical methods are required to overcome the barriers preventing the use of exhaled air in routine occupational biological monitoring. Against this background, a new method is proposed that simplifies the automation and calibration of the analytical measurements. End-exhaled air is sampled using valveless gas sampling tubes made of glass. Gaseous analytes are transferred to a liquid phase using a microscale solvent extraction performed directly inside the gas sampling tubes. The liquid extracts are analysed using a gas chromatograph equipped, as usual, with a liquid autosampler, and liquid standards are used for calibration. For demonstration purposes, the method’s concept was applied to the determination of tetrachloroethene in end-exhaled air, which is a biomarker for occupational tetrachloroethene exposure. The method’s performance was investigated in the concentration range 2 to 20 μg tetrachloroethene/L, which corresponds to today’s exposure levels. The calibration curve was linear, and the intra-assay repeatability and recovery rate were sufficient. Analysis of real samples from dry-cleaning workers occupationally exposed to tetrachloroethene and from nonexposed subjects demonstrated the method’s utility. In the case of tetrachloroethene, the method can be deployed quickly, requires no previous experiences in gas analysis, provides sufficient analytical reliability, and addresses typical end-exhaled air concentrations from exposed workers.

  18. Radon exhalation in some building construction materials and effect of plastering and paints on the radon exhalation rate using fired bricks

    International Nuclear Information System (INIS)

    Sharma, Anil; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.; Sharma, A.C.

    2013-01-01

    The technological endeavors of human beings have modified the levels of radiation exposure slightly. The emanation of radon is primarily associated with radium and its ultimate precursor uranium. The radiation dose received by human beings from indoor radon and its progeny is the largest of all doses received either by natural or man-made sources. In order to investigate the effect of paints available in the market on the radon exhalation rate from building materials, several bricks were collected. These bricks were plastered with a mixture of cement and sand. Before measurements bricks were dried for 24 hours. These plastered bricks were then coated with white wash and again dried for 1- 2 hours. After drying the bricks were coated with different brands and colors of paints. Radon exhalation rates measurements were carried out for these painted bricks using 'Sealed can Technique' cylindrical plastic 'Can' of 7.5 cm height and 7.0 cm diameter was sealed to the individual samples by plastic can. In each 'Can' a LR-115 type II plastic detector (2 cm 2cm) was fixed at the top inside of the 'Can', such that the sensitive surface of the detector faces the material and is freely exposed to the emergent radon. Radon decays in the volume of the can record the alpha particles resulting from the 218 Po and 214 Po deposited on the inner wall of the 'Can'. Radon and its daughters will reach an equilibrium in concentration after one week or more. Hence the equilibrium activity of the emergent radon can be obtained from the geometry of the can and the time of exposure. The results will be discussed. (author)

  19. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  20. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  1. Short-term changes in respiratory biomarkers after swimming in a chlorinated pool.

    Science.gov (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; Gómez, Federico P; Barreiro, Esther; Nieuwenhuijsen, Mark J; Fernandez, Pilar; Lourencetti, Carolina; Pérez-Olabarría, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O; Villanueva, Cristina M

    2010-11-01

    Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled breath condensate], oxidative stress (8-isoprostane in exhaled breath condensate), and lung permeability [surfactant protein D (SP-D) and the Clara cell secretory protein (CC16) in serum] in 48 healthy nonsmoking adults before and after they swam for 40 min in a chlorinated indoor swimming pool. We measured trihalomethanes in exhaled breath as a marker of individual exposure to DBPs. Energy expenditure during swimming, atopy, and CC16 genotype (rs3741240) were also determined. Median serum CC16 levels increased from 6.01 to 6.21 microg/L (average increase, 3.3%; paired Wilcoxon test p = 0.03), regardless of atopic status and CC16 genotype. This increase was explained both by energy expenditure and different markers of DBP exposure in multivariate models. FeNO was unchanged overall but tended to decrease among atopics. We found no significant changes in lung function, SP-D, 8-isoprostane, eight cytokines, or VEGF. We detected a slight increase in serum CC16, a marker of lung epithelium permeability, in healthy adults after they swam in an indoor chlorinated pool. Exercise and DBP exposure explained this association, without involving inflammatory mechanisms. Further research is needed to confirm the results, establish the clinical relevance of short-term serum CC16 changes, and evaluate the long-term health impacts.

  2. Postpartum airway responsiveness and exacerbation of asthma during pregnancy

    DEFF Research Database (Denmark)

    Ali, Zarqa; Nilas, Lisbeth; Ulrik, Charlotte Suppli

    2017-01-01

    , diffusing capacity for carbon monoxide, bronchial responsiveness to inhaled mannitol, and inflammatory characteristics in induced sputum. Obtained data were analyzed in relation to exacerbation status during pregnancy. The PD15 is defined as the cumulative administered dose causing a 15% decline in forced......BACKGROUND: Airway responsiveness and inflammation are associated with the clinical manifestations of asthma and the response to pharmacological therapy. OBJECTIVE: To investigate if airway responsiveness and inflammatory characteristics are related to asthma exacerbations during pregnancy....... MATERIALS AND METHODS: In women with asthma who were prescribed controller medication and monitored closely during pregnancy, the risk of exacerbations was analyzed in relation to postpartum measures of fractional exhaled nitric oxide (FENO), skin prick test reactivity, static and dynamic lung volumes...

  3. Inhaled Steroids and Active Smoking Drive Chronic Obstructive Pulmonary Disease Symptoms and Biomarkers to a Greater Degree Than Airflow Limitation

    DEFF Research Database (Denmark)

    Silkoff, Philip E; Singh, Dave; FitzGerald, J Mark

    2018-01-01

    RATIONALE: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, and development of novel therapeutics requires an understanding of pathophysiologic phenotypes. OBJECTIVES: The purpose of the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study was to correlate...... clinical features and biomarkers with molecular characteristics in a well-profiled COPD cohort. METHODS: A total of 67 COPD subjects (forced expiratory volume in the first second of expiration [FEV1]: 45%-80% predicted) and 63 healthy smoking and nonsmoking controls underwent multiple assessments including...... patient questionnaires, lung function, and clinical biomarkers including fractional exhaled nitric oxide (FENO), induced sputum, and blood. MEASUREMENTS AND MAIN RESULTS: The impact of inhaled corticosteroids (ICSs), and to a lesser extent current smoking, was more associated with symptom control...

  4. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  5. Caffeine demethylation measured by breath analysis in experimental liver injury in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schaad, H.J.; Renner, E.L.; Wietholtz, H.; Preisig, R. [University of Berne, Department of Clinical Pharmaceology, Berne (Switzerland); Arnaud, M.J. [Nestle Research Center, Nestec Ltd., Vevey (Switzerland)

    1995-01-01

    To assess the effect of experimental liver injury on caffeine metabolism, 1 {mu}{sup C}i/kg b.w. of [3-methyl{sup 14}C]-caffeine (together with 5 mg/kg b.w. of the cold compound) was injected i.p. to four different experimental groups and respective controls of unanesthetized male Sprague-Dawley rats. Exhaled {sup 14}CO{sub 2} was completely collected during 4 h and peak exhalation rate and fraction of dose recovered were calculated. 1/3 hepatectomy affected {sup 14}CO{sub 2} exhalation to a limited extent, decreasing solely peak exhalation rate (p<0.05 compared to sham-operated control). 2/3 hepatectomy, on the other hand, resulted in significant reduction (p<0.01) in both peak exhalation rate (by 59%) and fraction of dose recovered (by 47%), that were proportionate to the loss of liver mass (50%). End-to-side portocaval shunt led to the well-documented hepatic `atrophy`, liver weight being diminished on average to 50% within 2 weeks of surgery; however, reductions in peak exhalation rate (by 75%) and fraction of dose recovered (by 64%) were even more pronounced. Finally, 48 h bile duct ligation was equivalent to `functional 2/3 hepatectomy`, peak exhalation rate (by 65%) and fraction of dose recovered (by 56%) being markedly diminished despite increased liver weight. These results indicate that {sup 14}CO{sub 2} exhalation curves following administration of specifically labelled caffeine are quantitative indicators of acute or chronic loss of functioning liver mass. In addition, the 3-demethylation pathway appears to be particularly sensitive to the inhibitory effects of cholestasis on microsomal function. (au) (30 refs.).

  6. Markers of oxidative stress in exhaled breath of workers exposed to iron oxide nanoparticles are elevated

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Navrátil, Tomáš; Vlčková, Š.; Syslová, K.; Kuzma, Marek; Ždímal, Vladimír; Schwarz, Jaroslav; Pušman, Jan; Zíková, Naděžda; Zakharov, S.; Machajová, M.; Kačer, P.

    2014-01-01

    Roč. 7, Suppl. 1 (2014), s. 69-70 ISSN 1337-6853 Institutional support: RVO:61388971 ; RVO:61388955 ; RVO:67985858 Keywords : oxidative stress * exhaled breath * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Influence of fluoride exhalates in the vicinity of the aluminum foundry in Ziar had Hronom on the number of nesting birds

    Energy Technology Data Exchange (ETDEWEB)

    Feriancova-Masarova, Z; Kalivodova, E

    1965-01-01

    The number of nesting birds in 3 areas was studied and compared to the number of birds nesting in an area free of fluoride exhalates. The nesting is most adversely affected in the first area, where trees die out due to a continuous, massive influence of the fluoride exhalates. The bird population of this area leaves to nest in the second or third area, causing a considerable increase in the nesting population of those two localities.

  8. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Gilchrist, F. J.; Lenney, W.

    2013-01-01

    Roč. 7, č. 4 (2013), 044001 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : TUBE MASS-SPECTROMETRY * ION MOBILITY SPECTROMETRY * EXHALED NITRIC-OXIDE Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.590, year: 2013

  9. Field measurements of radon exhalation and Ra-226 content in soil using the can-technique

    International Nuclear Information System (INIS)

    Hafez, A.F.; El-Khatib, A.M.; Moharram, B.M.; Kotb, M.A.; Abdel-Naby, A.

    1991-01-01

    CR-39 and LR-115 plastic nuclear track detectors in the can-technique have been employed in the field measurements of radon exhalation, Ra-226 and U-238 content in dry-soil air at numerous regions in Sudan (the Blue and White Nile and Mogran regions). Measurements gave an average radon exhalation from the soil to the atmosphere and Ra-226 content of (23.4±2.60) kBq.m -2 and (123±13.65) Bq.kg -1 respectively. A polyethylene permeable memebrane cover was used to eliminate the contribution of thoron activity inside the can. Assuming a radioactive equilibrium between the U-series, the average U-238 content in the soil was found to be (9.92±1.01) ppm. This survey may be used for uranium prospection in soil. (orig.) [de

  10. Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment

    Science.gov (United States)

    Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.

    2012-08-01

    We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.

  11. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  12. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  13. [Photoacoustic spectroscopy evaluation of the impact of smoking on the composition of exhaled air in patients with bronchopulmonary diseases].

    Science.gov (United States)

    Bukreeva, E B; Bulanova, A A; Kistenev, Yu V; Nikiforova, O Yu

    To investigate the impact of smoking on the air exhaled by patients with chronic obstructive pulmonary disease (COPD) and asthmatics, by applying photoacoustic spectroscopy. The exhaled air absorption spectra (EAAS) were analyzed in healthy volunteers and patients with COPD and asthmatics, by applying an ILPA-1 CO2 laser photoacoustic gas analyzer. The procedure based on the calculation of an integrated estimate (IE) of the state of the object was used to assess the findings. Comparison of the IE of EAAS in COPD patients and non-smoking healthy individuals showed that spectra of the compounds, the formation of which was associated with smoking, were recorded in the range of wavelengths corresponding to the 10R branch of CO2 laser generation. This also provided evidence indicating that the exhaled air of asthmatics differed from that of both smoking and non-smoking healthy individuals. The calculations yielded the threshold values of EAAS IE in the range of wavelengths corresponding to the 10P branche of CO2 laser generation, which made it possible to distinguish non-smoking healthy individuals from asthmatics and COPD patients in 94 and 89% of cases, respectively. The investigation has confirmed that smoking substantially impacts the composition of the air exhaled by healthy individuals. It has been shown that the use of reference groups formed from non-smoking healthy individuals can improve the accuracy of photoacoustic spectroscopy in detecting COPD and asthma. A further development in this direction will open up new prospects for a new method to diagnose COPD and asthma.

  14. Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases.

    Science.gov (United States)

    Kanoh, Soichiro; Kobayashi, Hideo; Motoyoshi, Kazuo

    2005-10-01

    Oxidative stress plays a role in the pathogenesis and progression of interstitial lung disease (ILD). Exhaled ethane is a product of lipid peroxidation that has been proposed as a biomarker of oxidative stress in vivo. To determine whether the exhaled ethane level is elevated in patients with ILD and to compare it with other clinical parameters. Breath samples were collected from 34 patients with ILD, including 13 with idiopathic pulmonary fibrosis (IPF), 9 patients with cryptogenic organizing pneumonia, 6 patients with collagen vascular disease-associated interstitial pneumonia, and 6 patients with pulmonary sarcoidosis. Gas samples were obtained at hospital admission and after 3 weeks. After each expired sample was concentrated using a trap-and-purge procedure, the ethane level was analyzed by gas chromatography. Exhaled ethane levels were elevated in ILD patients (n = 34, mean +/- SD, 8.5 +/- 8.0 pmol/dL) compared with healthy volunteers (n = 16, 2.9 +/- 1.0 pmol/dL; p ethane levels were largely consistent with the clinical course. Four patients with IPF who had persistently high ethane levels died or deteriorated, whereas those with ethane levels ethane concentrations were positively correlated with levels of lactate dehydrogenase (Spearman rank correlation coefficient [rs], 0.28, p = 0.026) and C-reactive protein (rs, 0.38, p = 0.025) and were inversely correlated with Pa(O2) (rs, - 0.40, p = 0.0026). Patients showing increased uptake on (67)Ga scintigraphy demonstrated higher ethane levels (n = 19, 7.5 +/- 5.7 pmol/dL) compared with those who did not show increased uptake on scintigraphy (n = 10, 3.0 +/- 2.4 pmol/dL; p ethane is elevated in patients with ILD and is correlated with the clinical outcome, suggesting that it provides useful information about ongoing oxidative stress, and thereby disease activity and severity in ILD.

  15. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  16. EFFECTS OF NITRIC ACID ON CRITICALITY SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, B.

    2011-08-18

    As nitric acid molarity is increased, there are two competing phenomena affecting the reactivity of the system. First, there is interaction between each of the 10 wells in the basket-like insert. As the molarity of the nitric acid solution is increased (it moves from 100% water to 100% HNO{sub 3}), the hydrogen atom density decreases by about 80%. However, it remains a relatively efficient moderator. The moderating ratio of nitric acid is about 90% that of water. As the media between the wells is changed from 100% water to 100% nitric acid, the density of the media increases by 50%. A higher density typically leads to a better reflector. However, when the macroscopic scattering cross sections are considered, nitric acid is a much worse reflector than water. The effectiveness of nitric acid as a reflector is about 40% that of water. Since the media between the wells become a worse reflector and still remains an effective moderator, interaction between the wells increases. This phenomenon will cause reactivity to increase as nitric acid molarity increases. The seond phenomenon is due to the moderating ratio changing in the high concentration fissile-nitric acid solution in the 10 wells. Since the wells contain relatively small volumes of high concentration solutions, a small decrease in moderating power has a large effect on reactivity. This is due to the fact that neutrons are more likely to escape the high concentration fissile solution before causing another fission event. The result of this phenomenon is that as nitric acid molarity increases, reactivity decreases. Recent studies have shown that the second phenomenon is indeed the dominating force in determining reactivity changes in relation to nitric acid molarity changes. When considering the system as a whole, as nitric acid molarity increases, reactivity decreases.

  17. Design and test of an artificial reference cow to simulate methane release through exhalation

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, P.W.G.; Ogink, N.W.M.

    2015-01-01

    To mitigate methane emission from dairy cows, a technique is needed to evaluate individual methane emission from a large number of cows under practical conditions in barns. For developing such a measurement technique, a known reference source that can simulate cow exhalation of methane would be a

  18. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  19. Nitric oxide inhibitory substances from Curcuma mangga rhizomes

    Directory of Open Access Journals (Sweden)

    Kanidta Kaewkroek

    2009-08-01

    Full Text Available Curcuma mangga Val. & Zijp. is a member of the Zingiberaceae family commonly grown in Thailand. It is locally known as mango tumeric because of its mango-like smell when the fresh rhizomes are cut. C. mangga is a popular vegetable, the tips of the young rhizomes and shoots are consumed raw with rice. Medicinally, the rhizomes are used as a stomachic and for chest pains, fever, and general debility. It is also used in postpartum care. In the present study, we investigated the anti-inflammatory effect of the extract and compounds from C. mangga rhizomes against lipopolysaccharide (LPS-induced nitric oxide (NO production in RAW 264.7 cell line. From bioassay-guided fractionation, the chloroform fraction exhibited the most potent inhibitory activity with an IC50 value of 2.1 g/ml, followed by the hexane fraction (IC50 = 3.8 g/ml and the ethyl acetate fraction (IC50 = 23.5 g/ml, respectively. Demethoxycurcumin (1 and 3-buten-2-one, 4-[(1R, 4aR, 8aR-decahydro-5, 5, 8a-trimethyl-2-methylene-1-naphthalenyl]-, (3E-rel- (2 were isolated from the chloroform- and hexane fractions, respectively. Bisdemethoxycurcumin (3 whose structure is similar to that of 1 was also tested for NO inhibitory activity. Of the tested compounds, compound 1 exhibited the highest activity with an IC50 value of 12.1 μM, followed by 3(IC50 = 16.9 M and 2 (IC50 = 30.3 M. These results suggest that C. mangga and its compounds exert NO inhibitory activity and have a potential to be developed as a pharmaceutical preparation for treatment of inflammatory-related diseases. Moreover, this is the first report of compound 2 that was isolated from C. mangga rhizomes.

  20. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  1. Determination of cysteinyl leukotrienes in exhaled breath condensate: Method combining immunoseparation with LC-ESI-MS/MS

    Czech Academy of Sciences Publication Activity Database

    Syslová, K.; Kačer, P.; Vilhanová, B.; Kuzma, Marek; Lipovová, P.; Fenclová, Z.; Lebedová, J.; Pelclová, D.

    2011-01-01

    Roč. 879, č. 23 (2011), s. 2220-2228 ISSN 1570-0232 R&D Projects: GA MZd NS10298 Keywords : Cysteinyl leukotriene * Exhaled breath condensate * Immunoseparation Subject RIV: CE - Biochemistry Impact factor: 2.888, year: 2011

  2. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  3. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  4. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    International Nuclear Information System (INIS)

    Jung, Michaela; Hotter, Georgina; Vinas, Jose Luis; Sola, Anna

    2009-01-01

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process

  5. Nitric Acid Poisoning: Case Report

    International Nuclear Information System (INIS)

    Quintero Giraldo, Maria Paulina; Quiceno Calderon, William de Jesus; Melo Arango Catalina

    2011-01-01

    Nitric acid (HNO 3 ) is a corrosive fluid that, when in contact with reducing agents, generates nitrogen oxides that are responsible for inhalation poisoning. We present two cases of poisoning from nitric acid gas inhalation resulting from occupational exposure. Imaging findings were similar in both cases, consistent with adult respiratory distress syndrome (ARDS): bilaterally diffuse alveolar opacities on the chest X-ray and a cobblestone pattern on computed tomography (CT).one of the patients died while the other evolved satisfactorily after treatment with n-acetyl cysteine and mechanical ventilation. The diagnosis of nitric acid poisoning was made on the basis of the history of exposure and the way in which the radiological findings evolved.

  6. Radon soil-gas concentration and exhalation from mine tailings dams in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ongori, J.; Lindsay, R. [University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535 (South Africa); Newman, R. [Stellenbosch University, Department of Physics, Private Bag X1 Matieland 7602 (South Africa); Maleka, P. [iThemba LABS, Department of Nuclear Physics, P. O. Box 722, Somerset West 7129 (South Africa)

    2014-07-01

    In Africa as well as in the world, South Africa plays an important role in the mining industry which dates back almost 120 years. Mining activities in South Africa mainly take place in Gauteng Province. Every year million of tons of rocks are taken from underground, milled and processed to extract gold. The uranium bearing tailings are disposed in dumpsites. These tailings dumps contain considerable amounts of radium ({sup 226}Ra) and have therefore been identified as large sources of radon ({sup 222}Rn). Radon is a noble gas formed by the decay of radium which in turn is derived from the radioactive decay of uranium ({sup 238}U). Radon release from these tailings dumps pose health concerns for the surrounding communities. Radon soil gas concentrations and exhalations from a non-operational mine dump (Kloof) which belongs to Carletonville Gold Field, Witwatersrand, South Africa have been investigated. The continuous radon monitor, the Durridge RAD7 was used to measure {sup 222}Rn soil gas concentration in the tailings dump at five different spots. The radon soil gas concentration levels were measured at depths starting from 30 cm below ground/air interface up to 110 cm at intervals of 20 cm. The concentrations recorded ranged from 26±1 to 472±23 kBq.m{sup -3}. Furthermore, thirty four soil samples were taken from the spots where radon soil gas measurements were measured for laboratory-based measurement using the low background Hyper Pure Germanium (HPGe) gamma-ray detector available at the Environmental Radioactivity Laboratory (ERL), iThemba LABS, Western Cape Province. The soil samples were collected in the depth range 0-30 cm. After analysis the weighted average activity concentrations in the soils samples were 308±7 Bq.kg{sup -1}, 255±5 Bq.kg{sup -1} and 18±1 Bq.kg{sup -1} for {sup 238}U, {sup 40}K and {sup 232}Th, respectively. A number of factors such as the radium activity concentration and its distribution in soil grains, soil grain size, soil porosity

  7. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    Science.gov (United States)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  8. National survey on the natural radioactivity and 222Rn exhalation rate of building materials in The Netherlands.

    Science.gov (United States)

    de Jong, P; van Dijk, W; van der Graaf, E R; de Groot, T J H

    2006-09-01

    The present study reports on results of a nation-wide survey on the natural radioactivity concentrations and Rn exhalation rates of the prevailing building materials in the Netherlands. In total 100 samples were taken and analyzed for the activity concentrations of Ra, Ra, Th, and K and for their Rn exhalation rate. The sampled materials consisted of gypsum products, aerated concrete, sand-lime and clay bricks, mortars and concrete, representing about 95% of the stony building materials used in the construction of Dutch homes. The laboratory analyses were performed according to two well-documented standard procedures, the interlaboratory reproducibility of which is found to be within 5% on average. The highest radionuclide concentrations were found in a porous inner wall brick to which fly ash was added. The second highest were clay bricks with average Ra and Ra levels around 40 Bq kg. Concrete and mortar show the highest exhalation rates with a fairly broad range of 1 to 13 microBq (kg s). Low natural radioactivity levels are associated with either natural gypsum (products) or gypsum from flue gas desulphurization units, and low exhalation rates with clay bricks. To evaluate the radiological impact the radioactivity concentrations in each sample were combined into a so-called dose factor, representing the absorbed dose rate in a room with a floor, walls and ceiling of 20 cm of the material in question. For that purpose, calculations with the computer codes MCNP, Marmer and MicroShield on the specific absorbed dose rates were incorporated in the paper. The results of these codes corresponded within 6% and average values were calculated at 0.90, 1.10, and 0.080 nGy h per Bq kg for the U series, the Th series, and K, respectively. Model calculations on the external dose rate, based on the incidence of the various building materials in 1,336 living rooms, are in accordance with measured data.

  9. Nitric acid adduct formation during crystallization of barium and strontium nitrates and their co-precipitation from nitric acid media

    International Nuclear Information System (INIS)

    Mishina, N.E.; Zilberman, B.Ya.; Lumpov, A.A.; Koltsova, T.I.; Puzikov, E.A.; Ryabkov, D.V.

    2015-01-01

    The molar solubilities of Ba, Sr and Pb nitrates in nitric acid as a function of total nitrate concentration is presented and described by the mass action law, indicating on formation of the adducts with nitric acid. Precipitates of Ba(NO 3 ) 2 and Sr(NO 3 ) 2 crystallized from nitric acid were studied by ISP OES and IR spectroscopy. The data obtained confirmed formation of metastable adducts with nitric acid. IR and X-ray diffraction studies of the mixed salt systems indicated conversion of the mixed salts into (Ba,Sr)(NO 3 ) 2 solid solution of discrete structure in range of total nitrate ion concentration ∼6 mol/L. (author)

  10. 226Ra, 232Th and 40K contents and radon exhalation rate from materials used for construction and decoration in Cameroon

    International Nuclear Information System (INIS)

    Ngachin, M; Njock, M G Kwato; Garavaglia, M; Giovani, C; Scruzzi, E; Nourreddine, A; Lagos, L

    2008-01-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for 226 Ra, 232 Th and 40 K varied from 11.5 to 49 Bq kg -1 , 16 to 37 Bq kg -1 and 306 to 774 Bq kg -1 , respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h -1 . External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg -1 and are much smaller than the recommended limit of 370 Bq kg -1 for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of α-track densities. The radon exhalation varied from (5.77 ± 0.06) x 10 -5 to (7.61 ± 0.07) x 10 -5 Bq cm -2 h -1 in bricks, from (5.79 ± 0.05) x 10 -5 to (11.6 ± 0.12) x 10 -5 in tiles, and was (6.95 ± 0.03) x 10 -5 Bq cm -2 h -1 in concrete. A correlation (correlation coefficient approx. = 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors

  11. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms.

    Science.gov (United States)

    Raninen, Kaisa; Lappi, Jenni; Kolehmainen, Mikko; Kolehmainen, Marjukka; Mykkänen, Hannu; Poutanen, Kaisa; Raatikainen, Olavi

    2017-12-01

    The potential of utilising exhaled breath volatile organic compound (VOC) profiles in studying diet-derived metabolic changes was examined. After a four-week initial diet period with white wheat bread (WW), seven participants received in randomised order high-fibre diets containing sourdough whole grain rye bread (WGR) or white wheat bread enriched with bioprocessed rye bran (WW + BRB), both for 4 weeks. Alveolar exhaled breath samples were analysed with ChemPro ® 100i analyser (Environics OY, Mikkeli, Finland) at the end of each diet period in fasting state and after a standardised meal. The AIMS signal intensities in fasting state were different after the WGR diet as compared to other diets. The result suggests that WGR has metabolic effects not completely explained by the rye fibre content of the diet. This study encourages to utilise the exhaled breath VOC profile analysis as an early screening tool in studying physiological functionality of foods.

  12. Inflammatory biomarkers in asthma-COPD overlap syndrome

    Directory of Open Access Journals (Sweden)

    Kobayashi S

    2016-09-01

    Full Text Available Seiichi Kobayashi, Masakazu Hanagama, Shinsuke Yamanda, Masatsugu Ishida, Masaru YanaiDepartment of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, JapanBackground: The clinical phenotypes and underlying mechanisms of asthma-COPD overlap syndrome (ACOS remain elusive. This study aimed to investigate a comparison of COPD patients with and without ACOS, focusing on inflammatory biomarkers, in an outpatient COPD cohort.Methods: We conducted a cross-sectional study analyzing prospectively collected data from the Ishinomaki COPD Network registry. All participants were diagnosed with COPD, confirmed by using spirometry, and were aged 40–90 years and former smokers. Patients with features of asthma including both variable respiratory symptoms and variable expiratory airflow limitation were identified and defined as having ACOS. Then, the inflammatory biomarkers such as fractional exhaled nitric oxide level, blood eosinophil count and percentage, total immunoglobulin E (IgE level, and presence of antigen-specific IgE were evaluated.Results: A total of 257 patients with COPD were identified, including 37 (14.4% with ACOS. Patients with ACOS tended to be younger, have a shorter smoking history, and use more respiratory medications, especially inhaled corticosteroids and theophylline. Mean fractional exhaled nitric oxide level was significantly higher in those with ACOS than in those without ACOS (38.5 parts per billion [ppb] vs 20.3 ppb, P<0.001. Blood eosinophil count and percentage were significantly increased in those with ACOS (295/mm3 vs 212/mm3, P=0.032; 4.7% vs 3.2%, P=0.003, respectively. Total IgE level was also significantly higher, and presence of antigen-specific IgE was observed more frequently in patients with ACOS. Receiver operating characteristic curve analysis indicated that the sensitivity and specificity of these biomarkers were relatively low, but combinations of these biomarkers showed high specificity for

  13. Incapacity, Handicap, and Oxidative Stress Markers of Male Smokers With and Without COPD.

    Science.gov (United States)

    Ben Moussa, Syrine; Rouatbi, Sonia; Ben Saad, Helmi

    2016-05-01

    Mechanisms of incapacity and quality of life (QOL) of smokers with COPD and those free from COPD (non-COPD) are still unclear. The aims of this work were to compare the submaximal exercise, the QOL, and the blood and lung oxidative stress biomarker data of smokers without and with COPD. Thirty-two male-smokers 40-60 y old were included (16 with COPD). QOL (Saint George Respiratory Questionnaire) and physical activity (Voorrips questionnaire) scores were determined. Blood sample levels of malondialdehyde, protein sulfhydryl, and glutathione were measured. Fraction of exhaled nitric oxide, plethysmographic data, and 6-min walk distance (6MWD) were collected. All data are presented as mean ± SD, except oxidative stress biomarkers expressed as mean ± SE. Correlation coefficient (r) evaluated the association between oxidative stress biomarkers and 6MWD, QOL, and physical activity data. Two age- and amount of tobacco used-matched groups of smokers were included. Compared with the non-COPD group, the COPD group had significantly lower 6MWD (573 ± 63 vs 476 ± 53 m) and physical activity score (7.14 ± 1.50 vs 2.86 ± 1.50) and significantly worse QOL (19.47 ± 15.33 vs 47.70 ± 16.73) and lower glutathione level (39.44 ± 6.28 vs 24.67 ± 5.41 μg/mL). The COPD group malondialdehyde level was significantly correlated with 6MWD, symptoms, and QOL scores (good r value between 0.50 and 0.70). The non-COPD group fraction of exhaled nitric oxide and glutathione levels were significantly correlated with leisure activity score and 6MWD, respectively (good r value between 0.50 and 0.70). Compared with the non-COPD group, the COPD group had a marked decrease in submaximal exercise data and in QOL score. Oxidative stress could be one explanation of incapacity and handicap observed in the COPD group. Copyright © 2016 by Daedalus Enterprises.

  14. Calibration and validation of a MCC/IMS prototype for exhaled propofol online measurement.

    Science.gov (United States)

    Maurer, Felix; Walter, Larissa; Geiger, Martin; Baumbach, Jörg Ingo; Sessler, Daniel I; Volk, Thomas; Kreuer, Sascha

    2017-10-25

    Propofol is a commonly used intravenous general anesthetic. Multi-capillary column (MCC) coupled Ion-mobility spectrometry (IMS) can be used to quantify exhaled propofol, and thus estimate plasma drug concentration. Here, we present results of the calibration and analytical validation of a MCC/IMS pre-market prototype for propofol quantification in exhaled air. Calibration with a reference gas generator yielded an R 2 ≥0.99 with a linear array for the calibration curve from 0 to 20 ppb v . The limit of quantification was 0.3 ppb v and the limit of detection was 0.1 ppb v . The device is able to distinguish concentration differences >0.5 ppb v for the concentration range between 2 and 4 ppb v and >0.9 ppb v for the range between 28 and 30 ppb v . The imprecision at 20 ppb v is 11.3% whereas it is 3.5% at a concentration of 40 ppb v . The carry-over duration is 3min. The MCC/IMS we tested provided online quantification of gaseous propofol over the clinically relevant range at measurement frequencies of one measurement each minute. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Science.gov (United States)

    2010-04-01

    ... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be used in conjunction with a ventilator or other breathing gas administration system. (b) Classification...

  16. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  17. Investigations into the post-natal development of demethylating enzyme systems by determination of carbon dioxide 14 in the air exhaled by mice after applications of carbon 14 dimethyl amino-antipyrine

    International Nuclear Information System (INIS)

    Schmidt, H.

    1982-01-01

    Albino mice were subcutaneously injected with carbon 14 dimethyl aminopyrines, the methyl group of which can be metabolised in the organism into carbon dioxide 14. The following results were obtained: In the carbon dioxide 14 exhalation of neonate, young and adult animals after administration of carbon 14 aminopyrine, distinct differences were noted. The maximum of elimination via the lungs occurs after 20-30 minutes in grown-up mice, in neonates or young animals distinctly later (60-90 min). The carbon dioxide 14 exhalation was also measured after additional subcutaneous application of methrotrexate. In mice aged 8 and 10 days a distinct decrease in carbon dioxide 14 exhalation was found. By contrast, a rise in carbon dioxide 14 exhaled was found in mice aged 2 days. The orientating experiments with folic acid and carbon 14 dimethyl aminopyrine show that leucovorin leads to a distinct increase in carbon dioxide 14 exhalation during the first 30 minutes. As a cause of the different degrees of stimulation respectively inhibition of demethylation, different biochemical ways of formaldehyde formation are pointed out. One of these probably includes the folate-dependent reaction. (orig./MG) [de

  18. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  19. [The determination of the ethanol elimination rate in the blood based on its concentration in the exhaled air].

    Science.gov (United States)

    Obukhova, L M; Erlykina, E I; Andriianova, N A

    2014-01-01

    The objective of the present study was to calculate the blood ethanol level from its content in the exhaled air. The plot of the blood ethanol level versus its content in the exhaled air was constructed and used to determine the rate of ethanol elimination from the blood. The result proved to lie within the range corresponding to the normal-for-age values. These data put in question the opinion of the independent specialist about disturbances in the alcohol dehydrogenase activity in blood manifested as a considerable increase of the rate of acetaldehyde reduction to ethanol with the decreasing ethanol dehydration rate. It is concluded that the prfoposed algorithm can be recommended for the application in the practical work of various expert services.

  20. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2007-01-01

    the concentration of exhaled air pollution increased in the room. The two types of personalized ventilation performed differently. Subsequent analyses of airborne infection transmission risk indicated that personalized ventilation could become a supplement to traditional methods of infection control....... of pollutants associated with exhaled air and floor material emissions was evaluated at various combinations of personalized and underfloor airflow rates. Compared to underfloor ventilation alone, personalized and underfloor ventilation provided excellent protection Of seated occupants from any pollution, while......The performance of two personalized. ventilation systems supplying air at the breathing zone was tested in conjunction with underfloor ventilation generating two different airflow patterns in a full-scale test room. Two breathing thermal manikins were used to simulate occupants. The distribution...

  1. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics.

    Science.gov (United States)

    Mastalerz, Lucyna; Januszek, Rafał; Kaszuba, Marek; Wójcik, Krzysztof; Celejewska-Wójcik, Natalia; Gielicz, Anna; Plutecka, Hanna; Oleś, Krzysztof; Stręk, Paweł; Sanak, Marek

    2015-09-01

    Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Control of exposure to exhaled air from sick occupant with wearable personal exhaust unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Maria I.

    2014-01-01

    of the doctor at three different distances. It was operated at 0.25 or 0.50 L/s under mixing background ventilation at 3 ACH. The use of wearable personal exhaust resulted in cleaner air in the room compared to mixing alone at 12 ACH. The high potential to capture exhaled air makes the device efficient against...

  3. Airway pathology in COPD : smoking cessation and pharmacological treatment intervention. Results from the GLUCOLD study

    NARCIS (Netherlands)

    Lapperre, Thérèse Sophie

    2010-01-01

    This thesis comprises data from the GLUCOLD study (Groningen Leiden Universities and Corticosteroids in Obstructive Lung Disease), a prospective study in COPD. In chapter 2 is shown that airflow limitation, asthma-like components, exhaled nitric oxide and sputum inflammatory cell counts offer

  4. Accuracy of eosinophils and eosinophil cationic protein to predict steroid improvement in asthma

    NARCIS (Netherlands)

    Meijer, RJ; Postma, DS; Kauffman, HF; Arends, LR; Koeter, GH; Kerstjens, HAM

    Background There is a large variability in clinical response to corticosteroid treatment in patients with asthma. Several markers of inflammation like eosinophils and eosinophil cationic protein (ECP), as well as exhaled nitric oxide (NO), are good candidates to predict clinical response. Aim We

  5. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    Science.gov (United States)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  6. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations

    DEFF Research Database (Denmark)

    Bjerregaard, A; Laing, I A; Backer, V

    2017-01-01

    the follow-up period. Of these, 15 (68%) had a respiratory virus detected at exacerbation. Sputum eosinophils >1% at baseline increased the risk of having a subsequent virus-induced exacerbation (HR 7.6 95% CI: 1.6-35.2, P=.010) as did having FeNO >25 ppb (HR 3.4 95% CI: 1.1-10.4, P=.033). CONCLUSION...... AND CLINICAL RELEVANCE: Established type 2 inflammation during stable disease is a risk factor for virus-induced exacerbations in a real-life setting. Measures of type 2 inflammation, such as sputum eosinophils and FeNO, could be included in the risk assessment of patients with asthma in future studies....

  7. Evaluation of color and radon exhalation rate in granite rocks between accelerated aging cycles

    International Nuclear Information System (INIS)

    Silva, Francisco Diones Oliveira

    2016-01-01

    Data used for the assessment of the analyzes performed on three types of dimension stone (Juparana Bordeaux, Branco Nevasca and Golden Artico), in natural state and after several cycles of accelerated aging are presented, correlating them with the gas exhalation rate radon issued by the analyzed lithologies. In the samples were conducted permeability, porosity, colorimetry, image analysis, petrographic and exhalation rate of radon, accompanied by aging tests on climate simulation chamber which simulates change situations of materials by weathering agents, accelerating wear and tear samples. The measurements were performed on samples in natural state, with 50 and 100 cycles of aging acceleration, where each cycle corresponds to variations in temperature and humidity in climatic simulation chamber, with the addition of an internal atmosphere of SO_2 with 25 concentration ppm. The results obtained during the tests were related to better analysis of the changes observed on the samples and the variation rate of exhalation radon emitted. The rocks have radon concentration values above the limits suggested by relevant international agencies (200-400 Bq/m³), with average values in the natural state, in 6149, 1619 and 866 Bq/m³ for Juparana Bordeaux, Branco Nevasca and Golden Arctic, respectively. The other aging cycles (50 and 100 cycles) showed an average increase of 0.8% for Juparana Bordeaux, 6.9% for White Blizzard and -23.87% for the Golden Arctic, with 50 cycles. From 50 to 100 cycles, there was reduction of 3.43% for Juparana Bordeaux and 22.15% for Branco Nevasca and an increase of 13.82% in the Golden Artico. The porosity results in the natural state obtained values an average of 0.696% for Juparana Bordeaux, 0.919% for Branco Nevasca and 0.830% for Golden Artico, and after 50 cycles of accelerated aging, obtained 0.621% to Juparana Bordeaux, 0.910% for Branco Nevasca and 0.840% for Golden Artico. The permeability of the samples showed values in the natural

  8. The effect of the composition and production process of concrete on the 222Rn exhalation rate

    NARCIS (Netherlands)

    Jong, P. de; Dijk, W. van; Hulst, J.G.A. van; Heijningen, R.J.J. van

    1997-01-01

    In a series of 18 concrete samples, the influence of several parameters related to composition and production processes on the radon exhalation rate was studied. The investigated parameters were: amount and type of cement, water-cement ratio, curing conditions and curing time, type of aggregates,

  9. Prenatal vitamin d supplementation and child respiratory health: a randomised controlled trial.

    Science.gov (United States)

    Goldring, Stephen T; Griffiths, Chris J; Martineau, Adrian R; Robinson, Stephen; Yu, Christina; Poulton, Sheree; Kirkby, Jane C; Stocks, Janet; Hooper, Richard; Shaheen, Seif O; Warner, John O; Boyle, Robert J

    2013-01-01

    Observational studies suggest high prenatal vitamin D intake may be associated with reduced childhood wheezing. We examined the effect of prenatal vitamin D on childhood wheezing in an interventional study. We randomised 180 pregnant women at 27 weeks gestation to either no vitamin D, 800 IU ergocalciferol daily until delivery or single oral bolus of 200,000 IU cholecalciferol, in an ethnically stratified, randomised controlled trial. Supplementation improved but did not optimise vitamin D status. Researchers blind to allocation assessed offspring at 3 years. Primary outcome was any history of wheeze assessed by validated questionnaire. Secondary outcomes included atopy, respiratory infection, impulse oscillometry and exhaled nitric oxide. Primary analyses used logistic and linear regression. We evaluated 158 of 180 (88%) offspring at age 3 years for the primary outcome. Atopy was assessed by skin test for 95 children (53%), serum IgE for 86 (48%), exhaled nitric oxide for 62 (34%) and impulse oscillometry of acceptable quality for 51 (28%). We found no difference between supplemented and control groups in risk of wheeze [no vitamin D: 14/50 (28%); any vitamin D: 26/108 (24%) (risk ratio 0.86; 95% confidence interval 0.49, 1.50; P = 0.69)]. There was no significant difference in atopy, eczema risk, lung function or exhaled nitric oxide between supplemented groups and controls. Prenatal vitamin D supplementation in late pregnancy that had a modest effect on cord blood vitamin D level, was not associated with decreased wheezing in offspring at age three years. Controlled-Trials.com ISRCTN68645785.

  10. Nitric oxide in the psychobiology of mental disorders

    Directory of Open Access Journals (Sweden)

    Altan Eşsizoğlu

    2009-03-01

    Full Text Available Nitric oxide is in a gaseous form and is widespread in the human body. It functions by acting as a secondary messenger in the modulatory activities of neuronal functions of the central nervous system. Nitric oxide is the first identified neurotransmitter of the nontraditional neurotransmitter family.Studies conducted on experimental animals demonstrate that nitric oxide has a neuromodulatory efficacy on the secretions of other neurotransmitters and that it has an effect on learning and memory functions, and on various neuronal mechanisms. Many studies have been conducted to investigate the location of nitric oxide in the central nervous system, its effect on anxiety and depression, its relationship with other neurotransmitters, and also about its role on neurotoxicity. There are clinical studies concerning the level of nitrate, a product of nitric oxide metabolism, and also experimental studies concerning its rewarding effect of alcohol and substance use, in patients with depression and schizophrenia. However, limited studies have been conducted to investigate its relationship with stress, which is an important factor in the etiology of psychiatric disorders. These studies demonstrate that nitric oxide is closely related with stress physiology.Nitric oxide is a neuromodulator, which is frequently being mentioned about nowadays in psychiatry. Clinical and experimental studies play an important role in the psychobiology of psychiatric disorders.

  11. Containment of Nitric Acid Solutions of Plutonium-238

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Silver, G.L.; Pansoy-Hjelvik, L.; Ramsey, K.

    1999-01-01

    The corrosion of various metals that could be used to contain nitric acid solutions of Pu-238 has been studied. Tantalum and tantalum/2.5% tungsten resisted the test solvent better than 304L stainless steel and several INCONEL alloys. The solvent used to imitate nitric acid solutions of Pu-238 contained 70% nitric acid, hydrofluoric acid, and ammonium hexanitratocerate

  12. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet

    NARCIS (Netherlands)

    Baranska, Agnieszka; Tigchelaar, Ettje; Smolinska, Agnieszka; Dallinga, Jan W.; Moonen, Edwin J. C.; Dekens, Jackie A. M.; Wijmenga, Cisca; Zhernakova, Alexandra; van Schooten, Frederik J.

    In the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry

  13. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections

    DEFF Research Database (Denmark)

    Joensen, Odin; Paff, Tamara; Haarman, Eric G

    2014-01-01

    The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis...... (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled......, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup...

  14. The natural radionuclide concentration and radon exhalation rate of Turkish natural stones

    International Nuclear Information System (INIS)

    Yasar, O.; Yaprak, G.; Guer, F.

    2006-01-01

    Geological materials usually contaminated with naturally occurring radioactive materials (NORM) have become a focus great attention. These NORM under certain conditions can reach hazardous contamination levels. Some contamination levels may be sufficiently severe that precautions must be taken. The Turkey has very important natural stones potential with over 5 billion m 3 marble reserves. According to 2002 giving data the number of Turkish stones export is 303 million US Dollars. In this regards, the present study deals with 120 Turkish natural stones. The studied samples were analyzed and the concentrations in Bq/kg dry weight of radioisotopes were determined by gamma-ray spectrometry using HPGe defector in Bq/kg dry weight. For the measurement of the radon exhalation rate, the 'can technique' using sensitive alpha sensitive LR-115 type II plastic defectors were used. The radium equivalent activity varied from 285 Bq/kg to 325 Bq/kg for granite samples and from 2 Bq/kg to 32 Bq/kg for marble samples. The value of radon exhalation rate ranged from 0.06 Bq/m 2 h - 1 to 0.46 Bq/m 2 h - 1 for garnite samples and from 0.006 Bq/m 2 h - 1 to 0.011 Bq/m 2 h - 1 for marble samples. According to the recommended values and the calculated external hazard index values the samples are acceptable for use as building materials and decoration

  15. Determination of the exhalation rate of radon and thoron from building materials by detectors Cr-39

    International Nuclear Information System (INIS)

    Vasidov, A.

    2005-01-01

    Full text: The building materials (BM) such as granite, bricks, sand, cement etc., contain uranium and thorium in various amounts. Therefore the knowledge of true value exhalation rate of Rn and Tn from BM represents scientific and practical interest in environmental radiation protection. In present work, we have used calibrated plastic cups with two detectors Cr-39. The detected surface of the cup is situated in perpendicular position surface BM and were exposed for 20-30 days. The first detector fixed the bottom on distance from surface of BM and records alpha particles from Rn-222 only. The second detector records alpha particles of the thoron and radon. After exposition, the detectors chemically etched and analyzed. The values of the exhalation rate per unit area of the granite, concrete, fired and unfired bricks, sand, cement, alabaster varied 0.091 - 0.1 Bq m -2 h -1 for the radon, 200 - 5800 Bq m -2 h - 1 for the thoron, accordingly

  16. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  17. Cellular signaling with nitric oxide and cyclic GMP

    Directory of Open Access Journals (Sweden)

    F. Murad

    1999-11-01

    Full Text Available During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.

  18. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  19. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Extraction of Uranium in The Mixtures of Nitric and Sulfuric Acids With Neutral and Basic Ligands in Kerosene

    International Nuclear Information System (INIS)

    Nampira, Y; Rahayu Imam, S; Djoyosubroto, H

    1998-01-01

    The tendency of uranium ion in the mixture of nitric and sulfuric acid's medium is to from uranyl sulphate complex. The compound of uranyl sulphate is containing into the heteropoly compound that has acid property. Regarding to the mentioned property, the U extraction process was carried out using a basic or neutral complexing agent containing a ligand that formed the soluble uranium complex in the organic solvent (kerosene).The use of basic complexing agent such as n,tri-octyl amine is more suitable than that of tri butyl phosphate as a neutral agent. The maximum distribution coefficient of uranium will be reached if the maximum concentration of nitric acid and sulphuric acid can be maintained at 0.3 M and 1.5 M respectively in the organic solvent medium consisted n,tri-octyl amine of 30% volume fraction

  1. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  2. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    Science.gov (United States)

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  3. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney

  4. High prevalence of asthma in Danish elite canoe- and kayak athletes

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Svenningsen, Claus

    2012-01-01

    Asthma is common in elite athletes, but our knowledge of asthma in elite canoe and kayak athletes is limited. The aim of the present prospective cross-sectional study was therefore to investigate the prevalence of asthma, including asthma-like symptoms, exhaled nitric oxide, and airway reactivity...

  5. Disease: H00079 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available contribute to the recruitment of inflammatory cells, particularly eosinophils, whose proliferation and diff...erentiation from bone marrow progenitors is promoted by IL-5. The activation of eosinophils... A, Lim S, Kharitonov SA, Chung KF, Barnes PJ. ... TITLE ... Correlation between exhaled nitric oxide, sputum eosinophils

  6. Nitric Oxide Metabolites and Asymmetric Dimethylarginine Concentrations in Breast Milk

    Directory of Open Access Journals (Sweden)

    Hakan Öztürk

    2017-04-01

    Full Text Available Objective: Nitric oxide plays a preventive role in the development of necrotizing enterocolitis. Oral nitrite and nitrate intake has gained importance with the discovery of the conversion of nitrite to nitric oxide in acidic medium out of the synthesis of nitric oxide from L-arginine. Objective of this study was to examine the breast milk concentrations of nitric oxide and asymmetric dimethylarginine which is a competitive inhibitor of nitric oxide and to compare these concentrations in terms of gestational age and maturity of breast milk. Study Design: Forty-one women were included in the study. Milk samples were collected from 3 groups of mothers as term, late preterm and preterm on the postpartum days 3, 7 and 28. Results: When breast milk concentrations of nitric oxide were compared according to the postnatal day of the milk independently from gestational age; nitric oxide concentration was higher in the colostrum than in the transition milk and mature milk (p=0,035; p=0,001; respectively. For the comparison of asymmetric dimethylarginine concentrations among these groups and days; no statistically significant difference was observed in terms of gestational age and maturity of the milk (p=0.865, p=0.115; respectively. Conclusion: The highest nitric oxide concentration was found in the colostrum, suggesting that colostrum is a valuable food for newborns. Plasma concentrations of asymmetric dimethylarginine were negatively correlated with nitric oxide and did not show a correlation with breast milk, suggesting that asymmetric dimethylargininedoesn’t make nitric oxide inhibition in breast milk.

  7. Bronchoscopic lung-volume reduction with Exhale airway stents for emphysema (EASE trial) : randomised, sham-controlled, multicentre trial

    NARCIS (Netherlands)

    Shah, P. L.; Slebos, D-J; Cardoso, P. F. G.; Cetti, E.; Voelker, K.; Levine, B.; Russell, M. E.; Goldin, J.; Brown, M.; Cooper, J. D.; Sybrecht, G. W.

    2011-01-01

    Background Airway bypass is a bronchoscopic lung-volume reduction procedure for emphysema whereby transbronchial passages into the lung are created to release trapped air, supported with paclitaxel-coated stents to ease the mechanics of breathing. The aim of the EASE (Exhale airway stents for

  8. Study of radon exhalation rates using solid state nuclear track detectors in stone mining area of Aravali range in Pali region, district Faridabad

    International Nuclear Information System (INIS)

    Raj Kumari; Yadav, A.S.; Kant, Krishan; Garg, Maneesha

    2013-01-01

    It is well established that indoor radon-thoron and daughters are the largest contributor to total radiation dose received by populations. They account for more than 50% of the total dose and the radiation exposure beyond permissible levels can lead to deleterious effects on health. This fact necessitates extensive studies of natural radioactivity levels in the stone mining area of Aravali range in Faridabad. The stone mining area of Aravali Range in Pali, District Faridabad bears significant geological features. Radon exhalation from ground plays an important role in enhanced indoor radon levels and can pose grave health hazards to the workers and the residents. Exhalation rates (mass and surface) from stone samples of the area have been studied using LR-115, Type II nuclear track detectors. The mass and surface exhalation rates from crushed stone samples, also called stone dust varied in the range 3.41-9.11 mBq kg -1 h - 1 and 75.9-202.7 mBq m -2 h -1 , respectively. The study has revealed substantial presence of radionuclides in the samples collected from the mining area. (author)

  9. Factors governing the dispersion of exhaled particles during vaping of an e-cigarette

    OpenAIRE

    Prasauskas, Tadas; Martuzevičius, Dainius; Setyan, Ari; O'Connell, Grant; Cahours, Xavier; Colard, Stephane

    2016-01-01

    Electronic cigarettes (e-cigarettes) are a relatively new alternative to conventional cigarettes and the prevalence of use is increasing amongst smokers worldwide. This raises new questions for example on the potential impact of e-cigarette use on indoor air quality and bystander exposures; evidence on this topic is still emerging. To that end, the aim of this study was to investigate the impact of different factors on the dispersion of exhaled e-cigarette particles at a bystander’s position,...

  10. The validity of tympanic and exhaled breath temperatures for core temperature measurement

    International Nuclear Information System (INIS)

    Flouris, Andreas D; Cheung, Stephen S

    2010-01-01

    We examined the efficacy of tympanic (T ty ) and exhaled breath (T X ) temperatures as indices of rectal temperature (T re ) by applying heat (condition A) and cold (condition B) in a dynamic A-B-A-B sequence. Fifteen healthy adults (8 men; 7 women; 24.9 ± 4.6 years) volunteered. Following a 15 min baseline period, participants entered a water tank maintained at 42 °C water temperature and passively rested until their T re increased by 0.5 °C above baseline. Thereafter, they entered a different water tank maintained at 12 °C water temperature until their T re decreased by 0.5 °C below baseline. This procedure was repeated twice (i.e. A-B-A-B). T ty demonstrated moderate response delays to the repetitive changes in thermal balance, whereas T X and T re responded relatively fast. Both T ty and T X correlated significantly with T re (P < 0.05). Linear regression models were used to predict T re based on T ty and T X . The predicted values from both models correlated significantly with T re (P < 0.05) and followed the changes in T re during the A-B-A-B thermal protocol. While some mean differences with T re were observed (P < 0.05), the 95% limits of agreement were acceptable for both models. It is concluded that the calculated models based on tympanic and exhaled breath temperature are valid indicators of core temperature. (note)

  11. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  12. The nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Kurbonov, A.S.; Mamatov, E.D.; Suleymani, M.; Borudzherdi, A.; Mirsaidov, U.M.

    2011-01-01

    Present article is devoted to nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit of Tajikistan. The obtaining of boric acid from pre backed danburite concentrate by decomposition of nitric acid was studied. The chemical composition of danburite concentrate was determined. The laboratory study of danburite leaching by nitric acid was conducted. The influence of temperature, process duration, nitric acid concentration on nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit was studied as well. The optimal conditions of nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit, including temperature, process duration, nitric acid concentration and particle size were proposed.

  13. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  14. {sup 226}Ra, {sup 232}Th and {sup 40}K contents and radon exhalation rate from materials used for construction and decoration in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M; Njock, M G Kwato [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, PO Box 8580, Douala (Cameroon); Garavaglia, M; Giovani, C; Scruzzi, E [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Nourreddine, A [Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037, Strasbourg cedex 02 (France); Lagos, L [Applied Research Center, Florida International University, 10555 W Flagler Street, EC 2100, Miami, FL 33174 (United States)], E-mail: mngachin@yahoo.com

    2008-09-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for {sup 226}Ra, {sup 232}Th and {sup 40}K varied from 11.5 to 49 Bq kg{sup -1}, 16 to 37 Bq kg{sup -1} and 306 to 774 Bq kg{sup -1}, respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h{sup -1}. External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg{sup -1} and are much smaller than the recommended limit of 370 Bq kg{sup -1} for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of {alpha}-track densities. The radon exhalation varied from (5.77 {+-} 0.06) x 10{sup -5} to (7.61 {+-} 0.07) x 10{sup -5} Bq cm{sup -2} h{sup -1} in bricks, from (5.79 {+-} 0.05) x 10{sup -5} to (11.6 {+-} 0.12) x 10{sup -5} in tiles, and was (6.95 {+-} 0.03) x 10{sup -5} Bq cm{sup -2} h{sup -1} in concrete. A correlation (correlation coefficient approx. = 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors.

  15. Sensitive Spectroscopic Analysis of Biomarkers in Exhaled Breath

    Science.gov (United States)

    Bicer, A.; Bounds, J.; Zhu, F.; Kolomenskii, A. A.; Kaya, N.; Aluauee, E.; Amani, M.; Schuessler, H. A.

    2018-06-01

    We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of 132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of 8 ppbv and acetone of 2.1 ppbv with spectral sampling of 0.005 cm-1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.

  16. National survey on the natural radioactivity and Rn-222 exhalation rate of building materials in the Netherlands

    NARCIS (Netherlands)

    de Jong, P.; van Dijk, W.; van der Graaf, E.R.; de Groot, A.V.

    The present study reports on results of a nationwide survey on the natural radioactivity concentrations and Rn-222 exhalation rates of the prevailing building materials in the Netherlands. In total 100 samples were taken and analyzed for the activity concentrations of Ra-226, Ra-228, Th-228, and

  17. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  18. Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

    International Nuclear Information System (INIS)

    Coselmon, Martha M.; Balter, James M.; McShan, Daniel L.; Kessler, Marc L.

    2004-01-01

    The advent of dynamic radiotherapy modeling and treatment techniques requires an infrastructure to weigh the merits of various interventions (breath holding, gating, tracking). The creation of treatment planning models that account for motion and deformation can allow the relative worth of such techniques to be evaluated. In order to develop a treatment planning model of a moving and deforming organ such as the lung, registration tools that account for deformation are required. We tested the accuracy of a mutual information based image registration tool using thin-plate splines driven by the selection of control points and iterative alignment according to a simplex algorithm. Eleven patients each had sequential CT scans at breath-held normal inhale and exhale states. The exhale right lung was segmented from CT and served as the reference model. For each patient, thirty control points were used to align the inhale CT right lung to the exhale CT right lung. Alignment accuracy (the standard deviation of the difference in the actual and predicted inhale position) was determined from locations of vascular and bronchial bifurcations, and found to be 1.7, 3.1, and 3.6 mm about the RL, AP, and IS directions. The alignment accuracy was significantly different from the amount of measured movement during breathing only in the AP and IS directions. The accuracy of alignment including thin-plate splines was more accurate than using affine transformations and the same iteration and scoring methodology. This technique shows promise for the future development of dynamic models of the lung for use in four-dimensional (4-D) treatment planning

  19. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  20. Leaching of sodium carbonate cakes by nitric acid

    International Nuclear Information System (INIS)

    Troyanker, L.S.; Nikonov, V.N.

    1977-01-01

    The interaction has been studied of soda cakes of fluorite-rare-earth concentrate with nitric acid. The effect of a number of factors on extraction of REE into a nitric solution has been considered: the final acidity of the pulp, the duration of leaching, and the ratio between solid and liquid phases. The effect of adding aluminium nitrate into the pulp has also been studied. It has been shown that three-stage counterflow leaching of soda cakes with nitric acid increases REE extraction approximately by 10%

  1. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses

    Directory of Open Access Journals (Sweden)

    Akbar Abbasi

    2017-01-01

    Conclusions: The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33% and 103 (2.37% for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  2. High levels of physical activity are associated with poorer asthma control in young females but not in males.

    Science.gov (United States)

    Lövström, Ludvig; Emtner, Margareta; Alving, Kjell; Nordvall, Lennart; Borres, Magnus P; Janson, Christer; Malinovschi, Andrei

    2016-01-01

    Earlier studies on the levels of physical activity in asthma patients compared with controls have yielded varying results. We have previously reported that high versus moderate levels of physical activity were associated with higher prevalence of wheezing, especially in females. Here we studied the levels of physical activity in young patients with asthma and healthy subjects and their effect on asthma control. Four hundred eight physician-diagnosed patients with asthma and 118 controls (10-34 years) answered questions concerning frequency and/or duration of physical activity and undertook the Asthma Control Test (ACT), spirometry, methacholine challenges and exhaled nitric oxide measurements. Asthma patients were more frequently physically active (P = 0.01) and for longer durations (P = 0.002) than controls. Highly versus moderately physically active patients with asthma had a higher prevalence of not well-controlled asthma (ACT < 20) when physical activity was assessed by frequency (40.6% vs 24.1%, P = 0.001) or duration (39.0% vs 21.7%, P < 0.001). This was only seen in females who had reduced ACT items (P < 0.05). Frequently versus moderately active females had an odds ratio of 4.81 (2.43, 9.51) to have ACT < 20, while no such effect was found in males (OR 1.18 (0.61, 2.30)) and this interaction was statistically significantly associated with gender (P = 0.003). No differences in fraction of exhaled nitric oxide or methacholine reactivity were found between moderately and highly physically active females with asthma. Young asthma patients were more active than controls. High levels of physical activity were associated with poor asthma control as judged by the ACT in females, but not in males, and this appears unrelated to airway inflammation or responsiveness. © 2015 Asian Pacific Society of Respirology.

  3. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    -dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  4. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  5. Investigation of the Radon exhalation potential in the PACA region. Phase II: case of high potential exhalation areas in Medium Champsaur (05) and South Esterel (83). Final report

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled the results of the first phase of the study and the objectives of the second phase, the authors present the methodology: uranium and thorium analysis on rock, radon-222 activity measurement in soil gases, and gamma radiation measurement. They discuss the influence of rock uranium content on radon exhalation (natural contextual and physical phenomena governing radon transport, radon properties, uranium geochemistry). They report the results obtained in the two considered areas (meteorological conditions, radon 222 content in soils, uranium and thorium contents in geological formations, influence of geological formation type and distribution on radon activity)

  6. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    International Nuclear Information System (INIS)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-01-01

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO 3 ) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  7. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  8. Elevated exhaled nitric oxide in anaphylaxis with respiratory symptoms

    Directory of Open Access Journals (Sweden)

    Yoichi Nakamura

    2015-10-01

    Conclusions: Elevation of FeNO was related to respiratory symptoms observed in anaphylactic patients without asthma. Although the mechanism of increased FeNO level is unclear, its usefulness for diagnosis of anaphylaxis must be examined in prospective studies.

  9. 76 FR 63878 - New Source Performance Standards Review for Nitric Acid Plants

    Science.gov (United States)

    2011-10-14

    ... technologies. Nitric acid production is also one of the industrial sectors for which ``white papers'' were... standards (NSPS) for nitric acid plants. Nitric acid plants include one or more nitric acid production units. These proposed revisions include a change to the nitrogen oxides (NO X ) emission limit, which applies...

  10. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    Science.gov (United States)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  11. Development of a Nitric Oxide Monitor for Early Detection of Pathogenic Exposure

    National Research Council Canada - National Science Library

    2002-01-01

    ... (NO) level in exhaled human breath is a reliable diagnostic of respiratory distress, and in particular whether or not NO measurements can be used as a triage tool to identify human exposure to bio- warfare agents, (ii...

  12. Active and passive measurements of radon/thoron exhalation from coal and flyash samples collected from various thermal power plants of Delhi, India

    International Nuclear Information System (INIS)

    Singh, Lalit Mohan; Kumar, Rajesh; Sahoo, B.K.; Sapra, B.K.; Rajendra Prasad

    2013-01-01

    Measurement of radon ( 222 Rn) exhalation from coal, flyash and soil samples was carried out using active (Scintillation based Smart Radon Monitor) as well as passive technique (SSNTD based Can technique). In addition, thoron ( 220 Rn) exhalation measurements were also made for the above samples using Scintillation based Smart Thoron Monitor. To the best of our knowledge, thoron exhalation measurement is first of its kind in India. In this study, a total of 26 samples collected from Badarpur Thermal Power Station, Badarpur and Rajghat Power Station, Rajghat, Delhi were analysed. Thoron surface exhalation rate measured by Scintillation based Thoron Monitor for Badarpur Thermal Power Station varied from 327.8 Bq/m 2 /h to 874.2 Bq/m 2 /h and for Rajghat Thermal Power Station it varied from 176.0 Bq/m 2 /h to 781.1 Bq/m 2 /h. Similarly, the radon mass exhalation rate measured by active technique varied from 12.13 mBq/Kg/h to 118.08 mBq/Kg/h for the samples collected from Badarpur Thermal Power Station; while it varied from 15.00 Bq/Kg/h to 168.07 mBq/Kg/h for the samples collected from Rajghat Thermal Power station. On the other hand, result of measurements made by the conventional Can technique were significantly lower varying from 0.44 mBq/Kg/h to 2.34 mBq/Kg/h for Rajghat Thermal Power Station and from 0.78 mBq/Kg/h to 2.88 mBq/Kg/h for Badarpur Thermal Power Station. This vast variation in the results obtained by active and passive techniques is due to the fact that the active technique accounts for the effect of back-diffusion and possible leakage from the chamber in the process of least square fitting of exponential model while it is not so in the case of SSNTD based Can technique. In view of this, results of active technique are more reliable as compared to the passive technique. More importantly, there was no thoron interference in the radon measurement by the active technique. Further experiments are being carried out using controlled radon and thoron

  13. Indoor Airflow Patterns, Dispersion of Human Exhalation Flow and Risk of Airborne Cross-infection between People in a Room

    DEFF Research Database (Denmark)

    Olmedo, Inés

    In recent years, an interest in understanding the mechanisms of cross-infection between people in the same room has increased significantly. The SARS (Severe Acute Respiratory Syndrome) outbreak occurred in Asia in 2003 reopened the study of the airborne disease transmission as one of the most...... in the air. These tiny particles or droplet nuclei can follow the air flow pattern in the room and produce high contaminant concentration in different areas of the indoor environment. This fact can provoke a high exposure to exhaled contaminants and a risk of cross-infection to a susceptible person situated...... in the same room. Abundant evidence shows that the air flow distribution systems play a crucial role in the dispersion of these human exhaled contaminants. However, there are many parameters that influence the cross-infection risk between people situated close to each other in a ventilated room, such as...

  14. Indoor Airflow Patterns, Dispersion of Human Exhalation Flow and Risk of Airborne Cross-Infection between People in a Room

    DEFF Research Database (Denmark)

    Olmedo, Inés

    In recent years, an interest in understanding the mechanisms of cross-infection between people in the same room has increased significantly. The SARS (Severe Acute Respiratory Syndrome) outbreak occurred in Asia in 2003 reopened the study of the airborne disease transmission as one of the most...... in the air. These tiny particles or droplet nuclei can follow the air flow pattern in the room and produce high contaminant concentration in different areas of the indoor environment. This fact can provoke a high exposure to exhaled contaminants and a risk of cross-infection to a susceptible person situated...... in the same room. Abundant evidence shows that the air flow distribution systems play a crucial role in the dispersion of these human exhaled contaminants. However, there are many parameters that influence the cross-infection risk between people situated close to each other in a ventilated room, such as...

  15. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    Science.gov (United States)

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  16. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  17. The correlations between Radon in soil gas and its exhalation and concentration in air in the southern part of Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Hushari, M.

    2005-01-01

    The aim of this work is to measure the concentration of the radon ( 222 Rn) in soil air, 222 Rn exhalation from soil and 222 Rn in outdoor air which may have great influence on 222 Rn levels in houses. 222 Ra activity concentrations were also determined in soil samples. The studied areas are located in southern part of Syria. The common bed rock of this area is black and massive granite which are poor in uranium content [Jubeli Y.M., 1990. Uranium exploration in Syria. Internal Technical Report, vol. 1 (in English), vol. 2 (in Arabic), SAEC, Damascus; Technoexport (USSR), 1966. In: Ponikarov (Ed.), The Geological Map of Syria Scale: 1:200.000, Ministry of Industry, Damascus, Syria]. Results showed that the maximum measurement in all areas was 32500Bqm -3 in soil air with an exhalation rate of 9Bqm -2 s -1 in Darra region and 66.43Bqm -3 of radon in open air, with 77Bqkg -1 of radium content in soil (Damascus suburb). In addition, correlations between Rn in soil and exhalation of Radon from soil and radon in houses were found in some areas (Sweda and Darra), while, no correlations were found in other studied areas. Moreover, no correlation between radon in houses and radon measurements in soil and in outdoors were found. This was attributed to the methodology used and the influence of building design and inhabitants behavior

  18. Controlled human exposure to indoor air, dust, and ozone; XDOZ

    DEFF Research Database (Denmark)

    Elholm, Grethe; Bønløkke, Jakob; Schlünssen, Vivi

    2017-01-01

    . All participants were subjected to four different exposure scenarios in the climate chamber.Exp. 1: Dust (250 – 300 µg/m3)Exp. 2: Ozone (100 ppb)Exp. 3: Dust (250 – 300 µg/m3) + ozone (100 ppb)Exp. 4: Filtered air (<20µg/m3)The exposure time was 5½ hours for each session.The health effects were...... evaluated at baseline and specific follow-up times in relation to selected respiratory and cardiovascular outcomes, such as; nasal volume, exhaled nitric oxide (FENO), spirometry (FEV1 and FVC), exhaled breath condensate (EBC), nasal lavage, blood samples, EndoPat. Questionnaires were used for assessment...

  19. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  20. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    Science.gov (United States)

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  1. Prediction of 222 Rn exhalation rates from phosphogypsum based stacks. Part I: parametric mathematical modeling

    International Nuclear Information System (INIS)

    Rabi, Jose A.; Mohamad, Abdulmajeed A.

    2004-01-01

    Radon-222 is a radionuclide exhaled from phosphogypsum by-produced at phosphate fertilizer industries. Alternative large-scale application of this waste may indicate a material substitute for civil engineering provided that environmental issues concerning its disposal and management are overcome. The first part of this paper outlines a steady-state two-dimensional model for 222 Rn transport through porous media, inside which emanation (source term) and decay (sink term) exist. Boussinesq approach is evoked for the laminar buoyancy-driven interstitial air flow, which is also modeled according to Darcy-Brinkman formulation. In order to account for simultaneous effects of entailed physical parameters, governing equations are cast into dimensionless form. Apart from usual controlling parameters like Reynolds, Prandtl, Schmidt, Grashof and Darcy numbers, three unconventional dimensionless groups are put forward. Having in mind 222 Rn transport in phosphogypsum-bearing porous media, the physical meaning of those newly introduced parameters and representative values for the involved physical parameters are presented. A limiting diffusion-dominated scenario is addressed, for which an analytical solution is deduced for boundary conditions including an impermeable phosphogypsum stack base and a non-zero fixed concentration activity at the stack top. Accordingly, an expression for the average Sherwood number corresponding to the normalized 222 Rn exhalation rate is presented

  2. Acute Respiratory Distress Syndrome (ARDS After Nitric Acid Inhalation

    Directory of Open Access Journals (Sweden)

    Gülay Kır

    2014-12-01

    Full Text Available Lung injury resulting from inhalation of chemical products continues to be associated with high morbidity and mortality. Concentrated nitric acids are also extremely corrosive fuming chemical liquids. Fumes of nitric acid (HNO3 and various oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 may cause fatal illnesses such as severe pulmonary edema and acute respiratory distress syndrome (ARDS when inhaled. Intensive respiratory management including mechanical ventilation with positive end expiratory pressure (PEEP, inverse ratio ventilation, replacement of surfactant and extracorporeal membrane oxygenation (ECMO, steroids and n-acetylcysteine (NAC may improve survival. In this case report we present the diagnosis and successful treatment of a 57 years old male patient who developed ARDS following pulmonary edema due to nitric acid fumes inhalation.

  3. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  4. Preliminary assessment, by means of Radon exhalation rate measurements, of the bio-sustainability of microwave treatment to eliminate biodeteriogens infesting stone walls of monumental historical buildings.

    Science.gov (United States)

    Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B.

    2017-10-01

    The main purpose of the work described in this paper has been to establish the protocol for a new non-disruptive technique of intervention, based on microwave treatment, for cleaning operations on monumental historical buildings, to eliminate biodeteriogens infesting stones. Non-destructive methods in the cleaning operations, should not only preserve the physical integrity, the chemical-mineralogical and structural identity of materials, but, when the exhalation of pollutant agents (like for example Radon gas) from building materials is considered, also, make the indoor air quality (IAQ) levels healthy. Therefore, one of the main steps of the protocol proposed in this paper is concerned with the assessment of the Radon exhalation rate in order to verify that microwave treatments do not increase the Radon naturally exhalated by building materials. In this paper, the preliminary results of the Radon measurements performed on two different type of tuff samples (grey tuff and yellow tuff), typical of the Italian traditional construction heritage, with the E-PERM passive technique at the Environmental Radioactivity Laboratory (Amb.Ra.), University of Salerno, Italy, ISO 9001:2008 certified, are summarized.

  5. Study of natural radioactivity and 222Rn exhalation rate in soil samples for the assessment of average effective dose

    International Nuclear Information System (INIS)

    Bangotra, P.; Mehra, R.; Jakhu, R.; Sahoo, B.K

    2016-01-01

    The natural radioactivity in soil is usually determined from the 226 Ra (Radium), 232 Th (Thorium) and 40 K (potassium). 222 Rn and 220 Rn are produced in soil as a result of the presence of these radionuclides. As 226 Ra decay, the newly created 222 Rn radionuclide recoil from the parent grain and then exhale through the soil. Since 98.5% of radiological effects of 238 U series are produced by 226 Ra and its daughter products. The assessment of gamma radiation dose from natural sources is of particular importance as natural radiation is the largest contributor to the external dose of the world population. Authors are advised to maximize the information content utilizing the full space available. The main objective of the present study is to measure the level of natural radioactivity 226 Ra, 232 Th, 40 K and 222 Rn exhalation rate in the soil samples for health risk assessment

  6. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  8. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS...... increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion...

  9. Radon exhalation from granitic rocks

    International Nuclear Information System (INIS)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina; Denyak, Valeriy

    2017-01-01

    Naturally occurring radionuclides such as radon ( 222 Rn), its decay products and other elements from the radioactive series of uranium ( 238 U and 235 U) and thorium ( 232 Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ( 222 Rn), thoron ( 220 Rn), radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the 222 Rn and 220 Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The 222 Rn and 220 Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m 3 to 2087±19 Bq/m 3 , which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  10. Validation of exhaled volatile organic compounds analysis using electronic nose as index of COPD severity

    Directory of Open Access Journals (Sweden)

    Finamore P

    2018-05-01

    Full Text Available Panaiotis Finamore,1 Claudio Pedone,1 Simone Scarlata,1 Alessandra Di Paolo,1 Simone Grasso,2 Marco Santonico,2 Giorgio Pennazza,2 Raffaele Antonelli Incalzi1 1Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy; 2Unit of Electronics for Sensor Systems, Campus Bio-Medico di Roma University, Rome, Italy Aim: Six-minute walking test distance (6MWD and body mass index, obstruction, dyspnea and exercise (BODE index are measures of functional status in COPD patients, but require space, time and patient’s compliance. Exhaled volatile organic compounds (VOCs analysis via electronic nose is a quick and easy method that has already been used to discriminate COPD phenotypes. The aim of this study is to evaluate whether VOCs analysis can predict functional status and its variation over time in COPD patients.Methods: A monocentric prospective study with 1 year of follow-up was carried out. All patients underwent pulmonary function tests, arterial gas analysis, bioimpedance analysis, 6-minute walking test, and VOCs collection. Exhaled breath was collected with Pneumopipe® and analyzed using BIONOTE electronic nose. Outcomes prediction was performed by k-fold cross-validated partial least square discriminant analysis: accuracy, sensitivity and specificity as well as Cohen’s kappa for agreement were calculated.Results: We enrolled 63 patients, 60.3% men, with a mean age of 71 (SD: 8 years, median BODE index of 1 (interquartile range: 0–3 and mean 6MWD normalized by squared height (n6MWD of 133.5 (SD: 42 m/m2. The BIONOTE predicted baseline BODE score (dichotomized as BODE score <3 or ≥3 with an accuracy of 86% and quartiles of n6MWD with an accuracy of 79%. n6MWD decline more than the median value after 1 year was predicted with an accuracy of 86% by BIONOTE, 52% by Global Initiative for Chronic Obstructive Lung Disease (GOLD class and 78% by combined BIONOTE and GOLD class.Conclusion: Exhaled VOCs analysis identifies classes of BODE

  11. Study of Rn-222 exhalation in phosphogypsum through the adsorption technique in activated coal; Estudo da exalacao de Rn-222 em fosfogesso por meio da tecnica de adsorcao em carvao ativado

    Energy Technology Data Exchange (ETDEWEB)

    Nisti, Marcelo Bessa; Campos, Marcia Pires de, E-mail: mbnisti@ipen.b, E-mail: mpcampos@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The radon exhalation was estimated through the adsorption in activated carbon technique. Classified as TENORM, the radon exhalation determination on the phosphogypsum piles was performed through the adsorption ratio of radon in activated carbon, from the concentration of descendants of {sup 222}Rn, {sup 214}Pb and {sup 214}Bi obtained by gamma spectrometry. The results obtained in this work were compatibles with the values found in the literature

  12. Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from NTPC Dadri, (UP) India

    International Nuclear Information System (INIS)

    Gupta, Mamta; Verma, K.D.; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.

    2010-01-01

    Fly ash produced by coal-burning in thermal power station has become a subject of world wide interest in recent years, because of its diverse uses in building materials such as bricks, sheets, cement and land filling etc. The knowledge of radio nuclides in fly ash plays an important role in health physics. Natural radioactivity and radon exhalation rate in fly ash samples collected from NTPC (National Thermal Power Corporation) Dadri, (UP.) India, have been studied. A high resolution gamma ray spectroscopic system has been used for the measurement of natural radioactivity. The activity concentration of natural radionuclides radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K) were measured and radiological parameters were calculated. Radium concentration was found to vary from (81.01 ± 3.25) to (177.33 ±10.00) Bq kg -1 . Activity concentration of thorium was found to vary from (111.57 ± 3.21) to (178.50 ± 3.96) Bq kg -1 . Potassium activity was not significant in some samples, whereas, some other samples have shown potassium activity vary from (365.98 ± 4.85) to (495.95 ± 6.23) Bq kg -1 . Radon exhalation rates in these samples were also calculated by 'Sealed Can technique' using LR-115 type II detectors and found to vary from (80 ± 9) to (243 ± 16) mBqm -2 h -1 with an average value (155 ± 13) mBqm -2 h -1 . This study also presents the results of estimation of effective dose equivalent from exhalation rate, radium equivalent, absorbed gamma dose rates, external annual effective dose rate and values of external hazard index for the fly ash samples. (author)

  13. Mechanism of nitric acid reduction and kinetic modelling

    International Nuclear Information System (INIS)

    Sicsic, David; Balbaud-Celerier, Fanny; Tribollet, Bernard

    2014-01-01

    In France, the recycling of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and prediction of the behaviour of the structural materials (mainly austenitic stainless steels) requires the determination and modelling of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that neither nitric acid nor the nitrate ion is the electro-active species. However, the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates remain uncertain. The aim of this study was to clarify some of these uncertainties by performing an electrochemical investigation of the reduction of 4 M nitric acid at 40 C at an inert electrode (platinum or gold). An inert electrode was chosen as the working electrode in a first step to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled us to suggest a coherent sequence of electrochemical and chemical reactions. Kinetic modelling of this sequence was then carried out for a gold rotating disk electrode. A thermodynamic study at 25 C allowed the composition of the liquid and gaseous phases of nitric acid solutions in the concentration range 0.5-22 M to be evaluated. The kinetics of the reduction of 4 M nitric acid was investigated by cyclic voltammetry and chrono-amperometry at an inert electrode at 40 C. The coupling of chrono-amperometry and FTIR spectroscopy in the gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. The results showed that the reduction process is autocatalytic for potentials between 0

  14. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion.

    Science.gov (United States)

    Španěl, Patrik; Dryahina, Kseniya; Vicherková, Petra; Smith, David

    2015-11-19

    Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082   ±   205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values.

  15. Americium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve americium removal from nitric acid (7M) waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes (SLM) are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP (dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate (6.9M), low acid (0.1M) feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm/sec, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, O0D (iB)CMPO (or CMPO) (octylphenyl-N-N-diisobutylcarbamoylmethylphosphine oxide) has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.0M acidity and iron(III) is complexed with 0.20M oxalic acid. 3 figs

  16. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma

    International Nuclear Information System (INIS)

    Al-Obaidy, Amina H.; Al-Samarai, Abdul-Gahni M.

    2007-01-01

    Objective was to estimate the predictive value of exhaled breath condensate (EBC) hydrogen peroxide (H2O2) concentration and pH as non-invasive markers in asthma. Fifty patients with unstable, steroid naive atopic asthma were included in this study, 25 with persistent asthma. Asthma diagnosis was according to the National Heart Lung and Blood Institute guidelines for the diagnosis and management of asthma. Forced expiratory volume in one second (FEV1) was measured by computerized spirometry. The EBC H2O2 assay was carried out using the colorimetric assay. The study was conducted from January to December 2005 in the Asthma and Allergy Center, Tikrit, Iraq. The EBC H2O2 concentration was higher in the asthmatic group (0.91mol) as compared with the control (0.23 mol). There was inverse correlation between EBC H2O2 concentration and FEV1 predicted percent for asthmatic patients. The mean EBC pH was lower in the asthmatic than the control group. There was a positive correlation between EBC pH and FEV 1 predicted percent for asthmatic patients. There was an inverse correlation between EBC H2O2 concentration and pH for all asthmatic patients, intermittent, and persistent asthmatic group. Exhaled breath condensate hydrogen peroxide concentration and pH was a good non-invasive marker for asthma, whether it was with a persistent or intermittent course. (author)

  17. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  18. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  19. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  20. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.

    Science.gov (United States)

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.

  1. Studies on the reaction of nitric acid and sugar

    International Nuclear Information System (INIS)

    MacDougall, C.S.; Bayne, C.K.; Roberson, R.B.

    1982-01-01

    The design of vessels and off-gas systems for denitrating acidic radioactive process solutions by reacting nitric acid with sugar requires a fairly accurate determination of the rate of the controlling step. Therefore, the reaction of sugar with concentrated nitric acid was closely examined at temperatures of 100 and 110 0 C and in the presence of low levels of iron )0 to 0.2 M Fe(III)). Efficiencies of the sugar destruction by nitric acid ranged from 2.56 to 2.93 mol of acid consumed per mole of carbon added. Product off-gases were examined throughout the reaction. Release of CO was fairly constant throughout the reaction, but amounts of CO 2 increased as the nitric acid began to attack the terminal carboxylic acids produced from the consumption of sucrose. Voluminous quantities of NO 2 were released at the beginning of the reaction, but larger relative concentrations of NO were observed toward the end

  2. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  3. Component activities in the system thorium nitrate-nitric acid-water at 25oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Brown, C.P.

    1982-01-01

    The equilibrium composition of the vapor above thorium nitrate-nitric acid-water mixtures has been studied as a function of the concentrations of thorium nitrate and nitric acid using a transpiration technique. At 25 o C, the thorium nitrate concentrations m T ranged from 0.1 to 2.5 molal and the nitric acid concentrations m N from 0.3 to 25 molal. The vapor pressure of the nitric acid was found to increase with increasing thorium nitrate concentration for a constant molality of nitric acid in aqueous solution. At constant m T , the nitric acid vapor pressure was particularly enhanced at low nitric acid concentrations. The water vapor pressures decreased regularly with increasing concentrations of both nitric acid and thorium nitrate. The experimental data were fitted to Scatchard's ion-component model, and to empirical multiparameter functions. From the fitting parameters, and available literature data for the nitric acid-water and thorium nitrate-water systems at 25 o C, expressions were calculated for the variation of water and thorium nitrate activities, as functions of the nitric acid and thorium nitrate concentrations, using the Gibbs-Duhem equation. Calculated values for the thorium nitrate activities were strongly dependent on the form of the function originally used to fit the vapor pressure data. (author)

  4. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  5. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  6. Exercise in cold air and hydrogen peroxide release in exhaled breath condensate.

    Science.gov (United States)

    Marek, E; Volke, J; Mückenhoff, K; Platen, P; Marek, W

    2013-01-01

    Athletes have changes in the lung epithelial cells caused by inhalation of cold and dry air. The exhaled breath condensate contains a number of mediators from the respiratory system and H(2)O(2) is described as a marker of airways inflammation. The aim of this study was to determine the influence of exercise combined with cold air on the H(2)O(2) release in the exhaled breath. Twelve males (23.1 ± 1.5 years) were randomly assigned at 2 different days (1 day rest) to perform a 50 min run (75-80% of their max. heart rate) under normal (N) laboratory (18.1 ± 1.1°C) or cold (C) field condition (-15.2 ± 3.1°C). Before and immediately after each run, the EBC was collected under laboratory conditions and was analyzed amperometrically. Prior to the two runs, H(2)O(2) concentrations were 145.0 ± 31.0 (N) and 160.0 ± 49.1 nmol/L (C) and theoretical release was 70.3 ± 37.1 (N) and 82.6 ± 27.1 pmol/min (C) (p > 0.05). After each run, H(2)O(2) concentration increased significantly to 388.0 ± 22.8 nmol/L (N) and 622.1 ± 44.2 nmol/L (C) (p release: 249.2 ± 35.7 pmol/min (N) and 400.9 ± 35.7 pmol/min (C) (p release of H(2)O(2) into the EBC takes place under both resting conditions and after exercise. The concentration and release of H(2)O(2) increased after exercise in cold air compared to resting and laboratory conditions, which points to an increase in inflammatory and oxidative stress.

  7. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  8. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  9. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  10. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  11. The establishment of a portable high sensitivity exhaled thoron activity measurement system

    International Nuclear Information System (INIS)

    Chen, Xing-an; Cheng, Yong-e

    2008-01-01

    A portable system, using electrostatic collection, for the measurement of exhaled thoron activity in humans is described, together with the basic theory, equipment, calibration procedures, measurement and the preliminary use. The portable system built on experience at the Argonne National Laboratory to achieve a reduction in measurement time from 30 hours to 200 minutes, and to increase the total efficiency of the system from 50%(ANL) to 55% with a minimum detection limit decreased to 0.007 Bq (zero activity± σ). The total standard error of this system is 47% for a thorium lung burden of 0.22 Bq. The average background of this scintillation detector was 0.003 counts/min. (author)

  12. Radon exhalation from granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: flaviadelclaro@gmail.com, E-mail: spaschuk@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: denyak@gmail.com [Instituto de Pesquisa Pelé Pequeno Príncipe (IPPP), Curitiba, PR (Brazil)

    2017-07-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ({sup 222}Rn), thoron ({sup 220}Rn), radium ({sup 226}Ra), thorium ({sup 232}Th) and potassium ({sup 40}K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the {sup 222}Rn and {sup 220}Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The {sup 222}Rn and {sup 220}Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m{sup 3} to 2087±19 Bq/m{sup 3}, which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  13. The effect of body weight on distal airway function and airway inflammation.

    Science.gov (United States)

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; plimitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. The correlation between total antioxidant capacity and nitric oxide ...

    African Journals Online (AJOL)

    DNA damage was measured by comet assay and nitric oxide concentration was evaluated by Griess assay. TAC was measured in seminal plasma based on the generation of peroxyl radicals from 2,2-azinobis (2-amidino propane) dihydrochlorid (AAPH). Our results show that the means of DNA damage and nitric oxide ...

  15. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  16. Mechanism of nitric acid generation on Ag-X Zeolite

    International Nuclear Information System (INIS)

    Kanazawa, T.; Kishimoto, T.; Haseba, S.; Mitoh, Y.; Itoh, S.; Nakai, I.

    1983-01-01

    When Ag-X Zeolite is used for the removal of iodine from the off gas streams of nuclear facilities, it is possible that nitric acid is formed on Ag-X Zeolite from co-existing nitrogen dioxide and water vapor. If nitric acid is formed on the surface of Ag-X zeolite, Ag-X zeolite is damaged and is not able to operate for a long time. When Ag-X zeolite is used in NO 2 -O 2 -H 2 O mixture, the nitric acid generation reaction is varied, depending upon the reaction temperature, and concentration of NO 2 and H 2 O. At a temperature of more than 40 deg. C, however, only the surface reaction will be progressed on the zeolite surface. The generation of nitric acid solution on the zeolite can be forecasted through the relationship between the concentration of nitric acid solution, equilibrium vapor pressure of H 2 O, and equilibrium vapor pressure of HNO 3 . Concerning the surface reaction caused on the zeolite, the adsorption water reacts on NO 2 , and the resulting HNO 3 is adsorbed firmly by the zeolite, which is thought to interfere with the surface reaction for generation of the HNO 3 . When the adsorption bed is long, the time required for adsorbed HNO 3 to saturate is increased in proportion to the bed length

  17. Leukotrienes B4, C4, D4 and E4 in the Exhaled Breath Condensate (EBC), Blood and Urine in Patients with Pneumoconiosis

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Vlčková, Š.; Lebedová, J.; Syslová, K.; Pecha, O.; Běláček, J.; Navrátil, Tomáš; Kuzma, Marek; Kačer, P.

    2012-01-01

    Roč. 50, č. 4 (2012), s. 299-306 ISSN 0019-8366 Institutional support: RVO:61388955 ; RVO:61388971 Keywords : leukotrienes * Lung fibrosis * exhaled breath condensate Subject RIV: CG - Electrochemistry Impact factor: 0.870, year: 2012

  18. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid

    International Nuclear Information System (INIS)

    Lemaire, M.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V S HE and 0.3 V S HE and O.5 V S HE and 1 V S HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V S HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  19. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension

    Directory of Open Access Journals (Sweden)

    Irwan Nurdin

    2014-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD, transmission electron microscopy (TEM, alternating gradient magnetometry (AGM, thermogravimetric analysis (TGA, dynamic light scattering (DLS, and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  20. Fiber-Optic Bio-sniffer (Biochemical Gas Sensor) Using Reverse Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde.

    Science.gov (United States)

    Iitani, Kenta; Chien, Po-Jen; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2018-02-23

    Volatile organic compounds (VOCs) exhaled in breath have huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath samples can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed. In the AcH bio-sniffer, a reverse reaction of alcohol dehydrogenase (ADH) was employed for reducing AcH to ethanol and simultaneously consuming a coenzyme, reduced form of nicotinamide adenine dinucleotide (NADH). The concentration of AcH can be quantified by fluorescence detection of NADH that was consumed by reverse reaction of ADH. The AcH bio-sniffer was composed of an ultraviolet light-emitting diode (UV-LED) as an excitation light source, a photomultiplier tube (PMT) as a fluorescence detector, and an optical fiber probe, and these three components were connected with a bifurcated optical fiber. A gas-sensing region of the fiber probe was developed with a flow-cell and an ADH-immobilized membrane. In the experiment, after optimization of the enzyme reaction conditions, the selectivity and dynamic range of the AcH bio-sniffer were investigated. The AcH bio-sniffer showed a short measurement time (within 2 min) and a broad dynamic range for determination of gaseous AcH, 0.02-10 ppm, which encompassed a typical AcH concentration in exhaled breath (1.2-6.0 ppm). Also, the AcH bio-sniffer exhibited a high selectivity to gaseous AcH based on the specificity of ADH. The sensor outputs were observed only from AcH-contained standard gaseous samples. Finally, the AcH bio-sniffer was applied to measure the concentration of AcH in exhaled breath from healthy subjects after ingestion of alcohol. As a result, a significant difference of AcH concentration between subjects with different aldehyde dehydrogenase type 2 (ALDH2) phenotypes was observed. The AcH bio-sniffer can be

  1. Markers of Lipid Oxidative Damage in the Exhaled Breath Condensate of Nano TiO2 Production Workers.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Zíková, Naděžda; Komarc, M.; Fenclová, Z.; Vlčková, Š.; Schwarz, Jaroslav; Makeš, Otakar; Syslová, K.; Navrátil, Tomáš; Turci, F.; Corazzari, I.; Zakharov, S.; Bello, D.

    2017-01-01

    Roč. 11, č. 1 (2017), s. 52-63 ISSN 1743-5390 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : exhaled breath condensate * aldehydes * oxidative stress * occupational exposure * monitoring Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health; Physical chemistry (UFCH-W) Impact factor: 6.428, year: 2016

  2. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway.

    Science.gov (United States)

    Achike, Francis I; Kwan, Chiu-Yin

    2003-09-01

    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or

  3. Thermal decomposition studies of aqueous and nitric solutions of hydroxyurea

    International Nuclear Information System (INIS)

    Shekhar Kumar; Pranay Kumar Sinha; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Hydroxyurea and its derivatives are important nonsalt forming reductants in partitioning of uranium and plutonium in the nuclear fuel reprocessing operations. There is no experimental data available in open literature describing pressurization due to the thermal decomposition of aqueous and nitric solutions of hydroxyurea at elevated temperatures. Authors studied thermal decomposition of hydroxyurea-nitric acid system and resultant pressurization at various concentrations of nitric acid in an adiabatic calorimeter in closed-vent conditions. During these experiments, pressurization was observed. In this paper, results of these experiments have been discussed. (author)

  4. Óxido nítrico exalado no diagnóstico e acompanhamento das doenças respiratórias Exhaled nitric oxide for the diagnosis and monitoring of respiratory diseases

    Directory of Open Access Journals (Sweden)

    JOSÉ MIGUEL CHATKIN

    2000-02-01

    Full Text Available O presente trabalho apresenta uma sucinta revisão sobre o papel do óxido nítrico na fisiologia respiratória e na fisiopatologia de algumas pneumopatias. A perspectiva de seu uso para diagnóstico e acompanhamento de inúmeras situações clínicas é discutida.This paper reviews in brief the role of nitric oxide in the respiratory physiology and in the pathology of some pulmonary diseases. The potential diagnostic and monitoring uses in several clinical situations are also discussed.

  5. Oxidative Stress Markers Are Elevated in Exhaled Breath Condensate of Workers Exposed to Nanoparticles during Iron Oxide Pigment Production.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Fenclová, Z.; Vlčková, Š.; Syslová, K.; Navrátil, Tomáš; Schwarz, Jaroslav; Zíková, Naděžda; Barošová, H.; Turci, F.; Komarc, M.; Pelcl, T.; Běláček, J.; Kukutschová, J.; Zakharov, S.

    2016-01-01

    Roč. 10, č. 1 (2016), s. 016004 ISSN 1752-7155 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : nanoparticles * exhaled breath condensate * oxidative stress * urine * occupational exposure * Fe2O3 * Fe3O4 Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 4.318, year: 2016

  6. Method for incorporation monitoring - Studies on measurement and interpretation of radionuclide excretion, particularly thorium decay products, via exhaled breath

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    The development and application of a measuring method is described for thorium incorporation monitoring by way of measuring Rn-220 (thoron) in exhaled breath. The method is intended for application to monitoring the incorporation of thorium by occupationally exposed persons in compliance with the regulatory guide on health physics monitoring for determination of whole-body dose. (orig./CB) [de

  7. Evaluation of oxidative status with exhaled breath 8-isoprostane levels in patients with hyperthyroidism.

    Science.gov (United States)

    Bastug, Emrah; Tasliyurt, Turker; Kutluturk, Faruk; Sahin, Safak; Yilmaz, Ayse; Sivgin, Hakan; Yelken, Berna Murat; Ozturk, Banu; Yilmaz, Abdulkerim; Sahin, Semsettin

    2013-12-01

    Studies conducted so far on the effect of hyperthyroidism on oxidative stress (OS) have employed blood and urine samples. Exhaled Breath Condensate (EBC) is a non-invasive technique used to take sample from lungs to determine many biological indications. The aim of the present study was determine the possibility of using 8- isoprostane levels in EBC as an indicator of OS in hyperthyroid patients. The present study was performed on 42 patients with hyperthyroidism and 42 healthy control subjects. Hyperthyroid patients included patients with newly diagnosed Graves' disease, toxic multinodular goiter and toxic adenoma. Exhaled breath condensates were collected from patients in each group using a condensing device. 8- isoprostane levels as an indicator of OS in EBC were detected via immunoassay method. Hyperthyroid patients and control groups had 8-isoprostane levels of 6.08±6.31 and 1.56±0.88 pg/ml, respectively. The difference between patient and control groups was statistically significant (phyperthyroid patients, eleven had Graves', 21 multinodular goiter, and 10 toxic adenoma diagnosis. There were no significant differences among patients of different diagnoses for 8-isoprostane levels (p=0.541). No significant correlations were found between 8-isoprostane and free thyroxine (fT4) or thyroid stimulating hormone (TSH) levels. In the present study, 8-isoprostane levels in EBC of hyperthyroid patients were found to be significantly higher than that in healthy control group. This study is important in that it is the first to evaluate the effects on respiratory system of elevated OS of hyperthyroidism in EBC.

  8. Case report of occupational asthma induced by polyvinyl chloride and nickel.

    Science.gov (United States)

    Song, Ga-Won; Ban, Ga-Young; Nam, Young-Hee; Park, Hae-Sim; Ye, Young-Min

    2013-10-01

    Polyvinyl chloride (PVC) is a widely used chemical for production of plastics. However occupational asthma (OA) caused by PVC has been reported only rarely. We report a 34-yr-old male wallpaper factory worker with OA due to PVC and nickel (Ni) whose job was mixing PVC with plasticizers. He visited the emergency room due to an asthma attack with moderate airflow obstruction and markedly increased sputum eosinophil numbers. A methacholine challenge test was positive (PC20 2.5 mg/mL). Bronchoprovocation tests with both PVC and Ni showed early and late asthmatic responses, respectively. Moreover, the fractional concentration of exhaled nitric oxide (FeNO) was increased after challenge with PVC. To our knowledge, this is the first case of OA in Korea induced by exposure to both PVC and Ni. We suggest that eosinophilic inflammation may be involved in the pathogenesis of PVC-induced OA and that FeNO monitoring can be used for its diagnosis.

  9. Nitric acid flowsheet with late wash PHA testing

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1993-01-01

    This Task Technical Plan outlines the activities to be conducted in the Integrated DWPF Melter System (IDMS) in ongoing support of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) utilizing the Nitric Acid Flowsheet in the Sludge Receipt and Adjustment Tank (SRAT) and Precipitate Hydrolysis Aqueous (PHA) produced by the Late Wash Flowsheet. The IDMS facility is to be operated over a series of runs (2 to 4) using the Nitric Acid Flowsheet. The PHA will be produced with the Late Wash Flowsheet in the Precipitate Hydrolysis Experimental Facility (PHEF). All operating conditions shall simulate the expected DWPF operating conditions as closely as possible. The task objectives are to perform at least two IDMS runs with as many operating conditions as possible at nominal DWPF conditions. The major purposes of these runs are twofold: verify that the combined Late Wash and Nitric Acid flowsheets produce glass of acceptable quality without additional changes to process equipment, and determine the reproducibility of data from run to run. These runs at nominal conditions will be compared to previous runs made with PHA produced from the Late Wash flowsheet and with the Nitric Acid flowsheet in the SRAT (Purex 4 and Purex 5)

  10. Zeolites as catalyzer to environmental control. Nitric oxide removal

    International Nuclear Information System (INIS)

    Montes, C.; Zapata N, M; Villa H, A.L.

    1995-01-01

    Zeolites and the microporous materials related to them are a class of environmental catalysts, it which are used to remove the produced gases in combustion process (as mobile sources). In this work the importance that has catalysis for environment improvement is emphasized. A review of recent progress in the use of certain zeolitic material as catalysts for nitric oxide elimination of combustion systems is presented. More used nitric oxide removal methods are presented, as well as its advantages and disadvantages. Furthermore, it is emphasized on the need of accomplishing more investigation projects on the development of an active catalyst for the decomposition of the nitric oxide in its elements (N and O)

  11. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: {sup 226}Ra, {sup 238}U, {sup 210}Po concentrations and {sup 222}Rn exhalation rate

    Energy Technology Data Exchange (ETDEWEB)

    Abril, Jose-Maria, E-mail: jmabril@us.es [Dpto. Fisica Aplicada I, Universidad de Sevilla, EUITA, Ctra Utrera Km 1, 41013 Seville (Spain); Garcia-Tenorio, Rafael, E-mail: gtenorio@us.es [Dpto. Fisica Aplicada II, Universidad de Sevilla, ETSA, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Manjon, Guillermo, E-mail: manjon@us.es [Dpto. Fisica Aplicada II, Universidad de Sevilla, ETSA, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2009-05-30

    Phosphogypsum (PG) is a by-product of the phosphate fertilizer industries that contains relatively high concentrations of uranium series radionuclides. The US-EPA regulates the agriculture use of PG, attending to its {sup 226}Ra content and to the {sup 222}Rn exhalation rate from inactive stacks. Measurements of {sup 222}Rn exhalation rates in PG stacks typically show a large and still poorly understood spatial and temporal variability, and the published data are scarce. This work studies an inactive PG stack in SW Spain of about 0.5 km{sup 2} from where PG can be extracted for agriculture uses, and an agriculture soil 75 km apart, being representative of the farms to be amended with PG. Activity concentrations of {sup 226}Ra, {sup 238}U and {sup 210}Po have been measured in 30 PG samples (0-90 cm horizon) allowing for the construction of maps with spatial distributions in the PG stack and for the characterization of the associated PG inputs to agriculture soils. Averaged {sup 226}Ra concentrations for the stack were 730 {+-} 60 Bq kg{sup -1} (d.w.), over the US-EPA limit of 370 Bq kg{sup -1}. {sup 222}Rn exhalation rate has been measured by the charcoal canister method in 49 sampling points with 3 canisters per sampling point. Values in PG stack were under the US-EPA limit of 2600 Bq m{sup -2} h{sup -1}, but they were one order of magnitude higher than those found in the agriculture soil. Variability in radon emissions has been studied at different spatial scales. Radon exhalation rates were correlated with {sup 226}Ra concentrations and daily potential evapotranspiration (ETo). They increased with ETo in agriculture soils, but showed an opposite behaviour in the PG stack.

  12. Study of radon exhalation from phosphogypsum plates and blocks from different origins; Estudo da exalacao de radonio em placas e tijolos de fosfogesso de diferentes procedencias

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Lucas Jose Pereira da

    2011-07-01

    Phosphogypsum is a waste of the fertilizer industry that concentrates radionuclides. In this work, the {sup 222}Rn exhalation rate from phosphogypsum plates and blocks from different origins used at dwellings construction was studied. The {sup 222}Rn exhalation rate was determined through the accumulation chamber technique with solid state nuclear track detectors (SSNTD). The effective dose for an individual living in a residence built with phosphogypsum based materials was evaluated. It also was calculated the {sup 222}Rn exhalation rate through the UNSCEAR model, from the {sup 226}Ra concentration in the materials, in order to compare the experimental results. It was evaluated the contribution of building component (paint) to the reduction of {sup 222}Rn exhalation rate. The plates and blocks were manufactured with phosphogypsum from Bunge Fertilizantes, Ultrafertil and Fosfertil. Blocks manufactured with ordinary gypsum was also evaluated. The average results obtained were 0.19 {+-} 0.06 Bq m-2 h-1, 1.3 {+-} 0.3 Bq m{sup -2} h{sup -1} and 0.41 {+-} 0.07 Bq m{sup -2} h{sup -1} for plates manufactured with phosphogypsum from Bunge Fertilizer, Ultrafertil and Fosfertil, respectively. For the phosphogypsum blocks the values were 0.11 {+-} 0.01 Bq m{sup -2} h-1, 1.2 {+-} 0.6 Bq m{sup -2} h{sup -1}, 0.47 {+-} 0.15 Bq m{sup -2} h{sup -1}, for Bunge, Ultrafertil and Fosfertil. The blocks manufactured with ordinary gypsum presented average value of 0.18 {+-} 0.08 Bq m{sup -2} h'-{sup 1}. All phosphogypsum plates and blocks evaluated in this study presented effective dose for radon inhalation lower than the recommended value of 1mSv y{sup -1}, the annual effective dose limit for public exposure by International Commission on Radiological Protection. (author)

  13. Assessment of natural radiation exposure and radon exhalation rates from the soil of Islamabad District of Pakistan

    International Nuclear Information System (INIS)

    Mujahid, S.A.

    2007-01-01

    Complete text of publication follows. The earth's crust is a main source of natural radionuclides in soils and rocks. The specific levels of background gamma radiation depend upon the geological composition of each lithologically separated area, and the content of the rock from which the soils originate the radioactive elements of 226Rn, 232Th and 40K. These naturally occurring radionuclides of terrestrial origin in soil can be a source of external radiation exposure through the gamma ray emission whereas internal exposure occurs through the inhalation of radon gas. The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Islamabad district of Pakistan have been carried out using High Purity Germanium (HPGe) detector. The radon exhalation rates from these samples have also been estimated employing the 'closed-can' technique of passive dosimeters. The measured activities of 226Ra, 232Th and 40K were found in the range 14 - 30, 18 - 40 and 301 - 655 Bq.kg-1. The annual effective dose was calculated in the range 0.15 - 0.31 mSv. The values of external and internal hazard indices were less than 1. The radon exhalation rates these areas were found in the range 200 - 345 mBq.m-2h-1.

  14. Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract - a proof of concept study.

    Science.gov (United States)

    Abela, Jo Etienne; Skeldon, Kenneth D; Stuart, Robert C; Padgett, Miles J

    2009-06-01

    There has been growing interest in the measurement of breath ethane as an optimal non-invasive marker of oxidative stress. High concentrations of various breath alkanes including ethane have been reported in a number of malignancies. Our aim was to investigate the use of novel laser spectroscopy for rapid reporting of exhaled ethane and to determine whether breath ethane concentration is related to a diagnosis of upper gastrointestinal malignancy. Two groups of patients were recruited. Group A (n = 20) had a histo-pathological diagnosis of either esophageal or gastric malignancy. Group B (n = 10) was made up of healthy controls. Breath samples were collected from these subjects and the ethane concentration in these samples was subsequently measured to an accuracy of 0.2 parts per billion, ppb. Group A patients had a corrected exhaled breath ethane concentration of 2.3 +/- 0.8 (mean +/- SEM) ppb. Group B patients registered a mean of 3.1 +/- 0.5 ppb. There was no statistically significant difference between the two groups (p = 0.39). In conclusion, concentrations of ethane in collected breath samples were not significantly elevated in upper gastrointestinal malignancy. The laser spectroscopy system provided a reliable and rapid turnaround for breath sample analysis.

  15. The radiolytic formation of nitric acid in argon/air/water systems

    International Nuclear Information System (INIS)

    May, R.; Stinchcombe, D.; White, H.P.

    1992-01-01

    The extent of nitric acid formation in the γ-radiolysis of argon/air/water mixtures has been assessed. The yields of nitric acid are found to increase as water vapour pressure is increased but are lower in the presence of a discrete water phase. G values for the formation of nitric acid from argon/air mixtures based on energy absorbed in the air are increased in the presence of argon but the yields in an atmosphere of argon containing small amounts of moist air are smaller than from an atmosphere of moist air alone. The G value for nitric acid formation from pure air in the presence of a distinct water phase is 2, based on energy absorbed in the air. (author)

  16. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  17. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua, E-mail: sunjh@ustc.edu.cn

    2016-08-15

    Highlights: • Heat flows after mixing TBP with nitric acid are of different orders of magnitude. • Thermodynamics and kinetics of tributyl phosphate-nitric acid mixtures are derived. • Tributyl phosphate directly reacts with nitric acid and form organic red oil. • Thermal runaway could occur at 79 °C with a high nitric acid concentration. - Abstract: During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130 °C, a heavy “red oil” layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80 micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature.

  18. Application of microwaves in the denitration of nitric solutions of uranium and/or plutonium

    International Nuclear Information System (INIS)

    Quesada, C.A.; Adelfang, P.

    1990-01-01

    A method for the conversion of nitric solutions of uranium and/or plutonium that would be an alternative more economic and operatively simpler than the conventional processes is the direct denitration by means of microwaves and vacuum application. This conversion method has the following technical advantages: a) the process is simple, which allows a stable operation; b) neither the addition of chemical reagents nor the dilution of the starting solution are required, thereby the volume of residual liquids is small as compared with other processes; c) one fraction of the evaporation residues is nitric acid which can be reused. The development (on laboratory scale) of this conversion process was initiated. In this first stage, a description of the employed equipment is presented. An example of one of the evaporation and denitration batches and obtained products are fully described. The operative experience leads to deduce that the equipment is satisfactory, due to the following characteristics: 1) it permits an easy manipulation within the glove boxes; 2) the projections, coming out from the reactor, are retained completely; 3) the microwaves oven and the vacuum pump are effectively protected from the corrosive vapors. It is concluded that the employed experimental device is adequate to obtain the necessary materials for the reduction, pressing and sinterability studies. This equipment is adopted for the integral development of sintered pellets fabrication process. (Author) [es

  19. Thermodynamic and kinetic modelling of the reduction of concentrated nitric acid

    International Nuclear Information System (INIS)

    Sicsic, David

    2011-01-01

    This research thesis aimed at determining and quantifying the different stages of the reduction mechanism in the case of concentrated nitric acid. After having reported the results of a bibliographical study on the chemical and electrochemical behaviour of concentrated nitric media (generalities, chemical equilibriums, NOx reactivity, electrochemical reduction of nitric acid), the author reports the development and discusses the results of a thermodynamic simulation of a nitric environment at 25 C. This allowed the main species to be identified in the liquid and gaseous phases of nitric acid solutions. The author reports an experimental electrochemical investigation coupled with analytic techniques (infrared and UV-visible spectroscopy) and shows that the reduction process depends on the cathodic overvoltage, and identifies three potential areas. A kinetic modelling of the stationary state and of the impedance is then developed in order to better determine, discuss and quantify the reduction process. The application of this kinetic model to the preliminary results of an electrochemical study performed on 304 L steel is then discussed [fr

  20. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    Science.gov (United States)

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  2. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers.

    Science.gov (United States)

    Chen, Renjie; Zhao, Ang; Chen, Honglei; Zhao, Zhuohui; Cai, Jing; Wang, Cuicui; Yang, Changyuan; Li, Huichu; Xu, Xiaohui; Ha, Sandie; Li, Tiantian; Kan, Haidong

    2015-06-02

    Indoor exposure to fine particulate matter (PM2.5) from outdoor sources is a major health concern, especially in highly polluted developing countries such as China. Few studies have evaluated the effectiveness of indoor air purification on the improvement of cardiopulmonary health in these areas. This study sought to evaluate whether a short-term indoor air purifier intervention improves cardiopulmonary health. We conducted a randomized, double-blind crossover trial among 35 healthy college students in Shanghai, China, in 2014. These students lived in dormitories that were randomized into 2 groups and alternated the use of true or sham air purifiers for 48 h with a 2-week washout interval. We measured 14 circulating biomarkers of inflammation, coagulation, and vasoconstriction; lung function; blood pressure (BP); and fractional exhaled nitric. We applied linear mixed-effect models to evaluate the effect of the intervention on health outcome variables. On average, air purification resulted in a 57% reduction in PM2.5 concentration, from 96.2 to 41.3 μg/m3, within hours of operation. Air purification was significantly associated with decreases in geometric means of several circulating inflammatory and thrombogenic biomarkers, including 17.5% in monocyte chemoattractant protein-1, 68.1% in interleukin-1β, 32.8% in myeloperoxidase, and 64.9% in soluble CD40 ligand. Furthermore, systolic BP, diastolic BP, and fractional exhaled nitrous oxide were significantly decreased by 2.7%, 4.8%, and 17.0% in geometric mean, respectively. The impacts on lung function and vasoconstriction biomarkers were beneficial but not statistically significant. This intervention study demonstrated clear cardiopulmonary benefits of indoor air purification among young, healthy adults in a Chinese city with severe ambient particulate air pollution. (Intervention Study on the Health Impact of Air Filters in Chinese Adults; NCT02239744). Copyright © 2015 American College of Cardiology Foundation

  3. Separation of minor actinides from a genuine MA/LN fraction

    International Nuclear Information System (INIS)

    Satmark, B.; Courson, O.; Malmbeck, R.; Pagliosa, G.; Romer, K.; Glatz, J.P.

    2001-01-01

    Separation of the trivalent Minor Actinides (MA), Am and Cm, has been performed from a genuine MA(III) + Ln(III) solution using Bis-Triazine-Pyridine (BTP) as organic extractant. The representative MA/Ln fraction was obtained from a dissolved commercial LWR fuel (45.2 GWd/tM) submitted subsequently too a PUREX process followed by a DIAMEX process. A centrifugal extractor set-up (16-stages), working in a continuous counter-current mode, was used for the liquid-liquid separation. In the nPr-BTP process, feed decontamination factors for Am and Cm above 96 and 65, respectively were achieved. The back-extraction was more efficient for Am (99.1% recovery) than for Cm (97.5%). This experiment, using the Bis-Triazine-Pyridine molecule is the first successful demonstration of the separation of MA from lanthanides in a genuine MA/Ln fraction with a nitric acid concentration of ca. 1 M. It represents an important break through in the difficult field of minor actinide partitioning of high level liquid waste. (author)

  4. Method of improving the decontaminating efficiency of ruthenium in evaporating treatment of nitric acid

    International Nuclear Information System (INIS)

    Kubota, Kanya; Yamana, Hajime; Takeda, Seiichiro.

    1984-01-01

    Purpose: To significantly improve the ruthenium removing efficiency in a nitric acid solution in an acid recovery system for the recovery of nitric acid from nitric acid liquid wastes through evaporating condensation. Method: Upon evaporating treatment of nitric acid solution containing ruthenium by supplying and heating the solution to a nitric acid evaporating device, hydrazine is previously added to the nitric acid solution. Hydrazine and intermediate reaction product of hydrazine such as azide causes a reduction reaction with intermediate reaction product of ruthenium tetraoxide to suppress the oxidation of ruthenium and thereby improve the decontaminating efficiency of ruthenium. The amount of hydrazine to be added is preferably between 20 - 500 mg/l and most suitably between 200 - 2000 mg/l per one liter of the liquid in the evaporating device. (Seki, T.)

  5. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer.

    Science.gov (United States)

    Tan, Jiunn-Liang; Yong, Zheng-Xin; Liam, Chong-Kin

    2016-10-01

    Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen ® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai's Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies.

  6. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  7. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  8. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    International Nuclear Information System (INIS)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-01-01

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  9. Diagnostic value of a pattern of exhaled breath condensate biomarkers in asthmatic children.

    Science.gov (United States)

    Maloča Vuljanko, I; Turkalj, M; Nogalo, B; Bulat Lokas, S; Plavec, D

    Diagnosing asthma in children is a challenge and using a single biomarker from exhaled breath condensate (EBC) showed the lack of improvement in it. The aim of this study was to assess the diagnostic potential of a pattern of simple chemical biomarkers from EBC in diagnosing asthma in children in a real-life setting, its association with lung function and gastroesophageal reflux disease (GERD). In 75 consecutive children aged 5-7 years with asthma-like symptoms the following tests were performed: skin prick tests, spirometry, impulse oscillometry (IOS), exhaled NO (F E NO), 24-hour oesophageal pH monitoring and EBC collection with subsequent analysis of pH, carbon dioxide tension, oxygen tension, and concentrations of magnesium, calcium, iron and urates. No significant differences were found for individual EBC biomarkers between asthmatics and non-asthmatics (p>0.05 for all). A pattern of six EBC biomarkers showed a statistically significant (p=0.046) predictive model for asthma (AUC=0.698, PPV=84.2%, NPV=38.9%). None to moderate association (R 2 up to 0.43) between EBC biomarkers and lung function measures and F E NO was found, with IOS parameters showing the best association with EBC biomarkers. A significantly higher EBC Fe was found in children with asthma and GERD compared to asthmatics without GERD (p=0.049). An approach that involves a pattern of EBC biomarkers had a better diagnostic accuracy for asthma in children in real-life settings compared to a single one. Poor to moderate association of EBC biomarkers with lung function suggests a complementary value of EBC analysis for asthma diagnosis in children. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  10. Role of nitrous acid during the dissolution of UO2 in nitric acid

    International Nuclear Information System (INIS)

    Deigan, N.; Pandey, N.K.; Kamachi Mudali, U.; Joshi, J.B.

    2016-01-01

    Understanding the dissolution behaviour of sintered UO 2 pellet in nitric acid is very important in designing an industrial scale dissolution system for the plutonium rich fast reactor MOX fuel. In the current article we have established the role of nitrous acid on the dissolution kinetics of UO 2 pellets in nitric acid. Under the chemical conditions that prevail in a typical Purex process, NO and NO 2 gases gets generated in the process streams. These gases produce nitrous acid in nitric acid medium. In addition, during the dissolution of UO 2 in nitric acid medium, nitrous acid is further produced in-situ at the pellet solution interface. As uranium dissolves oxidatively in nitric acid medium wherein it goes from U(IV) in solid to U(VI) in liquid, presence of nitrous acid (a good oxidizing agent) accelerates the reaction rate. Hence for determining the reaction mechanism of UO 2 dissolution in nitric acid medium, knowing the nitrous acid concentration profile during the course of dissolution is important. The current work involves the measurement of nitrous acid concentration during the course of dissolution of sintered UO 2 pellets in 8M starting nitric acid concentration as a function of mixing intensity from unstirred condition to 1500 RPM

  11. Role of nitric oxide in glucose-, fructose and galactose-induced ...

    African Journals Online (AJOL)

    Previous studies have shown that the infusion of glucose, fructose and galactose resulted in significant increases in intestinal glucose uptake (IGU) and the role of nitric oxide in these responses was not known. The present study was designed to investigate the role of nitric oxide in the observed increases in IGU.

  12. Modelling of nitric and nitrous acid chemistry for solvent extraction purposes

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, H.; McLachlan, F. [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); MacDonald-Taylor, J. [National Nuclear Laboratory, 5th Floor, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Orr, R.; Woodhead, D. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    Nitric acid plays an integral role in the reprocessing of irradiated fuel. It is well known that nitric acid degrades; its often yellow hue signifies the presence of decomposition products. The decomposition of nitric acid is accelerated by temperature and radiolysis; therefore it is an important consideration in the reprocessing of nuclear fuels. Thermal and radiolytic reactions of nitric acid result in the formation of redox active nitrogen species, of which nitrous acid is of particular concern, largely due to its redox reactions with plutonium and neptunium. Such reactions are important to understand as plutonium and neptunium can exist in a number of oxidation states; the oxidation state has a direct effect on the species extractability. The effect of nitrous acid is exacerbated as it catalyzes its own production and its reactions with actinides are typically autocatalytic; thus even micromolar quantities can have a large effect. A full understanding of solvent extraction requires us to understand actinide valence states which in turn require us to understand what nitrogen species are present and their concentrations. As a first step in the overall objective of enhancing process models, the kinetic data for nitric acid decomposition reactions has been investigated in order to produce an initial dynamic model of decomposition under aqueous conditions. The identification of a set of kinetic reactions suitable for modelling has been the primary focus of this work. A model of nitric acid thermal decomposition will help develop a better understanding of nitric acid decomposition chemistry and enable better prediction of the oxidation states of species in solution. It is intended to later extend the model to include radiolytic reactions and then further to incorporate an organic phase in order to have a model which covers all decomposition routes for nitric acid within a nuclear fuel reprocessing scheme. The model will be used as a sub model for process models

  13. Effect of exhalation exercise on trunk muscle activity and oswestry disability index of patients with chronic low back pain.

    Science.gov (United States)

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-06-01

    [Purpose] This study investigated the effect of exhalation exercises on trunk muscle activity and Oswestry Disability Index by inducing trunk muscle activity through increasing intra-abdominal pressure and activating muscles, contributing to spinal stability. [Subjects and Methods] This intervention program included 20 male patients with chronic low back pain. A total of 10 subjects each were randomly assigned to an exhalation exercise group as the experimental group and a spinal stabilization exercise group as the control group. [Results] There were significant differences in the activities of the rectus abdominis, transverse abdominis, external oblique abdominal, and erector spinae muscles as well as in the Oswestry Disability Index within the experimental group. There were meaningful differences in the activities of the rectus abdominis, external oblique abdominal, and erector spinae muscles and in the Oswestry Disability Index within the control group. In addition, there was a meaningful intergroup difference in transverse abdominis muscle activity alone and in the Oswestry Disability Index. [Conclusion] The breathing exercise effectively increased muscle activity by training gross and fine motor muscles in the trunk. Moreover, it was verified as a very important element for strengthening body stability because it both released and prevented low back pain.

  14. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  15. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria

    2012-08-01

    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  16. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  17. Radon exhalation of cementitious materials made with coal fly ash: Part 2 - testing hardened cement-fly ash pastes

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Levit, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash (FA), cement and other components of building products is due to the concern about health hazards of naturally occurring radioactive materials (NORM). The paper focuses on studying the influence of FA on radon exhalation rate (radon flux) from cementitious materials. In the previous part of the paper the state of the art was presented, and the experiments for testing raw materials, Portland cement and coal fly ash, were described. Since the cement and FA have the most critical role in the radon release process relative to other concrete constituents (sand and gravel), and their contribution is dominant in the overall radium content of concrete, tests were carried out on cement paste specimens with different FA contents, 0-60% by weight of the binder (cement+FA). It is found that the dosage of FA in cement paste has a limited influence on radon exhalation rate, if the hardened material is relatively dense. The radon flux of cement-FA pastes is lower than that of pure cement paste: it is about ∼3 mBq m -2 s -1 for cement-FA pastes with FA content as high as 960 kg m -3

  18. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    Science.gov (United States)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  19. Cannula sensor for nitric oxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Glazier, S.A. [National Institute of Standard and Technology, Gaithersburg, MD (United States)

    1995-12-31

    Nitric oxide (NO) has received much attention because of its numerous roles in mammalian systems. It has been found in the brain and nervous system to act as a neurotransmitter, in blood vessels as a blood pressure regulator, in the immune system to act as a bactericide and tumorcide, and in other postulated roles as well. Nitric oxide is produced in mammalian cells by the enzyme nitric oxide synthetase. Once produced, NO is oxidized or reacts rapidly with components in living systems and hence has a short half-life. Only a few sensors have been constructed which can detect NO at nanomolar to micromolar levels found in these systems. We are currently examining the use of a cannula sensor employing oxyhemoglobin for NO detection. This sensor continuously draws in liquid sample at a low rate and immediately reacts it with oxyhemoglobin. The absorbance changes which accompany the reaction are monitored. The sensor has a linear response range from approximately 50 to 1000 nM of NO in aqueous solution. Its utility in monitoring NO produced by stimulated murine macrophage cells (RAW 264.7) in culture is currently being examined. The sensor design is generic in that it can also employ fluorescence and chemiluminescence detection chemistries which may allow lower detection limits to be achieved. Details of the sensor`s performance will be given.

  20. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so......-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...