Directory of Open Access Journals (Sweden)
V. Vijayakumar
2014-09-01
Full Text Available In this article, we study the existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. The results are obtained by using the Banach contraction principle. Finally, an application is given to illustrate the theory.
Abstract Cauchy problems three approaches
Melnikova, Irina V
2001-01-01
Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches.Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, b...
Rational approximatons for solving cauchy problems
Directory of Open Access Journals (Sweden)
Veyis Turut
2016-08-01
Full Text Available In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA. Multivariate Padé approximations (MPA were applied to power series solutions of Cauchy problems that solved by using He’s variational iteration method (VIM. Then, numerical results obtained by using multivariate Padé approximations were compared with the exact solutions of Cauchy problems.
The Cauchy problem for the Pavlov equation
International Nuclear Information System (INIS)
Grinevich, P G; Santini, P M; Wu, D
2015-01-01
Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. (paper)
The Cauchy problem for the Pavlov equation
Grinevich, P. G.; Santini, P. M.; Wu, D.
2015-10-01
Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. An essential part of this work was made during the visit of the three authors to the Centro Internacional de Ciencias in Cuernavaca, Mexico in November-December 2012.
The Cauchy problem for the Pavlov equation with large data
Wu, Derchyi
2017-08-01
We prove a local solvability of the Cauchy problem for the Pavlov equation with large initial data by the inverse scattering method. The Pavlov equation arises in studies Einstein-Weyl geometries and dispersionless integrable models. Our theory yields a local solvability of Cauchy problems for a quasi-linear wave equation with a characteristic initial hypersurface.
Anholonomic Cauchy problem in general relativity
International Nuclear Information System (INIS)
Stachel, J.
1980-01-01
The Lie derivative approach to the Cauchy problem in general relativity is applied to the evolution along an arbitrary timelike vector field for the case where the dynamical degrees of freedom are chosen as the (generally anholonomic) metric of the hypersurface elements orthogonal to the vector field. Generalizations of the shear, rotation, and acceleration are given for a nonunit timelike vector field, and applied to the three-plus-one breakup of the Riemann tensor into components parallel and orthogonal to the vector field, resulting in the anholonomic Gauss--Codazzi equations. A similar breakup of the Einstein field equations results in the form of the constraint and evolution equations for the anholonomic case. The results are applied to the case of a space--time with a timelike Killing vector field (stationary field) to demonstrate their utility. Other possible applications, such as in the numerical integration of the field equations, are mentioned. Definitions are given of three-index shear, rotation, and acceleration tensors, and their use in a two-plus-two decomposition of the Riemann tensor and field equations is indicated
Cauchy problem for Laplace equation: An observer based approach
Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem
2013-01-01
domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.
Non-dense domain operator matrices and Cauchy problems
International Nuclear Information System (INIS)
Lalaoui Rhali, S.
2002-12-01
In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)
Directory of Open Access Journals (Sweden)
Lucio R. Berrone
2005-01-01
Full Text Available The notion of invariance under transformations (changes of coordinates of the Cauchy mean-value expression is introduced and then used in furnishing a suitable two-variable version of a result by L. Losonczi on equality of many-variable Cauchy means. An assessment of the methods used by Losonczi and Matkowski is made and an alternative way is proposed to solve the problem of representation of two-variable Cauchy means.
Cauchy problem for Laplace equation: An observer based approach
Majeed, Muhammad Usman
2013-10-01
A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.
Directory of Open Access Journals (Sweden)
Fatima G. Khushtova
2016-03-01
Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.
The Cauchy Problem for a Fifth-Order Dispersive Equation
Wang, Hongjun; Liu, Yongqi; Chen, Yongqiang
2014-01-01
This paper is devoted to studying the Cauchy problem for a fifth-order equation. We prove that it is locally well-posed for the initial data in the Sobolev space ${H}^{s}(\\mathbf{R})$ with $s\\ge 1/4$ . We also establish the ill-posedness for the initial data in ${H}^{s}(\\mathbf{R})$ with $s
Applications of elliptic Carleman inequalities to Cauchy and inverse problems
Choulli, Mourad
2016-01-01
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.
The Cauchy problem for higher order abstract differential equations
Xiao, Ti-Jun
1998-01-01
This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.
Oscillatory solutions of the Cauchy problem for linear differential equations
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2015-06-01
Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.
Continuous Dependence on Modeling in the Cauchy Problem for Nonlinear Elliptic Equations.
1987-04-01
problema di Cauchy per le equazione di tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131-153 [18] P. W. Schaefer, On the Cauchy problem for an...Continued) PP 438 PP 448 Fletcher, Jean W. Supply Problems in the Naval Reserve, Cymrot, Donald J., Military Retiremnt and Social Security: A 14 pp
Estimates for mild solutions to semilinear Cauchy problems
Directory of Open Access Journals (Sweden)
Kresimir Burazin
2014-09-01
Full Text Available The existence (and uniqueness results on mild solutions of the abstract semilinear Cauchy problems in Banach spaces are well known. Following the results of Tartar (2008 and Burazin (2008 in the case of decoupled hyperbolic systems, we give an alternative proof, which enables us to derive an estimate on the mild solution and its time of existence. The nonlinear term in the equation is allowed to be time-dependent. We discuss the optimality of the derived estimate by testing it on three examples: the linear heat equation, the semilinear heat equation that models dynamic deflection of an elastic membrane, and the semilinear Schrodinger equation with time-dependent nonlinearity, that appear in the modelling of numerous physical phenomena.
A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior
Directory of Open Access Journals (Sweden)
Carrillo RafaelE
2010-01-01
Full Text Available Statistical modeling is at the heart of many engineering problems. The importance of statistical modeling emanates not only from the desire to accurately characterize stochastic events, but also from the fact that distributions are the central models utilized to derive sample processing theories and methods. The generalized Cauchy distribution (GCD family has a closed-form pdf expression across the whole family as well as algebraic tails, which makes it suitable for modeling many real-life impulsive processes. This paper develops a GCD theory-based approach that allows challenging problems to be formulated in a robust fashion. Notably, the proposed framework subsumes generalized Gaussian distribution (GGD family-based developments, thereby guaranteeing performance improvements over traditional GCD-based problem formulation techniques. This robust framework can be adapted to a variety of applications in signal processing. As examples, we formulate four practical applications under this framework: (1 filtering for power line communications, (2 estimation in sensor networks with noisy channels, (3 reconstruction methods for compressed sensing, and (4 fuzzy clustering.
SEMIGROUPS N TIMES INTEGRATED AND AN APPLICATION TO A PROBLEM OF CAUCHY TYPE
Directory of Open Access Journals (Sweden)
Danessa Chirinos Fernández
2016-06-01
Full Text Available The theory of semigroups n times integrated is a generalization of strongly continuous semigroups, which was developed from 1984, and is widely used for the study of the existence and uniqueness of problems such Cauchy in which the operator domain is not necessarily dense. This paper presents an application of semigroups n times integrated into a problem of viscoelasticity, which is formulated as a Cauchy problem on a Banach space presents .
Hyperbolic systems with analytic coefficients well-posedness of the Cauchy problem
Nishitani, Tatsuo
2014-01-01
This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contains strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of mu...
Directory of Open Access Journals (Sweden)
Hongwu Zhang
2011-08-01
Full Text Available In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.
Origins and development of the Cauchy problem in general relativity
International Nuclear Information System (INIS)
Ringström, Hans
2015-01-01
The seminal work of Yvonne Choquet-Bruhat published in 1952 demonstrates that it is possible to formulate Einstein's equations as an initial value problem. The purpose of this article is to describe the background to and impact of this achievement, as well as the result itself. In some respects, the idea of viewing the field equations of general relativity as a system of evolution equations goes back to Einstein himself; in an argument justifying that gravitational waves propagate at the speed of light, Einstein used a special choice of coordinates to derive a system of wave equations for the linear perturbations on a Minkowski background. Over the following decades, Hilbert, de Donder, Lanczos, Darmois and many others worked to put Einstein's ideas on a more solid footing. In fact, the issue of local uniqueness (giving a rigorous justification for the statement that the speed of propagation of the gravitational field is bounded by that of light) was already settled in the 1930s by the work of Stellmacher. However, the first person to demonstrate both local existence and uniqueness in a setting in which the notion of finite speed of propagation makes sense was Yvonne Choquet-Bruhat. In this sense, her work lays the foundation for the formulation of Einstein's equations as an initial value problem. Following a description of the results of Choquet-Bruhat, we discuss the development of three research topics that have their origin in her work. The first one is local existence. One reason for addressing it is that it is at the heart of the original paper. Moreover, it is still an active and important research field, connected to the problem of characterizing the asymptotic behaviour of solutions that blow up in finite time. As a second topic, we turn to the questions of global uniqueness and strong cosmic censorship. These questions are of fundamental importance to anyone interested in justifying that the Cauchy problem makes sense globally. They are
Directory of Open Access Journals (Sweden)
Eva Lowen-Colebunders
1982-01-01
Full Text Available A family C of filters on a set X is uniformizable if there is a uniformity on X such that C is its collection of Cauchy filters. Using the theory of completions and Cauchy continuous maps for Cauchy spaces, we obtain characterizations of uniformizable Cauchy spaces. In particular, given a Cauchy structure C on X we investigate under what conditions the filter u(C=⋂F∈CF×F is a uniformity and C is its collection of Cauchy filters. This problem is treated using Cauchy covering systems.
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2008-01-01
Roč. 133, č. 4 (2008), s. 435-445 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional differential equation * Cauchy problem * initial value problem * differential inequality Subject RIV: BA - General Mathematics
An optimal iterative algorithm to solve Cauchy problem for Laplace equation
Majeed, Muhammad Usman
2015-05-25
An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.
A class of neutral functional differential equations and the abstract Cauchy problem
International Nuclear Information System (INIS)
Bentil, D.E. Jr.
1985-12-01
In this paper we establish the basic equivalence between the generalized solutions of a certain class of Neutral Functional Differential Equations and the trajectories of the associated abstract Cauchy problem. These results have applications in several fields including Mathematical Biology, Ecology and Control Theory. (author)
The Cauchy problem for a model of immiscible gas flow with large data
Energy Technology Data Exchange (ETDEWEB)
Sande, Hilde
2008-12-15
The thesis consists of an introduction and two papers; 1. The solution of the Cauchy problem with large data for a model of a mixture of gases. 2. Front tracking for a model of immiscible gas flow with large data. (AG) refs, figs
Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation
International Nuclear Information System (INIS)
Wei, T; Qin, H H; Shi, R
2008-01-01
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method
Congruences of null strings in complex space-times and some Cauchy--Kovalevski-like problems
International Nuclear Information System (INIS)
Robinson, I.; Rozga, K.
1984-01-01
It is shown that a problem of construction of a local congruence of null strings is equivalent to a natural Cauchy--Kovalevski-like problem, related to an equation for a spinor field k/sub A/ defining the congruence. Initial data are specified on two-dimensional submanifolds. In left-conformally-flat spaces, the solution of that problem exists for arbitrary initial data
An inverse source problem of the Poisson equation with Cauchy data
Directory of Open Access Journals (Sweden)
Ji-Chuan Liu
2017-05-01
Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.
Global existence and decay of solutions of the Cauchy problem in thermoelasticity with second sound
Kasimov, Aslan R.
2013-06-04
We consider the one-dimensional Cauchy problem in non-linear thermoelasticity with second sound, where the heat conduction is modelled by Cattaneo\\'s law. After presenting decay estimates for solutions to the linearized problem, including refined estimates for data in weighted Lebesgue-spaces, we prove a global existence theorem for small data together with improved decay estimates, in particular for derivatives of the solutions. © 2013 Taylor & Francis.
Global existence and decay of solutions of the Cauchy problem in thermoelasticity with second sound
Kasimov, Aslan R.; Racke, Reinhard; Said-Houari, Belkacem
2013-01-01
We consider the one-dimensional Cauchy problem in non-linear thermoelasticity with second sound, where the heat conduction is modelled by Cattaneo's law. After presenting decay estimates for solutions to the linearized problem, including refined estimates for data in weighted Lebesgue-spaces, we prove a global existence theorem for small data together with improved decay estimates, in particular for derivatives of the solutions. © 2013 Taylor & Francis.
An analytical method for the inverse Cauchy problem of Lame equation in a rectangle
Grigor’ev, Yu
2018-04-01
In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.
Solution of the Cauchy problem for a continuous limit of the Toda lattice and its superextension
International Nuclear Information System (INIS)
Saveliev, M.V.; Sorba, P.
1991-01-01
A supersymmetric equation associated with a continuum limit of the classical superalgebra sl(n/n+1) is constructed. This equation can be considered as a superextension of a continuous limit of the Toda lattice with fixed end-points or, in other words, as a supersymmetric version of the heavenly equation. A solution of the Cauchy problem for the continuous limit of the Toda lattice and for its superextension is given using some formal reasonings. (orig.)
Global existence of solutions to the Cauchy problem for time-dependent Hartree equations
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-01-01
The existence of global solutions to the Cauchy problem for time-dependent Hartree equations for N electrons is established. The solution is shown to have a uniformly bounded H 1 (R 3 ) norm and to satisfy an estimate of the form two parallel PSI (t) two parallel/sub H 2 ; less than or equal to c exp(kt). It is shown that ''negative energy'' solutions do not converge uniformly to zero as t → infinity. (U.S.)
Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system
Chen, Shuxing; Li, Dening
2014-09-01
We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.
On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity
International Nuclear Information System (INIS)
Aristov, Anatoly I
2011-01-01
We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.
Nishitani, Tatsuo
2017-01-01
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for diﬀerential operators with non-eﬀectively hyperbolic double characteristics. Previously scattered over numerous diﬀerent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a diﬀerential operator P of order m (i.e. one where Pm = dPm = 0) is eﬀectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is eﬀectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-eﬀectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between − Pµj and P µj , where iµj are the positive imaginary eigenvalues of FPm ....
Directory of Open Access Journals (Sweden)
Tatiana Kavitova
2012-08-01
Full Text Available We prove a comparison principle for solutions of the Cauchy problem of the nonlinear pseudoparabolic equation $u_t=Delta u_t+ Deltavarphi(u +h(t,u$ with nonnegative bounded initial data. We show stabilization of a maximal solution to a maximal solution of the Cauchy problem for the corresponding ordinary differential equation $vartheta'(t=h(t,vartheta$ as $|x|oinfty$ under certain conditions on an initial datum.
TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations
Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio
2009-12-01
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.
Symmetry Reduction and Cauchy Problems for a Class of Fourth-Order Evolution Equations
International Nuclear Information System (INIS)
Li Jina; Zhang Shunli
2008-01-01
We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations to Cauchy problems for systems of ordinary differential equations (ODEs). We classify a class of fourth-order evolution equations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to show the main reduction procedure. These reductions cannot be derived within the framework of the standard Lie approach, which hints that the technique presented here is something essential for the dimensional reduction of evolution equations
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
International Nuclear Information System (INIS)
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem
The Cauchy problem for the Bogolyubov hierarchy of equations. The BCS model
International Nuclear Information System (INIS)
Vidybida, A.K.
1975-01-01
A chain of Bogolyubov's kinetic equations for an infinite quantum system of particles distributed in space with the mean density 1/V and interacting with the BCS model operator is considered as a single abstract equation in some countable normalized space bsup(v) of sequences of integral operators. In this case an unique solution of the Cauchy problem has been obtained at arbitrary initial conditions from bsup(v), stationary solutions of the equation have been derived, and the class of the initial conditions which approach to stationary ones is indicated
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo; Marahrens, Daniel; Sparber, Christof
2011-01-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.
2017-10-01
This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution
Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem
International Nuclear Information System (INIS)
Atanasiu, C.V.; Subbotin, A.A.
1999-01-01
In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)
Directory of Open Access Journals (Sweden)
Rubio Gerardo
2011-03-01
Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo
2011-10-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman
2015-07-13
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces is considered. Problem is set up in cartesian co-ordinates and Laplace equation is re-written as a first order state equation with state operator matrix A and measurements are provided on the Cauchy data surface with measurement operator C. Conditions for the existence of strongly continuous semigroup generated by A are studied. Observability conditions for pair (C, A) are provided in infinite dimensional setting. In this given setting, special observability result obtained allows to decompose three dimensional problem into a set of independent two dimensional sub-problems over rectangular cross-sections. Numerical simulation results are provided.
International Nuclear Information System (INIS)
Tran Duc Van
1994-01-01
The notion of global quasi-classical solutions of the Cauchy problems for first-order nonlinear partial differential equations is presented, some uniqueness theorems and a stability result are established by the method based on the theory of differential inclusions. In particular, the answer to an open problem of S.N. Kruzhkov is given. (author). 10 refs, 1 fig
The Cauchy problem for the Schrödinger-KdV system
Wang, Hua; Cui, Shangbin
In this paper we prove that in the general case (i.e. β not necessarily vanishing) the Cauchy problem for the Schrödinger-Korteweg-de Vries system is locally well-posed in L×H, and if β=0 then it is locally well-posed in H×H with -3/16Linares (2007) [5]. Idea of the proof is to establish some bilinear and trilinear estimates in the space G×F, where G and F are dyadic Bourgain-type spaces related to the Schrödinger operator i∂+∂x2 and the Airy operator ∂+∂x3, respectively, but with a modification on F in low frequency part of functions with a weaker structure related to the maximal function estimate of the Airy operator.
Mutational analysis a joint framework for Cauchy problems in and beyond vector spaces
Lorenz, Thomas
2010-01-01
Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling.
On Parametric Gevrey Asymptotics for Some Cauchy Problems in Quasiperiodic Function Spaces
Directory of Open Access Journals (Sweden)
A. Lastra
2014-01-01
Full Text Available We investigate Gevrey asymptotics for solutions to nonlinear parameter depending Cauchy problems with 2π-periodic coefficients, for initial data living in a space of quasiperiodic functions. By means of the Borel-Laplace summation procedure, we construct sectorial holomorphic solutions which are shown to share the same formal power series as asymptotic expansion in the perturbation parameter. We observe a small divisor phenomenon which emerges from the quasiperiodic nature of the solutions space and which is the origin of the Gevrey type divergence of this formal series. Our result rests on the classical Ramis-Sibuya theorem which asks to prove that the difference of any two neighboring constructed solutions satisfies some exponential decay. This is done by an asymptotic study of a Dirichlet-like series whose exponents are positive real numbers which accumulate to the origin.
On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds
Lupo, Umberto
2018-04-01
The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.
Well-posedness of the Cauchy problem for models of large amplitude internal waves
International Nuclear Information System (INIS)
Guyenne, Philippe; Lannes, David; Saut, Jean-Claude
2010-01-01
We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1–36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587–641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538–66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves
The Cauchy problem for non-linear Klein-Gordon equations
International Nuclear Information System (INIS)
Simon, J.C.H.; Taflin, E.
1993-01-01
We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D
Kinoshita, Shinya
2016-01-01
This paper is concerned with the Cauchy problem of $2$D Klein-Gordon-Zakharov system with very low regularity initial data. We prove the bilinear estimates which are crucial to get the local in time well-posedness. The estimates are established by the Fourier restriction norm method. We utilize the bilinear Strichartz estimates and the nonlinear version of the classical Loomis-Whitney inequality which was applied to Zakharov system.
Energy Technology Data Exchange (ETDEWEB)
Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Energy Technology Data Exchange (ETDEWEB)
Addona, Davide, E-mail: d.addona@campus.unimib.it [Università degli Studi di Milano Bicocca, (MILANO BICOCCA) Dipartimento di Matematica (Italy)
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
International Nuclear Information System (INIS)
Panov, E Yu
1999-01-01
We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator f-bar(U) generated in the general case only by a continuous scalar function f(u). For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the 'vanishing viscosity' method converges. An example shows that in the general case there can be more than one generalized entropy solution
International Nuclear Information System (INIS)
Panov, E Yu
2000-01-01
Many-dimensional non-strictly hyperbolic systems of conservation laws with a radially degenerate flux function are considered. For such systems the set of entropies is defined and described, the concept of generalized entropy solution of the Cauchy problem is introduced, and the properties of generalized entropy solutions are studied. The class of strong generalized entropy solutions is distinguished, in which the Cauchy problem in question is uniquely soluble. A condition on the initial data is described that ensures that the generalized entropy solution is strong and therefore unique. Under this condition the convergence of the 'vanishing viscosity' method is established. An example presented in the paper shows that a generalized entropy solution is not necessarily unique in the general case
Lü, Boqiang; Shi, Xiaoding; Zhong, Xin
2018-06-01
We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2015-01-01
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces
Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Šmarda Zdeněk
2010-01-01
Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: , , , where is a constant and . An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.
A comment on 'The Cauchy problem of f(R) gravity'
International Nuclear Information System (INIS)
Capozziello, S; Vignolo, S
2009-01-01
A critical comment on (N Lanahan-Tremblay and V Faraoni 2007 Class. Quantum Grav. 24 5667) is given discussing the well-formulation of the Chauchy problem for f(R)-gravity in metric-affine theories. (comments and replies)
On Global Solutions for the Cauchy Problem of a Boussinesq-Type Equation
Taskesen, Hatice; Polat, Necat; Ertaş, Abdulkadir
2012-01-01
We will give conditions which will guarantee the existence of global weak solutions of the Boussinesq-type equation with power-type nonlinearity $\\gamma {|u|}^{p}$ and supercritical initial energy. By defining new functionals and using potential well method, we readdressed the initial value problem of the Boussinesq-type equation for the supercritical initial energy case.
The Cauchy problem for space-time monopole equations in Sobolev spaces
Huh, Hyungjin; Yim, Jihyun
2018-04-01
We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).
Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Zdeněk Šmarda
2010-01-01
Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: g(ty′(t=ay(t[1+f(t,y(t,∫0+tK(t,s,y(t,y(sds], y(0+=0, t∈(0,t0], where a>0 is a constant and t0>0. An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.
Distributed-order fractional diffusions on bounded domains
Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P.
2011-01-01
In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. The fractional derivative models time delays in a diffusion process. The order of the fractional derivative can be distributed over the unit interval, to model a mixture of delay sources. In this paper, we provide explicit strong solutions and stochastic analogues for distributed-order fractional Cauchy problems on bounded domains with Dirichlet boundary conditions. Stochastic solutio...
International Nuclear Information System (INIS)
Cao Hui; Pereverzev, Sergei V; Klibanov, Michael V
2009-01-01
The quasi-reversibility method of solving the Cauchy problem for the Laplace equation in a bounded domain Ω is considered. With the help of the Carleman estimation technique improved error and stability bounds in a subdomain Ω σ is a subset of Ω are obtained. This paves the way for the use of the balancing principle for an a posteriori choice of the regularization parameter ε in the quasi-reversibility method. As an adaptive regularization parameter choice strategy, the balancing principle does not require a priori knowledge of either the solution smoothness or a constant K appearing in the stability bound estimation. Nevertheless, this principle allows an a posteriori parameter choice that up to a controllable constant achieves the best accuracy guaranteed by the Carleman estimate
DEFF Research Database (Denmark)
Ghorbani, Mohammad
2013-01-01
In this paper we introduce an instance of the well-know Neyman–Scott cluster process model with clusters having a long tail behaviour. In our model the offspring points are distributed around the parent points according to a circular Cauchy distribution. Using a modified Cramér-von Misses test...
Czech Academy of Sciences Publication Activity Database
Šremr, Jiří
2007-01-01
Roč. 132, č. 3 (2007), s. 263-295 ISSN 0862-7959 R&D Projects: GA ČR GP201/04/P183 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of functional differential equations with monotone operators * initial value problem * unique solvability Subject RIV: BA - General Mathematics
Energy Technology Data Exchange (ETDEWEB)
Chrusciel, Piotr T [Departement de Mathematiques, Faculte des Sciences, Parc de Grandmont, F37200 Tours (France); Lake, Kayll [Department of Physics and Department of Mathematics and Statistics, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)
2004-02-07
We analyse exhaustively the structure of non-degenerate Cauchy horizons in Gowdy spacetimes, and we establish existence of a large class of non-polarized Gowdy spacetimes with such horizons. Our results here, together with the deep new results of Ringstroem, establish strong cosmic censorship in (toroidal) Gowdy spacetimes.
International Nuclear Information System (INIS)
Coles, P
2006-01-01
Cosmology is a discipline that encompasses many diverse aspects of physics and astronomy. This is part of its attraction, but also a reason why it is difficult for new researchers to acquire sufficient grounding to enable them to make significant contributions early in their careers. For this reason there are many cosmology textbooks aimed at the advanced undergraduate/beginning postgraduate level. Physical Foundations of Cosmology by Viatcheslav Mukhanov is a worthy new addition to this genre. Like most of its competitors it does not attempt to cover every single aspect of the subject but chooses a particular angle and tries to unify its treatment around that direction. Mukhanov has chosen to focus on the fundamental principles underlying modern cosmological research at the expense of some detail at the frontiers. The book places great emphasis on the particle-astrophysics interface and issues connected with the thermal history of the big-bang model. The treatment of big-bang nucleosynthesis is done in much more detail than in most texts at a similar level, for example. It also contains a very extended and insightful discussion of inflationary models. Mukhanov makes great use of approximate analytical arguments to develop physical intuition rather than concentrating on numerical approaches. The book is quite mathematical, but not in a pedantically formalistic way. There is much use of 'order-of-magnitude' dimensional arguments which undergraduate students often find difficult to get the hang of, but which they would do well to assimilate as early as possible in their research careers. The text is peppered with problems for the reader to solve, some straightforward and some exceedingly difficult. Solutions are not provided. The price to be paid for this foundational approach is that there is not much about observational cosmology in this book, and neither is there much about galaxy formation or large-scale structure. It also neglects some of the trendier recent
Singular and degenerate cauchy problems
Carroll, R.W
1976-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
p-topological Cauchy completions
Directory of Open Access Journals (Sweden)
J. Wig
1999-01-01
Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.
Ahmed M. A. El-Sayed; Ebtisam O. Bin-Taher
2011-01-01
In this article, we prove the existence of positive nondecreasing solutions for a multi-term fractional-order functional differential equations. We consider Cauchy boundary problems with: nonlocal conditions, two-point boundary conditions, integral conditions, and deviated arguments.
Demonstration of Cauchy: Understanding Algebraic
Directory of Open Access Journals (Sweden)
T.L. Costa
2012-11-01
Full Text Available ABSTRACT: In this study we present some considerations about the End of Course Work undergraduate Full Degree in Mathematics / UFMT, drafted in 2011, and by taking title "A story about Cauchy and Euler's theorem on polyhedra" that gave birth to our research project Master of Education, begun in 2012, on the approaches of Euler's theorem on polyhedra in mathematics textbooks. At work in 2011 presented some considerations about the history of Euler's theorem for polyhedra which focus the demonstration presented by Cauchy (1789-1857, who tries to generalize it, relying on assumptions not observable in Euclidean geometry. Therefore, we seek the accessible literature on the history of mathematics; relate some aspects of the demonstration Cauchy with historical events on the development of mathematics in the nineteenth century, which allowed the acceptance of such a demonstration by mathematicians of his time.Keywords: History of Mathematics. Euler's Theorem on Polyhedra. Demonstration of Cauchy.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte
2014-09-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte; Laleg-Kirati, Taous-Meriem; Machado, José Antó nio Tenreiro
2014-01-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Posing Problems to Understand Children's Learning of Fractions
Cheng, Lu Pien
2013-01-01
In this study, ways in which problem posing activities aid our understanding of children's learning of addition of unlike fractions and product of proper fractions was examined. In particular, how a simple problem posing activity helps teachers take a second, deeper look at children's understanding of fraction concepts will be discussed. The…
Controllability Problem of Fractional Neutral Systems: A Survey
Directory of Open Access Journals (Sweden)
Artur Babiarz
2017-01-01
Full Text Available The following article presents recent results of controllability problem of dynamical systems in infinite-dimensional space. Generally speaking, we describe selected controllability problems of fractional order systems, including approximate controllability of fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces, controllability of nonlinear neutral fractional impulsive differential inclusions in Banach space, controllability for a class of fractional neutral integrodifferential equations with unbounded delay, controllability of neutral fractional functional equations with impulses and infinite delay, and controllability for a class of fractional order neutral evolution control systems.
An Approach for Solving Linear Fractional Programming Problems
Andrew Oyakhobo Odior
2012-01-01
Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...
Fractional Number Operator and Associated Fractional Diffusion Equations
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
An efficient method for solving fractional Sturm-Liouville problems
International Nuclear Information System (INIS)
Al-Mdallal, Qasem M.
2009-01-01
The numerical approximation of the eigenvalues and the eigenfunctions of the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, is considered. The present results can be implemented on the numerical solution of the fractional diffusion-wave equation. The results show the simplicity and efficiency of the numerical method.
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti; Rundell, William
2012-01-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical
Cauchy horizons in Gowdy spacetimes
International Nuclear Information System (INIS)
Chrusciel, Piotr T; Lake, Kayll
2004-01-01
We analyse exhaustively the structure of non-degenerate Cauchy horizons in Gowdy spacetimes, and we establish existence of a large class of non-polarized Gowdy spacetimes with such horizons. Our results here, together with the deep new results of Ringstroem, establish strong cosmic censorship in (toroidal) Gowdy spacetimes
Existence of solutions of abstract fractional impulsive semilinear evolution equations
Directory of Open Access Journals (Sweden)
K. Balachandran
2010-01-01
Full Text Available In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.
An approach for solving linear fractional programming problems ...
African Journals Online (AJOL)
The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...
Subordination principle for fractional evolution equations
Bazhlekova, E.G.
2000-01-01
The abstract Cauchy problem for the fractional evolution equation Daa = Au, a > 0, (1) where A is a closed densely de??ned operator in a Banach space, is investigated. The subordination principle, presented earlier in [J. P r ??u s s, Evolutionary In- tegral Equations and Applications. Birkh??auser,
Variational approach for restoring blurred images with cauchy noise
DEFF Research Database (Denmark)
Sciacchitano, Federica; Dong, Yiqiu; Zeng, Tieyong
2015-01-01
model, we add a quadratic penalty term, which guarantees the uniqueness of the solution. Due to the convexity of our model, the primal dual algorithm is employed to solve the minimization problem. Experimental results show the effectiveness of the proposed method for simultaneously deblurring...... and denoising images corrupted by Cauchy noise. Comparison with other existing and well-known methods is provided as well....
Variational problems with fractional derivatives: Euler-Lagrange equations
International Nuclear Information System (INIS)
Atanackovic, T M; Konjik, S; Pilipovic, S
2008-01-01
We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense
Boundary value problem for Caputo-Hadamard fractional differential equations
Directory of Open Access Journals (Sweden)
Yacine Arioua
2017-09-01
Full Text Available The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti
2012-05-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Complex integration and Cauchy's theorem
Watson, GN
2012-01-01
This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the
Symmetries of cosmological Cauchy horizons
International Nuclear Information System (INIS)
Moncrief, V.; Isenberg, J.
1983-01-01
We consider analytic vacuum and electrovacuum spacetimes which contain a compact null hypersurface ruled by closed null generators. We prove that each such spacetime has a non-trivial Killing symmetry. We distinguish two classes of null surfaces, degenerate and non-degenerate ones, characterized by the zero or non-zero value of a constant analogous to the ''surface gravity'' of stationary black holes. We show that the non-degenerate null surfaces are always Cauchy heizons across which the Killing fields change from spacelike (in the globally hyperbolic regions) to timelike (in the acausal, analytic extensions). For the special case of a null surface diffeomorphic to T 3 we characterize the degenerate vacuum solutions completely. These consists of an infinite dimensional family of ''plane wave'' spacetimes which are entirely foliated by compact null surfaces. Previous work by one of us has shown that, when one dimensional Killing symmetries are allowed, then infinite dimensional families of non-degenerate, vacuum solutions exist. We recall these results for the case of Cauchy horizons diffeomorphic to T 3 and prove the generality of the previously constructed non-degenerate solutions. We briefly discuss the possibility of removing the assumptions of closed generators and analyticity and proving an appropriate generalization of our main results. Such a generalization would provide strong support for the cosmic censorship conjecture by showing that causality violating, cosmological solutions of Einstein's equations are essentially an artefact of symmetry. (orig.)
The realization problem for positive and fractional systems
Kaczorek, Tadeusz
2014-01-01
This book addresses the realization problem of positive and fractional continuous-time and discrete-time linear systems. Roughly speaking the essence of the realization problem can be stated as follows: Find the matrices of the state space equations of linear systems for given their transfer matrices. This first book on this topic shows how many well-known classical approaches have been extended to the new classes of positive and fractional linear systems. The modified Gilbert method for multi-input multi-output linear systems, the method for determination of realizations in the controller canonical forms and in observer canonical forms are presented. The realization problem for linear systems described by differential operators, the realization problem in the Weierstrass canonical forms and of the descriptor linear systems for given Markov parameters are addressed. The book also presents a method for the determination of minimal realizations of descriptor linear systems and an extension for cone linear syste...
Fractional and multivariable calculus model building and optimization problems
Mathai, A M
2017-01-01
This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...
Resolvent estimates in homogenisation of periodic problems of fractional elasticity
Cherednichenko, Kirill; Waurick, Marcus
2018-03-01
We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier-Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.
International Nuclear Information System (INIS)
Ezhov, A.A.
1978-01-01
On the basis of the integral equation for neutron transport in a homogeneous isotropically-scattering sphere with an absolutely black central part an initial value problem has been formulated which permits the construction of a numerical scheme to find the neutron flux density
Regularity of spectral fractional Dirichlet and Neumann problems
DEFF Research Database (Denmark)
Grubb, Gerd
2016-01-01
Consider the fractional powers and of the Dirichlet and Neumann realizations of a second-order strongly elliptic differential operator A on a smooth bounded subset Ω of . Recalling the results on complex powers and complex interpolation of domains of elliptic boundary value problems by Seeley in ...
Mitrinović, Dragoslav S
1993-01-01
Volume 1, i. e. the monograph The Cauchy Method of Residues - Theory and Applications published by D. Reidel Publishing Company in 1984 is the only book that covers all known applications of the calculus of residues. They range from the theory of equations, theory of numbers, matrix analysis, evaluation of real definite integrals, summation of finite and infinite series, expansions of functions into infinite series and products, ordinary and partial differential equations, mathematical and theoretical physics, to the calculus of finite differences and difference equations. The appearance of Volume 1 was acknowledged by the mathematical community. Favourable reviews and many private communications encouraged the authors to continue their work, the result being the present book, Volume 2, a sequel to Volume 1. We mention that Volume 1 is a revised, extended and updated translation of the book Cauchyjev raeun ostataka sa primenama published in Serbian by Nau~na knjiga, Belgrade in 1978, whereas the greater part ...
On crossing the Cauchy horizon of a Reissner-Nordstroem black-hole
International Nuclear Information System (INIS)
Chandrasekhar, S.; Hartle, J.B.
1982-01-01
The behaviour, on the Cauchy horizon, of a flux of gravitational and/or electromagnetic radiation crossing the event horizon of a Reissner-Nordstroem black-hole is investigated as a problem in the theory of one-dimensional potential-scattering. It is shown that the flux of radiation received by an observer crossing the Cauchy horizon, along a radial time-like geodesic, diverges for all physically perturbations crossing the event horizon, even including those with compact support. (author)
A fractional approach to the Fermi-Pasta-Ulam problem
Machado, J. A. T.
2013-09-01
This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.
Directory of Open Access Journals (Sweden)
F. Ghomanjani
2016-10-01
Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.
Higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials
Kim, Dae San; Kim, Taekyun
2013-01-01
In this paper, we investigate some properties of higher-order Cauchy of the second kind and poly-Cauchy of the second mixed type polynomials with umbral calculus viewpoint. From our investigation, we derive many interesting identities of higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials.
Cauchy's stress theory in a modern light
International Nuclear Information System (INIS)
Koenemann, Falk H
2014-01-01
The 180 year old stress theory by Cauchy is found to be insufficient to serve as a basis for a modern understanding of material behaviour. Six reasons are discussed in detail: (1) Cauchy's theory, following Euler, considers forces interacting with planes. This is in contrast to Newton's mechanics which considers forces interacting with radius vectors. (2) Bonds in solids have never been taken into account. (3) Cauchy's stress theory does not meet the minimum conditions for vector spaces because it does not have a metric. It is not a field theory, and not in the Euclidean space. (4) Cauchy's theory contains a hidden boundary condition that makes it less than general. (5) The current theory of stress is found to be at variance with the theory of potentials. (6) The theory is conceptually incompatible with thermodynamics for physical and geometrical reasons. (paper)
The origins of Cauchy's rigorous calculus
Grabiner, Judith V
2005-01-01
This text examines the reinterpretation of calculus by Augustin-Louis Cauchy and his peers in the 19th century. These intellectuals created a collection of well-defined theorems about limits, continuity, series, derivatives, and integrals. 1981 edition.
An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems
Directory of Open Access Journals (Sweden)
Mohammad Maleki
2012-01-01
Full Text Available An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE. By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.
On the energy-critical fractional Sch\\"odinger equation in the radial case
Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng
2013-01-01
We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.
Some physical applications of fractional Schroedinger equation
International Nuclear Information System (INIS)
Guo Xiaoyi; Xu Mingyu
2006-01-01
The fractional Schroedinger equation is solved for a free particle and for an infinite square potential well. The fundamental solution of the Cauchy problem for a free particle, the energy levels and the normalized wave functions of a particle in a potential well are obtained. In the barrier penetration problem, the reflection coefficient and transmission coefficient of a particle from a rectangular potential wall is determined. In the quantum scattering problem, according to the fractional Schroedinger equation, the Green's function of the Lippmann-Schwinger integral equation is given
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti; Rundell, William
2012-01-01
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique
Notes on Hilbert and Cauchy Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav
2010-01-01
Roč. 432, č. 1 (2010), s. 351-356 ISSN 0024-3795 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hilbert matrix * Cauchy matrix * combined matrix * AT-property Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2010
Cho, Yonggeun; Fall, Mouhamed M.; Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber
2016-01-01
This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability
Directory of Open Access Journals (Sweden)
Ahmed M. A. El-Sayed
2011-12-01
Full Text Available In this article, we prove the existence of positive nondecreasing solutions for a multi-term fractional-order functional differential equations. We consider Cauchy boundary problems with: nonlocal conditions, two-point boundary conditions, integral conditions, and deviated arguments.
Spectral results for mixed problems and fractional elliptic operators,
DEFF Research Database (Denmark)
Grubb, Gerd
2015-01-01
In the first part of the paper we show Weyl type spectral asymptotic formulas for pseudodifferential operators P a of order 2a, with type and factorization index a ∈ R +, restricted to compact sets with boundary; this includes fractional powers of the Laplace operator. The domain...... and the regularity of eigenfunctions is described. In the second part, we apply this in a study of realizations A χ,Σ+ in L 2( Ω ) of mixed problems for a second-order strongly elliptic symmetric differential operator A on a bounded smooth set Ω ⊂ R n; here the boundary ∂Ω=Σ is partioned smoothly into Σ......=Σ_∪Σ+, the Dirichlet condition γ0u=0 is imposed on Σ_, and a Neumann or Robin condition χu=0 is imposed on Σ+. It is shown that the Dirichlet-to-Neumann operator Pγ,χ is principally of type 1/2 with factorization index 1/2, relative to Σ+. The above theory allows a detailed description of D (Aχ,Σ_+) with singular...
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Boundary value problems for multi-term fractional differential equations
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Difference potentials analogous to Cauchy integrals
International Nuclear Information System (INIS)
Ryaben'kii, Viktor S
2012-01-01
This work presents the state of the art in the theory of potentials for the solutions of systems of linear difference equations, which was proposed by the author in 1969. The role played by difference potentials in the solution of linear difference schemes of general form is for the first time compared in detail to the role played by Cauchy-type integrals in the theory of analytic functions. New vistas are exposed, which are opened up by the theory of difference potentials and arise through combining the universality and algorithmicity of difference schemes with certain properties of Cauchy-type integrals. A brief bibliographical review covers some of the fundamental applications of the theory which have already been implemented. Bibliography: 61 titles.
Directory of Open Access Journals (Sweden)
Guo Zheng-Hong
2016-01-01
Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.
The Southampton Cauchy-characteristic matching project
International Nuclear Information System (INIS)
D'Inverno, R.
2001-01-01
The Southampton Numerical Relativity Group have set up a long term project concerned with investigating Cauchy-characteristic matching (CCM) codes in numerical relativity. The CCM approach has two distinct features. Firstly, it dispenses with an outer boundary condition and replaces this with matching conditions at an interface residing in the vacuum between the Cauchy and characteristic regions. A successful CCM code leads to a transparent interface and so avoids the spurious reflections which plague most codes employing outer boundary conditions. Secondly, by employing a compactified coordinate, it proves possible to generate global solutions. This means that gravitational waves can be identified unambiguously at future null infinity. To date, cylindrical codes have been developed which have been checked against the exact solutions of Weber-Wheeler, Safier-Stark-Piran and Xanthopoulos. In addition, a cylindrical code has been constructed for investigating dynamic cosmic strings. Recently a master vacuum axi-symmetric CCM code has been completed which consists of four independent modules comprising an interior Cauchy code, an exterior characteristic code together with injection and extraction codes. The main goal of this work is to construct a 3 dimensional code possessing the characteristic, injection and extraction modules which can be attached to an interior code based on a finite grid. Such a code should lead to the construction of more accurate templates which are needed in the search for gravitational waves. (author)
Uncomfined fractionally charged quarks and the problem of hidrons
International Nuclear Information System (INIS)
Okun, L.B.; Shifman, M.A.
1979-01-01
A model for partial confinement of fractionally charged quarks with broken local but conserved global color symmetry is discussed. It is shown that it is impossible to liberate quarks and gluons in this way without severe contradictions with experimental data. The model predicts either observable violations of asymptotic freedom or hidrons - new hadron-like objects with mass around 1 GeV and fractional charges
ϕ-statistically quasi Cauchy sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2016-04-01
Full Text Available Let P denote the space whose elements are finite sets of distinct positive integers. Given any element σ of P, we denote by p(σ the sequence {pn(σ} such that pn(σ=1 for n ∈ σ and pn(σ=0 otherwise. Further Ps={σ∈P:∑n=1∞pn(σ≤s}, i.e. Ps is the set of those σ whose support has cardinality at most s. Let (ϕn be a non-decreasing sequence of positive integers such that nϕn+1≤(n+1ϕn for all n∈N and the class of all sequences (ϕn is denoted by Φ. Let E⊆N. The number δϕ(E=lims→∞1ϕs|{k∈σ,σ∈Ps:k∈E}| is said to be the ϕ-density of E. A sequence (xn of points in R is ϕ-statistically convergent (or Sϕ-convergent to a real number ℓ for every ε > 0 if the set {n∈N:|xn−ℓ|≥ɛ} has ϕ-density zero. We introduce ϕ-statistically ward continuity of a real function. A real function is ϕ-statistically ward continuous if it preserves ϕ-statistically quasi Cauchy sequences where a sequence (xn is called to be ϕ-statistically quasi Cauchy (or Sϕ-quasi Cauchy when (Δxn=(xn+1−xn is ϕ-statistically convergent to 0. i.e. a sequence (xn of points in R is called ϕ-statistically quasi Cauchy (or Sϕ-quasi Cauchy for every ε > 0 if {n∈N:|xn+1−xn|≥ɛ} has ϕ-density zero. Also we introduce the concept of ϕ-statistically ward compactness and obtain results related to ϕ-statistically ward continuity, ϕ-statistically ward compactness, statistically ward continuity, ward continuity, ward compactness, ordinary compactness, uniform continuity, ordinary continuity, δ-ward continuity, and slowly oscillating continuity.
Generalized time fractional IHCP with Caputo fractional derivatives
International Nuclear Information System (INIS)
Murio, D A; MejIa, C E
2008-01-01
The numerical solution of the generalized time fractional inverse heat conduction problem (GTFIHCP) on a finite slab is investigated in the presence of measured (noisy) data when the time fractional derivative is interpreted in the sense of Caputo. The GTFIHCP involves the simultaneous identification of the heat flux and temperature transient functions at one of the boundaries of the finite slab together with the initial condition of the original direct problem from noisy Cauchy data at a discrete set of points on the opposite (active) boundary. A finite difference space marching scheme with adaptive regularization, using trigonometric mollification techniques and generalized cross validation is introduced. Error estimates for the numerical solution of the mollified problem and numerical examples are provided.
Fractional winding numbers and the U(1) problem
International Nuclear Information System (INIS)
Rothe, K.D.; Swieca, J.A.; Pontificia Univ. Catolica do Rio de Janeiro
1980-06-01
The effective Lagrangian description of gauge theories with spontaneous mass generation is simulated by considering the chiral Gross-Neveu model embedded in a two-dimensional U(1) gauge theory. It is shown that in this hybrid model the non-vanishing expectation value of psi psi is due to the contribution of instanton configurations with fractional winding. (Author) [pt
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan
2016-01-01
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic
Directory of Open Access Journals (Sweden)
Firat Evirgen
2016-04-01
Full Text Available In this paper, a class of Nonlinear Programming problem is modeled with gradient based system of fractional order differential equations in Caputo's sense. To see the overlap between the equilibrium point of the fractional order dynamic system and theoptimal solution of the NLP problem in a longer timespan the Multistage Variational İteration Method isapplied. The comparisons among the multistage variational iteration method, the variationaliteration method and the fourth order Runge-Kutta method in fractional and integer order showthat fractional order model and techniques can be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programming problems.
Zeng, Shengda; Migórski, Stanisław
2018-03-01
In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.
McAllister, Cheryl J.; Beaver, Cheryl
2012-01-01
The purpose of this research was to determine if recognizable error types exist in the work of preservice teachers required to create story problems for specific fraction operations. Students were given a particular single-operation fraction expression and asked to do the calculation and then create a story problem that would require the use of…
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti
2012-06-26
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique identifiability of the potential is shown for two cases, i.e. the flux at one end and the net flux, provided that the set of input sources forms a complete basis in L 2(0, 1). An algorithm of the quasi-Newton type is proposed for the efficient and accurate reconstruction of the coefficient from finite data, and the injectivity of the Jacobian is discussed. Numerical results for both exact and noisy data are presented. © 2012 IOP Publishing Ltd.
Existence of solutions to boundary value problem of fractional differential equations with impulsive
Directory of Open Access Journals (Sweden)
Weihua JIANG
2016-12-01
Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
A fractional optimal control problem for maximizing advertising efficiency
Igor Bykadorov; Andrea Ellero; Stefania Funari; Elena Moretti
2007-01-01
We propose an optimal control problem to model the dynamics of the communication activity of a firm with the aim of maximizing its efficiency. We assume that the advertising effort undertaken by the firm contributes to increase the firm's goodwill and that the goodwill affects the firm's sales. The aim is to find the advertising policies in order to maximize the firm's efficiency index which is computed as the ratio between "outputs" and "inputs" properly weighted; the outputs are represented...
Moving-boundary problems for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Sabrina D. Roscani
2017-02-01
Full Text Available We consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order $\\alpha\\in (0,1$ is taken in the sense of Caputo. We study the asymptotic behaivor, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.
Analyzing Pre-Service Primary Teachers' Fraction Knowledge Structures through Problem Posing
Kilic, Cigdem
2015-01-01
In this study it was aimed to determine pre-service primary teachers' knowledge structures of fraction through problem posing activities. A total of 90 pre-service primary teachers participated in this study. A problem posing test consisting of two questions was used and the participants were asked to generate as many as problems based on the…
Generation of teletraffic of generalized Cauchy type
International Nuclear Information System (INIS)
Li Ming
2010-01-01
Generation of long-range-dependent (LRD) traffic is crucial for networking, e.g. simulating the Internet. In this respect, it is necessary to generate an LRD traffic series according to a given correlation structure that may well reflect the statistics of real traffic. Recent research on traffic modeling exhibits that the LRD traffic is well modeled by the generalized Cauchy (GC) process indexed by two parameters that separately characterize the self-similarity (SS), which is a local property described by the fractal dimension D, and long-range dependence (LRD), which is a global property measured by the Hurst parameter H. This paper gives a computational method to generate the LRD traffic based on the correlation form of the GC process in both the unifractal and multifractal cases. It may nevertheless be used as a way to flexibly simulate the realizations that reflect the fractal phenomena of traffic for both short-term lags and long-term ones.
Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique
Seagar, Andrew
2016-01-01
This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...
Directory of Open Access Journals (Sweden)
Chen Jie-Dong
2016-01-01
Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.
Rasyid, M. A.; Budiarto, M. T.; Lukito, A.
2018-01-01
This study aims to describe reflective thinking of junior high school students on solving the fractions problem in terms of gender differences. This research is a qualitative approach involving one male student and one female student in seventh grade. The data were collected through the assignment of fractional problem solving and interview, then the data were triangulated and analyzed by three stages, namely data condensation, data display and conclusion. The results showed that the subjects of male and female were reacting, elaborating and contemplating at each stage of solving the fractions problem. But at the stage of devising the plan, the female subject was contemplating, relying more on their beliefs, did not consider their experience, in addition, the female subject didn’t use experience of the steps she planned to solve the problem of fractions.
On Existence of Solutions to the Caputo Type Fractional Order Three-Point Boundary Value Problems
Directory of Open Access Journals (Sweden)
B.M.B. Krushna
2016-10-01
Full Text Available In this paper, we establish the existence of solutions to the fractional order three-point boundary value problems by utilizing Banach contraction principle and Schaefer's fixed point theorem.
A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems
Directory of Open Access Journals (Sweden)
Tunjo Perić
2014-12-01
Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
On the formulation and numerical simulation of distributed-order fractional optimal control problems
Zaky, M. A.; Machado, J. A. Tenreiro
2017-11-01
In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.
Abstract Description of Internet Traffic of Generalized Cauchy Type
Directory of Open Access Journals (Sweden)
Ming Li
2012-01-01
. Therefore, there is a limitation for fGn to accurately model traffic. Recently, the generalized Cauchy (GC process was introduced to model traffic with the flexibility to separately measure the fractal dimension DGC and the Hurst parameter HGC of traffic. However, there is a fundamental problem whether or not there exists the generality that the GC model is more conformable with real traffic than single parameter models, such as fGn, irrelevant of traffic traces used in experimental verification. The solution to that problem remains unknown but is desired for model evaluation in traffic theory or for model selection against specific issues, such as queuing analysis relating to the autocorrelation function (ACF of arrival traffic. The key contribution of this paper is our solution to that fundamental problem (see Theorem 3.17 with the following features in analysis. (i Set-valued analysis of the traffic of the fGn type. (ii Set-valued analysis of the traffic of the GC type. (iii Revealing the generality previously mentioned by comparing metrics of the traffic of the fGn type to that of the GC type.
A Simple Proof of Cauchy's Surface Area Formula
Tsukerman, Emmanuel; Veomett, Ellen
2016-01-01
We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.
Sharp, Emily; Shih Dennis, Minyi
2017-01-01
This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
Robinson manifolds and Cauchy-Riemann spaces
Trautman, A
2002-01-01
A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n >= 4 with a bundle N subset of C centre dot TM such that the fibres of N are maximal totally null and there holds the integrability condition [Sec N, Sec N] subset of Sec N. The real part of N intersection N-bar is a bundle of null directions tangent to a congruence of null geodesics. This generalizes the notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural regularity assumption, the set M of all these geodesics has the structure of a Cauchy-Riemann manifold of dimension 2n - 1. Conversely, every such CR manifold lifts to many Robinson manifolds. Three definitions of a CR manifold are described here in considerable detail; they are equivalent under the assumption of real analyticity, but not in the smooth category. The distinctions between these definitions have a bearing on the validity of the Robinson theorem on the existence of null Maxwell fields associated with SNGs. This paper is largely a re...
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
Solving fractal steady heat-transfer problems with the local fractional Sumudu transform
Directory of Open Access Journals (Sweden)
Wang Yi
2015-01-01
Full Text Available In this paper the linear oscillator problem in fractal steady heat-transfer is studied within the local fractional theory. In particular, the local fractional Sumudu transform (LFST will be used to solve both the homogeneous and the non-homogeneous local fractional oscillator equations (LFOEs under fractal steady heat-transfer. It will be shown that the obtained non-differentiable solutions characterize the fractal phenomena with and without the driving force in fractal steady heat transfer at low excess temperatures.
A Liouville Problem for the Stationary Fractional Navier-Stokes-Poisson System
Wang, Y.; Xiao, J.
2017-06-01
This paper deals with a Liouville problem for the stationary fractional Navier-Stokes-Poisson system whose special case k=0 covers the compressible and incompressible time-independent fractional Navier-Stokes systems in R^{N≥2} . An essential difficulty raises from the fractional Laplacian, which is a non-local operator and thus makes the local analysis unsuitable. To overcome the difficulty, we utilize a recently-introduced extension-method in Wang and Xiao (Commun Contemp Math 18(6):1650019, 2016) which develops Caffarelli-Silvestre's technique in Caffarelli and Silvestre (Commun Partial Diff Equ 32:1245-1260, 2007).
Cho, Yonggeun
2016-05-04
This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company
Kassa, Semu Mitiku; Tsegay, Teklay Hailay
2017-08-01
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.
Directory of Open Access Journals (Sweden)
Nurdan Cetin
2014-01-01
Full Text Available We consider a multiobjective linear fractional transportation problem (MLFTP with several fractional criteria, such as, the maximization of the transport profitability like profit/cost or profit/time, and its two properties are source and destination. Our aim is to introduce MLFTP which has not been studied in literature before and to provide a fuzzy approach which obtain a compromise Pareto-optimal solution for this problem. To do this, first, we present a theorem which shows that MLFTP is always solvable. And then, reducing MLFTP to the Zimmermann’s “min” operator model which is the max-min problem, we construct Generalized Dinkelbach’s Algorithm for solving the obtained problem. Furthermore, we provide an illustrative numerical example to explain this fuzzy approach.
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Towards a deterministic KPZ equation with fractional diffusion: the stationary problem
Abdellaoui, Boumediene; Peral, Ireneo
2018-04-01
In this work, we investigate by analysis the possibility of a solution to the fractional quasilinear problem: where is a bounded regular domain ( is sufficient), , 1 2s. The authors were partially supported by Ministerio de Economia y Competitividad under grants MTM2013-40846-P and MTM2016-80474-P (Spain).
Teachers' Knowledge of Children's Strategies for Equal Sharing Fraction Problems
Krause, Gladys; Empson, Susan; Pynes, D'Anna; Jacobs, Victoria
2016-01-01
In this exploratory study, we documented teachers' knowledge of children's mathematical thinking as they engaged in the task of anticipating children's strategies for an equal sharing fraction problem. To elicit an array of knowledge, 18 teachers were deliberately selected with a variety of numbers of years participating in professional…
Directory of Open Access Journals (Sweden)
A. Anguraj
2014-02-01
Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.
Directory of Open Access Journals (Sweden)
Archana Chauhan
2012-12-01
Full Text Available In this article, we establish a general framework for finding solutions for impulsive fractional integral boundary-value problems. Then, we prove the existence and uniqueness of solutions by applying well known fixed point theorems. The obtained results are illustrated with an example for their feasibility.
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Shore, Felice S.; Pascal, Matthew
2008-01-01
This article describes several distinct approaches taken by preservice elementary teachers to solving a classic rate problem. Their approaches incorporate a variety of mathematical concepts, ranging from proportions to infinite series, and illustrate the power of all five NCTM Process Standards. (Contains 8 figures.)
Directory of Open Access Journals (Sweden)
M.S. Osman
2018-03-01
Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.
On cosmic censorship: do compact Cauchy horizons imply symmetry?
International Nuclear Information System (INIS)
Isenberg, J.; Moncrief, V.
1983-01-01
The basic idea of Cosmic Censorship is that, in a physically reasonable spacetime, an observer should not encounter any naked singularities. The authors discuss some new results which provide strong support for one of the statements of Cosmic Censorship: Strong Cosmic Censorship says that the maximal spacetime development of a set of Cauchy data on a spacelike initial surface (evolved via the vacuum Einstein equations, the Einstein-Maxwell equations, or some other 'reasonable' set) will not be extendible across a Cauchy horizon. (Auth.)
A note on non-compact Cauchy surfaces
International Nuclear Information System (INIS)
Kim, Do-Hyung
2008-01-01
It is shown that if a spacetime has a non-compact Cauchy surface Σ, then its causal structure is completely determined by the class of compact subsets of Σ of the forms J - (p) intersection Σ and J + (p) intersection Σ. Since the causal structure determines its metric structure up to a conformal factor, this implies that the sets J - (p) intersection Σ and J + (p) intersection Σ determine the conformal structure of a globally hyperbolic spacetime. In this way, we can encode the conformal structure of the spacetime into its Cauchy surface and we get another method for reconstructing spacetime. (comments, replies and notes)
Fixed Point Methods in the Stability of the Cauchy Functional Equations
Directory of Open Access Journals (Sweden)
Z. Dehvari
2013-03-01
Full Text Available By using the fixed point methods, we prove some generalized Hyers-Ulam stability of homomorphisms for Cauchy and CauchyJensen functional equations on the product algebras and on the triple systems.
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems
Directory of Open Access Journals (Sweden)
Muhammed I. Syam
2017-11-01
Full Text Available This article is devoted to both theoretical and numerical studies of eigenvalues of regular fractional $2\\alpha $-order Sturm-Liouville problem where $\\frac{1}{2}< \\alpha \\leq 1$. In this paper, we implement the reproducing kernel method RKM to approximate the eigenvalues. To find the eigenvalues, we force the approximate solution produced by the RKM satisfy the boundary condition at $x=1$. The fractional derivative is described in the Caputo sense. Numerical results demonstrate the accuracy of the present algorithm. In addition, we prove the existence of the eigenfunctions of the proposed problem. Uniformly convergence of the approximate eigenfunctions produced by the RKM to the exact eigenfunctions is proven.
Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems
Directory of Open Access Journals (Sweden)
D. Baleanu
2013-01-01
Full Text Available We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs on semi-infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a spectral solution of linear multiterm FDEs on semi-infinite interval subject to initial conditions. The generalized Laguerre pseudo-spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate results, and the exact solutions are achieved for some tested problems.
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
2018-03-14
UNIVERSITY OF TECHNOLOGY Final Report 03/14/2018 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR...optimal control problems involving fractional-order differential equations Wang, Song Curtin University of Technology Kent Street, Bentley WA6102...Article history : Received 3 October 2016 Accepted 26 March 2017 Available online 29 April 2017 Keywords: Hamilton–Jacobi–Bellman equation Financial
Existence and Estimates of Positive Solutions for Some Singular Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Habib Mâagli
2014-01-01
fractional boundary value problem:Dαu(x=−a(xuσ(x, x∈(0,1 with the conditions limx→0+x2−αu(x=0, u(1=0, where 1<α≤2, σ∈(−1,1, and a is a nonnegative continuous function on (0,1 that may be singular at x=0 or x=1. We also give the global behavior of such a solution.
Implementing thinking aloud pair and Pólya problem solving strategies in fractions
Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.
2017-12-01
This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.
RELIABLE COGNITIVE DIMENSIONAL DOCUMENT RANKING BY WEIGHTED STANDARD CAUCHY DISTRIBUTION
Directory of Open Access Journals (Sweden)
S Florence Vijila
2017-04-01
Full Text Available Categorization of cognitively uniform and consistent documents such as University question papers are in demand by e-learners. Literature indicates that Standard Cauchy distribution and the derived values are extensively used for checking uniformity and consistency of documents. The paper attempts to apply this technique for categorizing question papers according to four selective cognitive dimensions. For this purpose cognitive dimensional keyword sets of these four categories (also termed as portrayal concepts are assumed and an automatic procedure is developed to quantify these dimensions in question papers. The categorization is relatively accurate when checked with manual methods. Hence simple and well established term frequency / inverse document frequency ‘tf/ IDF’ technique is considered for automating the categorization process. After the documents categorization, standard Cauchy formula is applied to rank order the documents that have the least differences among Cauchy value, (according to Cauchy theorem so as obtain consistent and uniform documents in an order or ranked. For the purpose of experiments and social survey, seven question papers (documents have been designed with various consistencies. To validate this proposed technique social survey is administered on selective samples of e-learners of Tamil Nadu, India. Results are encouraging and conclusions drawn out of the experiments will be useful to researchers of concept mining and categorizing documents according to concepts. Findings have also contributed utility value to e-learning system designers.
Unit Root Testing in Heteroscedastic Panels Using the Cauchy Estimator
Demetrescu, Matei; Hanck, Christoph
The Cauchy estimator of an autoregressive root uses the sign of the first lag as instrumental variable. The resulting IV t-type statistic follows a standard normal limiting distribution under a unit root case even under unconditional heteroscedasticity, if the series to be tested has no
Toeplitz operators on higher Cauchy-Riemann spaces
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav; Zhang, G.
2017-01-01
Roč. 22, č. 22 (2017), s. 1081-1116 ISSN 1431-0643 Institutional support: RVO:67985840 Keywords : Toeplitz operator * Hankel operator * Cauchy-Riemann operators Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 0.800, year: 2016 https://www. math .uni-bielefeld.de/documenta/vol-22/32.html
On a nonlocal Cauchy problem for differential inclusions
Directory of Open Access Journals (Sweden)
Y. G. Sficas
2004-05-01
Full Text Available We establish sufficient conditions for the existence of solutions for semilinear differential inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction multivalued maps due to Covitz and Nadler andon the Schaefer's fixed-point theorem combined with lower semicontinuous multivalued operators with decomposable values.
The Fractional Fourier Transform and Its Application to Energy Localization Problems
Directory of Open Access Journals (Sweden)
ter Morsche Hennie G
2003-01-01
Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.
Directory of Open Access Journals (Sweden)
Jianke Zhang
2018-01-01
Full Text Available We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.
Li, Zhiyuan; Yamamoto, Masahiro
2014-01-01
This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.
Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations
Aldoghaither, Abeer
2015-11-12
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final
Existence of solutions to fractional boundary-value problems with a parameter
Directory of Open Access Journals (Sweden)
Ya-Ning Li
2013-06-01
Full Text Available This article concerns the existence of solutions to the fractional boundary-value problem $$displaylines{ -frac{d}{dt} ig(frac{1}{2} {}_0D_t^{-eta}+ frac{1}{2}{}_tD_{T}^{-eta}igu'(t=lambda u(t+abla F(t,u(t,quad hbox{a.e. } tin[0,T], cr u(0=0,quad u(T=0. }$$ First for the eigenvalue problem associated with it, we prove that there is a sequence of positive and increasing real eigenvalues; a characterization of the first eigenvalue is also given. Then under different assumptions on the nonlinearity F(t,u, we show the existence of weak solutions of the problem when $lambda$ lies in various intervals. Our main tools are variational methods and critical point theorems.
Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
R. Darzi
2013-01-01
Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0
Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem
Directory of Open Access Journals (Sweden)
V. Charles
2011-01-01
Full Text Available In this paper, we propose a stochastic programming model, which considers a ratio of two nonlinear functions and probabilistic constraints. In the former, only expected model has been proposed without caring variability in the model. On the other hand, in the variance model, the variability played a vital role without concerning its counterpart, namely, the expected model. Further, the expected model optimizes the ratio of two linear cost functions where as variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in the denominator and numerator and considering expectation and variability as well leads to a non-linear fractional program. In this paper, a transportation model with stochastic fractional programming (SFP problem approach is proposed, which strikes the balance between previous models available in the literature.
Directory of Open Access Journals (Sweden)
Chuanzhi Bai
2010-06-01
Full Text Available This paper deals with the existence of positive solutions for a boundary value problem involving a nonlinear functional differential equation of fractional order $\\alpha$ given by $ D^{\\alpha} u(t + f(t, u_t = 0$, $t \\in (0, 1$, $2 < \\alpha \\le 3$, $ u^{\\prime}(0 = 0$, $u^{\\prime}(1 = b u^{\\prime}(\\eta$, $u_0 = \\phi$. Our results are based on the nonlinear alternative of Leray-Schauder type and Krasnosel'skii fixed point theorem.
Several problems of cumulative effective mass fraction in anti-seismic analysis
International Nuclear Information System (INIS)
Wang Wei; Sheng Feng; Li Hailong; Wen Jing; Luan Lin
2005-01-01
Cumulative Effective Mass Fraction (CEMF) is one of important items which sign the accuracy in antiseismic analysis. Based on the primary theories of CEMF, the paper show the influence of CEMF on the accuracy in antiseismic analysis. Moreover, some advices and ways are given to solve common problems in antiseismic analysis, such as how to increase CEMF, how to avoid the mass's loss because of the torsional frequency's being close to the frequency corresponding to the peak of seismic response spectrum, how to avoid the mass's loss because of the constraints, and so on. (authors)
DEFF Research Database (Denmark)
Cai, Hongzhu; Zhdanov, Michael
2014-01-01
This letter introduces a new method for the modeling and inversion of magnetic anomalies caused by crystalline basements. The method is based on the 3-D Cauchy-type integral representation of the magnetic field. Traditional methods use volume integrals over the domains occupied by anomalous...... is particularly significant in solving problems of the modeling and inversion of magnetic data for the depth to the basement. In this letter, a novel method is proposed, which only requires discretizing the magnetic contrast surface for modeling and inversion. We demonstrate the method using several synthetic...... susceptibility and on the prismatic representation of the volumes with an anomalous susceptibility distribution. Such discretization is computationally expensive, particularly in 3-D cases. The technique of Cauchy-type integrals makes it possible to represent the magnetic field as surface integrals, which...
Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.
Suk, Heejun
2016-07-01
MT3DMS, a modular three-dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian-Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third-order total-variation-diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes. © 2016, National Ground Water Association.
Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News
Handmer, Casey; Szilagyi, Bela; Winicour, Jeff
2015-04-01
We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.
Widhitama, Y. N.; Lukito, A.; Khabibah, S.
2018-01-01
The aim of this research is to develop problem solving based learning materials on fraction for training creativity of elementary school students. Curriculum 2006 states that mathematics should be studied by all learners starting from elementary level in order for them mastering thinking skills, one of them is creative thinking. To our current knowledge, there is no such a research topic being done. To promote this direction, we initiate by developing learning materials with problem solving approach. The developed materials include Lesson Plan, Student Activity Sheet, Mathematical Creativity Test, and Achievement Test. We implemented a slightly modified 4-D model by Thiagajan et al. (1974) consisting of Define, Design, Development, and Disseminate. Techniques of gathering data include observation, test, and questionnaire. We applied three good qualities for the resulted materials; that is, validity, practicality, and effectiveness. The results show that the four mentioned materials meet the corresponding criteria of good quality product.
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention delivered as part of the larger program. At-risk 4th graders (n = 213) were randomly assigned at the individual…
Total variation regularization for a backward time-fractional diffusion problem
International Nuclear Information System (INIS)
Wang, Liyan; Liu, Jijun
2013-01-01
Consider a two-dimensional backward problem for a time-fractional diffusion process, which can be considered as image de-blurring where the blurring process is assumed to be slow diffusion. In order to avoid the over-smoothing effect for object image with edges and to construct a fast reconstruction scheme, the total variation regularizing term and the data residual error in the frequency domain are coupled to construct the cost functional. The well posedness of this optimization problem is studied. The minimizer is sought approximately using the iteration process for a series of optimization problems with Bregman distance as a penalty term. This iteration reconstruction scheme is essentially a new regularizing scheme with coupling parameter in the cost functional and the iteration stopping times as two regularizing parameters. We give the choice strategy for the regularizing parameters in terms of the noise level of measurement data, which yields the optimal error estimate on the iterative solution. The series optimization problems are solved by alternative iteration with explicit exact solution and therefore the amount of computation is much weakened. Numerical implementations are given to support our theoretical analysis on the convergence rate and to show the significant reconstruction improvements. (paper)
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aubry, R.; Oñate, E.; Idelsohn, S. R.
2006-09-01
The method presented in Aubry et al. (Comput Struc 83:1459-1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505-526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.
Zhai, Chengbo; Hao, Mengru
2014-01-01
By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.
Directory of Open Access Journals (Sweden)
Lingju Kong
2013-04-01
Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2014-01-01
Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.
Elliptic boundary value problems with fractional regularity data the first order approach
Amenta, Alex
2018-01-01
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called "first order approach" which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
International Nuclear Information System (INIS)
Wang, Wenyan; Han, Bo; Yamamoto, Masahiro
2013-01-01
We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)
Lachhwani, Kailash; Poonia, Mahaveer Prasad
2012-08-01
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.
Slow Learner Errors Analysis in Solving Fractions Problems in Inclusive Junior High School Class
Novitasari, N.; Lukito, A.; Ekawati, R.
2018-01-01
A slow learner whose IQ is between 71 and 89 will have difficulties in solving mathematics problems that often lead to errors. The errors could be analyzed to where the errors may occur and its type. This research is qualitative descriptive which aims to describe the locations, types, and causes of slow learner errors in the inclusive junior high school class in solving the fraction problem. The subject of this research is one slow learner of seventh-grade student which was selected through direct observation by the researcher and through discussion with mathematics teacher and special tutor which handles the slow learner students. Data collection methods used in this study are written tasks and semistructured interviews. The collected data was analyzed by Newman’s Error Analysis (NEA). Results show that there are four locations of errors, namely comprehension, transformation, process skills, and encoding errors. There are four types of errors, such as concept, principle, algorithm, and counting errors. The results of this error analysis will help teachers to identify the causes of the errors made by the slow learner.
Cauchy inequality and uncertainty relations for mixed states
International Nuclear Information System (INIS)
Shirokov, M.I.
2004-01-01
Cauchy inequality (CI) relates scalar products of two vectors and their norms. I point out other similar inequalities (SI). Starting with CI Schroedinger derived his uncertainty relation (UR). By using SI other various UR can be obtained. It is shown that they follow from the Schroedinger UR. Two generalizations of CI are obtained for mixed states described by density matrices. Using them two generalizations of UR for mixed states are derived. Both differ from the UR generalization known from the literature. The discussion of these generalizations is given
Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations
Aldoghaither, Abeer
2015-01-01
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes
International Nuclear Information System (INIS)
Elcoro, Luis; Etxebarria, Jesus
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.
Directory of Open Access Journals (Sweden)
Tuba Aydogdu Iskenderoglu
2018-04-01
Full Text Available It is important for pre-service teachers to know the conceptual difficulties they have experienced regarding the concepts of multiplication and division in fractions and problem posing is a way to learn these conceptual difficulties. Problem posing is a synthetic activity that fundamentally has multiple answers. The purpose of this study is to analyze the multiplication and division of fractions problems posed by pre-service elementary mathematics teachers and to investigate how the problems posed change according to the year of study the pre-service teachers are in. The study employed developmental research methods. A total of 213 pre-service teachers enrolled in different years of the Elementary Mathematics Teaching program at a state university in Turkey took part in the study. The “Problem Posing Test” was used as the data collecting tool. In this test, there are 3 multiplication and 3 division operations. The data were analyzed using qualitative descriptive analysis. The findings suggest that, regardless of the year, pre-service teachers had more conceptual difficulties in problem posing about the division of fractions than in problem posing about the multiplication of fractions.
Directory of Open Access Journals (Sweden)
Weidong Lv
2015-01-01
Full Text Available By means of Schauder’s fixed point theorem and contraction mapping principle, we establish the existence and uniqueness of solutions to a boundary value problem for a discrete fractional mixed type sum-difference equation with the nonlinear term dependent on a fractional difference of lower order. Moreover, a suitable choice of a Banach space allows the solutions to be unbounded and two representative examples are presented to illustrate the effectiveness of the main results.
Liu, Yikan
2015-01-01
In this paper, we establish a strong maximum principle for fractional diffusion equations with multiple Caputo derivatives in time, and investigate a related inverse problem of practical importance. Exploiting the solution properties and the involved multinomial Mittag-Leffler functions, we improve the weak maximum principle for the multi-term time-fractional diffusion equation to a stronger one, which is parallel to that for its single-term counterpart as expected. As a direct application, w...
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
Directory of Open Access Journals (Sweden)
Chatnugrob Sangsawang
2016-06-01
Full Text Available This paper addresses a problem of the two-stage flexible flow shop with reentrant and blocking constraints in Hard Disk Drive Manufacturing. This problem can be formulated as a deterministic FFS|stage=2,rcrc, block|Cmax problem. In this study, adaptive Hybrid Particle Swarm Optimization with Cauchy distribution (HPSO was developed to solve the problem. The objective of this research is to find the sequences in order to minimize the makespan. To show their performances, computational experiments were performed on a number of test problems and the results are reported. Experimental results show that the proposed algorithms give better solutions than the classical Particle Swarm Optimization (PSO for all test problems. Additionally, the relative improvement (RI of the makespan solutions obtained by the proposed algorithms with respect to those of the current practice is performed in order to measure the quality of the makespan solutions generated by the proposed algorithms. The RI results show that the HPSO algorithm can improve the makespan solution by averages of 14.78%.
Directory of Open Access Journals (Sweden)
Yang Xiao-Jun
2017-01-01
Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.
Directory of Open Access Journals (Sweden)
K.R. Prasad
2015-11-01
Full Text Available In this paper, we establish the existence of at least three positive solutions for a system of (p,q-Laplacian fractional order two-point boundary value problems by applying five functionals fixed point theorem under suitable conditions on a cone in a Banach space.
Heat and work distributions for mixed Gauss–Cauchy process
International Nuclear Information System (INIS)
Kuśmierz, Łukasz; Gudowska-Nowak, Ewa; Rubi, J Miguel
2014-01-01
We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two statistically independent Lévy white noises with stability indices α = 2 and α = 1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations (α = 1) to either bath or external force acting on the system. (paper)
Kar, Tugrul
2015-01-01
This study aimed to investigate how the semantic structures of problems posed by sixth-grade middle school students for the addition of fractions affect their problem-posing performance. The students were presented with symbolic operations involving the addition of fractions and asked to pose two different problems related to daily-life situations…
Directory of Open Access Journals (Sweden)
Johnny Henderson
2016-01-01
Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.
Directory of Open Access Journals (Sweden)
Guotao Wang
2012-01-01
Full Text Available We study nonlinear impulsive differential equations of fractional order with irregular boundary conditions. Some existence and uniqueness results are obtained by applying standard fixed-point theorems. For illustration of the results, some examples are discussed.
Directory of Open Access Journals (Sweden)
Rastović Danilo
2009-01-01
Full Text Available In earlier Rastovic's papers [1] and [2], the effort was given to analyze the stochastic control of tokamaks. In this paper, the deterministic control of tokamak turbulence is investigated via fractional variational calculus, particle in cell simulations, and fuzzy logic methods. Fractional integrals can be considered as approximations of integrals on fractals. The turbulent media could be of the fractal structure and the corresponding equations should be changed to include the fractal features of the media.
Estimates for a general fractional relaxation equation and application to an inverse source problem
Bazhlekova, Emilia
2018-01-01
A general fractional relaxation equation is considered with a convolutional derivative in time introduced by A. Kochubei (Integr. Equ. Oper. Theory 71 (2011), 583-600). This equation generalizes the single-term, multi-term and distributed-order fractional relaxation equations. The fundamental and the impulse-response solutions are studied in detail. Properties such as analyticity and subordination identities are established and employed in the proof of an upper and a lower bound. The obtained...
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
KPII: Cauchy-Jost function, Darboux transformations and totally nonnegative matrices
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2017-07-01
Direct definition of the Cauchy-Jost (known also as Cauchy-Baker-Akhiezer) function is given in the case of a pure solitonic solution. Properties of this function are discussed in detail using the Kadomtsev-Petviashvili II equation as an example. This enables formulation of the Darboux transformations in terms of the Cauchy-Jost function and classification of these transformations. Action of Darboux transformations on Grassmanians—i.e. on the space of soliton parameters—is derived and the relation of the Darboux transformations with the property of total nonnegativity of elements of corresponding Grassmanians is discussed. To the memory of our friend and colleague Peter P Kulish
The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry
Energy Technology Data Exchange (ETDEWEB)
Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)
2006-05-15
The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.
Bernoulli-Carlitz and Cauchy-Carlitz numbers with Stirling-Carlitz numbers
Kaneko, Hajime; Komatsu, Takao
2017-01-01
Recently, the Cauchy-Carlitz number was defined as the counterpart of the Bernoulli-Carlitz number. Both numbers can be expressed explicitly in terms of so-called Stirling-Carlitz numbers. In this paper, we study the second analogue of Stirling-Carlitz numbers and give some general formulae, including Bernoulli and Cauchy numbers in formal power series with complex coefficients, and Bernoulli-Carlitz and Cauchy-Carlitz numbers in function fields. We also give some applications of Hasse-Teichm...
Directory of Open Access Journals (Sweden)
Imed Bachar
2014-01-01
Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0t2-αu(t=0, limt→∞t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.
Li, Zhiyuan; Huang, Xinchi; Yamamoto, Masahiro
2018-01-01
In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral equation to show the unique existence and the analyticity of the solution for the equation. Especially, in the case where all the coefficients of the time-fractional derivatives are non-negative, by the Laplace and inversion L...
Directory of Open Access Journals (Sweden)
Tianhu He
2014-01-01
Full Text Available The dynamic response of a one-dimensional problem for a thermoelastic rod with finite length is investigated in the context of the fractional order theory of thermoelasticity in the present work. The rod is fixed at both ends and subjected to a moving heat source. The fractional order thermoelastic coupled governing equations for the rod are formulated. Laplace transform as well as its numerical inversion is applied to solving the governing equations. The variations of the considered temperature, displacement, and stress in the rod are obtained and demonstrated graphically. The effects of time, velocity of the moving heat source, and fractional order parameter on the distributions of the considered variables are of concern and discussed in detail.
Directory of Open Access Journals (Sweden)
Soheil Salahshour
2015-02-01
Full Text Available In this paper, we apply the concept of Caputo’s H-differentiability, constructed based on the generalized Hukuhara difference, to solve the fuzzy fractional differential equation (FFDE with uncertainty. This is in contrast to conventional solutions that either require a quantity of fractional derivatives of unknown solution at the initial point (Riemann–Liouville or a solution with increasing length of their support (Hukuhara difference. Then, in order to solve the FFDE analytically, we introduce the fuzzy Laplace transform of the Caputo H-derivative. To the best of our knowledge, there is limited research devoted to the analytical methods to solve the FFDE under the fuzzy Caputo fractional differentiability. An analytical solution is presented to confirm the capability of the proposed method.
DEFF Research Database (Denmark)
Cai, Hongzhu; Zhdanov, Michael
2015-01-01
to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D...... Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable......One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth...
International Nuclear Information System (INIS)
Philipp, M; Vergnat, C; Mueller, U; Sanctuary, R; Baller, J; Krueger, J K; Possart, W; Alnot, P
2009-01-01
The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.
Philipp, M; Vergnat, C; Müller, U; Sanctuary, R; Baller, J; Possart, W; Alnot, P; Krüger, J K
2009-01-21
The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.
Energy Technology Data Exchange (ETDEWEB)
Philipp, M; Vergnat, C; Mueller, U; Sanctuary, R; Baller, J; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Alnot, P [LPMI, Universite Nancy (France)], E-mail: martine.philipp@uni.lu
2009-01-21
The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.
Directory of Open Access Journals (Sweden)
m. s. osman
2017-09-01
Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.
Cauchy-perturbative matching reexamined: Tests in spherical symmetry
International Nuclear Information System (INIS)
Zink, Burkhard; Pazos, Enrique; Diener, Peter; Tiglio, Manuel
2006-01-01
During the last few years progress has been made on several fronts making it possible to revisit Cauchy-perturbative matching (CPM) in numerical relativity in a more robust and accurate way. This paper is the first in a series where we plan to analyze CPM in the light of these new results. One of the new developments is an understanding of how to impose constraint-preserving boundary conditions (CPBC); though most of the related research has been driven by outer boundaries, one can use them for matching interface boundaries as well. Another front is related to numerically stable evolutions using multiple patches, which in the context of CPM allows the matching to be performed on a spherical surface, thus avoiding interpolations between Cartesian and spherical grids. One way of achieving stability for such schemes of arbitrary high order is through the use of penalty techniques and discrete derivatives satisfying summation by parts (SBP). Recently, new, very efficient and high-order accurate derivatives satisfying SBP and associated dissipation operators have been constructed. Here we start by testing all these techniques applied to CPM in a setting that is simple enough to study all the ingredients in great detail: Einstein's equations in spherical symmetry, describing a black hole coupled to a massless scalar field. We show that with the techniques described above, the errors introduced by Cauchy-perturbative matching are very small, and that very long-term and accurate CPM evolutions can be achieved. Our tests include the accretion and ring-down phase of a Schwarzschild black hole with CPM, where we find that the discrete evolution introduces, with a low spatial resolution of Δr=M/10, an error of 0.3% after an evolution time of 1,000,000M. For a black hole of solar mass, this corresponds to approximately 5s, and is therefore at the lower end of timescales discussed e.g. in the collapsar model of gamma-ray burst engines
The origin of the distinction between microscopic formulas for stress and Cauchy stress
Chen, Youping
2016-01-01
Stress is calculated routinely in atomistic simulations. The widely used microscopic stress formulas derived from classical or quantum mechanics, however, are distinct from the concept of Cauchy stress, i.e., the true mechanical tress. This work examines various atomistic stress formulations and their inconsistencies. Using standard mathematic theorems and the law of mechanics, we show that Cauchy stress results unambiguously from the definition of internal force density, thereby removing the...
Signalling, entanglement and quantum evolution beyond Cauchy horizons
International Nuclear Information System (INIS)
Yurtsever, Ulvi; Hockney, George
2005-01-01
Consider a bipartite entangled system, half of which falls through the event horizon of an evaporating black hole, while the other half remains coherently accessible to experiments in the exterior region. Beyond complete evaporation, the evolution of the quantum state past the Cauchy horizon cannot remain unitary, raising the questions: how can this evolution be described as a quantum map, and how is causality preserved? What are the possible effects of such non-standard quantum evolution maps on the behaviour of the entangled laboratory partner? More generally, the laws of quantum evolution under extreme conditions in remote regions (not just in evaporating black-hole interiors, but possibly near other naked singularities and regions of extreme spacetime structure) remain untested by observation, and might conceivably be non-unitary or even nonlinear, raising the same questions about the evolution of entangled states. The answers to these questions are subtle, and are linked in unexpected ways to the fundamental laws of quantum mechanics. We show that terrestrial experiments can be designed to probe and constrain exactly how the laws of quantum evolution might be altered, either by black-hole evaporation, or by other extreme processes in remote regions possibly governed by unknown physics
An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem
Directory of Open Access Journals (Sweden)
Meriem Ait Mehdi
2014-01-01
Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.
Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance
Directory of Open Access Journals (Sweden)
Tengfei Shen
2014-02-01
Full Text Available In this article, we consider the multi-point boundary-value problem for nonlinear fractional differential equations with $p$-Laplacian operator: $$\\displaylines{ D_{0^+}^\\beta \\varphi_p (D_{0^+}^\\alpha u(t = f(t,u(t,D_{0^+}^{\\alpha - 2} u(t,D_{0^+}^{\\alpha - 1} u(t, D_{0^+}^\\alpha u(t,\\quad t \\in (0,1, \\cr u(0 = u'(0=D_{0^+}^\\alpha u(0 = 0,\\quad D_{0^+}^{\\alpha - 1} u(1 = \\sum_{i = 1}^m {\\sigma_i D_{0^+}^{\\alpha - 1} u(\\eta_i } , }$$ where $2 < \\alpha \\le 3$, $0 < \\beta \\le 1$, $3 < \\alpha + \\beta \\le 4$, $\\sum_{i = 1}^m {\\sigma_i } = 1$, $D_{0^+}^\\alpha$ is the standard Riemann-Liouville fractional derivative. $\\varphi_{p}(s=|s|^{p-2}s$ is p-Laplacians operator. The existence of solutions for above fractional boundary value problem is obtained by using the extension of Mawhin's continuation theorem due to Ge, which enrich konwn results. An example is given to illustrate the main result.
Convergence of exterior solutions to radial Cauchy solutions for $\\partial_t^2U-c^2\\Delta U=0$
Directory of Open Access Journals (Sweden)
Helge Kristian Jenssen
2016-09-01
Full Text Available Consider the Cauchy problem for the 3-D linear wave equation $\\partial_t^2U-c^2\\Delta U=0$ with radial initial data $U(0,x=\\Phi(x=\\varphi(|x|$, $U_t(0,x=\\Psi(x=\\psi(|x|$. A standard result states that $U$ belongs to $C([0,T];H^s(\\mathbb{R}^3$ whenever $(\\Phi,\\Psi\\in H^s\\times H^{s-1}(\\mathbb{R}^3$. In this article we are interested in the question of how U can be realized as a limit of solutions to initial-boundary value problems on the exterior of vanishing balls $B_\\varepsilon$ about the origin. We note that, as the solutions we compare are defined on different domains, the answer is not an immediate consequence of $H^s$ well-posedness for the wave equation.
Maria Klimikova
2010-01-01
Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.
Discrete random walk models for space-time fractional diffusion
International Nuclear Information System (INIS)
Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo
2002-01-01
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation
International Nuclear Information System (INIS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-01-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
Existence, regularity and representation of solutions of time fractional wave equations
Directory of Open Access Journals (Sweden)
Valentin Keyantuo
2017-09-01
Full Text Available We study the solvability of the fractional order inhomogeneous Cauchy problem $$ \\mathbb{D}_t^\\alpha u(t=Au(t+f(t, \\quad t>0,\\;1<\\alpha\\le 2, $$ where A is a closed linear operator in some Banach space X and $f:[0,\\infty\\to X$ a given function. Operator families associated with this problem are defined and their regularity properties are investigated. In the case where A is a generator of a $\\beta$-times integrated cosine family $(C_\\beta(t$, we derive explicit representations of mild and classical solutions of the above problem in terms of the integrated cosine family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on $L^p$-spaces and on the space of continuous functions.
Abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm
Directory of Open Access Journals (Sweden)
Wang Rong-Nian
2011-01-01
Full Text Available Abstract In the present paper, we deal with the Cauchy problems of abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm, where the operator A in the linear part is the generator of a compact analytic semigroup. New criterions, ensuring the existence of mild solutions, are established. The results are obtained by using the theory of operator families associated with the function of Wright type and the semigroup generated by A, Krasnoselkii's fixed point theorem and Schauder's fixed point theorem. An application to a fractional partial integro-differential equation with nonlocal initial condition is also considered. Mathematics subject classification (2000 26A33, 34G10, 34G20
On a covariant 2+2 formulation of the initial value problem in general relativity
International Nuclear Information System (INIS)
Smallwood, J.
1980-03-01
The initial value problems in general relativity are considered from a geometrical standpoint with especial reference to the development of a covariant 2+2 formalism in which space-time is foliated by space-like 2-surfaces under the headings; the Cauchy problem in general relativity, the covariant 3+1 formulation of the Cauchy problem, characteristic and mixed initial value problems, on locally imbedding a family of null hypersurfaces, the 2+2 formalism, the 2+2 formulation of the Cauchy problem, the 2+2 formulation of the characteristic and mixed initial value problems, and a covariant Lagrangian 2+2 formulation. (U.K.)
Directory of Open Access Journals (Sweden)
Tunjo Perić
2017-01-01
Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.
Fractional charges in external field problems and the inverse scattering method
International Nuclear Information System (INIS)
Grosse, H.; Opelt, G.
1986-01-01
Motivated by recent studies of the quantization of fermions interacting with external soliton fields, we construct all reflectionless potentials for the one-dimensional Dirac operator, which are solitons of coupled MKdV equations. The charge of the fermion field in presence of these solitons varies continuously. For the N-soliton solutions it becomes the sum of the charges of the individual problems. The questions of unitary equivalence of representations of the CAR as well as the implementability of gauge transformations are studied for specific examples. (Author)
On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity
Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia
2008-11-01
Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
A tutorial on inverse problems for anomalous diffusion processes
International Nuclear Information System (INIS)
Jin, Bangti; Rundell, William
2015-01-01
Over the last two decades, anomalous diffusion processes in which the mean squares variance grows slower or faster than that in a Gaussian process have found many applications. At a macroscopic level, these processes are adequately described by fractional differential equations, which involves fractional derivatives in time or/and space. The fractional derivatives describe either history mechanism or long range interactions of particle motions at a microscopic level. The new physics can change dramatically the behavior of the forward problems. For example, the solution operator of the time fractional diffusion diffusion equation has only limited smoothing property, whereas the solution for the space fractional diffusion equation may contain weak singularity. Naturally one expects that the new physics will impact related inverse problems in terms of uniqueness, stability, and degree of ill-posedness. The last aspect is especially important from a practical point of view, i.e., stably reconstructing the quantities of interest. In this paper, we employ a formal analytic and numerical way, especially the two-parameter Mittag-Leffler function and singular value decomposition, to examine the degree of ill-posedness of several ‘classical’ inverse problems for fractional differential equations involving a Djrbashian–Caputo fractional derivative in either time or space, which represent the fractional analogues of that for classical integral order differential equations. We discuss four inverse problems, i.e., backward fractional diffusion, sideways problem, inverse source problem and inverse potential problem for time fractional diffusion, and inverse Sturm–Liouville problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning
Valenzuela García, Carlos; Figueras, Olimpia; Arnau Vera, David; Gutiérrez-Soto, Juan
2017-01-01
In this paper characterizations of mental objects for fractions of middle school students (from 12 to 14 years old) with absenteeism problems and low academic performance, are described. A test was designed as part of a research whose general purpose is to contribute in the building up of better mental objects for fractions through a teaching…
A dental solution to the reproducible frameless stereotactic problem in fractionated radiosurgery
International Nuclear Information System (INIS)
Wasserman, Richard M.; Andres, Eric; Sibata, Claudio; Acharya, Raj; Shin, K.H.
1996-01-01
Purpose/Objective: Stereotactic radiosurgery forms an important component of many brain tumor protocols. Patient treatment may be improved when doses are delivered in a fractionated manner over a series of days. Current radiosurgical practices prevent such treatments due to the inaccuracy associated with repeatedly registering pre-treatment imaging scans with the patient's physical location over a discrete series of sessions. We propose a new system for pseudo-frameless stereotactic radio-surgery in which the traditional halo frame system is replaced by a series of dental brackets attached to the upper teeth of each patient. Each bracket may then be fit with sets of fiducial markers which can be localized in the imaging and physical spaces. Patient immobilization will be performed via a custom fit face mask. By decoupling head localization and head immobilization tasks, highly accurate and reproducible fractionated treatment plans may be delivered during a series of treatment sessions. Materials and Methods An experimental custom phantom system was developed in order to evaluate the efficacy of our approach. A rigid head phantom which may be displaced with three rotational degrees of freedom was constructed and fitted with prototype dental brackets. A high contrast CT imaging fixture was then attached to each bracket. The true position of the fixed dental brackets was calculated by direct measurement prior to imaging. Angular encoders were employed to measure the rotational degrees of freedom of the phantom. Multiple imaging scans over a series of series of days were obtained at the Roswell Park Cancer Institute. The high contrast imaging fixtures were removed and replaced prior to each scan in order to best simulate clinical conditions. The origin of each bracket was calculated using analysis software developed at our institution. In order to localize the bracket coordinates in physical space, a specialized probe was constructed with a tip that can interlock with
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Fibonacci-regularization method for solving Cauchy integral equations of the first kind
Directory of Open Access Journals (Sweden)
Mohammad Ali Fariborzi Araghi
2017-09-01
Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.
Gembong, S.; Suwarsono, S. T.; Prabowo
2018-03-01
Schema in the current study refers to a set of action, process, object and other schemas already possessed to build an individual’s ways of thinking to solve a given problem. The current study aims to investigate the schemas built among elementary school students in solving problems related to operations of addition to fractions. The analyses of the schema building were done qualitatively on the basis of the analytical framework of the APOS theory (Action, Process, Object, and Schema). Findings show that the schemas built on students of high and middle ability indicate the following. In the action stage, students were able to add two fractions by way of drawing a picture or procedural way. In the Stage of process, they could add two and three fractions. In the stage of object, they could explain the steps of adding two fractions and change a fraction into addition of fractions. In the last stage, schema, they could add fractions by relating them to another schema they have possessed i.e. the least common multiple. Those of high and middle mathematic abilities showed that their schema building in solving problems related to operations odd addition to fractions worked in line with the framework of the APOS theory. Those of low mathematic ability, however, showed that their schema on each stage did not work properly.
Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng
2017-01-01
Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.
Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas
2018-05-01
In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.
Energy Technology Data Exchange (ETDEWEB)
Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2010-04-15
A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.
Povstenko, Yuriy
2015-01-01
This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research. The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators. This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...
Trapped surfaces in monopole-like Cauchy data of Einstein-Yang-Mills-Higgs equations
International Nuclear Information System (INIS)
Malec, E.; Koc, P.
1989-08-01
We choose the nonabelian monopole solution of Bogomolny, Prasad and Sommerfield as a part of Cauchy data for the evolution of Einstein-Yang-Mills-Higgs equations. Momentarily static spherically symmetric data for gravitational fields are obtained numerically via the Lichnerowicz equation. In the case of generic scaling of fields we have found initial data with trapped surfaces. (author). 13 refs
DEFF Research Database (Denmark)
Zhdanov, Michael; Cai, Hongzhu
2014-01-01
We introduce a new method of modeling and inversion of potential field data generated by a density contrast surface. Our method is based on 3D Cauchy-type integral representation of the potential fields. Traditionally, potential fields are calculated using volume integrals of the domains occupied...
Neighborhoods of Cauchy horizons in cosmological spacetimes with one killing field
International Nuclear Information System (INIS)
Moncrief, V.
1982-01-01
In this paper we show how to construct an infinite dimensional family of analytic, vacuum spacetimes which each have (i) T 3 x R topology, (ii) a smooth, compact Cauchy horizon, and (iii) a single Killing vector field which is spacelike in the globally hyperbolic region, null on the horizon and timelike in the (acausal) extension. The key idea is to use the horizons themselves as initial data surfaces and to prove the local existence of solutions using a version of the Cauchy-Kowalewski theorem. Factoring by the action of analytic, horizon preserving diffeomorphisms we define a ''space of extendible vacuum spacetimes'' of the given symmetry type and show (modulo certain smoothness estimates which we do not attempt to derive) that this space defines a Lagrangian submanifold of the usual phase space for Einstein's equations. We also study the linear perturbations of a class of the extendible spacetimes and show that the generic such perturbation blows up near the background solution's Cauchy horizon. This result, though limited by the linearity of the approximation, conforms to the usual picture of unstable Cauchy horizons demanded by the strong cosmic censorship conjecture
Fukao, Takeshi; Kurima, Shunsuke; Yokota, Tomomi
2018-05-01
This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial-boundary problem (P) for the nonlinear diffusion equation in an unbounded domain $\\Omega\\subset\\mathbb{R}^N$ ($N\\in{\\mathbb N}$), written as \\[ \\frac{\\partial u}{\\partial t} + (-\\Delta+1)\\beta(u) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which represents the porous media, the fast diffusion equations, etc., where $\\beta$ is a single-valued maximal monotone function on $\\mathbb{R}$, and $T>0$. Existence and uniqueness for (P) were directly proved under a growth condition for $\\beta$ even though the Stefan problem was excluded from examples of (P). This paper completely removes the growth condition for $\\beta$ by confirming Cauchy's criterion for solutions of the following approximate problem (P)$_{\\varepsilon}$ with approximate parameter $\\varepsilon>0$: \\[ \\frac{\\partial u_{\\varepsilon}}{\\partial t} + (-\\Delta+1)(\\varepsilon(-\\Delta+1)u_{\\varepsilon} + \\beta(u_{\\varepsilon}) + \\pi_{\\varepsilon}(u_{\\varepsilon})) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which is called the Cahn--Hilliard system, even if $\\Omega \\subset \\mathbb{R}^N$ ($N \\in \\mathbb{N}$) is an unbounded domain. Moreover, it can be seen that the Stefan problem is covered in the framework of this paper.
Ansorg, Marcus; Hennig, Jörg
2009-06-05
We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ping; Lv, Youbin; Wang, Hong; Chai, Tianyou
2017-09-01
Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation based robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.
Energy Technology Data Exchange (ETDEWEB)
Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu
2009-02-15
The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.
International Nuclear Information System (INIS)
Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W
2009-01-01
The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.
Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution
Energy Technology Data Exchange (ETDEWEB)
Babiuc, Maria [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Szilagyi, Bela [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Hawke, Ian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zlochower, Yosef [Department of Physics and Astronomy, and Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)
2005-12-07
We implement a code to find the gravitational news at future null infinity by using data from a Cauchy code as boundary data for a characteristic code. This technique of Cauchy-characteristic extraction (CCE) allows for the unambiguous extraction of gravitational waves from numerical simulations. We first test the technique on non-radiative spacetimes: Minkowski spacetime, perturbations of Minkowski spacetime and static black hole spacetimes in various gauges. We show the convergence and limitations of the algorithm and illustrate its success in cases where other wave extraction methods fail. We further apply our techniques to a standard radiative test case for wave extraction, a linearized Teukolsky wave, presenting our results in comparison to the Zerilli technique, and we argue for the advantages of our method of extraction.
From Euclidean to Minkowski space with the Cauchy-Riemann equations
International Nuclear Information System (INIS)
Gimeno-Segovia, Mercedes; Llanes-Estrada, Felipe J.
2008-01-01
We present an elementary method to obtain Green's functions in non-perturbative quantum field theory in Minkowski space from Green's functions calculated in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes often is unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore, we suggest to use the Cauchy-Riemann equations, which perform the analytical continuation without assuming global information on the function in the entire complex plane, but only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge quantum chromodynamics, which is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations against high-frequency noise,which makes it difficult to achieve good accuracy. We also point out a few curious details related to the Wick rotation. (orig.)
Codomains for the Cauchy-Riemann and Laplace operators in ℝ2
Directory of Open Access Journals (Sweden)
Lloyd Edgar S. Moyo
2008-01-01
Full Text Available A codomain for a nonzero constant-coefficient linear partial differential operator P(∂ with fundamental solution E is a space of distributions T for which it is possible to define the convolution E*T and thus solving the equation P(∂S=T. We identify codomains for the Cauchy-Riemann operator in ℝ2 and Laplace operator in ℝ2 . The convolution is understood in the sense of the S′-convolution.
A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model
Energy Technology Data Exchange (ETDEWEB)
Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.
2012-10-01
In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.
Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux
International Nuclear Information System (INIS)
Handmer, Casey J; Szilágyi, Béla; Winicour, Jeffrey
2016-01-01
We present a new approach for the Cauchy-characteristic extraction (CCE) of gravitational radiation strain, news function, and the flux of the energy–momentum, supermomentum and angular momentum associated with the Bondi–Metzner–Sachs asymptotic symmetries. In CCE, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space–time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the spectral Einstein code. (paper)
Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric
2017-07-01
We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.
International Nuclear Information System (INIS)
Yin Chen; Xu Mingyu
2009-01-01
We set up a one-dimensional mathematical model with a Caputo fractional operator of a drug released from a polymeric matrix that can be dissolved into a solvent. A two moving boundaries problem in fractional anomalous diffusion (in time) with order α element of (0, 1] under the assumption that the dissolving boundary can be dissolved slowly is presented in this paper. The two-parameter regular perturbation technique and Fourier and Laplace transform methods are used. A dimensionless asymptotic analytical solution is given in terms of the Wright function
Directory of Open Access Journals (Sweden)
Luiza G. Ungarova
2016-12-01
Full Text Available We considere and analyze the uniaxial phenomenological models of viscoelastic deformation based on fractional analogues of Scott Blair, Voigt, Maxwell, Kelvin and Zener rheological models. Analytical solutions of the corresponding differential equations are obtained with fractional Riemann–Liouville operators under constant stress with further unloading, that are written by the generalized (two-parameter fractional exponential function and contains from two to four parameters depending on the type of model. A method for identifying the model parameters based on the background information for the experimental creep curves with constant stresses was developed. Nonlinear problem of parametric identification is solved by two-step iterative method. The first stage uses the characteristic data points diagrams and features in the behavior of the models under unrestricted growth of time and the initial approximation of parameters are determined. At the second stage, the refinement of these parameters by coordinate descent (the Hooke–Jeeves's method and minimizing the functional standard deviation for calculated and experimental values is made. Method of identification is realized for all the considered models on the basis of the known experimental data uniaxial viscoelastic deformation of Polyvinylchloride Elastron at a temperature of 20∘C and five the tensile stress levels. Table-valued parameters for all models are given. The errors analysis of constructed phenomenological models is made to experimental data over the entire ensemble of curves viscoelastic deformation. It was found that the approximation errors for the Scott Blair fractional model is 14.17 %, for the Voigt fractional model is 11.13 %, for the Maxvell fractional model is 13.02 %, for the Kelvin fractional model 10.56 %, for the Zener fractional model is 11.06 %. The graphs of the calculated and experimental dependences of viscoelastic deformation of Polyvinylchloride
Goshvarpour, Ateke; Goshvarpour, Atefeh
2018-04-30
Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.
Global smooth solution of the Cauchy problem for a model of a radiative flow
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2015-01-01
Roč. 14, č. 1 (2015), s. 1-36 ISSN 0391-173X R&D Projects: GA ČR GA201/08/0012 Institutional support: RVO:67985840 Keywords : Navier - Stokes -Fourier system * radiative equilibrium Subject RIV: BA - General Mathematics Impact factor: 0.891, year: 2015 http://annaliscienze.sns.it/index.php?page=Article&id=332
An optimal iterative algorithm to solve Cauchy problem for Laplace equation
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2015-01-01
iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman
A generalization of Schauder's theorem and its application to Cauchy-Kovalevskaya problem
Directory of Open Access Journals (Sweden)
Oleg Zubelevich
2003-05-01
Full Text Available We extend the classical majorant functions method to a PDE system which right hand side is a mapping of one functional space to another. This extension is based on some generalization of the Schauder fixed point theorem.
The Cauchy Problem for Ut = Delta u(m) When 0 m 1.
1985-01-01
Ecuaciones Funcionales, Facultad de Matematicas, Universidad Complutense, Madrid 3, Spain. • * Department of Mathematics, University of Nancy I, B. P. 239...required on u° to provide even a local solution in time, namely * Dpto Ecuaciones Funcionales, Facultad de Matematicas, Universidad Complutense, Madrid 3
Alexiadis, Alessio; Vanni, Marco; Gardin, Pascal
2004-08-01
The method of moment (MOM) is a powerful tool for solving population balance. Nevertheless it cannot be used in every circumstance. Sometimes, in fact, it is not possible to write the governing equations in closed form. Higher moments, for instance, could appear in the evolution of the lower ones. This obstacle has often been resolved by prescribing some functional form for the particle size distribution. Another example is the occurrence of fractional moment, usually connected with the presence of fractal aggregates. For this case we propose a procedure that does not need any assumption on the form of the distribution but it is based on the "moments generating function" (that is the Laplace transform of the distribution). An important result of probability theory is that the kth derivative of the moments generating function represents the kth moment of the original distribution. This result concerns integer moments but, taking in account the Weyl fractional derivative, could be extended to fractional orders. Approximating fractional derivative makes it possible to express the fractional moments in terms of the integer ones and so to use regularly the method of moments.
Želi, Velibor; Zorica, Dušan
2018-02-01
Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Energy Technology Data Exchange (ETDEWEB)
EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr
2009-10-15
We communicate through this work the fractional calculus of variations and its corresponding Euler-Lagrange equations in 1D constrained holonomic, non-holonomic, and semi-holonomic dissipative dynamical system. The extension of the laws obtained to the 2D space state is done. Some interesting consequences are revealed.
Violation of the Cauchy-Schwarz inequality in collective Raman scattering
International Nuclear Information System (INIS)
Shumovskij, A.S.; Tran Quang
1988-01-01
The violation of Cauchy-Schwarz (C-S) inequality for correlations between spectrum components of the Reyleigh line and between components of the Stokes line in the collective Raman scattering is discussed. It is shown that the violation of the C-S inequailty occurs only in the Rayleigh line, moreover, for the sidebands of the Rayleigh line the violation of the C-S inequality takes place for a large number of atoms, which means that this quantum effect has the macroscopic nature. 20 refs.; 3 figs
International Nuclear Information System (INIS)
Kurihara, K.
2000-01-01
A new shape reproduction method is investigated on the basis of an applied mathematical approach. An analytically exact solution of Maxwell's equations in a static current field yields an (boundary) integral equation. In application of this equation to tokamak plasma shape reproduction, it is made clear that a Cauchy condition (both Dirichlet and Neumann conditions) on a hypothetical surface is necessarily identified. To calculate the Cauchy condition using magnetic sensor signals, conversion to numerical formulation of this method is conducted. Then, reproduction errors by this method are evaluated through two numerical tests: The first test uses ideal signals produced from a full equilibrium code in the JT-60 geometry, and the second test uses actual sensor signals in JT-60 experiments. In addition, it is shown that positioning and shape of the Cauchy condition surface is insensitive to reproduction error. Finally, this method is clarified to have preferable features for real-time tokamak reactor control
Directory of Open Access Journals (Sweden)
Jian-Guo Zheng
2015-01-01
Full Text Available Artificial bee colony (ABC algorithm is a popular swarm intelligence technique inspired by the intelligent foraging behavior of honey bees. However, ABC is good at exploration but poor at exploitation and its convergence speed is also an issue in some cases. To improve the performance of ABC, a novel ABC combined with grenade explosion method (GEM and Cauchy operator, namely, ABCGC, is proposed. GEM is embedded in the onlooker bees’ phase to enhance the exploitation ability and accelerate convergence of ABCGC; meanwhile, Cauchy operator is introduced into the scout bees’ phase to help ABCGC escape from local optimum and further enhance its exploration ability. Two sets of well-known benchmark functions are used to validate the better performance of ABCGC. The experiments confirm that ABCGC is significantly superior to ABC and other competitors; particularly it converges to the global optimum faster in most cases. These results suggest that ABCGC usually achieves a good balance between exploitation and exploration and can effectively serve as an alternative for global optimization.
The Cousin problems in the viewpoint of partial differential equations
International Nuclear Information System (INIS)
Le Hung Son.
1990-01-01
In this paper we consider the Cousin problems for overdetermined systems of partial differential equations, which are generalizations of the Cauchy-Riemann system. The general methods for solving these problems are given. Applying the given methods we can solve the Cousin problems for many important systems in theoretical physics. (author). 19 refs
Energy Technology Data Exchange (ETDEWEB)
Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica
1978-08-21
The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
Energy Technology Data Exchange (ETDEWEB)
Noldus, Johan [Universiteit Gent, Vakgroep Wiskundige analyse, Galglaan 2, 9000 Gent (Belgium)
2004-02-21
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.
Absolutely continuous measures and compact composition operator on spaces of Cauchy transforms
Directory of Open Access Journals (Sweden)
Yusuf Abu Muhanna
2004-01-01
Full Text Available The analytic self-map of the unit disk D, φ is said to induce a composition operator Cφ from the Banach space X to the Banach space Y if Cφ(f=f∘φ∈Y for all f∈X. For z∈D and α>0, the families of weighted Cauchy transforms Fα are defined by f(z=∫TKxα(zdμ(x, where μ(x is complex Borel measure, x belongs to the unit circle T, and the kernel Kx(z=(1−x¯z−1. In this paper, we will explore the relationship between the compactness of the composition operator Cφ acting on Fα and the complex Borel measures μ(x.
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
International Nuclear Information System (INIS)
Noldus, Johan
2004-01-01
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one
Different glassy states, as indicated by a violation of the generalized Cauchy relation
Energy Technology Data Exchange (ETDEWEB)
Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Britz, T [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Coutre, A le [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Baller, J [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Possart, W [Universitaet des Saarlandes, Fakultaet fuer Chemie, Pharmazie und Werkstoffwissenschaften 8.15, Gebaeude 22, D-66041 Saarbruecken (Germany); Alnot, P [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Centre Universitaire de Luxembourg, Departement des Sciences, Laboratoire 1.19, 162a Avenue de la Faiencerie, L-1511, Luxembourg (Luxembourg)
2003-07-01
Using Brillouin spectroscopy as a probe for high-frequency clamped acoustic properties, a shear modulus c{sub 44}{sup {infinity}} can be measured in addition to the longitudinal modulus c{sub 11}{sup {infinity}} already well above the thermal glass transition. On slow cooling of the liquid through the thermal glass transition temperature T{sub g}, both moduli show a kink-like behaviour and the function c{sub 11}{sup {infinity}} = c{sub 11}{sup {infinity}}(c{sub 44}{sup {infinity}}) follows a generalized Cauchy relation (gCR) defined by the linear relation c{sub 11}{sup {infinity}} = 3c{sub 44}{sup {infinity}} + constant, which completely hides the glass transition. In this work we show experimentally that on fast cooling this linear transformation becomes violated within the glassy state, but that thermal ageing drives the elastic coefficients towards the gCR, i.e. towards a unique glassy state.
Newton`s iteration for inversion of Cauchy-like and other structured matrices
Energy Technology Data Exchange (ETDEWEB)
Pan, V.Y. [Lehman College, Bronx, NY (United States); Zheng, Ailong; Huang, Xiaohan; Dias, O. [CUNY, New York, NY (United States)
1996-12-31
We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton`s iteration, where the input, output, and all the auxiliary matrices are represented with their short generators defined by the associated scaling operators. The computations are performed fast since they are confined to operations with short generators of the given and computed matrices. Because of the known correlations among various structured matrices, the algorithm is immediately extended to rapid refinement of rough initial approximations to the inverses of Vandermonde-like, Chebyshev-Vandermonde-like and Toeplitz-like matrices, where again, the computations are confined to operations with short generators of the involved matrices.
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Directory of Open Access Journals (Sweden)
Sead Rešić
2016-09-01
Full Text Available Fractions represent the manner of writing parts of whole numbers (integers. Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered, which are essentially related to visualizing operations with fractions.
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
Institute of Scientific and Technical Information of China (English)
Yirang YUAN; Qing YANG; Changfeng LI; Tongjun SUN
2017-01-01
Transient behavior of three-dimensional semiconductor device with heat conduction is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions.The electric potential is defined by an elliptic equation and it appears in the following three equations via the electric field intensity.The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation.A mixed finite volume element approximation,keeping physical conservation law,is used to get numerical values of the electric potential and the accuracy is improved one order.Two concentrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences.This method can overcome numerical oscillation,dispersion and decreases computational complexity.Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened.An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations.This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Sead Rešić; Ismet Botonjić; Maid Omerović
2016-01-01
Fractions represent the manner of writing parts of whole numbers (integers). Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered...
Generalized Cauchy model of sea level fluctuations with long-range dependence
Li, Ming; Li, Jia-Yue
2017-10-01
This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.
Data completion problems solved as Nash games
International Nuclear Information System (INIS)
Habbal, A; Kallel, M
2012-01-01
The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.
Fractional Dynamics and Control
Machado, José; Luo, Albert
2012-01-01
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics Develops new methods for control and synchronization of...
International Nuclear Information System (INIS)
Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.
2007-01-01
We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3
Can Kindergartners Do Fractions?
Cwikla, Julie
2014-01-01
Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…
Fractional variational calculus in terms of Riesz fractional derivatives
International Nuclear Information System (INIS)
Agrawal, O P
2007-01-01
This paper presents extensions of traditional calculus of variations for systems containing Riesz fractional derivatives (RFDs). Specifically, we present generalized Euler-Lagrange equations and the transversality conditions for fractional variational problems (FVPs) defined in terms of RFDs. We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives, functions and parameters, and to unspecified boundary conditions. For the second problem, we present Lagrange-type multiplier rules. For both problems, we develop the Euler-Lagrange-type necessary conditions which must be satisfied for the given functional to be extremum. Problems are considered to demonstrate applications of the formulations. Explicitly, we introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of motion, fractional field theory and fractional optimal control. The formulations presented and the resulting equations are similar to the formulations for FVPs given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math. Gen. 39 10375) and to those that appear in the field of classical calculus of variations. These formulations are simple and can be extended to other problems in the field of fractional calculus of variations
Rahali, Radouane
2013-03-01
In this paper, we investigate the decay property of a Timoshenko system in thermoelasticity of type III in the whole space where the heat conduction is given by the Green and Naghdi theory. Surprisingly, we show that the coupling of the Timoshenko system with the heat conduction of Green and Naghdi\\'s theory slows down the decay of the solution. In fact we show that the L-2-norm of the solution decays like (1 + t)(-1/8), while in the case of the coupling of the Timoshenko system with the Fourier or Cattaneo heat conduction, the decay rate is of the form (1 + t)(-1/4) [25]. We point out that the decay rate of (1 + t)(-1/8) has been obtained provided that the initial data are in L-1 (R) boolean AND H-s (R); (s >= 2). If the wave speeds of the fi rst two equations are di ff erent, then the decay rate of the solution is of regularity-loss type, that is in this case the previous decay rate can be obtained only under an additional regularity assumption on the initial data. In addition, by restricting the initial data to be in H-s (R) boolean AND L-1,L-gamma (R) with gamma is an element of [0; 1], we can derive faster decay estimates with the decay rate improvement by a factor of t(-gamma/4).
Rahali, Radouane; Said-Houari, Belkacem
2013-01-01
or Cattaneo heat conduction, the decay rate is of the form (1 + t)(-1/4) [25]. We point out that the decay rate of (1 + t)(-1/8) has been obtained provided that the initial data are in L-1 (R) boolean AND H-s (R); (s >= 2). If the wave speeds of the fi rst two
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
International Nuclear Information System (INIS)
Saminadayar, L.
2001-01-01
20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)
Fraction Reduction through Continued Fractions
Carley, Holly
2011-01-01
This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.
Intracellular Cadmium Isotope Fractionation
Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.
2011-12-01
Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.
Chen, Li; Chen, Xiaobing
2017-07-01
Whittaker et al. (2015) presented a modified Cauchy number approach for the estimate of flow resistance induced by flexible vegetation. The approach represents a noteworthy effort in quantifying vegetation resistance to streamflow. Here we briefly discuss some theoretical and practical issues of this approach, and show how it is related to the approach developed by Kouwen and others (Kouwen et al., 1969; Kouwen and Unny, 1973) and recently revised by Chen et al. (2014).
Ortiz, Néstor; Sarbach, Olivier
2018-01-01
We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.
Unwrapping Students' Ideas about Fractions
Lewis, Rebecca M.; Gibbons, Lynsey K.; Kazemi, Elham; Lind, Teresa
2015-01-01
Supporting students to develop an understanding of the meaning of fractions is an important goal of elementary school mathematics. This involves developing partitioning strategies, creating representations, naming fractional quantities, and using symbolic notation. This article describes how teachers can use a formative assessment problem to…
Financial Planning with Fractional Goals
Goedhart, Marc; Spronk, Jaap
1995-01-01
textabstractWhen solving financial planning problems with multiple goals by means of multiple objective programming, the presence of fractional goals leads to technical difficulties. In this paper we present a straightforward interactive approach for solving such linear fractional programs with multiple goal variables. The approach is illustrated by means of an example in financial planning.
International Nuclear Information System (INIS)
McRae, G.A.
1992-01-01
It is shown that iterating Aitken's Δ 2 process, or equivalently Shanks' ε algorithm on the partial sums of a Taylor series can lead to a dramatic convergence of the series. This method is compared to the standard technique of accelerating the convergence of series by constructing Pade Approximants. Also, the problem of determining Taylor expansion coefficients from experimental data fitted to Pade Approximants is reviewed, and it is suggested that a method based on this iteration scheme may be better. (author). 6 refs., 1 fig
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues
Davit, Y.
2013-04-30
The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to continuum methods based on partial differential equations, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for noncrystalline materials, it may still be used as a first-order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to two-dimensional cellular-scale models by assessing the mechanical behavior of model biological tissues, including crystalline (honeycomb) and noncrystalline reference states. The numerical procedure involves applying an affine deformation to the boundary cells and computing the quasistatic position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For center-based cell models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based cell models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete and continuous modeling, adaptation of atom-to-continuum techniques to biological
Directory of Open Access Journals (Sweden)
M. L. Kavvas
2017-10-01
Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.
International Nuclear Information System (INIS)
Yuste, Santos Bravo; Abad, Enrique
2011-01-01
We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.
Fractional vector calculus for fractional advection dispersion
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Bergstra, Jan A.
2015-01-01
In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.
Functional Fractional Calculus
Das, Shantanu
2011-01-01
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with 'ordinary' differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematic
International Nuclear Information System (INIS)
Manakov, S V; Santini, P M
2008-01-01
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking
Energy Technology Data Exchange (ETDEWEB)
Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)
2008-02-08
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.
Application of Influence Function Method to the Fretting Wear Problems
Energy Technology Data Exchange (ETDEWEB)
Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)
2006-07-01
Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.
Application of Influence Function Method to the Fretting Wear Problems
International Nuclear Information System (INIS)
Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck
2006-01-01
Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems
Fractional Vector Calculus and Fractional Special Function
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2010-01-01
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
Directory of Open Access Journals (Sweden)
Domoshnitsky Alexander
2009-01-01
Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.
The Initial Conditions of Fractional Calculus
International Nuclear Information System (INIS)
Trigeassou, J. C.; Maamri, N.
2011-01-01
During the past fifty years , Fractional Calculus has become an original and renowned mathematical tool for the modelling of diffusion Partial Differential Equations and the design of robust control algorithms. However, in spite of these celebrated results, some theoretical problems have not yet received a satisfying solution. The mastery of initial conditions, either for Fractional Differential Equations (FDEs) or for the Caputo and Riemann-Liouville fractional derivatives, remains an open research domain. The solution of this fundamental problem, also related to the long range memory property, is certainly the necessary prerequisite for a satisfying approach to modelling and control applications. The fractional integrator and its continuously frequency distributed differential model is a valuable tool for the simulation of fractional systems and the solution of initial condition problems. Indeed, the infinite dimensional state vector of fractional integrators allows the direct generalization to fractional calculus of the theoretical results of integer order systems. After a reminder of definitions and properties related to fractional derivatives and systems, this presentation is intended to show, based on the results of two recent publications [1,2], how the fractional integrator provides the solution of the initial condition problem of FDEs and of Caputo and Riemann-Liouville fractional derivatives. Numerical simulation examples illustrate and validate these new theoretical concepts.
Error analysis of pupils in calculating with fractions
Uranič, Petra
2016-01-01
In this thesis I examine the correlation between the frequency of errors that seventh grade pupils make in their calculations with fractions and their level of understanding of fractions. Fractions are a relevant and demanding theme in the mathematics curriculum. Although we use fractions on a daily basis, pupils find learning fractions to be very difficult. They generally do not struggle with the concept of fractions itself, but they frequently have problems with mathematical operations ...
Fractional Laplace Transforms - A Perspective
Directory of Open Access Journals (Sweden)
Rudolf A. Treumann
2014-06-01
Full Text Available A new form of the Laplace transform is reviewed as a paradigm for an entire class of fractional functional transforms. Various of its properties are discussed. Such transformations should be useful in application to differential/integral equations or problems in non-extensive statistical mechanics.
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima
2015-07-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Fractional statistics and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1985-01-01
The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
A Fractional Micro-Macro Model for Crowds of Pedestrians Based on Fractional Mean Field Games
Institute of Scientific and Technical Information of China (English)
Kecai Cao; Yang Quan Chen; Daniel Stuart
2016-01-01
Modeling a crowd of pedestrians has been considered in this paper from different aspects. Based on fractional microscopic model that may be much more close to reality, a fractional macroscopic model has been proposed using conservation law of mass. Then in order to characterize the competitive and cooperative interactions among pedestrians, fractional mean field games are utilized in the modeling problem when the number of pedestrians goes to infinity and fractional dynamic model composed of fractional backward and fractional forward equations are constructed in macro scale. Fractional micromacro model for crowds of pedestrians are obtained in the end.Simulation results are also included to illustrate the proposed fractional microscopic model and fractional macroscopic model,respectively.
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Energy Technology Data Exchange (ETDEWEB)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
International Nuclear Information System (INIS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Higher fractions theory of fractional hall effect
International Nuclear Information System (INIS)
Kostadinov, I.Z.; Popov, V.N.
1985-07-01
A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2013-02-01
Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.
Multidimensional integral representations problems of analytic continuation
Kytmanov, Alexander M
2015-01-01
The monograph is devoted to integral representations for holomorphic functions in several complex variables, such as Bochner-Martinelli, Cauchy-Fantappiè, Koppelman, multidimensional logarithmic residue etc., and their boundary properties. The applications considered are problems of analytic continuation of functions from the boundary of a bounded domain in C^n. In contrast to the well-known Hartogs-Bochner theorem, this book investigates functions with the one-dimensional property of holomorphic extension along complex lines, and includes the problems of receiving multidimensional boundary analogs of the Morera theorem. This book is a valuable resource for specialists in complex analysis, theoretical physics, as well as graduate and postgraduate students with an understanding of standard university courses in complex, real and functional analysis, as well as algebra and geometry.
Semi-infinite fractional programming
Verma, Ram U
2017-01-01
This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems. In the current interdisciplinary supercomputer-oriented research envi...
Calculus of variations involving Caputo-Fabrizio fractional differentiation
Directory of Open Access Journals (Sweden)
Nuno R. O. Bastos
2018-02-01
Full Text Available This paper is devoted to study some variational problems with functionals containing the Caputo-Fabrizio fractional derivative, that is a fractional derivative with a non-singular kernel.
Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".
Laskin, Nick
2016-06-01
The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Elsaid, A.; Abdel Latif, M. S.; Maneea, M.
2016-01-01
Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on ...
Semianalytic Solution of Space-Time Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.
Asphalt chemical fractionation
International Nuclear Information System (INIS)
Obando P, Klever N.
1998-01-01
Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)
Paneva-Konovska, Jordanka
2013-10-01
In this paper we consider a family of 3 m-indices generalizations of the classical Mittag-Leffler function, called multi-index (3 m-parametric) Mittag-Leffler functions. We survey the basic properties of these entire functions, find their order and type, and new representations by means of Mellin-Barnes type contour integrals, Wright p Ψ q -functions and Fox H-functions, asymptotic estimates. Formulas for integer and fractional order integration and differentiations are found, and these are extended also for the operators of the generalized fractional calculus (multiple Erdélyi-Kober operators). Some interesting particular cases of the multi-index Mittag-Leffler functions are discussed. The convergence of series of such type functions in the complex plane is considered, and analogues of the Cauchy-Hadamard, Abel, Tauber and Littlewood theorems are provided.
Smarandache Continued Fractions
Ibstedt, H.
2001-01-01
The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.
Microfluidic Devices for Blood Fractionation
Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck
2011-01-01
Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...
Shamim, Atif
2011-03-01
For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Dey, Aloke
2009-01-01
A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...
Dividing Fractions: A Pedagogical Technique
Lewis, Robert
2016-01-01
When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…
A new algorithm for generalized fractional programs
J.B.G. Frenk (Hans); A.I. Barros (Ana); S. Schaible; S. Zhang (Shuzhong)
1996-01-01
textabstractA new dual problem for convex generalized fractional programs with no duality gap is presented and it is shown how this dual problem can be efficiently solved using a parametric approach. The resulting algorithm can be seen as “dual” to the Dinkelbach-type algorithm for generalized
Sukhomlinov, Sergey V; Müser, Martin H
2015-12-14
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Fractional distillation of oil
Energy Technology Data Exchange (ETDEWEB)
Jones, L D
1931-10-31
A method of dividing oil into lubricating oil fractions without substantial cracking by introducing the oil in a heated state into a fractionating column from which oil fractions having different boiling points are withdrawn at different levels, while reflux liquid is supplied to the top of the column, and additional heat is introduced into the column by contacting with the oil therein a heated fluid of higher monlecular weight than water and less susceptible to thermal decomposition than is the highest boiling oil fraction resulting from the distillation, or of which any products produced by thermal decomposition will not occur in the highest boiling distillate withdrawn from the column.
Fractional-Order Variational Calculus with Generalized Boundary Conditions
Directory of Open Access Journals (Sweden)
Baleanu Dumitru
2011-01-01
Full Text Available This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.
Bertrand's theorem and virial theorem in fractional classical mechanics
Yu, Rui-Yan; Wang, Towe
2017-09-01
Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane
2012-01-01
This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…
A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Pezza L.
2018-03-01
Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2014-01-01
Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.
Generalized continued fractions and ergodic theory
International Nuclear Information System (INIS)
Pustyl'nikov, L D
2003-01-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest
International Nuclear Information System (INIS)
El-Nabulsi, Ahmad Rami
2009-01-01
Multidimensional fractional actionlike variational problem with time-dependent dynamical fractional exponents is constructed. Fractional Euler-Lagrange equations are derived and discussed in some details. The results obtained are used to explore some novel aspects of fractional quantum field theory where many interesting consequences are revealed, in particular the complexification of quantum field theory, in particular Dirac operators and the novel notion of 'mass without mass'.
Fractional Order Generalized Information
Directory of Open Access Journals (Sweden)
José Tenreiro Machado
2014-04-01
Full Text Available This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
Social Trust and Fractionalization:
DEFF Research Database (Denmark)
Bjørnskov, Christian
2008-01-01
This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....
Fractional calculus in bioengineering, part 3.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Shamim, Atif; Radwan, Ahmed Gomaa; Salama, Khaled N.
2011-01-01
matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Fractional laser skin resurfacing.
Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A
2012-11-01
Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.
Series expansion in fractional calculus and fractional differential equations
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2009-01-01
Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce fractional series expansion method to fractional calculus. We define a kind of fractional Taylor series of an infinitely fractionally-differentiable function. Further, based on our definition we generalize hypergeometric functio...
The basis property of eigenfunctions in the problem of a nonhomogeneous damped string
Directory of Open Access Journals (Sweden)
Łukasz Rzepnicki
2017-01-01
Full Text Available The equation which describes the small vibrations of a nonhomogeneous damped string can be rewritten as an abstract Cauchy problem for the densely defined closed operator \\(i A\\. We prove that the set of root vectors of the operator \\(A\\ forms a basis of subspaces in a certain Hilbert space \\(H\\. Furthermore, we give the rate of convergence for the decomposition with respect to this basis. In the second main result we show that with additional assumptions the set of root vectors of the operator \\(A\\ is a Riesz basis for \\(H\\.
Blow up of solutions to ordinary differential equations arising in nonlinear dispersive problems
Directory of Open Access Journals (Sweden)
Milena Dimova
2018-03-01
Full Text Available We study a new class of ordinary differential equations with blow up solutions. Necessary and sufficient conditions for finite blow up time are proved. Based on the new differential equation, a revised version of the concavity method of Levine is proposed. As an application we investigate the non-existence of global solutions to the Cauchy problem of Klein-Gordon, and to the double dispersive equations. We obtain necessary and sufficient condition for finite time blow up with arbitrary positive energy. A very general sufficient condition for blow up is also given.
Numerical Inversion for the Multiple Fractional Orders in the Multiterm TFDE
Sun, Chunlong; Li, Gongsheng; Jia, Xianzheng
2017-01-01
The fractional order in a fractional diffusion model is a key parameter which characterizes the anomalous diffusion behaviors. This paper deals with an inverse problem of determining the multiple fractional orders in the multiterm time-fractional diffusion equation (TFDE for short) from numerics. The homotopy regularization algorithm is applied to solve the inversion problem using the finite data at one interior point in the space domain. The inversion fractional orders with random noisy data...
An inverse spectral problem related to the Geng-Xue two-component peakon equation
Lundmark, Hans
2016-01-01
The authors solve a spectral and an inverse spectral problem arising in the computation of peakon solutions to the two-component PDE derived by Geng and Xue as a generalization of the Novikov and Degasperisâe"Procesi equations. Like the spectral problems for those equations, this one is of a âeoediscrete cubic stringâe typeâe"a nonselfadjoint generalization of a classical inhomogeneous stringâe"but presents some interesting novel features: there are two Lax pairs, both of which contribute to the correct complete spectral data, and the solution to the inverse problem can be expressed using quantities related to Cauchy biorthogonal polynomials with two different spectral measures. The latter extends the range of previous applications of Cauchy biorthogonal polynomials to peakons, which featured either two identical, or two closely related, measures. The method used to solve the spectral problem hinges on the hidden presence of oscillatory kernels of Gantmacherâe"Krein type, implying that the spectrum of...
Generalized variational formulations for extended exponentially fractional integral
Directory of Open Access Journals (Sweden)
Zuo-Jun Wang
2016-01-01
Full Text Available Recently, the fractional variational principles as well as their applications yield a special attention. For a fractional variational problem based on different types of fractional integral and derivatives operators, corresponding fractional Lagrangian and Hamiltonian formulation and relevant Euler–Lagrange type equations are already presented by scholars. The formulations of fractional variational principles still can be developed more. We make an attempt to generalize the formulations for fractional variational principles. As a result we obtain generalized and complementary fractional variational formulations for extended exponentially fractional integral for example and corresponding Euler–Lagrange equations. Two illustrative examples are presented. It is observed that the formulations are in exact agreement with the Euler–Lagrange equations.
On the solution of fractional evolution equations
International Nuclear Information System (INIS)
Kilbas, Anatoly A; Pierantozzi, Teresa; Trujillo, Juan J; Vazquez, Luis
2004-01-01
This paper is devoted to the solution of the bi-fractional differential equation ( C D α t u)(t, x) = λ( L D β x u)(t, x) (t>0, -∞ 0 and λ ≠ 0, with the initial conditions lim x→±∞ u(t,x) = 0 u(0+,x)=g(x). Here ( C D α t u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 L D β x u)(t, x)) is the Liouville partial fractional derivative ( L D β t u)(t, x)) of order β > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case α = 1/2 and β = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation
Table-sized matrix model in fractional learning
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on the obtained results, we propose a definition for a multiterm error function with generalized coefficients.
Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António
2017-01-01
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...
Remarks for one-dimensional fractional equations
Directory of Open Access Journals (Sweden)
Massimiliano Ferrara
2014-01-01
Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.
On solutions of variable-order fractional differential equations
Directory of Open Access Journals (Sweden)
Ali Akgül
2017-01-01
solutions to fractional differential equations are compelling to get in real applications, due to the nonlocality and complexity of the fractional differential operators, especially for variable-order fractional differential equations. Therefore, it is significant to enhanced numerical methods for fractional differential equations. In this work, we consider variable-order fractional differential equations by reproducing kernel method. There has been much attention in the use of reproducing kernels for the solutions to many problems in the recent years. We give two examples to demonstrate how efficiently our theory can be implemented in practice.
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
Vinogradova, Natalya; Blaine, Larry
2013-01-01
Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…
Fermion Number Fractionization
Indian Academy of Sciences (India)
Srimath
1 . In tro d u ctio n. T he N obel P rize in C hem istry for the year 2000 w as aw arded to A lan J H ... soliton, the ground state of the ferm ion-soliton system can have ..... probability density,in a heuristic w ay that a fractional ferm ion num ber m ay ...
Momentum fractionation on superstrata
International Nuclear Information System (INIS)
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-01-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Moustafa El-Shahed
2007-01-01
where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.
Vapor liquid fraction determination
International Nuclear Information System (INIS)
1980-01-01
This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)
Brewing with fractionated barley
Donkelaar, van L.H.G.
2016-01-01
Brewing with fractionated barley
Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental
Fractionation and rectification apparatus
Energy Technology Data Exchange (ETDEWEB)
Sauerwald, A
1932-05-25
Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.
International Nuclear Information System (INIS)
Innes, W.; Klein, S.; Perl, M.; Price, J.C.
1982-06-01
A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour
Constructive Solution of Ellipticity Problem for the First Order Differential System
Directory of Open Access Journals (Sweden)
Vladimir E. Balabaev
2017-01-01
Full Text Available We built first order elliptic systems with any possible number of unknown functions and the maximum possible number of unknowns, i.e, in general. These systems provide the basis for studying the properties of any first order elliptic systems. The study of the Cauchy-Riemann system and its generalizations led to the identification of a class of elliptic systems of first-order of a special structure. An integral representation of solutions is of great importance in the study of these systems. Only by means of a constructive method of integral representations we can solve a number of problems in the theory of elliptic systems related mainly to the boundary properties of solutions. The obtained integral representation could be applied to solve a number of problems that are hard to solve, if you rely only on the non-constructive methods. Some analogues of the theorems of Liouville, Weierstrass, Cauchy, Gauss, Morera, an analogue of Green’s formula are established, as well as an analogue of the maximum principle. The used matrix operators allow the new structural arrangement of the maximum number of linearly independent vector fields on spheres of any possible dimension. Also the built operators allow to obtain a constructive solution of the extended problem ”of the sum of squares” known in algebra.
Preservice Elementary School Teachers' Knowledge of Fractions: A Mirror of Students' Knowledge?
Van Steenbrugge, H.; Lesage, E.; Valcke, M.; Desoete, A.
2014-01-01
This research analyses preservice teachers' knowledge of fractions. Fractions are notoriously difficult for students to learn and for teachers to teach. Previous studies suggest that student learning of fractions may be limited by teacher understanding of fractions. If so, teacher education has a key role in solving the problem. We first reviewed…
Microfluidic Devices for Blood Fractionation
Directory of Open Access Journals (Sweden)
Chwee Teck Lim
2011-07-01
Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.
Modified Legendre Wavelets Technique for Fractional Oscillation Equations
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2015-10-01
Full Text Available Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
On matrix fractional differential equations
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2017-01-01
Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.
Hamiltonian Chaos and Fractional Dynamics
International Nuclear Information System (INIS)
Combescure, M
2005-01-01
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Future Directions in Fractional Calculus Research and Applications
2017-10-31
00 Hong Wang: Fast Numerical Methods and Mathematical Analysis of Fractional Partial Dierential Equations [Abstract - Presentation] 5:00 Poster...Quantum Mechanics [Abstract] 3:00 Changpin Li: The Finite Dierence Method for Caputo-type Parabolic Equation with Fractional Laplacian [Abstract] 4...Session A Petrov-Galerkin Spectral Element Method for Fractional Elliptic Problems Density Bounds for some Degenerate Stable Driven SDEs. 11/8/2017 A
The Local Fractional Bootstrap
DEFF Research Database (Denmark)
Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger
We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our...... new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method...
Fractionalization and Entrepreneurial Activities
Awaworyi Churchill, Sefa
2015-01-01
The vast majority of the literature on ethnicity and entrepreneurship focuses on the construct of ethnic entrepreneurship. However, very little is known about how ethnic heterogeneity affects entrepreneurship. This study attempts to fill the gap, and thus examines the effect of ethnic heterogeneity on entrepreneurial activities in a cross-section of 90 countries. Using indices of ethnic and linguistic fractionalization, we show that ethnic heterogeneity negatively influences entrepreneurship....
Directory of Open Access Journals (Sweden)
Pooja Gupta Sidney
2017-07-01
Full Text Available When children learn about fractions, their prior knowledge of whole numbers often interferes, resulting in a whole number bias. However, many fraction concepts are generalizations of analogous whole number concepts; for example, fraction division and whole number division share a similar conceptual structure. Drawing on past studies of analogical transfer, we hypothesize that children’s whole number division knowledge will support their understanding of fraction division when their relevant prior knowledge is activated immediately before engaging with fraction division. Children in 5th and 6th grade modeled fraction division with physical objects after modeling a series of addition, subtraction, multiplication, and division problems with whole number operands and fraction operands. In one condition, problems were blocked by operation, such that children modeled fraction problems immediately after analogous whole number problems (e.g., fraction division problems followed whole number division problems. In another condition, problems were blocked by number type, such that children modeled all four arithmetic operations with whole numbers in the first block, and then operations with fractions in the second block. Children who solved whole number division problems immediately before fraction division problems were significantly better at modeling the conceptual structure of fraction division than those who solved all of the fraction problems together. Thus, implicit analogies across shared concepts can affect children’s mathematical thinking. Moreover, specific analogies between whole number and fraction concepts can yield a positive, rather than a negative, whole number bias.
The fundamental solutions for fractional evolution equations of parabolic type
Directory of Open Access Journals (Sweden)
Mahmoud M. El-Borai
2004-01-01
Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.
On Some Fractional Stochastic Integrodifferential Equations in Hilbert Space
Directory of Open Access Journals (Sweden)
Hamdy M. Ahmed
2009-01-01
Full Text Available We study a class of fractional stochastic integrodifferential equations considered in a real Hilbert space. The existence and uniqueness of the Mild solutions of the considered problem is also studied. We also give an application for stochastic integropartial differential equations of fractional order.
Problems for the seminar, ICTP, 2007-2008
International Nuclear Information System (INIS)
Arnold, V.
2008-01-01
The following problems for the ICPT seminar 2007-2008 are specified: topological classification of polynomials; equipartition of indivisible integer vectors; geometrical progressions? fractional parts? equipartitions; statistics of continued fractions of eigenvalues of matrices; growth rate of elements of periodic continued fractions; periods of geometrical progressions of residues; Kolmogorov?s distributions; stochasticity degree of arithmetical progressions of fractional parts; is a generic geometrical progression of fractional parts random?; prime numbers distribution?s randomness; algorithmic unsolvability of problems of higher dimensional continued fractions; periods of continued fractions of roots of quadratic equations; statistics of lengths of periods of continued fractions of quadratic irrational numbers; random matrices? characteristic polynomials distributions
Directory of Open Access Journals (Sweden)
M.H.T. Alshbool
2017-01-01
Full Text Available An algorithm for approximating solutions to fractional differential equations (FDEs in a modified new Bernstein polynomial basis is introduced. Writing x→xα(0<α<1 in the operational matrices of Bernstein polynomials, the fractional Bernstein polynomials are obtained and then transformed into matrix form. Furthermore, using Caputo fractional derivative, the matrix form of the fractional derivative is constructed for the fractional Bernstein matrices. We convert each term of the problem to the matrix form by means of fractional Bernstein matrices. A basic matrix equation which corresponds to a system of fractional equations is utilized, and a new system of nonlinear algebraic equations is obtained. The method is given with some priori error estimate. By using the residual correction procedure, the absolute error can be estimated. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.
QUALITATIVE ANALYSIS OF EXTREMAL PROBLEMS IN ARBITRARY DOMAINS
Directory of Open Access Journals (Sweden)
Samokhin Mikhail Vasilevich
2012-10-01
The author considers the problems concerning where B is either a unit sphere in the (D space or one of the classes , p>1. He shows the possibility of the results concerning the characteristic of extreme functions, their uniqueness, the possilble presentation of the functions from the classes and with the use of the Cauchy-Stieltjes integrals in the component of the D\\ suppµ set and the boundary behavior of an extreme function from the (D class. One should note that the given mathematical system can be implemented for making decisions in the field of construction engineering and structural analysis, it can provide research assistants and engineers with the background necessary for developing sound solutions and rational proposals.
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations
Zhao, Jianping; Tang, Bo; Kumar, Sunil; Hou, Yanren
2012-01-01
An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powe...
Andreasen, Niels; Bjerregaard, Mads; Lund, Jonas; Olsen, Ove Bitsch; Rasmussen, Andreas Dalgas
2012-01-01
Projektet er bygget op omkring kritisk realisme, som er det gennemgående videnskabelige fundament til undersøgelsen af hvilke strukturelle grunde der er til finansiel ustabilitet i Danmark. Projektet går i dybden med Fractional Reserve Banking og incitamentsstrukturen i banksystemet. Vi bevæger os både på det makro- og mikroøkonomiske niveau i analysen. På makro niveau bruger vi den østrigske skole om konjunktur teori (The Positive Theory of the Cycle). På mikro niveau arbejder vi med princip...
Farrugia, Albert; Evers, Theo; Falcou, Pierre-Francois; Burnouf, Thierry; Amorim, Luiz; Thomas, Sylvia
2009-04-01
Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.
Designing an automated blood fractionation system.
McQuillan, Adrian C; Sales, Sean D
2008-04-01
UK Biobank will be collecting blood samples from a cohort of 500 000 volunteers and it is expected that the rate of collection will peak at approximately 3000 blood collection tubes per day. These samples need to be prepared for long-term storage. It is not considered practical to manually process this quantity of samples so an automated blood fractionation system is required. Principles of industrial automation were applied to the blood fractionation process leading to the requirement of developing a vision system to identify the blood fractions within the blood collection tube so that the fractions can be accurately aspirated and dispensed into micro-tubes. A prototype was manufactured and tested on a range of human blood samples collected in different tube types. A specially designed vision system was capable of accurately measuring the position of the plasma meniscus, plasma/buffy coat interface and the red cells/buffy coat interface within a vacutainer. A rack of 24 vacutainers could be processed in blood fractionation system offers a solution to the problem of processing human blood samples collected in vacutainers in a consistent manner and provides a means of ensuring data and sample integrity.
Advances in robust fractional control
Padula, Fabrizio
2015-01-01
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...
International Nuclear Information System (INIS)
Turner, R.E.
1984-01-01
A search was made for fractional charges of the form Z plus two-thirds e, where Z is an integer. It was assumed that the charges exist in natural form bound with other fractional charges in neutral molecules. It was further assumed that these neutral molecules are present in air. Two concentration schemes were employed. One sample was derived from the waste gases from a xenon distillation plant. This assumes that high mass, low vapor pressure components of air are concentrated along with the xenon. The second sample involved ionizing air, allowing a brief recombination period, and then collecting residual ions on the surface of titanium discs. Both samples were analyzed at the University of Rochester in a system using a tandem Van de Graff to accelerate particles through an essentially electrostatic beam handling system. The detector system employed both a Time of Flight and an energy-sensitive gas ionization detector. In the most sensitive mode of analysis, a gas absorber was inserted in the beam path to block the intense background. The presence of an absorber limited the search to highly penetrating particles. Effectively, this limited the search to particles with low Z and masses greater than roughly fifty GeV. The final sensitivities attained were on the order of 1 x 10 -20 for the ionized air sample and 1 x 10 -21 for the gas sample. A discussion of the caveats that could reduce the actual level of sensitivity is included
Dynamical models of happiness with fractional order
Song, Lei; Xu, Shiyun; Yang, Jianying
2010-03-01
This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.
Fractional Reserve in Banking System
Valkonen, Maria
2016-01-01
This thesis is aimed to provide understanding of the role of the fractional reserve in the mod-ern banking system worldwide and particularly in Finland. The fractional reserve banking is used worldwide, but the benefits of this system are very disputable. On the one hand, experts say that the fractional reserve is a necessary instrument for the normal business and profit making. On the other hand, sceptics openly criticize the fractional reserve system and blame it for fiat money (money n...
On matrix fractional differential equations
Adem Kılıçman; Wasan Ajeel Ahmood
2017-01-01
The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
The random continued fraction transformation
Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny
2017-03-01
We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.
How Weird Are Weird Fractions?
Stuffelbeam, Ryan
2013-01-01
A positive rational is a weird fraction if its value is unchanged by an illegitimate, digit-based reduction. In this article, we prove that each weird fraction is uniquely weird and initiate a discussion of the prevalence of weird fractions.
Do Children Understand Fraction Addition?
Braithwaite, David W.; Tian, Jing; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Chiral anomaly, bosonization and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Rego Monteiro, M.A. do.
1984-01-01
A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt
Chiral anomaly, bosonization, and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Monteiro, M.A.R.
1985-01-01
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators
Numerical Inversion for the Multiple Fractional Orders in the Multiterm TFDE
Directory of Open Access Journals (Sweden)
Chunlong Sun
2017-01-01
Full Text Available The fractional order in a fractional diffusion model is a key parameter which characterizes the anomalous diffusion behaviors. This paper deals with an inverse problem of determining the multiple fractional orders in the multiterm time-fractional diffusion equation (TFDE for short from numerics. The homotopy regularization algorithm is applied to solve the inversion problem using the finite data at one interior point in the space domain. The inversion fractional orders with random noisy data give good approximations to the exact order demonstrating the efficiency of the inversion algorithm and numerical stability of the inversion problem.
Directory of Open Access Journals (Sweden)
Amal Khalaf Haydar
2016-01-01
Full Text Available The main aim in this paper is to use all the possible arrangements of objects such that r1 of them are equal to 1 and r2 (the others of them are equal to 2, in order to generalize the definitions of Riemann-Liouville and Caputo fractional derivatives (about order 0<β
Zhang, Dake; Stecker, Pamela; Huckabee, Sloan; Miller, Rhonda
2016-01-01
Research has suggested that different strategies used when solving fraction problems are highly correlated with students' problem-solving accuracy. This study (a) utilized latent profile modeling to classify students into three different strategic developmental levels in solving fraction comparison problems and (b) accordingly provided…
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
Membrane Assisted Enzyme Fractionation
DEFF Research Database (Denmark)
Yuan, Linfeng
to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...
Fraction Reduction in Membrane Systems
Directory of Open Access Journals (Sweden)
Ping Guo
2014-01-01
Full Text Available Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to performing the rational computation in P systems since the rational operands can be given in the form of fraction.
Thermochemical transformations of anthracite fractions
Energy Technology Data Exchange (ETDEWEB)
Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.
1979-08-01
Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)
... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may ... related injuries, such as a hip fracture. Some balance problems are due to problems in the inner ...
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Belkhatir, Zehor
2015-11-05
This paper deals with the joint estimation of the unknown input and the fractional differentiation orders of a linear fractional order system. A two-stage algorithm combining the modulating functions with a first-order Newton method is applied to solve this estimation problem. First, the modulating functions approach is used to estimate the unknown input for a given fractional differentiation orders. Then, the method is combined with a first-order Newton technique to identify the fractional orders jointly with the input. To show the efficiency of the proposed method, numerical examples illustrating the estimation of the neural activity, considered as input of a fractional model of the neurovascular coupling, along with the fractional differentiation orders are presented in both noise-free and noisy cases.
[Population problem, comprehension problem].
Tallon, F
1993-08-01
Overpopulation of developing countries in general, and Rwanda in particular, is not just their problem but a problem for developed countries as well. Rapid population growth is a key factor in the increase of poverty in sub-Saharan Africa. Population growth outstrips food production. Africa receives more and more foreign food, economic, and family planning aid each year. The Government of Rwanda encourages reduced population growth. Some people criticize it, but this criticism results in mortality and suffering. One must combat this ignorance, but attitudes change slowly. Some of these same people find the government's acceptance of family planning an invasion of their privacy. Others complain that rich countries do not have campaigns to reduce births, so why should Rwanda do so? The rate of schooling does not increase in Africa, even though the number of children in school increases, because of rapid population growth. Education is key to improvements in Africa's socioeconomic growth. Thus, Africa, is underpopulated in terms of potentiality but overpopulated in terms of reality, current conditions, and possibilities of overexploitation. Africa needs to invest in human resources. Families need to save, and to so, they must refrain from having many children. Africa should resist the temptation to waste, as rich countries do, and denounce it. Africa needs to become more independent of these countries, but structural adjustment plans, growing debt, and rapid population growth limit national independence. Food aid is a means for developed countries to dominate developing countries. Modernization through foreign aid has had some positive effects on developing countries (e.g., improved hygiene, mortality reduction), but these also sparked rapid population growth. Rwandan society is no longer traditional, but it is also not yet modern. A change in mentality to fewer births, better quality of life for living infants, better education, and less burden for women must occur
Misonidazole in fractionated radiotherapy: are many small fractions best
International Nuclear Information System (INIS)
Denekamp, J.; McNally, N.J.; Fowler, J.F.; Joiner, M.C.
1980-01-01
The largest sensitizing effect is always demonstrated with six fractions, each given with 2 g/m 2 of misonidazole. In the absence of reoxygenation a sensitizer enhancement ratio of 1.7 is predicted, but this falls to 1.1-1.2 if extensive reoxygenation occurs. Less sensitization is observed with 30 fractions, each with 0.4 g/m 2 of drug. However, for clinical use, the important question is which treatment kills the maximum number of tumour cells. Many of the simulations predict a marked disadvantage of reducing the fraction number for X rays alone. The circumstances in which this disadvantage is offset by the large Sensitizer enhancement ratio values with a six-fraction schedule are few. The model calculations suggest that many small fractions, each with a low drug dose, are safest unless the clinician has some prior knowledge that a change in fraction number is not disadvantageous. (author)
Fractional statistics and fractional quantized Hall effect. Revision
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Boundary value problemfor multidimensional fractional advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2015-05-01
Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the
Fractionation of Pb and Cu in the fine fraction (landfill.
Kaczala, Fabio; Orupõld, Kaja; Augustsson, Anna; Burlakovs, Juris; Hogland, Marika; Bhatnagar, Amit; Hogland, William
2017-11-01
The fractionation of metals in the fine fraction (landfill was carried out to evaluate the metal (Pb and Cu) contents and their potential towards not only mobility but also possibilities of recovery/extraction. The fractionation followed the BCR (Community Bureau of Reference) sequential extraction, and the exchangeable (F1), reducible (F2), oxidizable (F3) and residual fractions were determined. The results showed that Pb was highly associated with the reducible (F2) and oxidizable (F3) fractions, suggesting the potential mobility of this metal mainly when in contact with oxygen, despite the low association with the exchangeable fraction (F1). Cu has also shown the potential for mobility when in contact with oxygen, since high associations with the oxidizable fraction (F3) were observed. On the other hand, the mobility of metals in excavated waste can be seen as beneficial considering the circular economy and recovery of such valuables back into the economy. To conclude, not only the total concentration of metals but also a better understanding of fractionation and in which form metals are bound is very important to bring information on how to manage the fine fraction from excavated waste both in terms of environmental impacts and also recovery of such valuables in the economy.
Modelling altered fractionation schedules
International Nuclear Information System (INIS)
Fowler, J.F.
1993-01-01
The author discusses the conflicting requirements of hyperfractionation and accelerated fractionation used in radiotherapy, and the development of computer modelling to predict how to obtain an optimum of tumour cell kill without exceeding normal-tissue tolerance. The present trend is to shorten hyperfractionated schedules from 6 or 7 weeks to give overall times of 4 or 5 weeks as in new schedules by Herskovic et al (1992) and Harari (1992). Very high doses are given, much higher than can be given when ultrashort schedules such as CHART (12 days) are used. Computer modelling has suggested that optimum overall times, to yield maximum cell kill in tumours ((α/β = 10 Gy) for a constant level of late complications (α/β = 3 Gy) would be X or X-1 weeks, where X is the doubling time of the tumour cells in days (Fowler 1990). For median doubling times of about 5 days, overall times of 4 or 5 weeks should be ideal. (U.K.)
Motivation Cards to Support Students’ Understanding on Fraction Division
Directory of Open Access Journals (Sweden)
Kamirsyah Wahyu
2017-02-01
Full Text Available This design research aims to develop a learning activity which supports the fifth-grade students to understand measurement fraction division problems (A whole number divided by a fraction that result in a whole number answer conceptually. Furthermore, how students solve the fraction division problem using models is also analyzed. Data for the retrospective analysis is collected through two teaching experiments in the form of students’ work, field notes, and some part of classroom discussions. The important findings in this research are: 1 the developed learning activity namely Motivation Cards support students understand that 3 divided by one-half means how many one-half are in 3 through models. However, when the divisor is not a unit fraction they could not directly relate the unshaded part in area model for example. 2 area model is proper model to be firstly introduced when the students work on fraction division. 3 understanding this kind of fraction division help students understand other measurement fraction division where both divisor and dividend are fractions. 4 the learning activity supports the development of character values for students.
Fractional power operation of tokamak reactors
International Nuclear Information System (INIS)
Mau, T.K.; Vold, E.L.; Conn, R.W.
1986-01-01
Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement
Generalized Functions for the Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
1999-01-01
Previous papers have used two important functions for the solution of fractional order differential equations, the Mittag-Leffler functionE(sub q)[at(exp q)](1903a, 1903b, 1905), and the F-function F(sub q)[a,t] of Hartley & Lorenzo (1998). These functions provided direct solution and important understanding for the fundamental linear fractional order differential equation and for the related initial value problem (Hartley and Lorenzo, 1999). This paper examines related functions and their Laplace transforms. Presented for consideration are two generalized functions, the R-function and the G-function, useful in analysis and as a basis for computation in the fractional calculus. The R-function is unique in that it contains all of the derivatives and integrals of the F-function. The R-function also returns itself on qth order differ-integration. An example application of the R-function is provided. A further generalization of the R-function, called the G-function brings in the effects of repeated and partially repeated fractional poles.
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Fractional variational principles in action
Energy Technology Data Exchange (ETDEWEB)
Baleanu, Dumitru [Department of Mathematics and Computer Science, Faculty of Art and Sciences, Cankaya University, 06530 Ankara (Turkey); Institute of Space Sciences, PO Box MG-23, R 76900, Magurele-Bucharest (Romania)], E-mail: dumitru@cankaya.edu.tr
2009-10-15
The fractional calculus has gained considerable importance in various fields of science and engineering, especially during the last few decades. An open issue in this emerging field is represented by the fractional variational principles area. Therefore, the fractional Euler-Lagrange and Hamilton equations started to be examined intensely during the last decade. In this paper, we review some new trends in this field and we discuss some of their potential applications.
Kimura, Taro; Pestun, Vasily
2018-04-01
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.
Hosseinabadi, Abdolali Neamaty; Nategh, Mehdi
2014-01-01
This work, dealt with the classical mean value theorem and took advantage of it in the fractional calculus. The concept of a fractional critical point is introduced. Some sufficient conditions for the existence of a critical point is studied and an illustrative example rele- vant to the concept of the time dilation effect is given. The present paper also includes, some connections between convexity (and monotonicity) with fractional derivative in the Riemann-Liouville sense.
On the solution of fractional evolution equations
Energy Technology Data Exchange (ETDEWEB)
Kilbas, Anatoly A [Department of Mathematics and Mechanics, Belarusian State University, 220050 Minsk (Belarus); Pierantozzi, Teresa [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain); Trujillo, Juan J [Departamento de Analisis Matematico, Universidad de la Laguna, 38271 La Laguna-Tenerife (Spain); Vazquez, Luis [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain)
2004-03-05
This paper is devoted to the solution of the bi-fractional differential equation ({sup C}D{sup {alpha}}{sub t}u)(t, x) = {lambda}({sup L}D{sup {beta}}{sub x}u)(t, x) (t>0, -{infinity}
Fractionated Spacecraft Architectures Seeding Study
National Research Council Canada - National Science Library
Mathieu, Charlotte; Weigel, Annalisa
2006-01-01
.... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...
Investigating students’ failure in fractional concept construction
Kurniawan, Henry; Sutawidjaja, Akbar; Rahman As’ari, Abdur; Muksar, Makbul; Setiawan, Iwan
2018-04-01
Failure is a failure to achieve goals. This failure occurs because a larger scheme integrates the schemes in mind that are related to the problem at hand. These schemes are integrated so that they are interconnected to form new structures. This new scheme structure is used to interpret the problems at hand. This research is a qualitative research done to trace student’s failure which happened in fractional concept construction. Subjects in this study as many as 2 students selected from 15 students with the consideration of these students meet the criteria that have been set into two groups that fail in solving the problem. Both groups, namely group 1 is a search group for the failure of students of S1 subject and group 2 is a search group for the failure of students of S2 subject.
Fractional neutron point kinetics equations for nuclear reactor dynamics
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del
2011-01-01
The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.
Taylor–Fourier spectra to study fractional order systems
International Nuclear Information System (INIS)
Barbé, Kurt; Lauwers, Lieve; Fuentes, Lee Gonzales
2016-01-01
In measurement science mathematical models are often used as an indirect measurement of physical properties which are mapped to measurands through the mathematical model. Dynamical systems describing a physical process with a dominant diffusion or dispersion phenomenon requires a large dimensional model due to its long memory. Ignoring a dominant difussion or dispersion component acts as a confounder which may introduce a bias in the estimated quantities of interest. For linear systems it has been observed that fractional order models outperform classical rational forms in terms of the number of parameters for the same fitting error. However it is not straightforward to deal with a fractional order system or long memory effects without prior knowledge. Since the parametric modeling of a fractional system is very involved, we put forward the question whether fractional insight can be gathered in a non-parametric way. In this paper we show that classical Fourier basis leading to the frequency response function lacks fractional insight. To circumvent this problem, we introduce a fractional Taylor–Fourier basis to obtain non-parametric insight in the fractional system. This analysis proposes a novel type of spectrum to visualize the spectral content of a fractional system: Taylor–Fourier spectrum. This spectrum is fully measurement driven which can be used as a first to explore the fractional dynamics of a measured diffusion or dispersion system. (paper)
... Staying Safe Videos for Educators Search English Español Speech Problems KidsHealth / For Teens / Speech Problems What's in ... a person's ability to speak clearly. Some Common Speech and Language Disorders Stuttering is a problem that ...
Radiotherapy Dose Fractionation under Parameter Uncertainty
International Nuclear Information System (INIS)
Davison, Matt; Kim, Daero; Keller, Harald
2011-01-01
In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.
Fractional calculus and morphogen gradient formation
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
Complex network approach to fractional time series
Energy Technology Data Exchange (ETDEWEB)
Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)
2015-10-15
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2004-01-01
Full Text Available We consider a new class of equilibrium problems, known as hemiequilibrium problems. Using the auxiliary principle technique, we suggest and analyze a class of iterative algorithms for solving hemiequilibrium problems, the convergence of which requires either pseudomonotonicity or partially relaxed strong monotonicity. As a special case, we obtain a new method for hemivariational inequalities. Since hemiequilibrium problems include hemivariational inequalities and equilibrium problems as special cases, the results proved in this paper still hold for these problems.
COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS
Energy Technology Data Exchange (ETDEWEB)
S.O. Bader
1999-10-18
The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be
COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS
International Nuclear Information System (INIS)
S.O. Bader
1999-01-01
The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be
Hadamard-type fractional differential equations, inclusions and inequalities
Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada
2017-01-01
This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.
The initial value problem of scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Salgado, Marcelo; Martinez del Rio, David [Instituto de Ciencias Nucleares Universidad Nacional Autonoma de Mexico Apdo. Postal 70-543 Mexico 04510 D.F. (Mexico)
2007-11-15
The initial value problem of scalar-tensor theories of gravity (STT) is analyzed in the physical (Jordan) frame using a 3+1 decomposition of spacetime. A first order strongly hyperbolic system is obtained for which the well posedness of the Cauchy problem can be established. We provide two simple applications of the 3+1 system of equations: one for static and spherically symmetric spacetimes which allows the construction of unstable initial data (compact objects) for which a further black hole formation and scalar gravitational wave emission can be analyzed, and another application is for homogeneous and isotropic spacetimes that permits to study the dynamics of the Universe in the framework of STT.
Adaptive fractionation therapy: I. Basic concept and strategy
International Nuclear Information System (INIS)
Lu Weiguo; Chen Mingli; Chen Quan; Ruchala, Kenneth; Olivera, Gustavo
2008-01-01
Radiotherapy is fractionized to increase the therapeutic ratio. Fractionation in conventional treatment is determined as part of the prescription, and a fixed fraction size is used for the whole course of treatment. Due to patients' day-to-day variations on the relative distance between the tumor and the organs at risk (OAR), a better therapeutic ratio may be attained by using an adaptive fraction size. Intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. The concept and strategies of adaptive fractionation therapy (AFT) are introduced in this paper. AFT is an on-line adaptive technique that utilizes the variations of internal structures to get optimal OAR sparing. Changes of internal structures are classified as different configurations according to their feasibility to the radiation delivery. A priori knowledge is used to describe the probability distribution of these configurations. On-line processes include identifying the configuration via daily image guidance and optimizing the current fraction size. The optimization is modeled as a dynamic linear programming problem so that at the end of the treatment course, the tumor receives the same planned dose while OAR receives less dose than the regular fractionation delivery. Extensive simulations, which include thousands of treatment courses with each course consisting of 40 fractions, are used to test the efficiency and robustness of the presented technique. The gains of OAR sparing depend on the variations on configurations and the bounds of the fraction size. The larger the variations and the looser the bounds are, the larger the gains will be. Compared to the conventional fractionation technique with 2 Gy/fraction in 40 fractions, for a 20% variation on tumor-OAR configurations and [1 Gy, 3 Gy] fraction size bounds, the cumulative OAR dose with adaptive fractionation is 3-8 Gy, or 7-20% less than that
Measuring memory with the order of fractional derivative
Du, Maolin; Wang, Zaihua; Hu, Haiyan
2013-12-01
Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.
Fractions, Number Lines, Third Graders
Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen
2017-01-01
The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…
Understanding Magnitudes to Understand Fractions
Gabriel, Florence
2016-01-01
Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.
Deterministic ratchets for suspension fractionation
Kulrattanarak, T.
2010-01-01
Driven by the current insights in sustainability and technological development in
biorefining natural renewable resources, the food industry has taken an interest in
fractionation of agrofood materials, like milk and cereal crops. The purpose of fractionation
is to split the raw
Fermion fractionization and index theorem
International Nuclear Information System (INIS)
Hirayama, Minoru; Torii, Tatsuo
1982-01-01
The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)
Tensor Fields for Use in Fractional-Order Viscoelasticity
Freed, Alan D.; Diethelm, Kai
2003-01-01
To be able to construct viscoelastic material models from fractional0order differentegral equations that are applicable for 3D finite-strain analysis requires definitions for fractional derivatives and integrals for symmetric tensor fields, like stress and strain. We define these fields in the body manifold. We then map them ito spatial fields expressed in terms of an Eulerian or Lagrangian reference frame where most analysts prefer to solve boundary problems.
Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences
Directory of Open Access Journals (Sweden)
Thabet Abdeljawad
2017-07-01
Full Text Available A discrete version of the symmetric duality of Caputo–Torres, to relate left and right Riemann–Liouville and Caputo fractional differences, is considered. As a corollary, we provide an evidence to the fact that in case of right fractional differences, one has to mix between nabla and delta operators. As an application, we derive right fractional summation by parts formulas and left fractional difference Euler–Lagrange equations for discrete fractional variational problems whose Lagrangians depend on right fractional differences.
Generalized fractional Schroedinger equation with space-time fractional derivatives
International Nuclear Information System (INIS)
Wang Shaowei; Xu Mingyu
2007-01-01
In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum
Permutation entropy of fractional Brownian motion and fractional Gaussian noise
International Nuclear Information System (INIS)
Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.
2008-01-01
We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays
Regularization by fractional filter methods and data smoothing
International Nuclear Information System (INIS)
Klann, E; Ramlau, R
2008-01-01
This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented
An exemplified introduction of the Laplace transform
Directory of Open Access Journals (Sweden)
Marcel BOGDAN
2018-06-01
Full Text Available We solve a linear Cauchy problem with discontinuous perturbation two ways, by solving continuous Cauchy problems successively and by using Laplace transform. An example is given when the last one cannot be used any longer, still the Cauchy problems are solvable and the Cauchy problem with discontinuous perturbation as well.
Existence of smooth solutions of multi-term Caputo-type fractional differential equations
Sin, Chung-Sik; Cheng, Shusen; Ri, Gang-Il; Kim, Mun-Chol
2017-01-01
This paper deals with the initial value problem for the multi-term fractional differential equation. The fractional derivative is defined in the Caputo sense. Firstly the initial value problem is transformed into a equivalent Volterra-type integral equation under appropriate assumptions. Then new existence results for smooth solutions are established by using the Schauder fixed point theorem.
Radial fractional Laplace operators and Hessian inequalities
Ferrari, Fausto; Verbitsky, Igor E.
In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
International Nuclear Information System (INIS)
Kılıç, Emre; Eibert, Thomas F.
2015-01-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained
Energy Technology Data Exchange (ETDEWEB)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat
2017-07-25
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat; Patole, Shashikant P.; Farhat, Mohamed; Elwakil, Ahmed; Bagci, Hakan; Salama, Khaled N.
2017-01-01
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
On Generalized Fractional Differentiator Signals
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2013-01-01
Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.