WorldWideScience

Sample records for fraction measurement technique

  1. Measurement of void fractions by nuclear techniques

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  2. Gamma ray densitometry techniques for measuring of volume fractions

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  3. Gamma ray densitometry techniques for measuring of volume fractions

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  4. Incremental first pass technique to measure left ventricular ejection fraction

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  5. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  6. Two-phase flow void fraction measurement using gamma ray attenuation technique

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  7. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  8. An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.

    Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee

    2013-03-01

    Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.

  9. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  10. Dividing Fractions: A Pedagogical Technique

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  11. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  12. Development and validation of a technique of measurement of the void fraction by X-ray tomography

    Jouet, Emmanuel

    2001-01-01

    The aim of this study is to develop an instrumentation to measure the local void fraction map in an air - water flow by X-ray tomography. After an exhaustive literature survey, the selected reconstruction algorithms are compared to choose the most effective. Several improvements are added and tested to enhance the reconstruction accuracy in the vicinity of the pipe walls. An experimental parallel beam tomographic bench has been developed and its operating parameters have been optimized. The acquisition system and the reconstruction algorithm are used to map phantoms, homogeneous or non - homogeneous air - water bubbly flows and bundle flows with regular or interlaced sampling scheme. The method is validated by comparing with the void fraction maps measured with an optical probe. At the end, the method is extended to the fan-beam geometry. (author) [fr

  13. Non-invasive techniques for the measurement of extraction fraction and permeability surface area product of 99Tcm DTPA in the human forearm

    Bell, S.D.; Peters, A.M.; Myers, M.J.

    1992-01-01

    Only a very limited number of clinical studies have been reported on the measurement of endothelial permeability to hydrophilic solutes (molecular weight 99 Tc m DTPA, are perfusion-dependent as well as diffusion-dependent. The authors describe non-invasive techniques for measurement of clearance and extraction fraction of 99 Tc m DTPA into the extravascular space of the resting forearm using a scintillation probe, from which we then calculated permeability surface area (PS) product. Their values for extraction fraction of about 0.5 and for PS product of about 3 ml per minute per 100 ml tissue are comparable to values reported in the literature for resting skeletal muscle using more invasive techniques. (author)

  14. Measuring condensate fraction in superconductors

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  15. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  16. Void fraction measurements using neutron radiography

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  17. Noninvasive measurement of blood flow and extraction fraction

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  18. Noninvasive measurement of blood flow and extraction fraction

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  19. Pulse holographic measurement techniques

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  20. Measurement of the $\\bar{B}$0 → D*+-$\\bar{v}$ Branching Fraction with a Partial Reconstruction Technique

    Sonnek, Peter [Univ. of Mississippi, Oxford, MS (United States)

    2009-08-01

    Presented is a precise measurement of the $\\bar{B}$0 → D*+-$\\bar{v}$ branching fraction using 81.47 fb-1 of data collected with the BABAR detector at the PEP-II e+e- storage ring at the Stanford Linear Accelerator Center. The measurement was performed by partially reconstructing the D*+ meson from $\\bar{B}$0 → D*+-$\\bar{v}$ decays using only the soft pion of the D*+ → D0π+ decay to reconstruct its four vector. The branching fraction was measured to be β($\\bar{B}$0 → D*+-$\\bar{v}$) = (4.91 ± 0.01stat ± 0.15syst)%.

  1. Flow map and measurement of void fraction and heat transfer coefficient using an image analysis technique for flow boiling of water in a silicon microchannel

    Singh, S G; Duttagupta, S P; Jain, A; Sridharan, A; Agrawal, Amit

    2009-01-01

    The present work focuses on the generation of the flow regime map for two-phase water flow in microchannels of a hydraulic diameter of 140 µm. An image analysis algorithm has been developed and utilized to obtain the local void fraction. The image processing technique is also employed to identify and estimate the percentage of different flow regimes and heat transfer coefficient, as a function of position, heat flux and mass flow rate. Both void fraction and heat transfer coefficient are found to increase monotonically along the length of the microchannel. At low heat flux and low flow rates, bubbly, slug and annular flow regimes are apparent. However, the flow is predominately annular at high heat flux and high flow rate. A breakup of the flow frequency suggests that the flow is bistable in the annular regime, in that at a fixed location, the flow periodically switches from single-phase liquid to annular and vice versa. Otherwise, the occurrence of three regimes—single-phase liquid, bubbly and slug are observed. These results provide several useful insights about two-phase flow in microchannels besides being of fundamental interest

  2. Measurement of right and left ventricular ejection fraction in dogs

    Brynjolf, I.; Qvist, J.; Mygind, T.; Jordening, H.; Dorph, S.; Munck, O.

    1983-08-01

    Three techniques for measurement of right (RVEF) and two techniques for left (LVEF) ventricular ejection fraction were evaluated in five dogs. RVEF was measured with a first-pass radionuclide technique using erythrocytes labelled in vitro with Technetium-99m methylene disphosphonate (MDP) and compared with RVEF measured with a thermodilution technique. Thermodilution-determined RVEF was compared with RVEF values measured with cine angiocardiography. LVEF was measured with a radionuclide ECG-gated equilibrium technique and compared with cine angiocardiography. Measurements were performed before and during a continuous infusion of dopamine. There was an excellent correlation between RVEF measured with the first-pass and the thermodilution technique. LVEF measured with the ECG-gated equilibrium technique correlated well with cine angiocardiography.

  3. The attribute measurement technique

    MacArthur, Duncan W.; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  4. 4. Measuring technique

    2006-01-01

    It is noted that in nuclear medicine a most widely the scintillation detectors are applying. Action of these detectors is based on registration of light flares in visible and ultraviolet field arising in scintillator under ionizing radiation action. In the chapter following subchapters are included: gamma-spectrometer and gamma radiation detectors; counter of whole body; measuring of accumulated activity (uptake measurements); scanner; scintillation chamber; single-photon emission computed tomography; positron emission computed tomography; magnet resonance tomography; computer technique, images making

  5. Measurement of Tau Lepton Branching Fractions

    Nicol, N.

    2003-12-19

    We present {tau}{sup -} lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample of {tau}{sup -} {yields} {nu}{sub {tau}}K{sup -}{pi}{sup +}{pi}{sup -} events, we examine the resonance structure of the K{sup -}{pi}{sup +}{pi}{sup -} system and obtain the first measurements of branching fractions for {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1270) and {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1400). We also describe a complete set of branching fraction measurements in which all the decays of the {tau}{sup -} lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, {mu}, {pi}, and K.

  6. A novel fractional technique for the modified point kinetics equations

    Ahmed E. Aboanber

    2016-10-01

    Full Text Available A fractional model for the modified point kinetics equations is derived and analyzed. An analytical method is used to solve the fractional model for the modified point kinetics equations. This methodical technique is based on the representation of the neutron density as a power series of the relaxation time as a small parameter. The validity of the fractional model is tested for different cases of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified point kinetics equations is the best representation of neutron density for subcritical and supercritical reactors.

  7. Modified Legendre Wavelets Technique for Fractional Oscillation Equations

    Syed Tauseef Mohyud-Din

    2015-10-01

    Full Text Available Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.

  8. Contextual Fraction as a Measure of Contextuality

    Abramsky, Samson; Barbosa, Rui Soares; Mansfield, Shane

    2017-08-01

    We consider the contextual fraction as a quantitative measure of contextuality of empirical models, i.e., tables of probabilities of measurement outcomes in an experimental scenario. It provides a general way to compare the degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell inequalities; its value, and a witnessing inequality, can be computed using linear programing; it is monotonic with respect to the "free" operations of a resource theory for contextuality; and it measures quantifiable advantages in informatic tasks, such as games and a form of measurement-based quantum computing.

  9. Strain measurement technique

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  10. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  11. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  12. Void fraction measurement system for high temperature flows

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  13. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    Mansour, Mohy S.; Imam, Hisham; Elsayed, Khaled A.; Elbaz, Ayman M.; Abbass, Wafaa

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local

  14. Simultaneous measurement of cerebral blood flow and oxygen extraction fraction by positron emission tomography: theoretical study and experimental evidence of cerebral blood flow measurement with the C15O2 continuous inhalation technique

    Steinling, M.

    1983-01-01

    The method of the continuous inhalation technique of oxygen-15 labelled CO 2 coupled with positron emission tomography for the measurement of cerebral blood flow (C.B.F.) is described. An indirect experimental verification that this technique allowed the measurement of C.B.F. has been carried out in baboons by showing the expected change in the measured parameter with variations in the PaCO 2 . A critical investigation of the C 15 O 2 model was performed. The amount of tracer present in the cerebral vascular pool has a negligible effect on C.B.F. value. The use of a mean brain-blood partition coefficient of water instead of that specific to gray or to white matter is commented upon, and its influence on the final C.B.F. value is studied. Lastly, the problem of the limited diffusion of water across the blood-brain-barrier is discussed. The study of the combined effects of gray-white mixing and limited wates extraction of the C.B.F. value shows that the C 15 O 2 technique tends to understimate real C.B.F., and that this error is more severe with high flows and even gray white mixing. These limitations do not depart from the possibility to estimate in the same brain locus not only C.B.F. but oxygen utilization as well by the consecutive inhalation of C 15 O 2 and 15 O 2 . The advantages of this possibility has already been shown in a number of clinical studies [fr

  15. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  16. Different techniques of multispectral data analysis for vegetation fraction retrieval

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  17. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  18. Experimental techniques and measurement accuracies

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques

  19. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  20. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  1. Comparative Ebulliometry: a Simple, Reliable Technique for Accurate Measurement of the Number Average Molecular Weight of Macromolecules. Preliminary Studies on Heavy Crude Fractions Ébulliométrie comparative : technique simple et fiable pour déterminer précisément la masse molaire moyenne en nombre des macromolécules. Etudes préliminaires sur des fractions lourdes de bruts

    Behar E.

    2006-12-01

    Full Text Available This article is divided into two parts. In the first part, the authors present a comparison of the major techniques for the measurement of the molecular weight of macromolecules. The bibliographic results are gathered in several tables. In the second part, a comparative ebulliometer for the measurement of the number average molecular weight (Mn of heavy crude oil fractions is described. The high efficiency of the apparatus is demonstrated with a preliminary study of atmospheric distillation residues and resins. The measurement of molecular weights up to 2000 g/mol is possible in less than 4 hours with an uncertainty of about 2%. Cet article comprend deux parties. Dans la première, les auteurs présentent une comparaison entre les principales techniques de détermination de la masse molaire de macromolécules. Les résultats de l'étude bibliographique sont rassemblés dans plusieurs tableaux. La seconde partie décrit un ébulliomètre comparatif conçu pour la mesure de la masse molaire moyenne en nombre (Mn des fractions lourdes des bruts. Une illustration de l'efficacité de cet appareil est indiquée avec l'étude préliminaire de résidus de distillation atmosphérique et de résines. En particulier, la mesure de masses molaires pouvant atteindre 2000 g/mol est possible en moins de 4 heures avec une incertitude expérimentale de l'ordre de 2 %.

  2. Measurements Techniques for Gyrotron characterization

    Castro, P.J. de.

    1987-08-01

    Experiments planned for the characterization of the 35GHz girotron, which is being built at the Plasma Laboratory of INPE, are described. The methods of the measurements are presented and the required instrumentation and devices are specified. Special attention is given to the measurement techniques of the resonator electric field profile. (author) [pt

  3. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  4. Thermal measurements and inverse techniques

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  5. Measurements of void fraction in a heated tube in the rewetting conditions

    Freitas, R.L.

    1983-01-01

    The methods of void fraction measurements by transmission and diffusion of cold, thermal and epithermal neutrons were studied with cylindrical alluminium pieces simulating the steam. A great set of void fraction found in a wet zone was examined and a particulsar attention was given to the sensitivity effects of the method, mainly for high void fraction. Several aspects of the measurement techniques were analyzed, such as the effect of the phase radial distribution, neutron energy, water tempeture, effect of the void axial gradient. The technique of thermal neutron diffusion measurement was used to measure the axial profile of void fraction in a steady two-phase flow, where the pressure, mass velocity and heat flux are representative of the wet conditions. Experimental results are presented and compared with different void fraction models. (E.G.) [pt

  6. New Technique Of Determination Of Biogenic Fraction In Liquid Fuels By The 14C Method

    Krajcar Bronic, I.; Baresic, J.; Horvatincic, N.; Kristof, R.; Kozar Logar, J.

    2015-01-01

    According to the EU Directive 2009/28/EC all (liquid) fuels have to contain at least 10 percent of bio-fuel, i.e., blend of biogenic origin, by 2020. 14C method is the most reliable method of determination of the biogenic fraction in fuels and various measurement techniques can be applied. A technique of direct measurement of the 14C content in liquid fuel is simple and fast but has main disadvantage: different liquid colours cause different quenching and changes in the measurement efficiency. Here we have described a new technique that uses liquids of different colours to construct modern and background calibration curves, MCC and BCC, respectively, by measuring count rates and SQP values of various modern and fossil liquids. Several types of fossil fuel, pure benzine and benzene (used as 14C-free background for 14C dating) were used for BCC, and various brands of domestic oil (vegetable, sunflower, olive, pumpkin), bioethanol and benzene prepared from modern samples were used MCC construction. The procedure for the unknown sample consists of: 1) measurement of the count rate and the SQP value, 2) calculation of background and modern count rates corresponding to the measured SQP value based on the BCC and MCC curves, respectively, and 3) the ratio of net count rates of the unknown sample and the modern net count rate at the same SQP represents the fraction of the biogenic component in the liquid. All samples should be measured under the same conditions. In our case these are: UltimaGold F scintillator, the ratio sample:scintillator (10 mL:10 mL), low-potassium glass vials of 20 mL volume, spectra recorded by LSC Quantulus and evaluated in the window 124 - 570. Lowest detectable biogenic fraction is 0.5 %. The technique depends neither on the fossil matrix or the biogenic additive types. The results are in good agreement with those obtained by different evaluation technique. (author).

  7. Measurements of the branching fractions of [Formula: see text] decays.

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    The branching fractions of the decay [Formula: see text] for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb -1 , collected by the LHCb experiment. The total branching fraction, its charmless component [Formula: see text] and the branching fractions via the resonant [Formula: see text] states η c (1 S ) and ψ (2 S ) relative to the decay via a J / ψ intermediate state are [Formula: see text] Upper limits on the B + branching fractions into the η c (2 S ) meson and into the charmonium-like states X (3872) and X (3915) are also obtained.

  8. A Preliminary Design of a Wire Mesh Sensor for Measurement of Void Fraction

    Hong, Seong Ho; Kim, Jong Hwan; Song, Jin Ho; Hong, Seok Boong

    2006-01-01

    Steam explosion phenomena are accompanied with a multi-dimensional and multi-phase fluid flow and heat transfer phenomena. Void fraction is one of the major parameters, which governs the premixing behavior of melt particles in water and the explosion behavior of the pre-mixed fuel. However, efforts for the development of a reliable measurement technique for void fraction are still underway, as it deals with an interaction between a melt at a very high temperature and water in a short time scale. Hundreds of conductivity type probes installed in a test section enabled monitoring of the evolution of a melt-water interaction zone in the ECO test. A technique using a dual energy X-ray system was developed to measure gas fraction, liquid fraction, and melt fraction simultaneously for a small-scale steam explosion experiment. A high-energy X-ray system for monitoring multi-phase fractions is now being developed at CEA. Recently a measurement of multi-phase fractions by using a wire mesh system has been introduced. It has an advantage that the speed of the measurement is fast and a direct measurement is possible. As a part of a feasibility study on a wire mesh technique for a steam explosion experiment, this paper discusses the design of the wire mesh and the results of the preliminary calibration tests

  9. Measurement of the τ leptonic branching fractions in DELPHI

    Dam, M.

    1994-11-01

    Preliminary measurements of the τ leptonic branching fractions from the DELPHI experiment at LEP are presented. The analysis is based on about 25000 Z o →τ + τ - events observed in 1991 and 1992. 7 refs., 5 tabs

  10. Bioavailability of iron to rats from processed soybean fractions determined by intrinsic and extrinsic labeling techniques

    Weaver, C.M.; Nelson, N.; Elliott, J.G.

    1984-01-01

    Intrinsic and extrinsic labeling techniques were used to measure iron bioavailability from soybean fractions (isolated soy protein, defatted flour, soy hulls, insoluble material and whey) by iron-depleted and non-iron-depleted rats. As expected, absorption of iron was higher in the iron-depleted than in the non-iron-depleted rats. In the iron-depleted group, significantly more iron was absorbed from soy whey than from other fractions. No other significant difference in iron absorption associated with iron source was observed. The higher absorption rate of iron from whey by the iron-depleted rats probably was related to a lower quantity of food consumed during the test meal by this group. Intrinsic and extrinsic labeling techniques produced similar assessments of bioavailability of iron

  11. Modified Legendre Wavelets Technique for Fractional Oscillation Equations

    Mohyud-Din, Syed; Iqbal, Muhammad; Hassan, Saleh

    2015-01-01

    Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinea...

  12. Measurement of unattached fractions in open-pit uranium mines

    Solomon, S.B.; Wise, K.N.

    1983-01-01

    A preliminary set of measurements of the unattached fraction of potential alpha energy was made at the Ranger open pit uranium uranium mine and the Nabarlek uranium mill. The measurement system, which incorporated a parallel plate diffusion battery and diffuse junction detectors, is described. Results for RaA show a wide variation in the unattached fraction. They range up to 0.76 and are higher than corresponding values for underground mining operations

  13. Spectrometry techniques for radioactivity measurements

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  14. Measurements techniques for transportation noise

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  15. An efficient technique for higher order fractional differential equation.

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  16. A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations

    F. Ghomanjani

    2016-10-01

    Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.

  17. Measurement of local void fraction in a ribbed annulus

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  18. Fractional Poincaré inequalities for general measures

    Mouhot, Clément

    2011-01-01

    We prove a fractional version of Poincaré inequalities in the context of Rn endowed with a fairly general measure. Namely we prove a control of an L2 norm by a non-local quantity, which plays the role of the gradient in the standard Poincaré inequality. The assumption on the measure is the fact that it satisfies the classical Poincaré inequality, so that our result is an improvement of the latter inequality. Moreover we also quantify the tightness at infinity provided by the control on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional Poincaré inequality for measures more general than Lévy measures. © 2010 Elsevier Masson SAS.

  19. Should direct measurements of tumor oxygenation relate to the radiobiological hypoxic fraction of a tumor?

    Fenton, Bruce M.; Kiani, Mohammad F.; Siemann, Dietmar W.

    1995-01-01

    Purpose: Numerous previous studies have attempted to relate the radiobiological hypoxic fraction (HF) to direct measures of tumor oxygenation such as HbO 2 saturations, tumor pO 2 levels, or hypoxic cell labeling. Although correlations have been found within tumor lines, no overall relationships were seen across tumor lines. The current objective was to examine the effect on HF of changes in the fractions of the oxygenated and anoxic tumor cells that remain clonogenic. Methods and Materials: A mathematical model was developed that relates the HF to direct measures of tumor oxygenation. The primary assumptions were that: (a) the tumor is divided into distinct compartments of either fully oxygenated or fully anoxic cells, and (b) the survival of the oxygenated cells is negligible compared to that of the anoxic cells. Based on these assumptions, the HF is plotted as a function of the fractions of clonogenic or nonclonogenic, and oxygenated or anoxic cells. Results: If all cells are clonogenic, then the HF equals the fraction of anoxic cells. If a higher fraction of anoxic than oxygenated cells are nonclonogenic, then the HF will be overestimated by the fraction of the tumor measured to be anoxic using direct measuring techniques. If a higher fraction of the oxygenated than anoxic cells are nonclonogenic, the HF will be underestimated by the fraction of anoxic cells. Conclusion: Correlations between the HF and direct measures of tumor oxygenation have been described within tumor lines evaluated under different physiological condition. However, such relationships can be totally unpredictable between different tumors if the fraction of the anoxic cells that is clonogenic varies substantially. Clearly, if tumor anoxia cannot be detected using direct measures, this is an accurate indication that the tumor is well oxygenated. When tumor anoxia is present, however, the conclusions are ambiguous. Even when a small fraction of the tumor is measured as anoxic, direct measures

  20. A poloidal field measurement technique

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  1. Measurements of void fraction in transparent two-phase flows by light extinction

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  2. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  3. Transient void fraction measurements in rod bundle geometries

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  4. Measurement of shoulder motion fraction and motion ratio

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  5. A measurement of the $\\tau$ leptonic branching fractions

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1995-01-01

    A sample of 25000 \\Z\\rightarrow\\tt events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the \\tau lepton. The results are B(\\TEL) = (17.51 \\pm 0.39)\\% and B(\\tau\\rightarrow \\mu\

  6. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  7. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  8. The evaporative fraction as a measure of surface energy partitioning

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  9. The evaporative fraction as a measure of surface energy partitioning

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  10. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  11. Effect-independent measures of tissue response to fractionated radiation

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  12. Average void fraction measurement in a two-phase vertical flow

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  13. Measurement of the tau lepton electronic branching fraction

    Akerib, D.S.; Barish, B.; Chadha, M.; Cowen, D.F.; Eigen, G.; Miller, J.S.; Urheim, J.; Weinstein, A.J.; Acosta, D.; Masek, G.; Ong, B.; Paar, H.; Sivertz, M.; Bean, A.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Richman, J.D.; Tajima, H.; Schmidt, D.; Sperka, D.; Witherell, M.S.; Procario, M.; Yang, S.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Jones, C.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; O'Grady, C.; Patterson, J.R.; Peterson, D.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yelton, J.; Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Romero, V.; Severini, H.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Sung, M.; White, C.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Schaffner, S.F.; Shibata, E.I.; Shipsey, I.P.J.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.; Sanghera, S.; Skwarnicki, T.; Stroynowski, R.; Artuso, M.; Goldberg, M.; Horwitz, N.

    1992-01-01

    The tau lepton electron branching fraction has been measured with the CLEO II detector at the Cornell Electron Storage Ring as B e =0.1749±0.0014±0.0022, with the first error statistical and the second systematic. The measurement involves counting electron-positron annihilation events in which both taus decay to electrons, and normalizing to the number of tau-pair decays expected from the measured luminosity. Detected photons in these events constitute a definitive observation of tau decay radiation

  14. Precision measurement of the D*(0) decay branching fractions

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using 482 pb(-1) of data taken at root s = 4.009 GeV, we measure the branching fractions of the decays of D*(0) into D-0 pi(0) and D-0 gamma to be B(D*(0) -> D-0 pi(0)) = (65.5 +/- 0.8 +/- 0.5)% and B(D*(0) -> D0 gamma) = (34.5 +/- 0.8 +/- 0.5)%, respectively, by assuming that the D*(0) decays only

  15. Measurement of the branching fraction for D0 -> K- π+

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thompson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassis, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    The branching fraction for D0 -> K- π+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0π+, D0 -> K-π+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result is B(D0 -> K- π+) = (3.90 +/- 0.09 +/- 0.12)%

  16. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction

    Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua

    2018-01-01

    A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.

  17. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Cimpan, Emil

    2004-09-15

    water fraction. The model intended to employ existent formulas of the medium parameters worked out by Maxwell, Bruggeman and Ramu and Rao. However, to calculate the loss due to the induced eddy currents within the medium in the particular case of the oil continuous phase, other mathematical models expressing (equivalent) medium conductivity and permittivity were required and developed in this work. Although the resonance frequency of the coil was decreasing with increasing medium conductivity, this variation was not as significant as the variation of the coil impedance. This raised the question as to whether coils having the same self-resonance frequency in different media could be constructed. This was worth investigating because it could simplify the mathematical modelling. This was indeed the case and coils featuring approximately the same resonance frequency in different media were made. Concluding, the measuring device based on the HFMFT, which was constructed, investigated and described in this work can be developed into a practical instrument for monitoring the water fraction in multiphase flows. The overall measurement accuracy when using this technique would depend on the analytical models expressing the medium parameters and circumscribing the HFMFT itself. When the mathematical modelling of the HFMFT was finalised, it was understood that many other applications of the technique were also possible. Some of these applications, which might be of interest such as a conductivity meter and a three-component ratio meter, are briefly discussed.

  18. Measurement Techniques for Clock Jitter

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  19. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  20. Measurement of the ratios of branching fractions and.

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Daronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Sciverez, M Garcia; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-05-19

    We report an observation of the decay B(O)(S) --> D(-)(s)pi(+) in pp collisions at radical S = 1.96 TeV using 115 pb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We observe 83 +/- 11(stat) B(O)(s) --> D(-)(s)pi(+) candidates, representing a large increase in statistics over previous measurements and the first observation of this decay at a pp collider. We present the first measurement of the relative branching fraction Beta(B(O)(s) --> D(-)(s)pi(+))/Beta(B(0) --> D(-)(pi)(+)) = 1.32 +/- 0.18(stat) +/- 0.38(syst). We also measure Beta(B(+) --> D(0)pi(+))/Beta(B(0) -->D(-)pi(+)) = 1.97 +/- 0.10(stat) +/- 0.21(syst), which is consistent with previous measurements.

  1. MEASUREMENT OF THE B0 ---> D*- A+(1) BRANCHING FRACTION WITH PARTIALLY RECONSTRUCTED D*

    Salvatore, Pasquale F

    2002-07-26

    The B{sup 0} {yields} D*{sup -} a{sub 1}{sup +} branching fraction has been measured with data collected by the BaBar experiment in 1999 and 2000 corresponding to a total integrated luminosity of 20.6 fb{sup -1}. Signal events have been selected using a partial reconstruction technique, in which only the a{sub 1}{sup +} and the slow pion ({pi}{sub s}) from the D*{sup -} decay are identified. A signal yield of 18400 {+-} 1200 events has been found, corresponding to a preliminary branching fraction of (1.20 {+-} 0.07(stat) {+-} 0.14(syst))%.

  2. Measurement of charm fragmentation fractions in photoproduction at HERA

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Muinch (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2013-06-15

    The production of D{sup 0}, D{sup *+}, D{sup +}, D{sub s}{sup +} and {Lambda}{sub c}{sup +} charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb{sup -1}. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the strangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p{sub T} > 3.8GeV and pseudorapidity vertical stroke {eta} vertical stroke <1.6. The charm fragmentation fractions are compared to previous results from HERA and from e{sup +}e{sup -} experiments. The data support the hypothesis that fragmentation is independent of the production process.

  3. Advanced in-flight measurement techniques

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  4. Control and switching synchronization of fractional order chaotic systems using active control technique

    Radwan, A.G.; Moaddy, K.; Salama, Khaled N.; Momani, S.; Hashim, I.

    2013-01-01

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  5. Control and switching synchronization of fractional order chaotic systems using active control technique

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  6. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    Mar, Nancy

    2003-08-18

    The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.

  7. Digital instantaneous frequency measurement technique utilising high-speed ADC’s and FPGA’s

    Herselman, PL

    2006-02-27

    Full Text Available This paper presents the Digital Instantaneous Frequency Measurement (DIFM) technique, which can measure the carrier frequency of a received waveform within a fraction of a microsecond. The resulting frequency range, resolution and accuracy...

  8. Safety and Efficacy of a Novel Technique in the Use of Fractional Flow Reserve in Complex Coronary Artery Lesions

    Wen-Ming He

    2015-01-01

    Full Text Available Background: Fractional flow reserve (FFR has become an increasingly important index when making decisions with respect to revascularization of coronary artery stenosis. However, the pressure guidewire used in obtaining FFR measurements is difficult to control and manipulate in certain complex coronary artery lesions, resulting in increased fluoroscopy time and contrast dye usage. This study examined a novel (NOV technique for obtaining FFR measurements in hope of easing the difficulties associated with evaluating and treating complex coronary artery lesions. Methods: Fifty-six patients with complex coronary artery lesions were assigned to a conventional (CON FFR technique group or a NOV FFR technique group. The NOV technique involved the use of a balloon and wire exchange within the coronary artery. The fluoroscopy time, contrast dye usage, and FFR-related complications were assessed after completing the FFR measurement procedure for each patient. Results: The median time required for fluoroscopy in the NOV technique group was significantly less than that in the CON technique group; additionally, lesser amounts of contrast dye were used in the NOV technique group (both P 0.05. Conclusions: Compared to the CON technique used for measuring FFR, the new technique reduced the fluoroscopy time and amount of contrast dye used when evaluating complex coronary artery lesions. The new technique did not increase the risk of operation or decrease the success rate.

  9. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  10. Experimental techniques of conversion coefficient measurements

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  11. Industrial level measurement techniques - a review

    Schaudel, D.E.

    1984-01-01

    The outlined methods of industrial level measurement technique are nowadays in current use. In correspondence with the technical evolution the mechanical techniques are mentioned first, followed by a description of the more modern electronic methods. These measurement methods comply especially to the requirements of computer aided process guiding systems, i.e. compatibility of signals, self-checking and reliability. (orig.) [de

  12. Measurement of the Branching Fraction for B+- -> chic0 K+-

    Aubert, B.

    2003-10-07

    We present a measurement of the branching fraction of the decay B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}} from a sample of 89 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The {chi}{sub c0} meson is reconstructed through its two-body decays to {pi}{sup +}{pi}{sup -} and K{sup +}K{sup -}. The authors measure {Beta}(B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}}) x {Beta}({chi}{sub c0} {yields} {pi}{sup +}{pi}{sup -}) = (1.32 {sub -0.27}{sup +0.28}(stat) {+-} 0.09(syst)) x 10{sup -6} and {Beta}(B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}}) x {Beta}({chi}{sub c0} {yields} K{sup +}K{sup -}) = (1.49{sub -0.34}{sup +0.36}(stat) {+-} 0.11(syst)) x 10{sup -6}. Using the known values for the {chi}{sub c0} decays branching fractions, they combine these results to obtain {Beta}(B{sup {+-}} {yields} {chi}{sub c0} K{sup {+-}}) = (2.7 {+-} 0.7) x 10{sup -4}.

  13. Effect-independent measures of tissue responses to fractionated irradiation

    Thames, H.D. Jr.

    1984-01-01

    Tissue repair factors measure the sparing that can be achieved from dose fractionation in the absence of proliferation. Four repair factors are analysed in these terms: Fsub(R),Fsub(rec), the ratio of linear-quadratic survival model parameters β/α and the half-time Tsub(1/2) for intracellular repair processes. Theoretically, Fsub(R) and Fsub(rec) are increasing functions of D 1 , and thus depend on level of effect. This is confirmed by analysis of skin reactions after multifractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow, tissues for which it is reasonable to assume that survival of identifiable target cells is the primary determinant of the endpoint. For a functional endpoint not clearly connected with the depletion of a specific target-cell population (late fibrotic reactions in the kidney), there was an increase in β/α with increased levels of injury, but this was statistically insignificant. Tsub(1/2) is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (Tsub(1/2) less than 1 hour), with skin as the exception (Tsub(1/2) approx. 1.3 hours). (author)

  14. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Nathan, Graham J. [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); Alwahabi, Zeyad T.; Qamar, Nader [School of Chemical Engineering, University of Adelaide, SA 5005 (Australia)

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near the base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)

  15. Technical aspects and limitations of fractional flow reserve measurement.

    Jerabek, Stepan; Kovarnik, Tomas

    2018-02-27

    The only indication for coronary revascularization is elimination of ischaemia. Invasive hemodynamic methods (fractional flow reserve - FFR and instantaneous wave-free ratio (iFR) are superior to coronary angiography in detection of lesions causing myocardial ischaemia. Current European guidelines for myocardial revascularization recommend using of FFR for detection of functional assessment of lesions severity in category IA and number of these procedures increases. However, routine usage of these methods requires knowledge of technical requirements and limitations. The aim of the study is to summarise good clinical practice for FFR and iFR measurements with explanation of possible technical challenges, that are necessary for increasing of measurement accuracy. Authors describe frequent technical mistakes and malpractice during invasive assessment of lesion severity in coronary arteries.

  16. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  17. Magnetic field measurements and mapping techniques

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  18. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  19. Measurement of local void fraction at elevated temperature and pressure

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  20. Doppler-shift proton fraction measurement on a CW proton injector

    Kamperschroer, J.H.; Sherman, J.D.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.

    1998-01-01

    A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 ± 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed

  1. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  2. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    de Vernejoul, P; Fauchet, M; Rimbert, J -N; Gambini, D; Agnely, J [Hopital Necker-Enfants-Malades, 75 - Paris (France)

    1976-03-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference.

  3. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    Vernejoul, Pierre de; Fauchet, Michel; Rimbert, J.-N.; Gambini, Denis; Agnely, Jacqueline

    1976-01-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference [fr

  4. Measurement of the Tau Branching Fractions into Leptons

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colijn, A.P.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Lacentre, P.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moore, R.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Ziegler, F.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    Using data collected with the L3 detector near the Z resonance, corresponding to an integrated luminosity of 150pb-1, the branching fractions of the tau lepton into electron and muon are measured to be B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %, B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %. From these results the ratio of the charged current coupling constants of the muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming electron-muon universality, the Fermi constant is measured in tau lepton decays as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling constant of the strong interaction at the tau mass scale is obtained as alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory).

  5. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H.

    2010-01-01

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean ± SD values for GBEF1 and GBEF2 were 52±17% and 52±16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  6. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H. [School of Medicine, Jordan University of Science and Technology, Irbid (Jordan)

    2010-12-15

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean {+-} SD values for GBEF1 and GBEF2 were 52{+-}17% and 52{+-}16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  7. Measurements of void fraction by an improved multi-channel conductance void meter

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  8. Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods

    Charkes, N.D.

    1984-01-01

    Using compartmental analysis methods, a mathematical basis is given for the measurement of absolute and fractional cardiac output with diffusible tracers. Cardiac output is shown to be the product of the blood volume and the sum of the rate constants of tracer egress from blood, modified by a factor reflecting transcapillary diffusibility, the transfer fraction. The return of tracer to the blood and distant (intracellular) events are shown to play no role in the solution. Fractional cardiac output is the ratio of the rate constant of tracer egress from blood to an organ, divided by the sum of the egress constants from blood. Predominantly extracellular ions such as sodium or bromide are best suited for this technique, although theoretically any diffusible tracer whose compartmental model can be solved may be used. It is shown that fractional cardiac output is independent of the transfer fraction, and therefore can be measured accurately by tracers which are not freely diffusible

  9. Recent developments in magnet measuring techniques

    Billan, J.; Henrichsen, K.N.; Walckiers, L.

    1985-01-01

    The main problems related to magnetic measurements of particle accelerator components are discussed. Measurements of the properties of magnetic materials as well as the measurements of field distribution in the electromagnets for the Large Electron-Positron Collider (LEP) are illustrated. The fluxmeter method is extensively employed in this work. The impact of recent advances in electronic technology on measurement techniques is explained. Magnetic measurements (including the harmonic coil method) can be performed with improved accuracy applying modern technology to the classical methods. New methods for the non-destructive testing of magnetic materials and for the measurement of magnetic geometry are described. (orig.) [de

  10. Complex technique for materials hardness measurement

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  11. Isotope measurement techniques for atmospheric methane

    Lowe, D.; White, J.; Levin, I.; Wahlen, M.; Miller, J.B.; Bergamaschi, P.

    2002-01-01

    Measurement techniques for the carbon isotopic composition of atmospheric methane (δ 13 C) are described in detail as applied in several leading institutions active in this field since many years. The standard techniques with offline sample preparation and subsequent measurement by dual inlet isotope ratio mass spectrometry (IRMS) are compared with continuous flow IRMS. The potential use of infrared absorption spectroscopy is briefly discussed. Details on quality control and calibration are provided. Basic analytical aspects for the measurement of other species, 2 H and 14 C, are also given. (author)

  12. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  13. Fractional Poincaré inequalities for general measures

    Mouhot, Clé ment; Russ, Emmanuel; Sire, Yannick

    2011-01-01

    on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional

  14. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  15. Measuring memory with the order of fractional derivative

    Du, Maolin; Wang, Zaihua; Hu, Haiyan

    2013-12-01

    Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.

  16. Multiwavelength pulse oximetry in the measurement of hemoglobin fractions

    Manzke, Bernd; Schwider, Johannes; Lutter, Norbert O.; Engelhardt, Kai; Stork, Wilhelm

    1996-04-01

    The two wavelength design of the majority of pulse oximeters assumes only two absorbing hemoglobin fractions, oxyhemoglobin (O2Hb), and reduced hemoglobin (HHb) irrespective of the presence of methemoglobin (MetHb) and carboxyhemoglobin (COHb). If MetHb or COHb is present, it contributes to the pulse-added absorbance signal and will be interpreted as either HHb or O2Hb or some combination of the two. In this paper we describe a noninvasive multi-wavelength pulse oximeter measuring O2Hb, HHb, MetHb, and COHb at a specified accuracy of 1.0%. The system was designed with respect to the results of numerical simulations. It consists of 9 laserdiodes (LDs) and 7 light emitting diodes (LEDs), a 16-bit analog-digital converter (ADC) and has a sampling rate of 16 kHz. The laser didoes and LEDs were coupled into multi-mode fibers and led with a liquid lightguide to the finger clip and then the photodiode. It also presents the results of a clinical study, including a setup with a quartz tungsten halogen lamp (with fiber output) and a diode array spectrometer, a standard pulse oximeter and two in-vitro oximeters (radiometer OSM3 and radiometer ABL 520) as references.

  17. A new technique for infrared scintillation measurements

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  18. A new technique for infrared scintillation measurements

    Chiossi, F.; Brylew, K.; Borghesani, A.F.; Braggio, C.; Carugno, G.; Drozdowski, W.; Guarise, M.

    2017-01-01

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu_0_._7_5Y_0_._2_5)_3Al_5O_1_2 sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  19. Comparison of two radionuclide ejection-fraction techniques with contrast angiography in ischemic heart disease and valvular heart disease

    Hassan, I.M.; Abdel-Dayem, H.M.; Mohammed, M.M.J.; Simo, M.; Yousef, A.M.; Badruddosa, M.; Mahmood, A.R.; Sayed, M.E.

    1986-04-01

    First-pass radionuclide angiography (FPRA) in the 30/sup 0/ right anterior oblique and equilibrium gated radionuclide angiography (EGNA) in the 45/sup 0/ left anterior oblique were used for quantitative measurements of left ventricular ejection fraction (LVEF). Equipment used was a 400T gamma-camera interfaced with a Simis III Informatek computer. The results were compared with contrast angiography (CA). The aim of this study was to determine the sensitivity of both radionuclide techniques. The present data are based on 65 patients in whom CA and EGNA were performed. In 47 patients both FPRA and EGNA were performed. Results suggested that in ischemic heart disease (IHD) and valvular heart disease (VHD) the EGNA technique is well correlated with CA (r=0.9 and 0.73, respectively). FPRA correlated well only with CA in IHD (r=0.86), but not in VHD (r=0.18). This study indicates that both FPRA and EGNA are sensitive, noninvasive techniques for measuring ejection fraction in IHD, while in VHD, EGNA is more sensitive technique than FPRA.

  20. A comparison of two radionuclide ejection-fraction techniques with contrast angiography in ischemic heart disease and valvular heart disease

    Hassan, I.M.; Abdel-Dayem, H.M.; Mohammed, M.M.J.; Simo, M.; Yousef, A.M.; Badruddosa, M.; Mahmood, A.R.; Sayed, M.E.

    1986-01-01

    First-pass radionuclide angiography (FPRA) in the 30 0 right anterior oblique and equilibrium gated radionuclide angiography (EGNA) in the 45 0 left anterior oblique were used for quantitative measurements of left ventricular ejection fraction (LVEF). Equipment used was a 400T gamma-camera interfaced with a Simis III Informatek computer. The results were compared with contrast angiography (CA). The aim of this study was to determine the sensitivity of both radionuclide techniques. The present data are based on 65 patients in whom CA and EGNA were performed. In 47 patients both FPRA and EGNA were performed. Results suggested that in ischemic heart disease (IHD) and valvular heart disease (VHD) the EGNA technique is well correlated with CA (r=0.9 and 0.73, respectively). FPRA correlated well only with CA in IHD (r=0.86), but not in VHD (r=0.18). This study indicates that both FPRA and EGNA are sensitive, noninvasive techniques for measuring ejection fraction in IHD, while in VHD, EGNA is more sensitive technique than FPRA. (orig.)

  1. A review on creatinine measurement techniques.

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. VALUATION TECHNIQUES USED IN FAIR VALUE MEASUREMENT

    Cristina-Aurora, BUNEA-BONTAS

    2013-12-01

    Full Text Available Valuation of assets and liabilities involves significant judgements and estimates, especially when fair value measurement is required. Currently, IFRS 13 Fair Value Measurement offers a single and more comprehensive source of guidance that is applied to almost all fair value estimates. When measuring fair value of fixed assets, intangible assets, specified financial assets or liabilities, different valuation techniques may be used: the market approach, the cost approach and the income approach. This article reviews these techniques and points out that different valuation practices may provide different results depending on the item being fair valued and on the inputs used. Also it emphasizes that, in particular circumstances, there is the possibility that a certain technique may be more appropriate than other.

  3. Solar Cell Calibration and Measurement Techniques

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  4. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Fraction Measured (Fm) and Fraction... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table 34 to Subpart G of Part 63—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name CAS...

  5. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  6. Short-term measurement of carbon isotope fractionation in plants

    O'Leary, M.H.; Treichel, I.; Rooney, M.

    1986-01-01

    Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO 2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C 3 , C 4 , and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation

  7. A comparison of analytic procedures for measurement of fractional dextran clearances

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  8. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  9. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  10. Relations between radiation risks and radiation protection measuring techniques

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  11. Shortened screening method for phosphorus fractionation in sediments A complementary approach to the standards, measurements and testing harmonised protocol

    Pardo, Patricia; Rauret, Gemma; Lopez-Sanchez, Jose Fermin

    2004-01-01

    The SMT protocol, a sediment phosphorus fractionation method harmonised and validated in the frame of the standards, measurements and testing (SMT) programme (European Commission), establishes five fractions of phosphorus according to their extractability. The determination of phosphate extracted is carried out spectrophotometrically. This protocol has been applied to 11 sediments of different origin and characteristics and the phosphorus extracted in each fraction was determined not only by UV-Vis spectrophotometry, but also by inductively coupled plasma-atomic emission spectrometry. The use of these two determination techniques allowed the differentiation between phosphorus that was present in the extracts as soluble reactive phosphorus and as total phosphorus. From the comparison of data obtained with both determination techniques a shortened screening method, for a quick evaluation of the magnitude and importance of the fractions given by the SMT protocol, is proposed and validated using two certified reference materials

  12. Measurement techniques for radio frequency nanoelectronics

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  13. Chromium Fractions Changes Compared With Total-Cr As Determined by Neutron Activation Analysis Technique

    Abdel-Sabour, M.F.; Abdou, F.M.; Elwan, I.M.; Al-Salama, Y.J.

    2003-01-01

    Fifteen soil samples were chosen from different locations (five different locations at north greater Cairo, Egypt to represent different soils (alluvial and sandy) as well as different source of contaminated wastewater (sewage and industrial effluent). Using sequential extraction technique (extracting the soil with different solutions, which is designed to separate metal fractions), Cr was separated into six operationally defined fractions water soluble, exchangeable, carbonate bound, Fe-Mn oxides bound, organic bound and residual fractions. Result of soil total-Cr indicated the serious accumulation of Cr in soils subjected to prolonged irrigation with contaminated wastewater. As it could seen, total-Cr in the tested contaminated soils exceeds the permissible levels (75-100)ppm Cr by several order of magnitude particularly at the surface and subsurface layers. The highest accumulation of total Cr down to depth 60 cm was observed in case of soil E. Data showed that values of total Cr determined by NAA method were always higher than the relevant values determined either by AAS or those calculated after the sequential extraction method. T-test analysis showed the significant difference between NAA and either AAS or sequential extraction methods. Although T-test analysis showed that were significant differences between total content in soils as determined by destructive (AAS or SUM) and non-destructive (NAA) analytical techniques however, strong liner relation between NAA and other tested methods was obtained. Chromium distribution between different extractants shows that the greatest amounts are found in the residual and Occluded in Fe and Mn-Oxides fractions followed by carbonate or organic fractions. In most cases the proportion of all tested Cr-forms has increased in contaminated soil layers with higher enrichment in organically bound Cr, occluded in Fe and Mn oxides, carbonate exchangeable and soluble fractions. Results indicate that soil properties have a

  14. Neutron flux measurement utilizing Campbell technique

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  15. High-voltage test and measuring techniques

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  16. Measurements of void fraction in a water-molten tin system by X-ray absorption

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  17. Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry.

    Ragonese, Carla; Tedone, Laura; Beccaria, Marco; Torre, Germana; Cichello, Filomena; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi

    2014-02-15

    In this work the characterisation of the lipid fraction of several species of marine macro algae gathered along the eastern coast of Sicily is reported. Two species of green marine algae (Chloropyceae), two species of red marine algae (Rhodophyceae) and four species of brown marine algae (Pheophyceae) were evaluated in terms of fatty acids, triacylglycerols, pigments and phospholipids profile. Advanced analytical techniques were employed to fully characterise the lipid profile of these Mediterranean seaweeds, such as GC-MS coupled to a novel mass spectra database supported by the simultaneous use of linear retention index (LRI) for the identification of fatty acid profile; LC-MS was employed for the identification of triacylglycerols (TAGs), carotenoids and phospholipids; the determination of accurate mass was carried out on carotenoids and phospholipids. Quantitative data are reported on fatty acids and triacylglycerols as relative percentage of total fraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Meanings for Fraction as Number-Measure by Exploring the Number Line

    Psycharis, Giorgos; Latsi, Maria; Kynigos, Chronis

    2009-01-01

    This paper reports on a case-study design experiment in the domain of fraction as number-measure. We designed and implemented a set of exploratory tasks concerning comparison and ordering of fractions as well as operations with fractions. Two groups of 12-year-old students worked collaboratively using paper and pencil as well as a specially…

  19. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease.

    Deng, Jie; Fishbein, Mark H; Rigsby, Cynthia K; Zhang, Gang; Schoeneman, Samantha E; Donaldson, James S

    2014-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*W) and fat (T2*F) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P fat fraction, T2*W (27.9 ± 3.5 ms) decreased, whereas T2*F (20.3 ± 5.5 ms) increased; and T2*W and T2*F became increasingly more similar when fat fraction was higher than 15-20%. Histological fat

  20. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease

    Deng, Jie; Rigsby, Cynthia K.; Donaldson, James S. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Fishbein, Mark H. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Gastroenterology, Hepatology, and Nutrition, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Biostatistics Research Core, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2014-11-15

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*{sub W}) and fat (T2*{sub F}) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P < 0.0001). With increasing fat fraction, T2*{sub W} (27.9 ± 3.5 ms) decreased, whereas T2*{sub F} (20.3 ± 5.5 ms) increased; and T2*{sub W} and T2*{sub F} became increasingly more similar when fat

  1. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.

    2013-03-01

    Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  2. An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations

    M. Bishehniasar

    2017-01-01

    Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.

  3. Seminar on Detectors and measurements techniques

    Holm, E.

    2002-01-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  4. Seminar on Detectors and measurements techniques

    Holm, E. (ed.) [Risoe National Lab., Roskilde (Denmark)

    2002-07-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  5. Phase Retrieval Techniques In Coordinates Measurement

    Harizanova, J. I.; Stoykova, E. V.; Sainov, V. C.

    2007-01-01

    A precise pattern projection profilometry for three-dimensional shape measurements with different methods of fringe generation is presented. The application of phase-shifting algorithm along with two-spacing illumination allow for phase retrieval and estimation of relative and absolute coordinates of the tested samples. The following experimental approaches for fringe generation are investigated: interferometric approach based on a classical Michelson interferometer, digital computation with a DMD projection and light modulation by a sinusoidal phase grating. The theoretical background, experimental results as well as comparison of the applied generation methods are analyzed. The obtained outcomes successfully display the applicability of this technique for surface profile measurement. The application of the proposed techniques for remote, non-destructive in-situ inspection of real objects from cultural heritage is discussed

  6. Fractional Flow Reserve Measurement by Coronary Computed Tomography Angiography: A Review with Future Directions

    Asim Rizvi

    2016-12-01

    Full Text Available Invasive fractional flow reserve (FFR measurement is currently the gold standard for coronary intervention. FFR measurement by coronary computed tomography angiography (FFRCT is a novel and promising imaging technology that permits noninvasive assessment of physiologically significant coronary lesions. FFRCT is capable of combining the anatomic information provided by coronary computed tomography angiography with computational fluid dynamics to compute FFR. To date, several studies have reported the diagnostic performance of FFRCT compared with invasive FFR measurement as the reference standard. Further studies are now being implemented to determine the clinical feasibility and economic implications of FFRCT techniques. This article provides an overview and discusses the available evidence as well as potential future directions of FFRCT.

  7. Measurements of inclusive semileptonic branching fractions of b hadrons in $Z^{0}$ decays

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    A measurement of inclusive semileptonic branching fractions of b hadrons produced in Z decays is presented. An enriched Z -> bbbar sample is obtained with a lifetime flavour-tagging technique. The leptonic events are then selected from this sample, and classified according to their origin, which is determined by comparing the distribution of several kinematic variables using artificial neural network techniques. Using 3.6 million multihadronic events collected with the OPAL detector at energies near the Z resonance, the values BR(b->lX) =(10.83 +- 0.10(stat.) +- 0.20(syst.) +0.20 -0.13(model)) % BR(b->c->lX) = (8.40 +- 0.16(stat.) +- 0.21(syst.) +0.33 -0.29 (model)) % are measured, where b denotes all weakly decaying b hadrons and l represents either e or mu. The second error includes all experimental systematic uncertainties whereas the last error is due to uncertainties in modelling of the lepton momentum spectrum in semileptonic decays and b quark fragmentation. The average fraction of the beam energy carr...

  8. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  9. Description of measurement techniques for surface contaminations

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  10. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-01-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted with two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 ± 0.04 for B16F1, 0.08 ± 0.04 for KHT-LP1, 0.17 ± 0.04 for RIF-1 and 0.04 ± 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO 2 values, or [ 3 H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs

  11. Feedback-stabilized fractional fringe laser interferometer for plasma density measurements

    Schneider, J.; Robertson, S.

    1979-01-01

    A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system

  12. Optical techniques for in-core measurements

    Brichard, B.

    2007-01-01

    The in-situ measurement of dimensional changes is a key issue for advanced irradiation programs in Material Test Reactors. It is for example crucial to monitor the changes of the dimensions of nuclear fuel assemblies as well as those of mechanically stressed structural material samples during in-pile irradiations. Different techniques already exist to carry out such measurements but they all come with a number of drawbacks. SCK-CEN and CEA have therefore decided to share the development of a measurement system that was never applied before in the core of a nuclear reactor. It relies on optical dimensional measurements and brings along unprecedented non-intrusiveness combined with high resolution. A clear advantage in using compact optical sensors results in a more efficient occupation of the irradiation volume available for target testings as well as a significant reduction of the gamma-heating associated with the in-pile instrumentation. The objectives of these shared studies are to design, develop, test and qualify an in-pile dimensional measurement system based on optical techniques, with the goal to implement this system in future MTR irradiation experiments. In 2006, we focussed our activities on sensor analysis, selection of the sensor prototypes, procurement and first irradiation experiment

  13. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    C. W. Rella

    2013-03-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point inter-laboratory compatibility goals (WMO, 2011a without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  14. Adaptability of laser diffraction measurement technique in soil physics methodology

    Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András

    2016-04-01

    There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters

  15. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

    Omar Abu Arqub

    2014-01-01

    Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

  16. Intercomparison test of various aerosol measurement techniques

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  17. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Umeda, K; Abrao, A

    1975-06-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Nd, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH/sub 4/ solution buffered with acetic acid as eluant. The annoying problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu/sub 2/S and disruption of Cu-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity.

  18. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Umeda, K.; Abrao, A.

    1975-01-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Ns, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH 4 solution buffered with acetic acid as eluant. The annoy problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu 2 S and disruption of CU-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity

  19. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  20. Progress in automation, robotics and measuring techniques

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent progresses in control, automation, robotics, and measuring techniques. It includes contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.    .

  1. Measuring techniques in emission computed tomography

    Jordan, K.; Knoop, B.

    1988-01-01

    The chapter reviews the historical development of the emission computed tomography and its basic principles, proceeds to SPECT and PET, special techniques of emission tomography, and concludes with a comprehensive discussion of the mathematical fundamentals of the reconstruction and the quantitative activity determination in vivo, dealing with radon transformation and the projection slice theorem, methods of image reconstruction such as analytical and algebraic methods, limiting conditions in real systems such as limited number of measured data, noise enhancement, absorption, stray radiation, and random coincidence. (orig./HP) With 111 figs., 6 tabs [de

  2. Techniques for beam impedance measurements above cutoff

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz

  3. Viscosity measurement techniques in Dissipative Particle Dynamics

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  4. Neutron measurement techniques for tokamak plasmas

    Jarvis, O.N.

    1994-01-01

    The present article reviews the neutron measurement techniques that are currently being applied to the study of tokamak plasmas. The range of neutron energies of primary interest is limited to narrow bands around 2.5 and 14 MeV, and the variety of measurements that can be made for plasma diagnostic purposes is also restricted. To characterize the plasma as a neutron source, it is necessary only to measure the total neutron emission, the relative neutron emissivity as a function of position throughout the plasma, and the energy spectra of the emitted neutrons. In principle, such measurements might be expected to be relatively easy. That this is not the case is, in part, attributable to practical problems of accessibility to a harsh environment but is mostly a consequence of the time-scale on which the measurements have to be made and of the wide range of neutron emission intensities that have to be covered: for tokamak studies, the time-scale is of the order of 1 to 100 ms and the neutron intensity ranges from 10 12 to 10 19 s -1 . (author)

  5. Techniques for transparent lattice measurement and correction

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  6. Measurement and characterization techniques for thermoelectric materials

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  7. Delayed neutron fraction and prompt decay constant measurement in the MINERVE reactor using the PSI instrumentation

    Perret, Gregory [Paul Scherrer Institute, Villigen, 5232, (Switzerland)

    2015-07-01

    The critical decay constant (B/A), delayed neutron fraction (B) and generation time (A) of the Minerve reactor were measured by the Paul Scherrer Institut (PSI) and the Commissariat a l'Energie Atomique (CEA) in September 2014 using the Feynman-alpha and Power Spectral Density neutron noise measurement techniques. Three slightly subcritical configuration were measured using two 1-g {sup 235}U fission chambers. This paper reports on the results obtained by PSI in the near critical configuration (-2g). The most reliable and precise results were obtained with the Cross-Power Spectral Density technique: B = 708.4±9.2 pcm, B/A = 79.0±0.6 s{sup -1} and A 89.7±1.4 micros. Predictions of the same kinetic parameters were obtained with MCNP5-v1.6 and the JEFF-3.1 and ENDF/B-VII.1 nuclear data libraries. On average the predictions for B and B/A overestimate the experimental results by 5% and 11%, respectively. The discrepancy is suspected to come from either a corruption of the data or from the inadequacy of the point kinetic equations to interpret the measurements in the Minerve driven system. (authors)

  8. Uncertainty analysis technique for OMEGA Dante measurements

    May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  9. Uncertainty Analysis Technique for OMEGA Dante Measurements

    May, M.J.; Widmann, K.; Sorce, C.; Park, H.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  10. Measurement technique developments for LBE flows

    Buchenau, D., E-mail: d.buchenau@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Eckert, S.; Gerbeth, G. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Stieglitz, R. [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Dierckx, M. [SCK-CEN, Belgian Nuclear Research Centre, 2400 Mol (Belgium)

    2011-08-31

    We report on the development of measurement techniques for flows in lead-bismuth eutectic alloys (LBE). This paper covers the test results of newly developed contactless flow rate sensors as well as the development and test of the LIDAR technique for operational free surface level detection. The flow rate sensors are based on the flow-induced disturbance of an externally applied AC magnetic field which manifests itself by a modified amplitude or a modified phase of the AC field. Another concept of a force-free contactless flow meter uses a single cylindrical permanent magnet. The electromagnetic torque on the magnet caused by the liquid metal flow sets the magnet into rotation. The operation of those sensors has been demonstrated at liquid metal test loops for which comparative flow rate measurements are available, as well as at the LBE loops THESYS at KIT and WEBEXPIR at SCK-CEN. For the level detection a commercial LIDAR system was successfully tested at the WEBEXPIR facility in Mol and the THEADES loop in Karlsruhe.

  11. Performance of a fully automated program for measurement of left ventricular ejection fraction

    Douglass, K.H.; Tibbits, P.; Kasecamp, W.; Han, S.T.; Koller, D.; Links, J.M.; Wagner, H.H. Jr.

    1982-01-01

    A fully automated program developed by us for measurement of left ventricular ejection fraction from equilibrium gated blood studies was evaluated in 130 additional patients. Both of 6-min (130 studies) and 2-min (142 studies in 31 patients) gated blood pool studies were acquired and processed. The program successfully generated ejection fractions in 86% of the studies. These automatically generated ejection fractions were compared with ejection fractions derived from manually drawn regions the interest. When studies were acquired for 6-min with the patient at rest, the correlation between automated and manual ejection fractions was 0.92. When studies were acquired for 2-min, both at rest and during bicycle exercise, the correlation was 0.81. In 25 studies from patients who also underwent contrast ventriculography, the program successfully generated regions of interest in 22 (88%). The correlation between the ejection fraction determined by contrast ventriculography and the automatically generated radionuclide ejection fraction was 0.79. (orig.)

  12. Measurements of Bismuth (214Bi) in Indoor Air and Evaluation of Deposition Fraction

    Mohamed, A.; Ahmed, A.A.; Yuness, M.

    2010-01-01

    The activity size distribution of unattached as well as attached 214 Bi to aerosol particles was measured in indoor air of physics department at Minia University, Minia City, Egypt. The samples were collected using a wire screen diffusion battery technique and a low pressure Berner cascade impactor. The mean Activity Median Thermodynamic Diameter (AMTD) of unattached 214 Bi was determined to be 1.25 nm with a relative mean Geometric Standard Deviation (GSD) of 1.29. A mean unattached fraction (fun) of 0.08±0.05 was obtained. The average activity concentration of 214 Bi was found to be 4.9±0.42 Bq m -3 . Most of the attached activities of progeny were associated with aerosol particles of the accumulation mode. The GSD of the accumulation mode of 214 Bi was determined to be 3 with an Active Median Aerodynamic Diameter (AMAD) of 350 nm. Based on the obtained measured data values, deposition fraction of 214 Bi has been evaluated by using a stochastic deposition model. The bronchial deposition efficiencies of particles in the size range of attached 214 Bi were found to be lower than those of unattached progeny

  13. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions.

    Molnar, Maja; Mendešević, Nikolina; Šubarić, Drago; Banjari, Ines; Jokić, Stela

    2017-08-05

    Chamomile, a well-known medicinal plant, is a rich source of bioactive compounds, among which two coumarin derivatives, umbelliferone and herniarin, are often found in its extracts. Chamomile extracts have found a different uses in cosmetic industry, as well as umbelliferone itself, which is, due to its strong absorption of UV light, usually added to sunscreens, while herniarin (7-methoxycoumarin) is also known for its biological activity. Therefore, chamomile extracts with certain herniarin and umbelliferone content could be of interest for application in pharmaceutical and cosmetic products. The aim of this study was to compare the extracts of different chamomile fractions (unprocessed chamomile flowers first class, processed chamomile flowers first class, pulvis and processing waste) and to identify the best material and method of extraction to obtain herniarin and umbelliferone. Various extraction techniques such as soxhlet, hydrodistillation, maceration and supercritical CO 2 extraction were used in this study. Umbelliferone and herniarin content was determined by high performance liquid chromatography (HPLC). The highest yield of umbelliferone (11.80 mg/100 g) and herniarin (82.79 mg/100 g) were obtained from chamomile processing waste using maceration technique with 50% aqueous ethanol solution and this extract has also proven to possess antioxidant activity (61.5% DPPH scavenging activity). This study shows a possibility of potential utilization of waste from chamomile processing applying different extraction techniques.

  14. A technique of measuring neutron spectrum

    Sarkar, P.K.; Kirthi, K.N.; Ganguly, A.K.

    1975-01-01

    Plastic scintillators have been used to measure fast neutron spectrum from various sources. Gamma background discrimination has been done by selecting thin scintillators and thereby achieving near 100% transmission of Compton-edge electrons. The measured distribution has been unfolded by using an iterative least square technique. This gives minimum variance and maximum likelihood estimate with error minimised. Smoothening of the observed distribution has been done by Fourier and time series analyses. The method developed is applicable in principle for the determination of spectra of high energy neutrons ranging from 1 MeV to 70 MeV and beyond. However, practical application of the method is limited by the non-availability of cross-section data for various neutron induced reactions with carbon and hydrogen present in the polymerised polystyrene scintillator. This procedure has been adopted in the present work for spectral determination up to 14 MeV neutrons using the published value of reaction and scattering cross-sections. The spectra of Po-Be, Pu-Be, Am-Be and Ra-Be arrived at agree well with the published spectra obtained by other methods. Spectrum from spontaneous fission of Cf-252 have also been measured and fitted to the expression N(E)=Esup(1/2)exp(-E/T). The fitted parameter T and spectral details agree well with those in published literature

  15. Helium-flow measurement using ultrasonic technique

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  16. Nondestructive hall coefficient measurements using ACPD techniques

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  17. Evaluation of Uranium-235 Measurement Techniques

    Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dibert, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution in U-Mo cast plates.

  18. Hyperfine interactions measured by nuclear orientation technique

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  19. Void fraction measurement in two-phase flow with X-rays

    Hufschmidt, W.; Clercq, E. de.

    1984-01-01

    The exact knowledge of the void fraction in two-phase flow systems with water and vapour is of great importance for water-reactors. A mesurement method not disturbing the fluid flow is the absorption technique X-rays. This method has been tested for the present case of small absorption lengths (about 16mm). In collaboration with the 'Lehrstuhl fuer elektronische Schaltungen' of the Ruhruniversitaet, Bochum (FRG), a rapid measurement device has been developed using ionization chambers. At present steady-state fluid in vertical tubes with homogeneous distribution of the two-phases water-vapour are tested at pressures in the range from 70 to 150 bars and rather good agreements with calculated values are found

  20. Measurement of the Effective Delayed Neutron Fraction in Three Different FR0-cores

    Moberg, L; Kockum, J

    1972-06-15

    The effective delayed neutron fraction, beta{sub eff}, has been measured in the three cores 3, 5 and 8 of the fast zero-power reactor FR0. The variance-to-mean method, in which the statistical fluctuations of the neutron density in the reactor is studied, was used. A 3He-gas scintillator was placed in the reflector and used as a neutron detector. It was made more sensitive to fast neutrons by surrounding it with polythene. Its efficiency, expressed as the number of counts per fission in the reactor, was determined using fission chambers with known efficiency placed in the core. The space distribution of the fission rate in the core was determined by foil activation technique. The experimental results were compared with theoretical beta{sub eff}-values calculated with perturbation theory. The difference was about 3 % which is of the same order as the accuracy in the experimental values

  1. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  2. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  3. The Optical Fractionator Technique to Estimate Cell Numbers in a Rat Model of Electroconvulsive Therapy

    Olesen, Mikkel Vestergaard; Needham, Esther Kjær; Pakkenberg, Bente

    2017-01-01

    are too high to count manually, and stereology is now the technique of choice whenever estimates of three-dimensional quantities need to be extracted from measurements on two-dimensional sections. All stereological methods are in principle unbiased; however, they rely on proper knowledge about...

  4. Measurement of the neutron fraction event-by-event in DREAM

    Hauptman, John; Akchurin, N; Bedeschi, F; Carosi, R; Incagli, M; Cardini, A; Ciapetti, G; Lacava, F; Pinci, D; Ferrari, R; Gaudio, G; Franchino, S; Fraternali, M; Livan, M; Negri, A; Hauptman, J; Lee, S; La Rotonda, L; Meoni, E; Policicchio, A

    2011-01-01

    We have measured the neutron fraction event-by-event in beam test data taken at CERN by the DREAM collaboration. I will review these measurements in the context of the importance of neutrons to future high-precision calorimetry, and bring together the data from SPACAL, the GLD compensating calorimeter, and DREAM to estimate the impact neutron fraction measurements will make on hadronic energy resolution in dual-readout calorimeters.

  5. On the measurement of Wigner distribution moments in the fractional Fourier transform domain

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed

  6. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  7. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  8. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  9. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  10. Visualization and void-fraction measurements in a molten metal bath

    Baker, Michael Charles

    In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift

  11. RF measurements I: signal receiving techniques

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  12. Investigation of size-fractionated urban aerosol and trace gases in Budapest by nuclear-related and other analytical techniques

    Salma, I.; Maenhaut, W.; Zemplen-Papp, E.; Bobvos, J.

    1998-01-01

    An air pollution study was conducted at two urban residential sites in Budapest (one representing the downtown, the other representing a wooded suburb) from 9 April till 17 May 1996. Size-fractionated aerosol samples were simultaneously collected on a daily basis, and meteorological conditions were recorded at both sampling sites. Stacked filter units (SFUs) with an upper size inlet cut-off were used as sampling device separating the urban aerosol into a coarse (about 10-2 μm equivalent aerodynamic diameter, EAD) and a fine ( 2 , SO 2 , CO and the total mass of the suspended particulate matter were measured every half hour at one of the sampling sites by commercial equipment. The SFU filters were analyzed by gravimetry for the total particle mass, by a light reflectance technique for black carbon, by particle-induced X-ray emission analysis and instrumental neutron activation analysis for elemental composition (in combination for up to 40-45 elements). The analytical results were used for characterizing the levels and the multi-elemental composition of the urban aerosol at both sampling sites and for both size fractions, for investigating the atmospheric concentrations and diurnal variation of some criteria pollutants, and for comparing the time-trends of aerosols and trace gases. Identification of the major source types of the aerosol fractions and trace gases, and assessment of the relative contribution from these sources are to be accomplished by multivariate receptor modeling. The present paper reports on the status of the air pollution study, and gives a discussion of the results

  13. Noninvasive measurement of lower extremity muscle oxygen extraction fraction under cuff compression paradigm.

    Wang, Chengyan; Zhang, Rui; Zhang, Xiaodong; Wang, He; Zhao, Kai; Jin, Lixin; Zhang, Jue; Wang, Xiaoying; Fang, Jing

    2016-05-01

    To demonstrate the feasibility of using a susceptibility-based MRI technique with asymmetric spin-echo (ASE) sequence to assess the lower extremity muscle oxygen extraction fraction (OEF) alternations under cuff compression paradigm. Approved by the local institutional human study committee, nine healthy young volunteers participated in this study. All the ASE scans were conducted using a 3 Tesla clinical MRI scanner during resting state (pre), 1-3 min (post1) and 3-5 min (post2) after a pressure of 50 mmHg above individual systolic blood pressure imposed on the thigh. Moreover, near-infrared spectroscopy (NIRS) measurements were performed on the same day under the same cuff compression protocol to verify the accuracy of this susceptibility-based method. In all volunteers, the mean MRI based OEF in gastrocnemius (GAS) muscle increased significantly from 0.28 ± 0.02 (pre) to 0.31 ± 0.03 (post1, P measured 1-%HbO2 (percentage of deoxyhemoglobin concentration within total hemoglobin) in GAS rose significantly from 0.29 ± 0.03 (pre) to 0.31 ± 0.04 (post1, P measuring skeletal muscle oxygenation. © 2015 Wiley Periodicals, Inc.

  14. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

    Inci Cilingir Sungu

    2015-01-01

    Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

  15. Possibilities of delayed neutron fraction (βeff) calculation and measurement

    Michalek, S.; Hascik, J.; Farkas, G.

    2008-01-01

    The influence of the delayed neutrons on the reactor dynamics can be understood through their impact on the reactor power change rate. In spite of the fact that delayed neutrons constitute only a very small fraction of the total number of neutrons generated from fission, they play a dominant role in the fission chain reaction control. If only the prompt neutrons existed, the reactor operation would become impossible due to the fast reactor power changes. The exact determination of delayed neutrons main parameter, the delayed neutron fraction (β eff ), is very important in the field of reactor physics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of calculations and experiments. In consequence of difficulties in β eff experimental measurement, this value in exact state use to be determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. Determination of β eff requires criticality calculations. In the past, k eff used to be traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum- weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. In this work, a summary of possible β eff calculation methods can be found and a calculation of β eff for VR-1 training reactor in one operation state is made using the prompt method, by MCNP5 code. Also a method of β eff kinetic measurement on VR-1 training reactor at Czech Technical University in Prague using in-pile kinetic technique is outlined (authors)

  16. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  17. Measurement of spatial correlation functions using image processing techniques

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  18. A measurement technique for counting processes

    Cantoni, V.; Pavia Univ.; De Lotto, I.; Valenziano, F.

    1980-01-01

    A technique for the estimation of first and second order properties of a stationary counting process is presented here which uses standard instruments for analysis of a continuous stationary random signal. (orig.)

  19. Optical metrology techniques for dimensional stability measurements

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  20. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  1. Void fraction measurements by means of flash x-ray radiography

    Angelini, S.; Theofanous, T.G.

    1998-01-01

    In this paper we discuss X-ray radiography as a means of obtaining quantitative space distributions of void fractions in highly-transient, multiphase flows. The technique and the calibration of the instrument are discussed in detail, and its application in the MAGICO-2000 experiments is used to illustrate its potential in providing unique information about the interactions. (author)

  2. Evaluation of void fraction measurements from DADINE experience using RELAP4/MOD5 code

    Borges, R.C.; Freitas, R.L.

    1989-01-01

    The DADINE experiment measures the axial evolution of the void fraction by neutronic diffusion in two-phase flow in the wet regions of a pressurized water reactor in accident conditions. Since the theoretical/experimental confrontation is important for code evaluation, this paper presents the simulation with the RELAP4/MOD5 Code of the void fractions results obtained in the DADINE Experiment, that showed some deviation probably associated with the existing models in Code, special attention in the way of stablishing the two-phase flow and the no characterization of the differents flow regimes related with the void fractions. (author) [pt

  3. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  4. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael

    2018-06-01

    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.

  5. Proton-density fat fraction measurement: A viable quantitative biomarker for differentiating adrenal adenomas from nonadenomas

    Meng, Xiaoyan; Chen, Xiao; Shen, Yaqi; Hu, Xuemei; Tang, Hao; Hu, Daoyu [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Li, Zhen, E-mail: zhenli@hust.edu.cn [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Kamel, Ihab R. [Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins Medical Institutions, Baltimore, Maryland (United States)

    2017-01-15

    Highlights: • PDFF differentiated adenomas from nonadenomas with high sensitivity and specificity. • PDFF measurements are simple and can be readily applicable in clinical practice. • Oil-saline phantom study demonstarted good correlation between PDFF and SII. - Abstract: Purpose: This study aims to compare the accuracy of proton-density fat fraction (PDFF) measurements with chemical shift magnetic resonance imaging (CSI) for quantifying the fat content of adrenal nodules and for differentiating adenomas from nonadenomas. Materials and methods: Oil-saline phantom measurements was performed to compare the correlation between PDFF and CSI in detecting and quantifying fat content. 43 consecutive patients who had known adrenal nodules were imaged on a 3.0-T MR scanner. PDFF was measured, and the signal intensity (SI) index (SII), SI adrenal-to-liver ratio (ALR) and SI adrenal-to-spleen ratio (ASR) of the adrenal nodules were calculated. Results: In the phantom study, PDFF ranged from 12.6% to 99.1% and the SII was between 0.72 and 1.23. There was good correlation between these two methods (R square = 0.972, p < 0.0001). The PDFF of adrenal adenoma was significantly increased compared with that of nonadenoma (p < 0.001). PDFF was an effective tool for distinguishing adenoma from nonadenoma, with an area under the curve (AUC) of 0.98. In comparing SII, ALR and ASR the AUC was 0.94, 0.95 and 0.93, respectively. No significant difference was noted between these two methods (p > 0.05). Conclusion: PDFF measurements provide an accurate estimation of fat content in discriminating adenomas from nonadenomas compared with CSI, avoiding complicated data calculations and offering a simpler technique using 3T.

  6. SU-E-T-603: Analysis of Optical Tracked Head Inter-Fraction Movements Within Masks to Access Intracranial Immobilization Techniques in Proton Therapy

    Hsi, W; Zeidan, O

    2014-01-01

    Purpose: We present a quantitative methodology utilizing an optical tracking system for monitoring head inter-fraction movements within brain masks to assess the effectiveness of two intracranial immobilization techniques. Methods and Materials: A 3-point-tracking method was developed to measure the mask location for a treatment field at each fraction. Measured displacement of mask location to its location at first fraction is equivalent to the head movement within the mask. Head movements for each of treatment fields were measured over about 10 fractions at each patient for seven patients; five treated in supine and two treated in prone. The Q-fix Base-of-Skull head frame was used in supine while the CIVCO uni-frame baseplate was used in prone. Displacements of recoded couch position of each field post imaging at each fraction were extracted for those seven patients. Standard deviation (S.D.) of head movements and couch displacements was scored for statistical analysis. Results: The accuracy of 3PtTrack method was within 1.0 mm by phantom measurements. Patterns of head movement and couch displacement were similar for patients treated in either supine or prone. In superior-inferior direction, mean value of scored standard deviations over seven patients were 1.6 mm and 3.4 mm for the head movement and the couch displacement, respectively. The result indicated that the head movement combined with a loose fixation between the mask-to-head frame results large couch displacements for each patient, and also large variation between patients. However, the head movement is the main cause for the couch displacement with similar magnitude of around 1.0 mm in anterior-posterior and lateral directions. Conclusions: Optical-tracking methodology independently quantifying head movements could improve immobilization devices by correctly acting on causes for head motions within mask. A confidence in the quality of intracranial immobilization techniques could be more efficient by

  7. Measurement of the local void fraction at high pressures in a heating channel

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  8. Measurements of the S-wave fraction in B-0 -> K+ pi(-) mu(+) mu(-) decays and the B-0 -> K*(892)(0) mu(+) mu(-) differential branching fraction

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Dufour, L.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    2016-01-01

    A measurement of the differential branching fraction of the decay B-0 -> K* (892)(0) mu(+)mu(-) is presented together with a determination of the S-wave fraction of the K+ pi(-) system in the decay B-0 -> K+ pi-mu(+)mu(-). The analysis is based on pp-collision data corresponding to an integrated

  9. Measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda mu(+)nu(mu)

    Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J. G.; Tiemens, M.

    2017-01-01

    We report the first measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda mu(+)nu(mu).This measurement is based on a sample of e+e(-) annihilation data produced at a center-of-mass energy root s = 4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample

  10. Measurement of the Absolute Branching Fraction for Lambda(+)(c) -> Lambda e(+)nu(e)

    Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amorose, A.; Haddadi, Z.; Kalantar-Nayestanaki, Nasser; Kavatsyuk, M.; Messchendorp, J.G; Tiemens, M.

    2015-01-01

    We report the first measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda e(+)nu(e). This measurement is based on 567 pb(-1) of e(+)e(-) annihilation data produced at root s = 4.599 GeV, which is just above the Lambda(+)(c)Lambda(-)(c) threshold. The data were collected with the

  11. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement

    Lockie, Tim; Rolandi, M. Cristina; Piek, Jan J.

    2013-01-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping

  12. Infrared technique for measuring steam density

    Snyder, S.C.; Baker, A.G.

    1982-01-01

    A prototype infrared steam densitometer using a two-wavelength, dual-beam technique was developed. Tests were performed on dry steam flows with this technique, which uses two narrow bandwidths of infrared light in the region of 0.9 to 3.0 μm. One wavelength is absorbed by steam, while the other is not. The latter wavelength is used to account for nonabsorptive light losses. In addition to the beam that traverses the steam flow, a reference beam that does not traverse the flow allows the light source to be monitored. The theory of the device is presented, along with a description of the components and of the system's operation. Test results are also presented

  13. The evolution of radioprotection measuring techniques

    Blanc, D.

    1995-01-01

    We have reviewed the main issues that must now be faced in radiological protection. Many of them are linked to the ICRP recommendations in the report number 60. The impact of microelectronics in this field is significant and is leading to rapidly improved techniques and increasing sensitivity. A particularly important advance is the ''credit card'' dosemeter for X and gamma rays. (author). 2 refs., 4 figs., 2 tab

  14. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    Y. Zybtsev

    2011-01-01

    Full Text Available The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed as well as the methods of metrological checking of measuring system canals.

  15. Assessing metal contamination in recent creek sediments using fractionation technique along Mumbai coast, India

    Fernandes, L.L.; Nayak, G.N.

    nitrogen) and sediment components (sand, silt, clay). A sequential extraction procedure was also applied to understand the partitioning of trace metals among the different fractions of the sediment. Together with this data, pollution indices were also...

  16. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  17. Liquidus temperature and optical properties measurement by containerless techniques

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  18. Measurement techniques of LC display systems

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  19. A novel technique for partial discharge measurement

    Farrokh, Fattahi; Navid, Tagizadegan; Ahmad, Zentabchi; Mehdi, Rashidi

    2005-01-01

    Full text : Partial discharges are a sensitive measure of local electrical stress and therefore the measurements is very often used as a quality check of the insulation. The inception of partial discharges gives information on the limit of the electrical strength of the insulating material before a complete discharge between the conductors takes place. Therefore the insulating material can be tested with high stress but without damaging or reducing the performance of the insulation. Also, for partial discharge measurements it should be taken into account that every stress of the insulation will have an influence on the life expectancy of the material, but a reasonable compromise between the stress during the measurement in order to get reliable results and the influence of he lifetime should be found and established in the relevant standard for the particular equipment, for example transformers, cables and so on

  20. Spectroscopic technique for measuring atmospheric CO2

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  1. Impact of shelf life on measured prompt fraction of spare Inconel in-core flux detectors

    Mohindra, VK; Sadeghi, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Crouse, B. [Darlington Nuclear Generating Station, Bowmanville, Ontario (Canada)

    2008-07-01

    Prompt fraction measurements associated with spare self-powered Inconel In-Core Flux Detectors (ICFDs) carried out a few years after installation on Shut Down System number 1 (SDS1) and Reactor Regulating System (RRS) at Darlington Nuclear Generating Station (DNGS), were found to be lower than those of the original detectors. These detectors, spares and originals, were manufactured in the late 80s, however, the former were kept at manufacturer's warehouse and latter were installed in the reactor core within a few years after manufacturing. Although the prompt fractions of the spare detectors were relatively low, the electronic/electrical behavior of the spare detectors was intact. The first batch of the original detectors performed as per the design requirements. Therefore, it is suspected that during shelf life, spare Inconel in-core flux detectors underwent changes that lowered their measured values of prompt fraction, which were taken within a few years after installation in the reactor. Detailed study of detectors' material composition and impurity concentrations revealed no association with the lower prompt fraction measurements. The evaluation of the limited data of the original and spare Inconel ICFDs installed at Darlington showed: 1. The reduction in prompt fraction was roughly proportional to the shelf life of the detectors; and 2. The rate of reduction in prompt fraction during storage was about double the rate of reduction during operation in the reactor. Above observations were based on the data provided by DNGS for a few detectors. The purpose of this paper is two fold, firstly to present the results of the complete study carried out to investigate the cause of relatively low prompt fractions measured on spare SDS1 and RRS Inconel ICFDs at DNGS, and secondly to generate interest/awareness within other CANDU utilities to add to the database of prompt fractions of spare Inconel ICFDs measured after installation. The data will help to improve

  2. Measuring techniques for continuous monitoring of bioreactors

    Kuhlmann, W; Meyer, H D; Schuegerl, K

    1982-01-01

    Control apparatus for fermentation reactors is described. In the example of alcohol fermentation by Saccharomyces cerevisiae, mass spectrometry is used for measuring soluble volatile components (CO/sub 2/, EtOH, and H/sub 2/O) and low-molecular-weight soluble components are separated by cross flow membrane filtration for measurement: D glucose by polarimetry, phosphate by photometry, and NH/sup 4 +/ by potentiometry.

  3. Measurement of Inclusive b Semileptonic Branching Fractions at the Z Resonance

    Trandafir, Aurel

    2000-05-23

    This document presents a new measurement of inclusive b semileptonic branching fractions B(b-->l) and B(b-->c-->l). The b-->l and b-->c-->l are separated by a means that uses correlation between the final state lepton charge and that of its parent b quark as a constraint. Monte Carlo counts of electrons and muons are calibrated to the data using a newly developed technique based on pairs of mutually independent tests for each particle hypothesis separately. The data sample consists of about 550,000 hadronic Z decays collected at the SLD between 1993 and 1998. Upon analysis of electron and muon counts in 61602 hadronic event hemispheres tagged as containing either a b or a b-bar, the author reports: B(b-->e) = 0.0949{+-}0.0049{+-}0.0050, B(b-->mu) = 0.1066{+-}0.0038{+-}0.0049, combined B(b-->l) = 0.1015{+-}0.0030{+-}0.0035; and B(b-->c-->e) = 0.0811{+-}0.0053{+-}0.0030, B(-->b-->c-->mu) = 0.0717{+-}0.0045{+-}0.0024, combined B(b-->c-->l) = 0.0756{+-}0.0034{+-}0.0019.

  4. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  5. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  6. Waste Measurement Techniques For Lean Companies

    Maciej Pieńkowski

    2014-12-01

    Full Text Available The paper is dedicated to answer the problem of measuring waste in companies, which are implementing Lean Manufacturing concept. Lack of complex identification, quantification an visualization of waste significantly impedes Lean transformation efforts. This problem can be solved by a careful investigation of Muda, Muri and Mura, which represent the essence of waste in the Toyota Production System. Measuring them facilitates complete and permanent elimination of waste in processes. The paper introduces a suggestion of methodology, which should enable company to quantify and visualize waste at a shop floor level.

  7. On the theory of SODAR measurement techniques

    Antoniou, I.; Ejsing Jørgensen, Hans; Bradley, S.

    2003-01-01

    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the sizeof the wind turbines, since it is demanded...... the objective has been to present and achieve thefollowing: An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. Understanding of dependence of SODAR performance on hard...

  8. On the Transmission Line Pulse Measurement Technique

    X. Rodriguez; M. Eduardo; M. Harington

    2015-01-01

    Transmission Line Pulse is a short pulse (25ns to 150ns) measurement of the current-voltage (I/V) characteristics of the ESD protection built into an integrated circuit. The short TLP pulses are used to simulate the short ESD pulse threats and integrated circuit must tolerate without being damaged. In this work the fundamental principles of how the TLP pulse is generated and used to create I-V characteristic plots will be explored. The measurement will be then used to characterize the I-V cha...

  9. Noninvasive experimental determination of the individual kidney filtration fraction by means of a dual-tracer technique. [/sup 131/I and /sup 99m/Tc tracer techniques

    Assailly, J.; Pavel, D.G.; Bader, C.; Chanard, J.; Ryerson, T.W.; Cotard, J.P.; Funck-Brentano, J.L.

    1977-07-01

    A noninvasive method for measurement of the individual kidney filtration fraction (FF) is presented, based on an analysis of the early rise of the kidneys' time-activity curves obtained after simultaneous injection of tubular (/sup 131/I) ortho-iodohippurate and glomerular (Tc-99m DTPA) tracers. The analysis is based on the assumption that an insignificant amount of tracer leaves the kidney during the first few moments following injection. Therefore the kidney activity during this period is directly proportional to the integral of the blood (heart) activity. The dual-tracer technique allows the direct calculation of the ratio of glomerular to tubular clearances, i.e., the FF. In vivo studies were performed on 12 dogs, including normals as well as others with acute ureteral ligation or Benemid-induced tubular blockade. The calculated FF correlated well with the FF obtained from single-shot clearances performed simultaneously. We conclude that the FF can be calculated directly for each kidney, noninvasively, from the early part of the tubular and glomerular time-activity curves by noninvasive external detection.

  10. Model measurements for new accelerating techniques

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs

  11. Solid Layer Thermal-conductivity Measurement Techniques

    1994-03-01

    deposited on the sample, and the absorption of laser radiation. Temperature-measurement tools include thermocouples, infrared (IR) pyrometers , and...A, Nishimura H, and Sawada T (1990), Laser-Induc~d Surface Acoustic Waves and Photothc:rmal Surfitce Gratings Generated by Crossing Two Pulsed

  12. Comparison of cardiac output measurement techniques

    Espersen, K; Jensen, E W; Rosenborg, D

    1995-01-01

    Simultaneously measured cardiac output obtained by thermodilution (TD), transcutaneous suprasternal ultrasonic Doppler (DOP), CO2-rebreathing (CR) and the direct Fick method (FI) were compared in eleven healthy subjects in a supine position (SU), a sitting position (SI), and during sitting exercise...

  13. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

    Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.

    2015-02-01

    Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

  14. Simulating soil C stability with mechanistic systems models: a multisite comparison of measured fractions and modelled pools

    Robertson, Andy; Schipanski, Meagan; Sherrod, Lucretia; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Agriculture, covering more than 30% of global land area, has an exciting opportunity to help combat climate change by effectively managing its soil to promote increased C sequestration. Further, newly sequestered soil carbon (C) through agriculture needs to be stored in more stable forms in order to have a lasting impact on reducing atmospheric CO2 concentrations. While land uses in different climates and soils require different management strategies, the fundamental mechanisms that regulate C sequestration and stabilisation remain the same. These mechanisms are used by a number of different systems models to simulate C dynamics, and thus assess the impacts of change in management or climate. To evaluate the accuracy of these model simulations, our research uses a multidirectional approach to compare C stocks of physicochemical soil fractions collected at two long-term agricultural sites. Carbon stocks for a number of soil fractions were measured at two sites (Lincoln, UK; Colorado, USA) over 8 and 12 years, respectively. Both sites represent managed agricultural land but have notably different climates and levels of disturbance. The measured soil fractions act as proxies for varying degrees of stability, with C contained within these fractions relatable to the C simulated within the soil pools of mechanistic systems models1. Using stable isotope techniques at the UK site, specific turnover times of C within the different fractions were determined and compared with those simulated in the pools of 3 different models of varying complexity (RothC, DayCent and RZWQM2). Further, C dynamics and N-mineralisation rates of the measured fractions at the US site were assessed and compared to results of the same three models. The UK site saw a significant increase in C stocks within the most stable fractions, with topsoil (0-30cm) sequestration rates of just over 0.3 tC ha-1 yr-1 after only 8 years. Further, the sum of all fractions reported C sequestration rates of nearly 1

  15. Measurement of the $B_{s}^{0} \\rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$ branching fractions

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano

    2016-05-20

    The branching fraction of the decay $B_{s}^{0} \\rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$ is measured using $pp$ collision data corresponding to an integrated luminosity of $1.0fb^{-1}$, collected using the LHCb detector at a centre-of-mass energy of $7$TeV. It is found to be \\begin{align*} {\\mathcal{B}}(B_{s}^{0}\\rightarrow~D_{s}^{(*)+}D_{s}^{(*)-}) = (3.05 \\pm 0.10 \\pm 0.20 \\pm 0.34)\\%, \\end{align*} where the uncertainties are statistical, systematic, and due to the normalisation channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two $D^{*\\pm}_{s}$ are also measured. The individual branching fractions are found to be \\begin{align*} {\\mathcal{B}}(B_{s}^{0}\\rightarrow~D_{s}^{*\\pm}D_{s}^{\\mp}) = (1.35 \\pm 0.06 \\pm 0.09 \\pm 0.15)\\%, \

  16. Techniques for measuring customers’ satisfaction in Banks

    Elena Lidia MELNIC

    2016-07-01

    Full Text Available The major concern of banks today is to recover and maintain customer trust. Customers need to feel that banks are considering their best interests. Customers are seeking for easy and personalized information. They want to better understand their financial situation and to control it. They want to know both the benefits, as well as the risks. Clients want to work with banks that are concerned about them and about their personal goals. However, only an attractive offer of banks is not the key to success today if is not supported by a superior service culture, that can make notable differentiation in the market. Many banks all over the world are systematically measuring how well they treat customers, identifying the factors shaping satisfaction, and changing operations and marketing as a result. Wise banks measure customer satisfaction regularly because it is one key to customer retention.

  17. High current density ion beam measurement techniques

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  18. Transient particle emission measurement with optical techniques

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  19. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-01-01

    Objective To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). Methods The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. Results The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. Conclusions The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The

  20. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique.

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-03-01

    To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment

  1. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  2. Optimality Measures for Monotone Equivariant Cluster Techniques.

    1980-09-01

    complete linkage, u-clustering (u - .3, .5, .7), uv-clustering (uv = (.2,.4), (.2,.6), (.4,.6)) as well as the UPGMA algorithm. The idea will be to...Table 15. Notice that these measure-- do indeed pioduce difftxent verdicts. OPI rates UPGMA as best with uv = (.2,.4) R € second. By OP2, UPGMA is best...By OPI, UPGQA and uv = (.4,.6) are tied for first place, while by OP2, UPGMA is best with uv = (.2,.6), uv = (.2,.4) and uv = (.4,.6) close behind

  3. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  4. Remote measurement of corrosion using ultrasonic techniques

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  5. Tear film measurement by optical reflectometry technique

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  6. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  7. Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    Mischi, M.; Jansen, A.H.M.; Kalker, A.A.C.M.; Korsten, H.H.M.

    2005-01-01

    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for

  8. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  9. Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

    F. Mark Danson

    2013-06-01

    Full Text Available Terrestrial laser scanners (TLS have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application.

  10. Measurement uncertainty analysis techniques applied to PV performance measurements

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results

  11. Multi-technique investigation of the binary fraction of A-F type candidate hybrid variable stars discovered by Kepler

    Lampens, P.; Frémat, Y.; Vermeylen, L.; Sódor, Á.; Skarka, M.; De Cat, P.; Bognár, Zs.; De Nutte, R.; Dumortier, L.; Escorza, A.; Oomen, G. M.; Van de Steene, G.; Kamath, D.; Laverick, M.; Samadi, A.; Triana, S.; Lehmann, H.

    2018-02-01

    Context. Hundreds of candidate hybrid pulsators of intermediate type A-F were revealed by recent space missions. Hybrid pulsators allow us to study the full stellar interiors, where both low-order p- and high-order g-modes are simultaneously excited. The true hybrid stars must be identified since other processes, related to stellar multiplicity or rotation, might explain the presence of (some) low frequencies observed in their periodograms. Aims: We measured the radial velocities of 50 candidate δ Scuti -γ Doradus hybrid stars from the Kepler mission with the Hermes and ACE spectrographs over a time span of months to years. We aim to derive the fraction of binary and multiple systems and to provide an independent and homogeneous determination of the atmospheric properties and v sin i for all targets. The long(er)-term objective is to identify the (probable) physical cause of the low frequencies. Methods: We computed one-dimensional cross-correlation functions (CCFs) in order to find the best set of parameters in terms of the number of components, spectral type(s), and v sin i for each target. Radial velocities were measured using spectrum synthesis and a two-dimensional cross-correlation technique in the case of double- and triple-lined systems. Fundamental parameters were determined by fitting (composite) synthetic spectra to the normalised median spectra corrected for the appropriate Doppler shifts. Results: We report on the analysis of 478 high-resolution Hermes and 41 ACE spectra of A/F-type candidate hybrid pulsators from the Kepler field. We determined their radial velocities, projected rotational velocities, and atmospheric properties and classified our targets based on the shape of the CCFs and the temporal behaviour of the radial velocities. We derived orbital solutions for seven new systems. Three preliminary long-period orbital solutions are confirmed by a photometric time-delay analysis. Finally, we determined a global multiplicity fraction of 27% in

  12. The Optical Fractionator Technique to Estimate Cell Numbers in a Rat Model of Electroconvulsive Therapy

    Olesen, Mikkel Vestergaard; Needham, Esther Kjær; Pakkenberg, Bente

    2017-01-01

    present the optical fractionator in conjunction with BrdU immunohistochemistry to estimate the production and survival of newly-formed neurons in the granule cell layer (including the sub-granular zone) of the rat hippocampus following electroconvulsive stimulation, which is among the most potent...

  13. Energy harvesting in high voltage measuring techniques

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  14. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions

    Gomez Muñoz, Beatriz; Case, Sean; Jensen, Lars Stoumann

    2016-01-01

    the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified...... solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions....

  15. New portable pipe wall thickness measuring technique

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  16. Acoustic measuring techniques for suspended sediment

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  17. Review of lattice measurement techniques at the SLC

    Barklow, T.; Emma, P.; Krejcik, P.; Walker, N.

    1991-11-01

    A technique is described for reconstructing the first order transport matrix (R) for a given beam line. Emphasis is placed on the rigorous error analysis of the data, and the use of powerful statistical techniques to estimate unknown systematic errors. The application of the technique to the measurement and subsequent correction of the SLC Arcs is briefly described. 5 refs., 4 figs

  18. Measurement uncertainty analysis techniques applied to PV performance measurements

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  19. Measurement uncertainty analysis techniques applied to PV performance measurements

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  20. Measurement of the branching fraction for D+→K-π+π+

    Balest, R.; Cho, K.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Gaiderev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yang, S.; Yelton, J.; Cinabro, D.; Henderson, S.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Zoeller, M.M.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Skovpen, Y.; Sung, M.; White, C.; Butler, F.; Fu, X.; Kalbfleisch, G.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.L.; Wood, M.; Brown, D.N.; Fast, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Zadorozhny, P.; Artuso, M.; Goldberg, M.; He, D.; Horwitz, N.; Kennett, R.; Mountain, R.; Moneti, G.C.; Muheim, F.; Mukhin, Y.; Playfer, S.; Rozen, Y.; Stone, S.; Thulasidas, M.; Vasseur, G.; Zhu, G.; Bartelt, J.; Csorna, S.E.

    1994-01-01

    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the ratio of branching fractions, B(D + →K - π + π + )/(D 0 →K - π + )=2.35±0.16±0.16. Our recent measurement of scrB(D 0 →K - π + ) then gives scrB(D + →K - π + π + )=(9.3±0.6±0.8)%

  1. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  2. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    Aguilar, M.; Alcaraz, J.; Allaby, J.

    2007-01-01

    A measurement of the cosmic ray positron fraction e + /(e + +e - ) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10 6 is reached by identifying converted bremsstrahlung photons emitted from positrons

  3. Measurement of void fraction and bubble size distribution in two-phase flow system

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  4. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  5. Ground-based intercomparison of two isoprene measurement techniques

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  6. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    F. Keppler

    2018-05-01

    Full Text Available Chloromethane (CH3Cl is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −264±45 and −280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4 as the target compound with OH and obtained a fractionation constant of −205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  7. Analysis of the efficiency of the linearization techniques for solving multi-objective linear fractional programming problems by goal programming

    Tunjo Perić

    2017-01-01

    Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.

  8. Hole Drilling Technique – on site stress measurement

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  9. In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne

    2012-01-01

    Bovine colostrum is well known for its large content of bioactive components and its importance for neonatal survival. Unfortunately, the colostrum proteome is complicated by a wide dynamic range, because of a few dominating proteins that hamper sensitivity and proteome coverage achieved on low...... abundant proteins. Moreover, the composition of colostrum is complex and the proteins are located within different physical fractions that make up the colostrum. To gain a more exhaustive picture of the bovine colostrum proteome and gather information on protein location, we performed an extensive pre......-analysis fractionation of colostrum prior to 2D-LC-MS/MS analysis. Physical and chemical properties of the proteins and colostrum were used alone or in combination for the separation of proteins. ELISA was used to quantify and verify the presence of proteins in colostrum. In total, 403 proteins were identified...

  10. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  11. Estimation of global and regional ejection fraction of the left ventricle using a fully digitalised technique

    Tuengerthal, S.; Reifart, N.; Standke, R.; Lang, J.; Kollath, J.; Riemann, H.E.; Frankfurt Univ.; Frankfurt Univ.

    1984-01-01

    Subtraction angiocardiography (DSAK) with a fully digitalised system (DR 960) provides a well defined demonstration of the left ventricle after peripheral venous contrast injection. Cardiac volume and ejection fractions were calculated by a dedicated software programme and the findings correlated with cine ventriculography (CA) (r=0.91), biplane echo cardiography (2 DE) (r=0.77) and radionucleid ventriculography (RNV) (r=0.85); the method can be used even with reduced cardiac output (EF [de

  12. Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes. Application of a new rapid high pressure filtration technique for fractionation.

    Hummerich, H; de Groot, H; Noll, T; Soboll, S

    1988-01-01

    By using a new rapid high pressure filtration technique, mitochondrial and cytosolic ATP and ADP contents were determined in isolated hepatocytes at different oxygen partial pressures. At 670 mmHg, subcellular adenine nucleotide contents and ATP/ADP ratios were comparable with values obtained with the digitonin fractionation technique. However at lower oxygen partial pressure ADP appears to be rephosphorylated during digitonin fractionation whereas with high pressure filtration fractionation ...

  13. The Sine Method: An Alternative Height Measurement Technique

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  14. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    Owolabi, Kolade M.

    2017-03-01

    In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.

  15. Measurement of branching fractions, isospin asymmetries and angular observables in exclusive electroweak penguin decays

    Owen, Patrick Haworth

    This thesis describes measurements of rare electroweak penguin decays performed with data collected by the Large Hadron Collider beauty experiment corresponding to 3 $\\rm{fb}^{-1}$ of integrated luminosity. The purpose of these measurements is to search for physics beyond the theoretical framework known as the Standard Model (SM). Electroweak penguin decays are sensitive to virtual particles in extensions to the SM whose influence on the decay amplitude can be of similar strength to the SM contribution. The particular measurements that are described in this thesis are the differential branching fractions and isospin asymmetries of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays as well as the angular observables in $B\\to K\\mu^{+}\\mu^{-}$ decays. Although results are consistent with the SM, all the branching fractions of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays tend to favour a lower value than theoretical predictions.

  16. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  17. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.

  18. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S

    2015-01-01

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r 2 = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques

  19. Vessel size measurements in angiograms: A comparison of techniques

    Hoffmann, Kenneth R.; Nazareth, Daryl P.; Miskolczi, Laszlo; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2002-01-01

    As interventional procedures become more complicated, the need for accurate quantitative vascular information increases. In response to this need, many commercial vendors provide techniques for measurement of vessel sizes, usually based on derivative techniques. In this study, we investigate the accuracy of several techniques used in the measurement of vessel size. Simulated images of vessels having circular cross sections were generated and convolved with various focal spot distributions taking into account the magnification. These vessel images were then convolved with Gaussian image detector line spread functions (LSFs). Additionally, images of a phantom containing vessels with a range of diameters were acquired for the 4.5'', 6'', 9'', and 12'' modes of an image intensifier-TV (II-TV) system. Vessel sizes in the images were determined using a first-derivative technique, a second-derivative technique, a linear combination of these two measured sizes, a thresholding technique, a densitometric technique, and a model-based technique. For the same focal spot size, the shape of the focal spot distribution does not affect measured vessel sizes except at large magnifications. For vessels with diameters larger than the full-width-at-half-maximum (FWHM) of the LSF, accurate vessel sizes (errors ∼0.1 mm) could be obtained by using an average of sizes determined by the first and second derivatives. For vessels with diameters smaller than the FWHM of the LSF, the densitometric and model-based techniques can provide accurate vessel sizes when these techniques are properly calibrated

  20. Chromatographic techniques used in the laboratory scale fractionation and purification of plasma

    Siti Najila Mohd Janib; Wan Hamirul Bahrin Wan Kamal; Shaharuddin Mohd

    2004-01-01

    Chromatography is a powerful technique used in the separation as well as purification of proteins for use as biopharmaceuticals or medicines. Scientists use many different chromatographic techniques in biotechnology as they bring a molecule from its initial identification stage to the stage of it becoming a marketed product. The most commonly used of these techniques is liquid chromatography (1,C). This technique can be used to separate the target molecule from undesired contaminants, as well as to analyse the final product for the requisite purity as established by governmental regulatory groups such as the FDA. Some examples of LC techniques include: ion exchange (IEC), hydrophobic interaction (HIC), gel filtration (GF), affinity (AC) and reverse phase (RPC) chromatography. These techniques are very versatile and can be used at any stage of the purification process i.e. capture, intermediate purification phase and polishing. The choice of a particular technique is dependent upon the nature of the target protein as well as its intended final use. This paper describes the preliminary work done on the chromatographic purification of factor VIII (FVIII), factor IX (FIX), albumin and IgG from plasma. Results, in particular, in the isolation of albumin and IgG using IEC, have been promising. Preparation and production of cryoprecipitate to yield FVIII and FIX have also been successful. (Author)

  1. Flotation as a remediation technique for heavily polluted dredged material. 2. Characterisation of flotated fractions.

    Cauwenberg, P; Verdonckt, F; Maes, A

    1998-01-19

    The particle size distribution and the metal speciation of the heavy metals were investigated on dredged sediment and on the fractions obtained by mechanical agitated (Denver) flotation. The transition metal ions (cadmium, copper, lead and zinc) were flotated specifically independent of the particle size. Particle size analysis, EDTA extraction and sequential extracts indicated that during flotation a redistribution of metals occurred due to the oxidation of metal sulphides. This oxidation process was more pronounced when the flotation was performed at higher pH values and resulted in a decrease in flotation specificity.

  2. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-01-01

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use

  3. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua, E-mail: JYao@cc.nih.gov [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Liu, Songtao; Sibley, Christopher T.; Bluemke, David A. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Nacif, Marcelo S. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)

    2013-10-15

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

  4. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  5. Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma

    Barrera, Barbara

    2000-10-16

    The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.

  6. The reproducibility and variability of sequential left ventricular ejection fraction measurements by the nuclear stethoscope

    Kurata, Chinori; Hayashi, Hideharu; Kobayashi, Akira; Yamazaki, Noboru

    1986-01-01

    We evaluated the reproducibility and variability of sequential left ventricular ejection fraction (LVEF) measurements by the nuclear stethoscope in 72 patients. The group as a whole demonstrated excellent reproducibility (r = 0.96). However, repeat LVEF measurements by the nuclear stethoscope at 5-minute interval showed around 9 % absolute difference, at 95 % confidence levels, from one measurement to the next. The finding indicates that a change in LVEF greater than 9 % is necessary for determining an acute effect of an intervention in individual cases. (author)

  7. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  8. Chemical techniques to extract organic fractions from fossil bones for accurate 14C dating

    Minami, Masayo; Muto, Hiroo; Nakamura, Toshio

    2004-01-01

    We examined different concentrations of HCl, such as 0.4, 0.6, 0.8, 1.0 and 1.2 M, for decalcification of fossil bones and different times of 0.1 M NaOH treatment on collagens to determine the best conditions for purifying collagen through extraction of humic contaminants, and compared the alkali treatment method with the XAD-2 treatment method for several types of fossils. The yield of acid-insoluble bone fractions did not change over the range from 0.4 to 1.0 M HCl and decreased suddenly with 1.2 M HCl on decalcification, and the 14 C ages of the extracted gelatins from the five decalcified fractions were unchanged, suggesting that 14 C ages as those of the XAD-purified hydrolysates. The NaOH-treatment time should be less than several hours to avoid a loss of collagen. The fossil bones used are relatively well-preserved, but the alkali treatment could bring about a lot of loss of organic bone proteins for poorly-preserved bones. The XAD-2 treatment method is effective for accurate radiocarbon dating of fossil bones, if the XAD-2 resin is completely pre-cleaned

  9. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  10. Measurement of the absolute branching fraction for Λc+→Λμ+νμ

    M. Ablikim

    2017-04-01

    Full Text Available We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ=(3.49±0.46(stat±0.27(syst%. In addition, we calculate the ratio B(Λc+→Λμ+νμ/B(Λc+→Λe+νe to be 0.96±0.16(stat±0.04(syst.

  11. Techniques for measuring vitamin A activity from β-carotene.

    Tang, Guangwen

    2012-11-01

    Dietary β-carotene is the most important precursor of vitamin A. However, the determination of the efficiency of in vivo conversion of β-carotene to vitamin A requires sensitive and safe techniques. It presents the following challenges: 1) circulating β-carotene concentration cannot be altered by eating a meal containing ≤6 mg β-carotene; 2) because retinol concentrations are homeostatically controlled, the conversion of β-carotene into vitamin A cannot be estimated accurately in well-nourished humans by assessing changes in serum retinol after supplementation with β-carotene. In the past half-century, techniques using radioisotopes of β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene supplements, measurement of postprandial chylomicron fractions after consumption of a β-carotene dose, and finally, stable isotopes as tracers to follow the absorption and conversion of β-carotene in humans have been developed. The reported values for β-carotene to vitamin A conversion showed a wide variation from 2 μg β-carotene to 1 μg retinol (for synthetic pure β-carotene in oil) and 28 μg β-carotene to 1 μg retinol (for β-carotene from vegetables). In recent years, a stable isotope reference method (IRM) was developed that used labeled synthetic β-carotene. The IRM method provided evidence that the conversion of β-carotene to vitamin A is likely dose dependent. With the development of intrinsically labeled plant foods harvested from a hydroponic system with heavy water, vitamin A activity of stable isotope-labeled biosynthetic β-carotene from various foods consumed by humans was studied. The efficacy of plant foods rich in β-carotene, such as natural (spinach, carrots, spirulina), hybrid (high-β-carotene yellow maize), and bioengineered (Golden Rice) foods, to provide vitamin A has shown promising results. The results from these studies will be of practical importance in recommendations for the use of pure β-carotene and foods

  12. Measurement and comparison of left ventricular ejection fraction utilizing first transit and gated scintiangiography

    Fletcher, J.W.; Herbig, F.K.; Daly, J.L.; Walter, K.E.

    1975-01-01

    Paired serial radionuclide scans were used for determinations of left ventricular ejection fraction (LVEF) in open chest dogs with constant cardiac output and varying ventricular rates following the left atrial injection of 99m-Tc human serum albumin. Values of LVEF obtained by first transit (high frequency) data analysis and ECG-gated scintiphotography were obtained over a wide range of ventricular rate and stroke volume. The results of this study show no significant difference in LVEF as determined by both of these methods of data acquisition and analysis and demonstrate the feasibility of rapid serial determination of LVEF by radioisotope techniques

  13. A Measurement of the Exclusive Branching Fraction for B → π K at BaBar

    Aspinwall, Marie Louise [Imperial College, London (United Kingdom)

    2002-02-01

    This thesis presents an exclusive measurement of the branching fraction B for the rare charmless hadronic B decays to πK final states. A sample of 22.57±0.36 million BB pairs was collected with the BaBar detector at the Stanford Linear Accelerator Center's PEP-II B Factory, during the Run 1 data taking period (1999-2000).

  14. Improved measurements of branching fractions for eta(c) -> phi phi and omega phi

    Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J.; Tiemens, M.

    2017-01-01

    Using (223.7 +/- 1.4) x 10(6) J / Psi events accumulated with the BESIII detector, we study eta(c) decays to phi phi and omega phi final states. The branching fraction of n(c) -> phi phi is measured to be Br(eta(c) -> phi phi) = (2.5 +/- 0(-0.7)(+0.3) +/- 0.6) X 10(-3,) where the first uncertainty

  15. Measurement of the Bs0 → Ds (∗)+ Ds (∗)- branching fractions

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Carvalho Akiba, K.; Coco, V.; David, P. N.Y.; De Bruyn, K.; Ferro-Luzzi, M.; Heijne, V.; Ketel, T.; Koopman, R. F.; Van Leerdam, J.; Merk, M.; Onderwater, C. J.G.; Raven, G.; Schiller, M.; Serra, N.; Snoek, H.; Storaci, B.; Syropoulos, V.; Van Tilburg, J.; Tolk, S.; Tsopelas, P.; Tuning, N.

    2016-01-01

    The branching fraction of the decay Bs0→Ds(∗)+Ds(∗)- is measured using pp collision data corresponding to an integrated luminosity of 1.0 fb-1, collected using the LHCb detector at a center-of-mass energy of 7 TeV. It is found to be B(Bs0→Ds(∗)+Ds(∗)-)=(3.05±0.10±0.20±0.34)%, where the uncertainties

  16. Measurement of the branching fraction for $D^{0} \\rightarrow K^{-}\\pi^{+}$

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    The branching fraction for D0 -> K- pi+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0 pi+, D0 -> K- pi+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result found is B(D0 -> K- pi+) = (3.90 +- 0.09 +- 0.12)%

  17. Measurement of the Ds l(+)ve branching fractions and the decay constant fDs+

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Koehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    Using 482 pb(-1) of e(+) e(-) collision data collected at a center-of-mass energy of root s = 4.009 GeV with the BESIII detector, we measure the branching fractions of the decays D-s(+) -> u(+)v(u) and D-s(+) -> tau(+)v(tau). By constraining the ratio of decay rates of Ds(+) to tau(+)v(u) and to

  18. From Fractals to Fractional Vector Calculus: Measurement in the Correct Metric

    Wheatcraft, S. W.; Meerschaert, M. M.; Mortensen, J.

    2005-12-01

    Traditional (stationary) stochastic theories have been fairly successful in reproducing transport behavior at relatively homogeneous field sites such as the Borden and Cape Code sites. However, the highly heterogeneous MADE site has produced tracer data that can not be adequately explained with traditional stochastic theories. In recent years, considerable attention has been focused on developing more sophisticated theories that can predict or reproduce the behavior of complex sites such as the MADE site. People began to realize that the model for geologic complexity may in many cases be very different than the model required for stochastic theory. Fractal approaches were useful in conceptualizing scale-invariant heterogeneity by demonstrating that scale dependant transport was just an artifact of our measurement system. Fractal media have dimensions larger than the dimension that measurement is taking place in, thus assuring the scale-dependence of parameters such as dispersivity. What was needed was a rigorous way to develop a theory that was consistent with the fractal dimension of the heterogeneity. The fractional advection-dispersion equation (FADE) was developed with this idea in mind. The second derivative in the dispersion term of the advection-dispersion equation is replaced with a fractional derivative. The order of differentiation, α, is fractional. Values of α in the range: 1 equation is recovered. The 1-D version of the FADE has been used successfully to back-predict tracer test behavior at several heterogeneous field sites, including the MADE site. It has been hypothesized that the order of differentiation in the FADE is equivalent to (or at least related to) the fractal dimension of the particle tracks (or geologic heterogeneity). With this way of thinking, one can think of the FADE as a governing equation written for the correct dimension, thus eliminating scale-dependent behavior. Before a generalized multi-dimensional form of the FADE can be

  19. The measurement of the chemically mobile fraction of lead in soil using isotopic dilution analysis

    Kirchhoff, J.; Brand, J.; Schuettelkopf, H.

    1992-12-01

    The chemically available fraction of lead in eight soils measured by isotopic dilution analysis using 212 Pb ranged from 7 to 16% of the total content of lead in soil. The soluble fractions achieved values up to 63% of the total content in 1 M NH 4 NO 3 , 1 M MgCl 2 and 0.05 M DTPA solutions. Increasing the contact time between water and soil, the water-soil ratio from 1:1 to 5:1 and increasing the temperature of the soil-water suspension raised the chemically available fraction in soil. Comparing various soil parameters and the mobile fraction of lead, only pH shows a significant correlation. The amphoteric character of lead causes a minimum of mobility about pH 6; pH-values below are responsible for the higher mobility of lead as Pb 2+ , at pH-values above 6 soluble hydroxy and humic acid complexes are formed. (orig.) [de

  20. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  1. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  2. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  3. Silt fences: An economical technique for measuring hillslope soil erosion

    Peter R. Robichaud; Robert E. Brown

    2002-01-01

    Measuring hillslope erosion has historically been a costly, time-consuming practice. An easy to install low-cost technique using silt fences (geotextile fabric) and tipping bucket rain gauges to measure onsite hillslope erosion was developed and tested. Equipment requirements, installation procedures, statistical design, and analysis methods for measuring hillslope...

  4. Technique for measurements of plane waves of uniaxial strain

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  5. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment

    Williams, Mike, E-mail: mike.williams@csiro.au [CSIRO Land and Water, PMB No 2, Glen Osmond, SA, 5064 (Australia); Kookana, Rai [CSIRO Land and Water, PMB No 2, Glen Osmond, SA, 5064 (Australia)

    2010-08-01

    Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating {sup 12}C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with {sup 14}C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.

  6. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment

    Williams, Mike; Kookana, Rai

    2010-01-01

    Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating 12 C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with 14 C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.

  7. Measurement techniques for radiological characterization of contaminated sites

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  8. A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting

    Guermond, Jean-Luc; Minev, Peter D.

    2010-01-01

    A new direction-splitting-based fractional time stepping is introduced for solving the incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction is computed by solving a sequence of one-dimensional elliptic problems in each spatial direction. The method is very simple to program in parallel, very fast, and has exactly the same stability and convergence properties as the Poisson-based pressure-correction technique, either in standard or rotational form. © 2010 Académie des sciences.

  9. A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting

    Guermond, Jean-Luc

    2010-05-01

    A new direction-splitting-based fractional time stepping is introduced for solving the incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction is computed by solving a sequence of one-dimensional elliptic problems in each spatial direction. The method is very simple to program in parallel, very fast, and has exactly the same stability and convergence properties as the Poisson-based pressure-correction technique, either in standard or rotational form. © 2010 Académie des sciences.

  10. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  11. Calibration technique for the neutron surface moisture measurement system

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  12. Fluid temperature measurement technique by using Raman scattering

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  13. Effects of equipment and technique on peak flow measurements

    O'Driscoll B Ronan

    2006-06-01

    Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.

  14. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  15. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention.

    Siebert, Uwe; Bornschein, Bernhard; Schnell-Inderst, Petra; Rieber, Johannes; Pijls, Nico; Wasem, Jürgen; Klauss, Volker

    2008-08-27

    Coronary artery disease (CAD) is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI) are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR) is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. This health technology assessment (HTA) aims to evaluate (1) the diagnostic accuracy, (2) the risk-benefit trade-off and (3) the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation) to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI). Individual studies' case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM), a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT) investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81.7% (95% CI: 77.0-85.7%) and 78.7% (95% CI: 74

  16. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention

    Wasem, Jürgen

    2008-08-01

    Full Text Available Background: Coronary artery disease (CAD is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. Objectives: This health technology assessment (HTA aims to evaluate (1 the diagnostic accuracy, (2 the risk-benefit trade-off and (3 the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. Methods: We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI. Individual studies’ case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM, a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Results: Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81

  17. Measurement of the branching fraction of Ds inclusive semileptonic decay Ds+→e+X

    Bai, J.Z.; Bian, J.G.; Chai, Z.W.; Chen, G.P.; Chen, J.C.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Fan, X.L.; Fang, J.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; He, J.; He, J.T.; Hu, G.Y.; Hu, J.L.; Hu, Q.H.; Hu, T.; Hu, X.Q.; Huang, X.P.; Huang, Y.Z.; Jiang, C.H.; Jin, S.; Jin, Y.; Kang, S.H.; Ke, Z.J.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Li, J.; Li, P.Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.H.; Li, X.N.; Lin, S.Z.; Lu, F.; Liu, H.M.; Liu, J.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lu, J.G.; Lu, J.Y.; Luo, S.Q.; Luo, Y.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Qi, N.D.; Qiu, J.F.; Qu, Y.H.; Que, Y.K.; Rong, G.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Song, X.F.; Sun, F.; Sun, H.S.; Sun, S.J.; Tan, Y.P.; Tang, S.Q.; Tong, G.L.; Wang, F.; Wang, J.F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, Y.Y.; Wei, C.L.; Wu, Y.G.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xiong, W.J.; Xu, D.Z.; Xu, G.F.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, W.; Yang, X.F.; Ye, M.H.; Ye, S.Z.; Yi, K.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yu, Z.T.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, D.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, L.; Zhang, Q.J.; Zhang, S.Q.; Zhang, X.Y.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, W.R.; Zheng, J.P.; Zheng, L.S.; Zheng, Z.P.; Zhou, G.P.; Zhou, H.S.; Zhou, L.; Zhou, Y.H.; Zhu, Q.M.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.; Bardon, O.; Cowan, R.F.; Fero, M.; Blum, I.; Gratton, P.; Izen, J.M.; Kim, B.K.; Lou, X.C.; Lowery, B.; Standifird, J.

    1997-01-01

    The absolute inclusive semileptonic branching fraction of the D s meson has been measured based on 22.3 pb -1 of e + e - collision data collected with the Beijing Spectrometer at √ (s) =4.03GeV. At this energy, the D s are produced in pairs: e + e - →D s + D s - . We reconstructed 171±21±15 D s events in five hadronic decay modes. In the recoil system of these events, several D s inclusive semileptonic decays were observed and the branching fraction is estimated to be B(D s + →e + X)=(7.7 -4.3-2.1 +5.7+2.4 )%. copyright 1997 The American Physical Society

  18. Dietary fibre fractions in cereal foods measured by a new integrated AOAC method.

    Hollmann, Juergen; Themeier, Heinz; Neese, Ursula; Lindhauer, Meinolf G

    2013-10-01

    The reliable determination of soluble, insoluble and total dietary fibre in baked goods and cereal flours is an important issue for research, nutritional labelling and marketing. We compared total dietary fibre (TDF) contents of selected cereal based foods determined by AOAC Method 991.43 and the new AOAC Method 2009.01. Fifteen bread and bakery products were included in the study. Our results showed that TDF values of cereal products determined by AOAC Method 2009.01 were always significantly higher than those determined by AOAC Method 991.43. This was explained by the inclusion of low molecular weight soluble fibre fractions and resistant starch fractions in the TDF measurement by AOAC 2009.01. This documents that nutritional labelling of cereal products poses the challenge how to update TDF data in nutrient databases in a reasonable time with an acceptable expenditure. Copyright © 2013. Published by Elsevier Ltd.

  19. Development of a computational technique to measure cartilage contact area.

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  1. Error reduction techniques for measuring long synchrotron mirrors

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP

  2. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    2014-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuous-flow technique using capillary GC/combustion IRMS. Quadriceps muscles were removed from four Sprague–Dawley rats after each was infused at a different rate with (1-13C)leucine for 6–8 h. Muscle leucine enrichment (at.% excess) measured by both methods differed by less than 4%, except at low (13C)leucine enrichments (IRMS was used to assess muscle (13C)leucine enrichment and fractional muscle protein synthesis rate in ten normal young men and women infused with (1,2-13C2)leucine for 12–14 h. This approach reduced the variability of the isotope abundance measure and gave estimates of muscle protein synthesis rate (0.050 ± 0.011% h−1 (mean ± SEM); range = 0.023–0.147% h−1) that agree with published values determined using the standard analytical approach. The measurement of (13C)leucine enrichment from skeletal muscle protein by capillary GC/combustion IRMS provides a simple, acceptable and practical alternative to preparative GC/ninhydrin IRMS. PMID:1420371

  3. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.

    Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand

    2016-05-01

    The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the

  4. Determination in soils of soluble uranium fraction in acid medium by fission tracks registration techniques

    Fernandes, G.P.

    1980-01-01

    The fission tracks registration technique was used to determine the concentration of uranium in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. The method was applied to a few samples of soils from Pocos de Caldas, Minas Gerais in Brazil. The concentrations of uranium in the samples and residues were also determined by other methods to compare the results obtained; only one sample showed deviation among the results obtained by the fission tracks method. (author)

  5. Correction for dynamic bias error in transmission measurements of void fraction

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  6. Blower-door techniques for measuring interzonal leakage

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  7. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  8. Measurements of the branching fractions of $B^{+} \\to p \\bar{p} K^{+}$ decays

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The branching fractions of the decay $B^{+} \\to p \\bar p K^{+}$ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment. The total branching fraction, its charmless component $(M_{p\\bar p} <2.85 $ $ GeV/c^{2})$ and the branching fractions via the resonant $c\\bar c$ states $\\eta_{c}(1S)$ and $\\psi(2S)$ relative to the decay via a $J/\\psi$ intermediate state are \\begin{align*} \\frac{{\\mathcal B}(B^{+} \\to p \\bar p K^{+})_{total}}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})}=& \\, 4.91 \\pm 0.19 \\, {(\\rm stat)} \\pm 0.14 \\, {(\\rm syst)},\\\\ \\frac{{\\mathcal B}(B^{+} \\to p \\bar p K^{+})_{M_{p\\bar p} <2.85 {GeV/}c^{2}}}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})}=& \\, 2.02 \\pm 0.10 \\, {(\\rm stat)}\\pm 0.08 \\, {(\\rm syst)},\\\\ \\frac{{\\mathcal B} (B^{+} \\to \\eta_{c}(1S) K^{+} \\to p \\bar p K^{+})}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})} = & \\, 0.578 \\pm 0.03...

  9. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  10. An intensity-monitoring technique for measuring ellipsometric transients

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can

  11. Two-phase flow measurement by pulsed neutron activation techniques

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  12. Design techniques for large scale linear measurement systems

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  13. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  14. A new technique for radiographic measurement of acetabular cup orientation.

    Derbyshire, Brian; Diggle, Peter J; Ingham, Christopher J; Macnair, Rory; Wimhurst, James; Jones, Henry Wynn

    2014-02-01

    Accurate radiographic measurement of acetabular cup orientation is required in order to assess susceptibility to impingement, dislocation, and edge loading wear. In this study, the accuracy and precision of a new radiographic cup orientation measurement system were assessed and compared to those of two commercially available systems. Two types of resurfacing hip prostheses and an uncemented prosthesis were assessed. Radiographic images of each prosthesis were created with the cup set at different, known angles of version and inclination in a measurement jig. The new system was the most accurate and precise and could repeatedly measure version and inclination to within a fraction of a degree. In addition it has a facility to distinguish cup retroversion from anteversion on anteroposterior radiographs. © 2013.

  15. Relations between radiation risks and radiation protection measuring techniques

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  16. Direct measurement of the Ds branching fraction to φπ

    Bai, J.Z.; Bardon, O.; Blum, I.; Breakstone, A.; Burnett, T.; Chen, G.P.; Chen, H.F.; Chen, J.; Chen, S.J.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cowan, R.F.; Cui, H.C.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Dunwoodie, W.; Fan, X.L.; Fang, J.; Fero, M.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gratton, P.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; Harris, F.A.; Hatanaka, M.; He, J.; He, K.R.; He, M.; Hitlin, D.G.; Hu, G.Y.; Hu, H.B.; Hu, T.; Hu, X.Q.; Huang, D.Q.; Huang, Y.Z.; Izen, J.M.; Jia, Q.P.; Jiang, C.H.; Jin, Y.; Jones, L.; Kang, S.H.; Kelsey, M.H.; Kim, B.K.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Lankford, A.; Li, F.; Li, J.; Li, P.Q.; Li, Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.; Li, X.N.; Lin, S.Z.; Liu, H.M.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lou, X.C.; Lowery, B.; Lu, J.G.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Malchow, R.; Mandelkern, M.; Meng, X.C.; Ni, H.L.; Nie, J.; Olsen, S.L.; Oyang, J.; Paluselli, D.; Pan, L.J.; Panetta, J.; Porter, F.; Prabhakar, E.; Qi, N.D.; Que, Y.K.; Quigley, J.; Rong, G.; Schernau, M.; Schmid, B.; Schultz, J.; Shao, Y.Y.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Shi, X.R.; Smith, A.; Soderstrom, E.; Song, X.F.; Standifird, J.; Stoker, D.; Sun, F.; Sun, H.S.; Sun, S.J.; Synodinos, J.; Tan, Y.P.; Tang, S.Q.; Toki, W.; Tong, G.L.; Torrence, E.; Wang, F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, W.; Wang, Y.Y.; Whittaker, S.; Wilson, R.; Wisniewski, W.J.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xu, D.Z.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yamamoto, R.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, W.; Yao, H.B.; Ye, M.H.; Ye, S.Z.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, W.R.; Zhao, W.X.; Zheng, J.H.

    1995-01-01

    The Beijing Spectrometer (BES) Collaboration has observed exclusive pair production of D s mesons at the Beijing Electron-Positron Collider (BEPC) at a center-of-mass energy of 4.03 GeV. The D s mesons are detected in the φπ + , bar K *0 K + , and bar K 0 K + decay modes; two fully reconstructed events yield the value (3.9 -1.9-1.1 +5.1+1.8 )% for the D s branching fraction to φπ. This is the first direct, model-independent measurement of this quantity

  17. Measurement of Branching Fractions for Exclusive B Decays to Charmonium Final States

    Varnes, Erich

    2002-05-13

    We report branching fraction measurements for exclusive decays of charged and neutral B mesons into two-body final states containing a charmonium meson. We use a sample of 22.72 {+-} 0.36 million B{bar B} events collected between October 1999 and October 2000 with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center. The charmonium mesons considered here are J/{psi}, {psi}(2S), {chi}{sub c1}, and the light meson in the decay is either a K, K*, or {pi}{sup 0}.

  18. Measuring the Higgs branching fraction into two photons at future linear e+e- colliders

    Boos, E.; Schreiber, H.J.; Shanidze, R.

    2001-01-01

    We examine the prospects for a measurement of the branching fraction of the γγ decay mode of a Standard Model-like Higgs boson with a mass of 120 GeV/c 2 at the future TESLA linear e + e - collider, assuming an integrated luminosity of 1 ab -1 and centre-of-mass energies of 350 GeV and 500 GeV. A relative uncertainty on BF(H→γγ) of 16% can be achieved in unpolarised e + e - collisions at √(s) = 500 GeV, while for √(s) = 350 GeV the expected precision is slightly poorer. With appropriate initial state polarisations the uncertainty can be improved to 10%. If this measurement is combined with a measurement of the total Higgs width, a precision of 10% on the Higgs boson partial width for the γγ decay mode appears feasible. (orig.)

  19. Concept, characteristics, and applications of important electrical measuring techniques

    Amberg, C.; Czaika, N.; Andreae, G.

    1978-01-01

    In the field of electrical measuring techniques the investigations were concentrated on the transducers. We investigated the time-temperature behaviour of the following transducers: The weldable, fully encapsulated high temperature strain gauges, inductance and transformer displacement transducers, and weldable capacitive strain transducers with distance sensor. A literatur-review showing the state of techniques reference the influence of nuclear radiation was put together. (orig./HP) [de

  20. Handbook of microwave component measurements with advanced VNA techniques

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  1. Visualization and measurement of fluid phenomena using neutron radiography techniques

    Mishima, Kaichiro; Hibiki, Takashi; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji; Nishihara, Hideaki; Tsuruno, Akira; Matsubayashi, Masahito; Sobajima, Makoto; Ohtomo, Shoichi.

    1993-01-01

    This paper presents some of the results from recent work performed on the application of neutron radiography to visualization and measurement of fluid phenomena at the Research Reactor Institute of Kyoto University. Experiments have been performed on the following subjects with use of the NR systems at the Japan Research Reactor 3 and the Nuclear Safety Research Reactor of the Japan Atomic Energy Research Institute as well as the Kyoto University Research Reactor: air-water flow in rectangular ducts with 1.0 and 2.4 mm gaps, air-water flow and steam-water flow in a round tube with 4.0 mm inner diameter. The void fraction was measured by processing the images taken by the neutron radiography. The effect of several corrections in image processing was also discussed previously. It was shown that the proposed method could be useful in observing the flow regimes and measuring the void fraction of gas-liquid two-phase flow in narrow channels. (author)

  2. Measurement techniques of local parameters in the downcomer boiling experiment of APR1400

    Lee, Eu Hwak

    2004-02-01

    In order to investigate boiling phenomena experimentally in the downcomer during LBLOCA with Direct Vessel Injection (DVI), which is a new Safety Injection System (SIS) of Advanced Power Reactor 1400 MW (APR1400), several parameters should be measured through the verification of their applicability. In this study, measurement techniques of the parameters are developed for the downcomer boiling experiment; local phase velocities, local void fraction and heat flux from the heated wall. The experiment has been performed with the heated wall, which has a thickness of 8.2 cm and a height of 32.5 cm and made of the same material as the prototype (APR1400) with chrome coating against rusting. The newly developed pitot tube is applied to the measurement of local liquid velocity and its calibration curve is obtained experimentally with the consideration of the effect according to water temperature and hole size changes. The developed pitot tube measures the local liquid velocity with 0.69 % deviation and it is confirmed that the water temperature and geometrical change does not affect the calibration curve. The high-speed camera and commercial software are used to measure the local vapor velocity with the accuracy of 0.06 m/sec per pixel and the procedure is confirmed in the present study. It turns out that the vapor velocity is insensitive to void size. High-speed camera and image processing are used to measure the local void fraction with the determined intensity criterion for distinguishing each phase and the results are compared with the bulk void fraction by differential pressure transmitters. In the actual experiment, the developed method is applied successfully and the results show that the criterion of intensity has little effect on local void fraction. And, it is observed that the tendency between the measured local and bulk void faction is maintained with time. In order to measure heat flux from the heated wall, two heat flux measurement techniques are developed

  3. Preliminary Studies Of A Phase Modulation Technique For Measuring Chromaticity

    Tan, C.-Y.

    2006-01-01

    The classical method for measuring chromaticity is to slowly modulate the RF frequency and then measure the betatron tune excursion. The technique that is discussed in this paper instead modulates the phase of the RF and then the chromaticity is obtained by phase demodulating the betatron tune. This technique requires knowledge of the betatron frequency in real time in order for the phase to be demodulated. Fortunately, the Tevatron has a tune tracker based on the phase locked loop principle which fits this requirement. A preliminary study with this technique has showed that it is a promising method for doing continuous chromaticity measurement and raises the possibility of doing successful chromaticity feedback with it

  4. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  5. Measurement of particle velocity using a mutual inductance technique

    Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven

    2004-01-01

    Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement

  6. Radiometric measurement techniques in metallurgy and foundry technology

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  7. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  8. Validity of automated measurement of left ventricular ejection fraction and volume using the Philips EPIQ system.

    Hovnanians, Ninel; Win, Theresa; Makkiya, Mohammed; Zheng, Qi; Taub, Cynthia

    2017-11-01

    To assess the efficiency and reproducibility of automated measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) in comparison to manually traced biplane Simpson's method. This is a single-center prospective study. Apical four- and two-chamber views were acquired in patients in sinus rhythm. Two operators independently measured LV volumes and LVEF using biplane Simpson's method. In addition, the image analysis software a2DQ on the Philips EPIQ system was applied to automatically assess the LV volumes and LVEF. Time spent on each analysis, using both methods, was documented. Concordance of echocardiographic measures was evaluated using intraclass correlation (ICC) and Bland-Altman analysis. Manual tracing and automated measurement of LV volumes and LVEF were performed in 184 patients with a mean age of 67.3 ± 17.3 years and BMI 28.0 ± 6.8 kg/m 2 . ICC and Bland-Altman analysis showed good agreements between manual and automated methods measuring LVEF, end-systolic, and end-diastolic volumes. The average analysis time was significantly less using the automated method than manual tracing (116 vs 217 seconds/patient, P Automated measurement using the novel image analysis software a2DQ on the Philips EPIQ system produced accurate, efficient, and reproducible assessment of LV volumes and LVEF compared with manual measurement. © 2017, Wiley Periodicals, Inc.

  9. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  10. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  11. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  12. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  13. Discrepancies between measured changes of radiobiological hypoxic fraction and oxygen tension monitoring using two assay systems

    Sasai, K.; Brown, J.M.

    1994-01-01

    This study was conducted to assess the ability of computerized pO 2 histography to measure changes in tumor oxygenation produced by low oxygen breathing. Female syngeneic C3H/Km mice bearing SCC VII/St carcinomas were used in these experiments. Changes in tumor oxygenation produced by the mice breathing 10% oxygen were assessed with computerized pO2 histography, 3 H-misonidazole binding, and the paired survival curve assay of radiosensitivity. The hypoxic cell fraction of the tumors in mice breathing 10% oxygen was 3.1 times higher than that of tumors in mice breathing normal air determined by an in vivo-in vitro clonogenic assay. Binding of radiolabeled misonidazole to the tumors in mice breathing 10% oxygen was also significantly higher than that to tumors in mice breathing normal air (p 2 value for the tumor. The number of pO 2 readings lower than 5 mmHg in the tumor was not affected by the 10% oxygen breathing. These findings indicate that increases in radiobiological hypoxic fraction produced by lower blood oxygen levels may not correlate well with the results of polarographic measurements of tumor pO 2 levels. 29 refs., 4 figs., 1 tab

  14. Application of gamma densitometer for void fraction measurement in the downcomer of DVI experimental apparatus

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Chung, M. K.; Song, C. H.

    2000-11-01

    KNGR which adopts the DVI type of ECCS is expected to show different thermal hydraulic aspects from existing NPPs which use the CLI type of ECCS. Therefore, it is necessary to examine whether existing safety analysis codes could correctly predict major thermal hydraulic phenomena which are inherent in SIS operation of DVI type. Among several thermal hydraulic phenomena, it is of particular importance to examine and improve the analyzing capability of existing codes for the void fraction and flow pattern in the downcomer. In the present study, the design of gamma densitometer to measure the void fraction and flow pattern in the downcomer of DVI test apparatus has been performed. In addition, provided are the requirements of gamma source, source activity, scintillation detector, and signal processing system. Also, the design of the shielding facilities has been carried out to ensure the safety of operator from the danger of radiation exposure. And finally the applicability of gamma densitometer to the density measurement of two-phase flow has been investigated throughout the preliminary tests

  15. Measurement of Branching Fractions and CP-Violating Asymmetries in B -> rho+/-h-/+

    Höcker, A

    2003-01-01

    We present measurements of branching fractions and CP-violating asymmetries in B sup 0 -> rho sup+- pi sup+- and B sup 0 -> rho sup - K sup + decays. The results are obtained from a data sample of 88.9 x 10 sup 6 UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a time-dependent maximum likelihood fit we measure the charge-averaged branching fractions BETA(B sup 0 -> rho sup+- pi sup+-) = (22.6 +- 1.8 (stat) +- 2.2 (syst)) x 10 sup - sup 6 and BETA(B sup 0 -> rho sup - K sup +) = (7.3 sub - sub 1 sub . sub 2 sup + sup 1 sup . sup 3 +- 1.3) x 10 sup - sup 6; and the CP-violating charge asymmetries A sub C sub P suprho suppi = -0.18 +- 0.08 +- 0.03 and A sub C sub P suprho sup K = 0.28 +- 0.17 +- 0.08; the direct CP violation parameter C subrho subpi = 0.36 +- 0.18 +- 0.04 and the mixing-induced CP violation parameter S subrho subpi = 0.19 +- 0.24 +- 0.03; and the dilution parameters DELTA C subrho subpi = 0.28 sub - sub 0 sub . sub 1 sub 9 ...

  16. Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-04-01

    Using a data sample of e+e- collision data with an integrated luminosity of 2.93 fb-1 taken at the center-of-mass energy √{s }=3.773 GeV with the BESIII detector operating at the BEPCII storage rings, we measure the absolute branching fractions of the two-body hadronic decays D+→π+π0 , K+π0, π+η , K+η , π+η', K+η', KS0π+, KS0K+, and D0→π+π-, K+K-, K∓π±, KS0π0, KS0η , KS0η'. Our results are consistent with previous measurements within uncertainties. Among them, the branching fractions for D+→π+π0, K+π0, π+η , π+η', KS0π+, KS0K+ and D0→KS0π0, KS0η , KS0η' are determined with improved precision compared to the world average values.

  17. Photogrammetry: applications of a three-dimensional remote measurement technique

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  18. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  19. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    1965-01-01

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  20. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Małgorzata Tańska

    2016-01-01

    Full Text Available This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5 % of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough.

  1. Fractional filling with the microdepot technique as an alternative to bolus hyaluronic acid injections in facial volume restoration.

    Lim, Adrian C; Lowe, Patricia M

    2011-05-01

    For volume restoration of the face, hyaluronic acid is conventionally injected through long, large-bore, 18-gauge needles because of the higher viscosity subtypes required. These hyaluronic acids are either more highly cross-linked or larger in particle size than the less-viscous subtypes. The microdepot injection technique involves using the 31-gauge BD insulin syringe (Becton-Dickinson, North Ryde, NSW Australia) to deposit small amounts of filler (0.05-0.1 mL) throughout the area of volume loss. The procedure is extremely well tolerated, requiring only topical and ice anaesthesia. Using this method, volume restoration can be achieved naturally and progressively over a period of time. Fractional filling every 3-4 months is continued until the desired level of volume correction is attained. Patients undergoing fractional filling followed over a 12-month period did not indicate any observable compromise in filler longevity, even when highly viscous hyaluronic acid fillers were injected through small-bore, 31-gauge insulin syringes. © 2011 The Authors. Australasian Journal of Dermatology © 2011 The Australasian College of Dermatologists.

  2. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Tańska, Małgorzata; Rotkiewicz, Daniela; Piętak, Andrzej

    2016-01-01

    Summary This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5% of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough. PMID:27904407

  3. The measurement of oxygen in vivo using EPR techniques

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  4. Measurement of left ventricular ejection fraction in pediatric patients using the nuclear stethoscope

    Spicer, R.L.; Rabinovitch, M.; Rosenthal, A.; Pitt, B.

    1984-01-01

    Left ventricular (LV) ejection fraction (EF) was measured in 25 patients, aged 2 weeks to 20 years (mean 8.6 years), using a portable nonimaging scintillation stethoscope. Technically satisfactory studies were obtained in 23 patients. LVEF was validated by cineangiography in 19 patients and by standard gated blood pool scintigraphy in 4. EF measured by the nuclear stethoscope correlated well with values obtained by cineangiography or scintigraphy over a wide range of EF values (18 to 79%). In children younger than 5 years (n . 11), the correlation was less satisfactory than in those older than 5 years. Although modifications in the instrument and further clinical trials with the stethoscope are needed before the device becomes clinically useful to pediatric cardiologists, our data indicate that the nuclear stethoscope can provide reliable assessment of LVEF in pediatric patients

  5. Measurement of the branching fraction for ψ(3770→γχc0

    M. Ablikim

    2016-02-01

    Full Text Available By analyzing a data set of 2.92 fb−1 of e+e− collision data taken at s=3.773 GeV and 106.41×106 ψ(3686 decays taken at s=3.686 GeV with the BESIII detector at the BEPCII collider, we measure the branching fraction and the partial decay width for ψ(3770→γχc0 to be B(ψ(3770→γχc0=(6.88±0.28±0.67×10−3 and Γ[ψ(3770→γχc0]=(187±8±19 keV, respectively. These are the most precise measurements to date.

  6. Partially purified fraction antigen from adult Fasciola Gigantic a for the serodiagnosis of human fascioliasis using Dot-ELISA technique

    Dalimi, Abdolhossein; Hadighi, Ramtin; Madani, Rasool

    2004-01-01

    Human fascioliasis has been reported in many countries including Iran. Various techniques have been evaluated for diagnosis of human fascioliasis using different antigens. We evaluated fasciola gigantica partially purified fraction antigen (PPF) isolated from sheep's liver fluke for the diagnosis of human fascioliasis. 261 sera was collected from 104 patients living in an area endemic for human fascioliasis from 89 non-fascioliasis patients living in a non-endemic area and from 68 healthy individuals. Micro-ELISA ws used in the evaluation of the sensitivity and the specificity of dot-ELISA. With a 1:800 sera dilution as the cut-off titer, the sensitivity of Dot-ELISA test in diagnosis of human fascioliasis was 94.23% and the specificity was 99.36%.Dot-ELISA using PPF antigen is sensitive and specific method for diagnosis of human fascioliasisthat is also rapid and inexpensive. (author)

  7. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  8. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  9. Measurement of renal function by calculation of fractional uptake of technetium-99m dimercaptosuccinic acid

    Beatovic, S.Lj.; Jaksic, E. D.; Hari, R. S.

    2004-01-01

    The purpose of this study was to set up normal values of the fractional uptake (FU) of technetium-99m dimercaptosuccinic acid in adults and in the pediatric population, as well as to evaluate the validity of this parameter at different levels of renal function. A total of 86 subjects was divided into seven groups. In group A there were 23 potential kidney donors and in group B, 18 children in remission after a first urinary tract infection. Another three groups consisted of patients with diabetes i.e. group C, seven patients with normal values of albuminuria, group D, 16 patients with microalbuminuria and group E, five patients with macroalbuminuria. In group F, there were ten patients with a well-functioning transplanted kidney and in group G, seven patients with suspected acute rejection. The procedure began with the quantification of the doses of 99m Tc-DMSA to be injected and the measurement of the empty syringe lying on the gamma camera collimator. Thereafter, four planar views of the kidneys were acquired three hours after the injection. The counts from the posterior and anterior views were subtracted for background and corrected for radioactive decay time and patient thickness. The FU was calculated by the geometric mean of counts per second from the posterior and anterior view. It was expressed as a fraction of the injected dose. The mean values of FU in healthy adults were 0.227 ± 0.077 for one kidney and 0.454 ± 0.146 for both kidneys. The mean values of FU for the left and right kidney were 0.225± 0.071 and 0.229 ± 0.079, respectively. In children, the mean values were 0.220 ± 0.092 for one kidney and 0.432 ± 0.094 for both kidneys. The highest values of FU of 0.322 ± 0.078 (0.644 ± 0.138 for both kidneys) were measured in group C. In group D, FU was 0.185 ± 0.065 (0.361 ± 0.125 for both kidneys) and in group E 0.082 ± 0.040 (0.163 ± 0.080 total). In patients with a transplanted kidney, fractional uptake was 0.162 ± 0.039 in group F and 0

  10. Measurement of β/Λ ratio and calibration of IPEN-MB-01 power reactor using the noise technique

    Martins, F.R.; Moreira, J.M.L.

    1989-01-01

    The ratio β/Λ and power level for the IPEN-MB-01 critical facility are obtained experimentally through the noise analysis technique. This techniques is based on the determination of the auto and cross-power spectral density of two ionization chambers. The power measurement results obtained for channels 5 and 6 are shown in Table 2. For an effective neutron fraction of 0.00788 a prompt mean generation time of 65 microseconds was obtained. (author) [pt

  11. Measurements of He II Thermal Counterflow Using PIV Technique

    Zhang, T.; Van Sciver, S.W.

    2004-01-01

    Our previous experiments on the measurements of He II thermal counterflow using Particle Image Velocimetry (PIV) have shown that there exists a substantial discrepancy between the measured and theoretical values of normal fluid velocity. It was assumed that this is due to the slip velocity between tracer particles and liquid helium. In the present work, tracer particles with a much smaller mean diameter and a more uniform size distribution were selected in order to reduce the effect of slip velocity, and an improved two phase fluidized bed technique was used to introduce the particles into liquid helium. The normal fluid velocity of thermal counterflow was then measured using the PIV technique at various heat fluxes and bath temperatures. The experimental results, however, still show the existence of discrepancy between PIV measured particle velocities and the theoretical normal fluid velocity. A preliminary explanation of these results is given based on an interaction of tracer particles with the superfluid component in the He II

  12. Fluvial sediment transport: Analytical techniques for measuring sediment load

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  13. Noncontact sheet resistance measurement technique for wafer inspection

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  14. A novel experimental technique of nuclear lifetime measurements

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  15. Remote measurement of atmospheric pollutants with laser techniques

    Corio, W; Querzola, B; Zanzottera, E

    1979-03-01

    Laser techniques for the remote sensing of atmospheric pollutants are reviewed, with attention given to lidars based on Rayleigh and Mie scattering, the Raman effect, or fluorescent scattering. Emphasis is placed on differential absorption lidars, which rely on Rayleigh or Mie scattering for measurements made in the IR or in the visible-UV range, respectively. A comprehensive air pollution monitoring program based on differential absorption lidars, together with systems using fluorescent backscattering and absorption measurements with topographic backscattering, is described.

  16. Measurement of global and regional left ventricular performance with isotope technique in coronary heart disease

    Bostroem, P.-A.; Svensson, M.; Lilja, B.

    1988-01-01

    To evaluate left ventricular function in coronary artery disease, radionuclide measurements of global and regional ejection fraction (EF), regional wall motion and phase analyses of left ventricular contraction were performed by equilibrium technique, using sup(99m)Tc. One group of patients with angina pectoris and one group with myocardial infarction were compared with a control group. All above-mentioned parameters significantly separated the infarction group from the reference group both at rest and during work, while the group of patients with angina pectoris showed disturbances mainly during work, such as impaired ability to increase global and regional ejection fraction and regional wall motion. Adding regional analysis and phase analysis to the global EF determination increases the possibility of studying the left ventricular function. However, this addition has a limited value in detecting impaired left ventricular function compared to the determination of just global EF in patients with angina pectoris and in patients with myocardial infarction. (author)

  17. Measuring caloric response: comparison of different analysis techniques.

    Mallinson, A I; Longridge, N S; Pace-Asciak, P; Ngo, R

    2010-01-01

    Electronystagmography (ENG) testing has been supplanted by newer techniques of measuring eye movement with infrared cameras (VNG). Most techniques of quantifying caloric induced nystagmus measure the slow phase velocity in some manner. Although our analysis is carried out by very experienced assessors, some systems have computer algorithms that have been "taught" to locate and quantify maximum responses. We wondered what differences in measurement might show up when measuring calorics using different techniques and systems, the relevance of this being that if there was a change in slow phase velocity between ENG and VNG testing when measuring caloric response, then normative data would have to be changed. There are also some subjective but important aspects of ENG interpretation which comment on the nature of the response (e.g. responses which might be "sporadic" or "scant"). Our experiment compared caloric responses in 100 patients analyzed four different ways. Each caloric was analyzed by our old ENG system, our new VNG system, an inexperienced assessor and the computer algorithm, and data was compared. All four systems made similar measurements but our inexperienced assessor failed to recognize responses as sporadic or scant, and we feel this is a limitation to be kept in mind in the rural setting, as it is an important aspect of assessment in complex patients. Assessment of complex VNGs should be left to an experienced assessor.

  18. An efficient similarity measure technique for medical image registration

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  19. Exposure measuring techniques for wide band mobile radio-communications

    Trinchero, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.; Trinchero, D.

    2004-01-01

    The paper illustrates the limits and performances of different experimental monitoring techniques, which are applied to digitally modulated radiofrequency electromagnetic fields used for mobile telecommunications. Different experimental set-ups have been developed, verified and applied for the analysis and characterisation of wide band probes and narrow band measuring procedures. (authors)

  20. Developing and Implementing an Assessment Technique to Measure Linked Concepts

    Ye, Li; Oueini, Razanne; Lewis, Scott E.

    2015-01-01

    The links students make among chemistry content is considered essential for a robust, enduring understanding in multiple learning theories. This article describes the development and implementation of an assessment technique, termed a Measure of Linked Concepts, designed to inform instructors on students' understanding of linking content…

  1. New Technique of Direct Intra-abdominal Pressure Measurement

    Elena Risin

    2006-10-01

    Conclusion: Direct measurement of intra-abdominal pressure using 14-Fr PVC round drain is a newly described technique that is simple, fast and credible. Future investigation will be needed to confirm the reliability of this method during postoperative follow-up of intra-abdominal pressures in selected patients.

  2. Optical Measurement Techniques Innovations for Industry and the Life Sciences

    Peiponen, Kai-Erik; Priezzhev, Alexander V

    2009-01-01

    Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.

  3. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  4. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G. (Koebenhavns Amts Sygehus, Glostrup (Denmark))

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions.

  5. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G.

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions. (authors)

  6. Measurement of the tritium concentration in the fractionated distillate from environmental water samples.

    Atkinson, Robert; Eddy, Teresa; Kuhne, Wendy; Jannik, Tim; Brandl, Alexander

    2014-09-01

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4-7%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluation of turbulence measurement techniques from a single Doppler lidar

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  8. A TECHNIQUE OF MEASURING OF RESISTANCE OF A GROUNDING DEVICE

    I.V. Nizhevskyi

    2016-06-01

    Full Text Available Introduction. Measurement of resistance of the grounding device (GD by means of a three-electrode system. This requires not only the right choice of installation locations of measuring electrodes, but also the determination of the point of zero potential. Implementation of these requirements quite time-consuming, and in some cases impossible. Aim. Develop a new technique for measuring the electrical resistance of the GD. Task. The method of measuring the resistance of the GD with the help of a three-electrode setup is necessary to exclude the determination of the point of zero potential. Method. Mathematical modeling and calculation engine. Results. A three-electrode system for measuring the resistance of grounding devices (GD for various purposes is considered. On the basis of Maxwell equations a theoretical substantiation of a new technique for measuring the resistance of any GD of any construction in random soil structure has been proposed. An equation system of the sixth order has been obtained, its solution makes it possible to measure its own mutual resistance in the three-electrode installation with sufficiently high accuracy. Peculiarities of drawing up a calculation scheme of substitution of a three-electrode installation with lumped parameters: self and mutual impedance. Use of the principle of reciprocity eliminates the need of finding a point of zero potential which is a rather difficult task. The technique allows to minimize the spacing of measuring electrodes outside the GD, which substantially reduces the length of wiring of the measurement circuit and increases the «signal-to-interference» ratio and also removes the restrictions on the development of the territory outside the GD being tested. Conclusion. The procedure allows to evaluate the self and mutual impedance grounding all the electrodes in a three-electrode measuring installation of the grounding resistance of the device without finding the point of zero potential.

  9. Development of ultrasonic technique for measure of porosity of UO2 pellets

    Baroni, Douglas Brandao

    2008-01-01

    The characterization of nuclear fuel is of great importance to guarantee the efficiency and even the safety in the power stations. At present, the techniques used implicate elevated costs with equipment, materials and installations of radiological protection. Besides, because of being destructive techniques, they impose that the checking of the characteristics of this material is done by sampling. In this work a not destructive technique was developed for measures of porosity in ceramic materials with efficiency and precision. The objective of this work is to this technique will be able to be used in laboratory practice for measures in UO 2 pellets, so it would become viable the inspection of up to 100% of the nuclear fuel, guaranteeing bigger control of the characteristics of the used material, turning in increasing safety, efficiency and economy. The innovation of the technique is due to the fact of analysing the specter of frequency of the ultrasonic wrist, and not his time of course in the material, frequently used. In this work 40 ceramic pellets of alumina were used with values of porosity between 5,09% and 37,30%. A system of recognition of signs using artificial neural networks made possible to distinguish pellets with differences of porosity of 0,04%. It was observed that this technique can be used for several others aims, for example, in the determination of the void fraction in regimen of two-phase flow, what is very important to guarantee the efficiency and safety of nuclear reactors. (author)

  10. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    Marchant, T E; Amer, A M; Moore, C J

    2008-01-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient

  11. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  12. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  13. Quantitative assessment of myocardial blood flow by measurement of fractional myocardial uptake of 201Tl

    Yonekura, Yoshiharu; Ishii, Yasushi; Torizuka, Kanji; Kadota, Kazunori; Kambara, Hirofumi

    1980-01-01

    Fractional Myocardial uptake of 201 Tl was measured for the quantitative assessment of myocardial blood flow in coronary artery disease (CAD). 10 normals and 28 CAD, 7 of which have less than 50% stenosis (CAD I) and 21 of which have more than 50% stenosis (CAD II) in the proximal portion of coronary arteries, were studied at rest and with submaximal exercise loading by bicycle ergometer. After intravenous injection of 201 Tl, its rapid transport process was recorded during the initial 5 minutes by a scintillation camera and a minicomputer. Total injected dosage (T) was obtained from the counts of the entire chest region during the initial passage of the tracer through the heart and lung. Myocardial uptake (M) was counted with the same geometry from the subsequent accumulation within the myocardial region with subtraction of the background activities in the upper mediastinal region (B). The fractional myocardial uptake of 201 Tl ((M-B)/T) is assumed to be proportional to the fractional myocardial blood flow to cardiac output (MBF/CO) according to the indicator fractionation principle. The average value of MBF/CO at rest in CAD (4.11 +- 1.12%) was significantly greater than in normals (3.36 +- 0.49%), which may be caused by an increased left ventricular mass in CAD. Change rate of MBF/CO on the exercise loading was significantly less in CAD I (1.36 +- 0.14) and in CAD II (1.11 +- 0.21) than in normals (1.75 +- 0.11). MBF/CO increased proportionally to the increment of the double product of heart rate and systolic blood pressure by exercise loading in normals, whereas it didn't in CAD. The sensitivity of this method was superior to the stress electrocardiogram and the stress myocardial perfusion imaging, not only in CAD II but also in CAD I. This result indicated that this type of global assessment of the myocardial reserve capacity is valuable in addition to the simple stress myocardial perfusion imaging. (author)

  14. Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS

    Yoo, Chul; Patwa, Tasneem H.; Kreunin, Paweena; Miller, Fred R.; Huber, Christian G.; Nesvizhskii, Alexey I.; Lubman, David M.

    2012-01-01

    A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 μg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis. PMID:17206599

  15. Measurement of relative branching fractions of B decays to ψ(2S) and J/ψ mesons.

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    The relative rates of B -meson decays into J / ψ and ψ (2 S ) mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions ([Formula: see text]) are measured to be [Formula: see text] where the third uncertainty is from the ratio of the ψ (2 S ) and J / ψ branching fractions to μ + μ - .

  16. A survey on multiproperty measurement techniques of solid materials

    Matsumoto, Tsuyoshi

    1989-01-01

    The term 'multiproperty measurement' has not as yet been widely used. It is defined as the simultaneous (or continuous) measurement of several properties of material using one sample and one set of equipment. It is highly advantageous to measure several properties of a sample simultaneously. Various aspects of the nature of a substance can be clarified by evaluating its nature in terms of many properties. In particular, advanced techniques for measuring thermal properties of material are needed in the fields of atomic energy industry, aerospace industry, energy industry, electronics industry and academic community. Conventional thermal property measurement techniques which can be applied to multiproperty measurement or minute test sample measurement are outlined focusing on measurement of the thermal conductivity (axial flow method, radial flow method, plate method, unsteady state heating coil method, direct current heating method), specific heat (adiabatic method, drop calorimetry, differential scanning calorimetry, AC calorimetric method, pulse heating method, and laser heating method), thermal diffusivity (laser-flash method), and emissivity (separated black body method, incorporated black body method). (N,K.)

  17. [Cholinesterases in total blood measured with a semiquantitative technique, and plasma or erythrocyte cholinesterases measured with quantitative techniques].

    Carmona-Fonseca, Jaime

    2007-06-01

    An equivalence model which allows comparison of blood cholinesterase values, measured by Lovibond (semiquantitative technique), and Michel, EQM, Monotest (erythrocyte and plasma cholinesterases) values measured by quantitative techniques is required. The performance of Lovibond (Edson tintometric and Limperos & Ranta techniques) were compared with quantitative techniques. The experimental design was descriptive, cross-sectional, and prospective. From a working population (18-59 years) in Valle de Aburrá and Near East of Antioquia. 827 representative samples were chosen for their lack of exposure to cholinesterase-inhibiting plaguicides and affiliated to the Social Security System. (1) 827 workers were classified by Lovibond in four categories: 821 values with 75% of cholinesterase activity or greater (categories 75, 87.5 and 100%) and 6 with cholinesterase activity smaller than 75%. (2) With each quantitative method, the mean values of erythrocyte and plasmatic cholinesterase corresponding to the four values obtained with Lovibond were statistically different to each other. (3) The mean values of each quantitative technique increased when increased the tintometric method value. (4) Lovibond classified the low enzymatic erythrocyte activity very poorly (61-73%), but the classification of the low enzymatic plasma activity was almost completely in error (94-96%). The values of erythrocyte or plasma cholinesterase were adequately estimated by both the quantitative techniques of Michel and EQM and by Lovibond, but only when the enzymatic activity is normal. Lovibond, however, had a poor capacity to designate as "low" the values that were low according to the quantitative tests.

  18. Comparison of non-invasive tear film stability measurement techniques.

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  19. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  20. Electropyroelectric technique for measurement of the thermal effusivity of liquids

    Ivanov, R; Moreno, I; Araujo, C [Facultad de Fisica, Universidad Autonoma de Zacatecas, Calz. Solidaridad Esquina Paseo de la Bufa s/n, C. P. 98060, Zacatecas, Zac. (Mexico); Marin, E, E-mail: emarin63@yahoo.e, E-mail: emarinm@ipn.m [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada, Instituto Politecnico Nacional, LegarIa 694, Colonia Irrigacion, C. P. 11500, Mexico D. F. (Mexico)

    2010-06-09

    The photopyroelectric method has been recognized as a reliable and useful tool for the measurement of the thermal properties of condensed matter samples. Usually the photothermal signal is generated using intensity modulated light beams, whose amplitudes are difficult to maintain stable. In this paper we describe a variant of this technique that uses amplitude modulated electrical current as excitation source, via Joule heating of the metal contact on one side of the pyroelectric sensor. The possibilities of this method, called by us the electropyroelectric technique, for thermal effusivity measurements of liquid samples are shown using test samples of distilled water, ethanol and glycerine. The results obtained for this parameter agree well with the values reported in the literature. Our measurement uncertainties are about 3%, a fact that opens several possible applications.

  1. Electropyroelectric technique for measurement of the thermal effusivity of liquids

    Ivanov, R; Moreno, I; Araujo, C; Marin, E

    2010-01-01

    The photopyroelectric method has been recognized as a reliable and useful tool for the measurement of the thermal properties of condensed matter samples. Usually the photothermal signal is generated using intensity modulated light beams, whose amplitudes are difficult to maintain stable. In this paper we describe a variant of this technique that uses amplitude modulated electrical current as excitation source, via Joule heating of the metal contact on one side of the pyroelectric sensor. The possibilities of this method, called by us the electropyroelectric technique, for thermal effusivity measurements of liquid samples are shown using test samples of distilled water, ethanol and glycerine. The results obtained for this parameter agree well with the values reported in the literature. Our measurement uncertainties are about 3%, a fact that opens several possible applications.

  2. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  3. Soil volumetric water content measurements using TDR technique

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  4. Application of stereo photogrammetric techniques for measuring African Elephants

    A. J Hall-Martin

    1979-12-01

    Full Text Available Measurements of shoulder height and back length of African elephants were obtained by means of stereo photogrammetric techniques. A pair of Zeiss UMK 10/1318 cameras, mounted on a steel frame on the back of a vehicle, were used to photograph the elephants in the Addo Elephant National Park, Republic of South Africa. Several modifications of normal photogrammetry procedure applicable to the field situation (eg. control points and the computation of results (eg. relative orientation are briefly mentioned. Six elephants were immobilised after being photographed and the measurements obtained from them agreed within a range of 1 cm-10 cm with the photogrammetric measurements.

  5. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiotherapy and Radiooncology, Muenster (Germany); Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette [University Hospital of Muenster, Department of Phoniatrics and Pediatric Audiology, Muenster (Germany)

    2017-11-15

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D{sub mean}), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D{sub mean} was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m{sup 2}, with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D{sub mean} exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [German] Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhoerigkeit (''sensorineural hearing loss'', SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer

  6. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  7. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  8. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  9. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  10. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows

    Chan, A.M.C.; Banerjee, S.

    1981-01-01

    Design procedure for a single-beam gamma densitometer operated in the count mode is described. The design is simple, compact and is particularly suited for small scale two-phase flow experiments with thin-metal walled or non-metallic test sections. The choice of gamma sources, scintillators and signal processing systems is discussed. The procedure has been applied by the authors in the design of densitometers for two transient experiments: refilling and rewetting experiments and flow boiling experiments. Good average void measurements were obtained for relatively fast transients. It has also been shown that some useful flow parameters other than void fractions can be obtained if two or more densitometers are used, eg, the average rewetting and entrained liquid velocities in the refilling and rewetting experiments, and the average void velocity in the flow boiling experiments. (orig.)

  11. Measurements of the branching fractions of exclusive charmless B meson decays with eta(') or omega mesons.

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Hall, T L; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffner, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocain, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-11-26

    We present the results of searches for B decays to charmless two-body final states containing eta(') or omega mesons, based on 20.7 fb(-1) of data collected with the BABAR detector. We find the branching fractions Beta(B(+)-->eta(')K(+)) = (70+/-8+/-5) x 10(-6), Beta(B(0)-->eta(')K(0)) = (42(+13)(-11) +/- 4) x 10(-6), and Beta(B(+)-->omega pi(+)) = (6.6(+2.1)(-1.8) +/- 0.7) x 10(-6), where the first error quoted is statistical and the second is systematic. We give measurements of four additional modes for which the 90% confidence level upper limits are Beta(B(+)-->eta(')pi(+)) omega K(+)) omega K(0)) omega pi(0)) < 3 x 10(-6).

  12. Techniques, processes, and measures for software safety and reliability

    Sparkman, D.

    1992-01-01

    The purpose of this report is to provide a detailed survey of current recommended practices and measurement techniques for the development of reliable and safe software-based systems. This report is intended to assist the United States Nuclear Reaction Regulation (NRR) in determining the importance and maturity of the available techniques and in assessing the relevance of individual standards for application to instrumentation and control systems in nuclear power generating stations. Lawrence Livermore National Laboratory (LLNL) provides technical support for the Instrumentation and Control System Branch (ICSB) of NRRin advanced instrumentation and control systems, distributed digital systems, software reliability, and the application of verificafion and validafion for the development of software

  13. Errors during MRT measurements of the left ventricular volume using a multi-slice technique

    Pitton, M.B.; Just, M.; Grebe, P.; Kreitner, K.F.; Erbel, R.; Thelen, M.

    1992-01-01

    A multi-slice technique for MRT measurements of the left ventricular volume is much faster than the use of single-slice methods and is therefore better tolerated, leaving time for additional measurements. The end-diastolic left ventricular volume can be reliably measured by this method (123.3±13.5 ml vs. 124.1±ml). The end-systolic volume is consistently overestimated by 23.7±18,3% compared with the reference value obtained by single slice measurements (47.9±8.9 ml vs 39.1±7.9 ml). Correspondingly, stroke volume and ejection fraction is underestimated on average by 10.6±9.7% and 10.6±7.6% respectively). (orig.) [de

  14. Higher order Cambell techniques for neutron flux measurement. Pt. 1

    Lux, I.; Baranyai, A.

    1982-01-01

    An exact mathematical description of arbitrary high order Campbell techniques for measuring particle fluxes is given. The nth order Campbell technique assumes the measurement of the moments of the outcoming voltage up to the nth one. A simple relation is derived among the various moments of the total measured voltage and of the detector signal caused by one incident particle. It is proven that in the monoparticle case combination of the measured moments up to the order n provides an expression proportional to the particle flux and to the nth moment of the detector signal. Generalization to several different particles is given and it is shown that if the flux of the particle causing the largest detector signal is measured with a relative error epsilon in the dc method and the error is due to the signals of other particles, then in the nth order campbelling the error will be of order epsilonsup(n). The effect of a random background on the measured voltage is also investigated and it is established that the nth order campbelling supresses the noise according to the nth power of the relative amplitude of the noise to the signal. The results concerning constant fluxes are generalized to time dependent particle fluxes and a method assuming a Fourier transform of the measured quantities is proposed for their determination. (orig.)

  15. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  16. Measurement of fractionated plasma metanephrines for exclusion of pheochromocytoma: Can specificity be improved by adjustment for age?

    Gafni Amiram

    2005-02-01

    Full Text Available Abstract Background Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. Methods An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set. The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset. None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. Results The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%. However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4% and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4% (p Conclusion An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.

  17. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  18. Unit vent airflow measurements using a tracer gas technique

    Adams, D.G. [Union Electric Company, Fulton, MO (United States); Lagus, P.L. [Lagus Applied Technology, Inc., San Diego, CA (United States); Fleming, K.M. [NCS Corp., Columbus, OH (United States)

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  19. Measurement of epithermal neutrons by a coherent demodulation technique

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  20. Internal flow measurement in transonic compressor by PIV technique

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  1. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  2. Work of adhesion measurements by a periodic cracking technique

    Davutoglu, A.; Aksay, I.A.

    1981-01-01

    In a recent study, Chow et al. introduced a technique for determining the energy associated with interfacial separation of a two-layer composite which consisted of a polymeric substrate and a brittle film overcoat. The technique is based on a model which assumes a perfectly elastic composite. In the present study, it s shown that as long as only the film component of the composite is brittle, the technique is also applicable to the composites where the substrates may display plastic deformation prior to adhesive failure of the film. Strain measurements, instead of load, eliminate the difficulties introduced by the plastic behavior of the substrate. Experimental work was performed on systems containing brittle amorphous selenium films on aluminum and Mylar substrates. These systems with selenium films were of interest due to their usage in photoreceptor technology

  3. Signal Morphing techniques and possible application to Higgs properties measurements

    Ecker, Katharina Maria; The ATLAS collaboration

    2016-01-01

    One way of describing deviations from the Standard Model is via Effective Field Theories or pseudo-observables, where higher order operators modify the couplings and the kinematics of the interaction of the Standard Model particles. Generating Monte Carlo events for every testable set of parameters for such a theory would require computing resources beyond the ones currently available in ATLAS. Up to now, Matrix-Element based reweighting techniques have been often used to model Beyond Standard Model process starting from Standard Model simulated events. In this talk, we review the advantages and the limitations of morphing techniques to construct continuous probability model for signal parameters, interpolating between a finite number of distributions obtained from the simulation chain. The technique will be exemplified by searching for deviations from the Standard Model predictions in Higgs properties measurements.

  4. A photoacoustic technique to measure the properties of single cells

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  5. Measurement of liquid level in a natural circulation circuit using an ultrasonic technique

    Barbosa, Amanda Cardozo; Su, Jian

    2017-01-01

    The measurement by an ultrasonic technique of the water level in the expansion tank of the Natural Circulation Circuit (NCC) of the Experimental Thermo-Hydraulic Laboratory of the Institute of Nuclear Engineering is presented. In the single-phase NCC operation the water level in the expansion tank is stable. However, during the two-phase operation, oscillations occur in the water level due to temperature and vacuum fraction variations. Thus, the development of a technique that allows the measurement of these oscillations, will allow an estimation of the variation of the vacuum fraction of the circuit over time. The experimental set - up was performed on a test bench, using an ultrasonic transducer. The ultrasonic technique used is pulse-echo, in which the same transducer is the transmitter and receiver of the signal. The transducer-shoe assembly is part of an ultrasonic system consisting of an ultrasonic signal generating plate, transducers and a computer (PC) with a program in LabView to control the system. The program is able to calculate the transit time that the ultrasonic signals take to cross the tank base wall, the layer (level) of liquid and return to the transducer. Knowing the speed of the ultrasound in the wall and in the liquid it is possible to calculate the thickness of the wall and the height of the liquid. Measurements were made by filling the tank with a known volume of water and under varying temperature conditions, from room temperature to 90 deg C. The liquid heights are determined and the volume of water calculated by measuring the temperature with a digital thermometer. The volumes measured were highly accurate when compared to the known volumes

  6. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction.

    Al-Wakeel-Marquard, Nadya; Rastin, Sanaz; Muench, Frédéric; O H-Ici, Darach; Yilmaz, Sevim; Berger, Felix; Kuehne, Titus; Messroghli, Daniel R

    2017-12-01

    Myocardial extracellular volume fraction (ECV) reflecting diffuse myocardial fibrosis can be measured with T1 mapping cardiovascular magnetic resonance (CMR) before and after the application of a gadolinium-based extracellular contrast agent. The equilibrium between blood and myocardium contrast concentration required for ECV measurements can be obtained with a primed contrast infusion (equilibrium contrast-CMR). We hypothesized that equilibrium can also be achieved with a single contrast bolus to accurately measure diffuse myocardial fibrosis in patients with congenital heart disease (CHD). Healthy controls (n = 17; median age 24.0 years) and patients with CHD (n = 19; 25.0 years) were prospectively enrolled. Using modified Look-Locker inversion recovery T1 mapping before, 15 min after bolus injection, and during constant infusion of gadolinium-DOTA, T1 values were obtained for blood pool and myocardium of the left ventricle (LV), the interventricular septum (IVS), and the right ventricle (RV) in a single midventricular plane in short axis or in transverse orientation. ECV of LV, IVS and RV by bolus-only and bolus-infusion correlated significantly in CHD patients (r = 0.94, 0.95, and 0.74; p < 0.01, respectively) and healthy controls (r = 0.96, 0.89, and 0.64; p < 0.05, respectively). Bland-Altman plots revealed no significant bias between the techniques for any of the analyzed regions. ECV of LV and RV myocardium measured by bolus-only T1 mapping agrees well with bolus-infusion measurements in patients with CHD. The use of a bolus-only approach facilitates the integration of ECV measurements into existing CMR imaging protocols, allowing for assessment of diffuse myocardial fibrosis in CHD in clinical routine.

  7. Measurement of the b baryon lifetime and branching fractions in Z decays

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    Using approximately 4 million hadronic Z decays recorded with the Aleph detector from 1991 through 1995, the lifetime of the b baryon is measured with three independent methods. From the impact parameter distribution of candidate leptons in 1063 events with Lambda-lepton combinations, the average b baryon lifetime is measured to be 1.20 +-0.08 +-0.06 ps. From a sample of 193 fully reconstructed Lambda_c candidates correlated with a lepton and a sample of 46 Lambda-lepton-lepton combinations, the Lambda_b lifetime is measured to be 1.21 +-0.11 ps. The product branching fractions to these final states are Br(b->Lambda_b).Br(Lambda_b->Lambda l nu X) = 0.326 +-0.016 +-0.039 % for the first sample and Br(b->Lambda_b).Br(Lambda_b->Lambda_c l nu X) = 0.86 +-0.07 +-0.14 % for the second and third samples combined.

  8. Measurement of the $B_s^0\\to J/\\psi K_S^0$ branching fraction

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    The $B_s^0\\to J/\\psi K_S^0$ branching fraction is measured in a data sample corresponding to 0.41$fb^{-1}$ of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2$\\beta$ measurement from $B^0\\to J/\\psi K_S^0$ The time-integrated branching fraction is measured to be $BF(B_s^0\\to J/\\psi K_S^0)=(1.83\\pm0.28)\\times10^{-5}$. This is the most precise measurement to date.

  9. Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction-Measurement by ELISA.

    Shozo Yokoyama

    Full Text Available Serum exosomal proteins have great potential as indicators of disease status in cancer, inflammatory or metabolic diseases. The association of a fraction of various serum proteins such as carcinoembryonic antigen (CEA with circulating exosomes has been debated. The establishment of a method to measure the exosomal fraction of such proteins might help resolve this controversy. The use of enzyme-linked immunosorbent assays (ELISAs to measure serum exosomal molecules, for example CEA, is rare in research laboratories and totally absent in clinical biology. In this study, we optimized a method for assessment of serum exosomal molecules combining a treatment by volume-excluding polymers to isolate the exosomes, their subsequent solubilization in an assay buffer and ELISA.One hundred sixteen consecutive patients with colorectal cancer were enrolled for this study between June 2015 and June 2016 at Wakayama Medical University Hospital (WMUH. Whole blood samples were collected from patients during surgery. Exosomes were isolated using the ExoQuick reagent, solubilized in an assay buffer and subjected to CEA detection by ELISA. The procedure of serum exosome isolation and the formulation of the assay buffer used for the ELISA were optimized in order to improve the sensitivity and specificity of the assay.A five-fold increase in the concentration of the exosomes in the assay buffer (using initial serum volume as a reference and the addition of bovine serum albumin (BSA resulted in more accurate measurements of the serum exosomal CEA. The thawing temperature of frozen serum samples before exosome extraction was also optimized. A validation study that included one hundred sixteen patients with colorectal cancer demonstrated that serum exosomal CEA from samples thawed at 25°C exhibited a better AUC value, sensitivity, and specificity as well as a more correct classification than serum CEA.We optimized an easy and rapid detection method for assessment of

  10. 3D interferometric shape measurement technique using coherent fiber bundles

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  11. Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing.

    Pooler, B Dustin; Hernando, Diego; Ruby, Jeannine A; Ishii, Hiroshi; Shimakawa, Ann; Reeder, Scott B

    2018-04-17

    Current chemical-shift-encoded (CSE) MRI techniques for measuring hepatic proton density fat fraction (PDFF) are sensitive to motion artifacts. Initial validation of a motion-robust 2D-sequential CSE-MRI technique for quantification of hepatic PDFF. Phantom study and prospective in vivo cohort. Fifty adult patients (27 women, 23 men, mean age 57.2 years). 3D, 2D-interleaved, and 2D-sequential CSE-MRI acquisitions at 1.5T. Three CSE-MRI techniques (3D, 2D-interleaved, 2D-sequential) were performed in a PDFF phantom and in vivo. Reference standards were 3D CSE-MRI PDFF measurements for the phantom study and single-voxel MR spectroscopy hepatic PDFF measurements (MRS-PDFF) in vivo. In vivo hepatic MRI-PDFF measurements were performed during a single breath-hold (BH) and free breathing (FB), and were repeated by a second reader for the FB 2D-sequential sequence to assess interreader variability. Correlation plots to validate the 2D-sequential CSE-MRI against the phantom and in vivo reference standards. Bland-Altman analysis of FB versus BH CSE-MRI acquisitions to evaluate robustness to motion. Bland-Altman analysis to assess interreader variability. Phantom 2D-sequential CSE-MRI PDFF measurements demonstrated excellent agreement and correlation (R 2 > 0.99) with 3D CSE-MRI. In vivo, the mean (±SD) hepatic PDFF was 8.8 ± 8.7% (range 0.6-28.5%). Compared with BH acquisitions, FB hepatic PDFF measurements demonstrated bias of +0.15% for 2D-sequential compared with + 0.53% for 3D and +0.94% for 2D-interleaved. 95% limits of agreement (LOA) were narrower for 2D-sequential (±0.99%), compared with 3D (±3.72%) and 2D-interleaved (±3.10%). All CSE-MRI techniques had excellent correlation with MRS (R 2 > 0.97). The FB 2D-sequential acquisition demonstrated little interreader variability, with mean bias of +0.07% and 95% LOA of ± 1.53%. This motion-robust 2D-sequential CSE-MRI can accurately measure hepatic PDFF during free breathing in a patient population with

  12. Measurement of the Relative Fragmentation Fractions of B-bar Hadrons

    Gibson, Karen Ruth [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-06-09

    This thesis describes the first Run II measurement of b quark fragmentation into $\\bar{B}$0, B-, and B$0\\atop{s}$ mesons and Λ$0\\atop{b}$ baryons using semileptonic B decays. The result is based on 360 pb-1 of data collected with the CDF detector in p$\\bar{p}$ collisions at √s = 1,960 GeV at the Tevatron Collider at Fermilab. The fragmentation fractions are measured for an effective $\\bar{B}$ hadron pT threshold of 7 GeV/c to be fu/fd = 1.054 ± 0.018(stat)$+0.025\\atop{-0.045}$(syst) ± 0.058(BR), fs/(fu + fd) = 0.160 ± 0.005(stat)$+0.011\\atop{-0.010}$(syst)Λ$+0.057\\atop{-0.034}$(BR), and fΛb/(fu + fd) = 0.281 ± 0.012(stat)$+0.058\\atop{-0.056}$(syst)$+0.128\\atop{-0.086}$(BR). fs/(fu + fd) agrees both with previous CDF measurements and the world averages, dominated by the LEP measurements, with ~ 1σ. However, fΛb/(fu + fd) is approximately twice the value which has been measured at LEP and in CDF Run I and disagrees with the LEP results by approximately 2 σ.

  13. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  14. Comparison of safety measures with a multicriteria decision aiding technique

    Lombard, J.

    1985-01-01

    Attributes such as political, social and psychological factors have to be taken into account for the decision-making process. Multiattribute decision-aiding techniques are used to cope with this multidimensionality of the risk management process. A simple example will be given to illustrate how such method can be helpful for the selection of proper safety measures in a rational way. (orig./HP) [de

  15. Analytical techniques for measurement of 99Tc in environmental samples

    Anon.

    1979-01-01

    Three new methods have been developed for measuring 99 Tc in environmental samples. The most sensitive method is isotope dilution mass spectrometry, which allows measurement of about 1 x 10 -12 grams of 99 Tc. Results on analysis of five samples by this method compare very well with values obtained by a second independent method, which involves counting of beta particles from 99 Tc and internal conversion electrons from /sup 97m/Tc. A third method involving electrothermal atomic absorption has also been developed. Although this method is not as sensitive as the first two techniques, the cost per analysis is expected to be considerably less for certain types of samples

  16. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  17. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  18. Activities at Forschungszentrum Juelich in Safeguards Analytical Techniques and Measurements

    Duerr, M.; Knott, A.; Middendorp, R.; Niemeyer, I.; Kueppers, S.; Zoriy, M.; Froning, M.; Bosbach, D.

    2015-01-01

    The application of safeguards by the IAEA involves analytical measurements of samples taken during inspections. The development and advancement of analytical techniques with support from the Member States contributes to strengthened and more efficient verification of compliance with non-proliferation obligations. Since recently, a cooperation agreement has been established between Forschungszentrum Juelich and the IAEA in the field of analytical services. The current working areas of Forschungszentrum Juelich are: (i) Production of synthetic micro-particles as calibration standard and reference material for particle analysis, (ii) qualification of the Forschungszentrum Juelich as a member of the IAEA network of analytical laboratories for safeguards (NWAL), and (iii) analysis of impurities in nuclear material samples. With respect to the synthesis of particles, a dedicated setup for the production of uranium particles is being developed, which addresses the urgent need for material tailored for its use in quality assurance and quality control measures for particle analysis of environmental swipe samples. Furthermore, Forschungszentrum Juelich has been nominated as a candidate laboratory for membership in the NWAL network. To this end, analytical capabilities at Forschungszentrum Juelich have been joined to form an analytical service within a dedicated quality management system. Another activity is the establishment of analytical techniques for impurity analysis of uranium-oxide, mainly focusing on inductively coupled mass spectrometry. This contribution will present the activities at Forschungszentrum Juelich in the area of analytical measurements and techniques for nuclear verification. (author)

  19. Measurement of the inclusive branching fraction tau- → nu/sub tau/π-π0 + neutral meson(s)

    Moses, W.W.

    1986-12-01

    This dissertation measures an inclusive branching fraction of (13.9 +- 2.0/sub -2.4//sup +2.1/)% for the decay tau - → nu/sub tau/π - π 0 + nh 0 where h 0 is a π 0 or an eta and n ≥ 1. The data sample, obtained with the TPC detector facility at PEP, corresponds to an integrated luminosity of 72 pb -1 at 29 GeV center of mass energy. The measured value for this branching fraction is somewhat greater than the theoretical prediction and, taking errors into account, resolves the present difference between the inclusive and the sum of the exclusive tau - branching fractions into one charged prong. In addition, a lower limit of 8.3% (95% CL) is placed on the branching fraction B(tau - → nu/sub tau/π - π 0 π 0 )

  20. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  1. Natural stream flow-rates measurements by tracer techniques

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  2. Application of neutron backscatter techniques to level measurement problems

    Leonardi-Cattolica, A.M.; McMillan, D.H.; Telfer, A.; Griffin, L.H.; Hunt, R.H.

    1982-01-01

    We have designed and built portable level detectors and fixed level monitors based on neutron scattering and detection principles. The main components of these devices, which we call neutron backscatter gauges, are a neutron emitting radioisotope, a neutron detector, and a ratemeter. The gauge is a good detector for hydrogen but is much less sensitive to most other materials. This allows level measurements of hydrogen bearing materials, such as hydrocarbons, to be made through the walls of metal vessels. Measurements can be made conveniently through steel walls which are a few inches thick. We have used neutron backscatter gauges in a wide variety of level measurement applications encountered in the petrochemical industry. In a number of cases, the neutron techniques have proven to be superior to conventional level measurement methods, including gamma ray methods

  3. High precision speed measurement by using interferometric techniques

    Ávila, M A Rodríguez; Valiente, R Ochoa; Trujillo, L A García

    2015-01-01

    In this work we present the experimental realization of speed measurement by the use of a two wave interferometer and digital signal processing techniques. We built an automated Michelson interferometer and using an He-Ne laser and with the use of the Fast Fourier Transform (FFT) and computer algorithms we derived a method for finding the speed of displacement. We report uncertainties in the order of 2-3 μm/s. with the use of this procedure. This brings the potential of another physical variable measurement like distance or pressure by this indirect measurement method. This approach is compared with an ultrasonic Logger Pro ® speed measurement system, and the results are compared between systems

  4. Advanced spherical near-field antenna measurement techniques

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  5. A confirmatory measurement technique for highly enriched uranium

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  6. Dimensional measuring techniques in the automotive and aircraft industry

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  7. Measurements of diversity gain and radiation efficiency of the eleven antenna by using different measurement techniques

    Yang, Jian; Pivnenko, Sergey; Laitinen, Tommi

    2010-01-01

    This paper presents measurement results of diversity gain and radiation efficiency by using three different measurement techniques: reverberation chamber, spherical near-field anechoic chamber, and multi-probe anechoic chamber. The results are measured over a large 2–8 GHz bandwidth which...

  8. Validation of a simple isotopic technique for the measurement of global and separated renal function

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-[ 131 I]hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed

  9. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok

    2005-01-01

    and between V-BED Gy 3 and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED Gy 10 and the treatment duration. The overall complication rate for RTOG Grades 1 ∼ 4 toxicities was 33.1%. The 5-year actuarial pelvic control rate for all 743 patients was 83%. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 Gy 10 (median 93.0) for tumors and from 93.6 to 187.3 Gy 3 (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED Gy 3 ) and bladder point BED (V-BED Gy 3 ) were 118.7 Gy 3 (range 48.8 ∼ 265.2) and 126.1 Gy 3 (range: 54.9∼ 267.5), respectively. MD-BED Gy 3 showed a good correlation with rectal (ρ =0.003), but not with bladder complications (ρ = 0.095), R-BED Gy 3 had a very strong association (ρ = 3 , B-BED Gy 3 also showed significance in the prediction of bladder complications in a trend test (ρ = 0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences in tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation

  10. Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX

    Close, D.A.; Parker, J.L.; Haycock, D.L.; Dragnev, T.

    1991-01-01

    The gamma-ray spectra from ''infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs

  11. Phase distribution measurements in narrow rectangular channels using image processing techniques

    Bentley, C.; Ruggles, A.

    1991-01-01

    Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity

  12. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  13. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  14. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    S. M. Aithal

    2018-01-01

    Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.

  15. Measurement of the Z-boson branching fraction into hadrons containing bottom quarks

    Kral, J.F.

    1990-09-01

    We use the Mark II detector to study Z decays into bottom quark-anti-quark pairs, leading to the production of bottom hadrons. The Z bosons are formed in e + e - annihilation at the SLC at center-of-mass energies between 89 and 93 GeV. We identify events containing semileptonic decays of bottom hadrons by detecting isolated leptons, i.e leptons with high transverse momenta relative to the nearest hadronic jet. Using isolated electrons and muons, we measure the B-hadron semileptonic branching ratio times the fraction of hadronic Z decays which contain bottom hadrons, B(B → X ell ν)·Γ(Z → b bar b)/Γ(Z → had) = 0.025 -0.009 +0.100 ± 0.005, where we have listed the statistical errors followed by the systematic error. Assuming B(B → X(ell)ν) = 11% ± 1%, we measure Γ(Z → b bar b)/Γ(Z → had) = 0.23 -0.09 +0.11 , in good agreement with the standard-model prediction of 0.22. We find Γ(Z → b bar b) = 0.40 -0.16 +0.19 GeV. 83 refs., 34 figs., 19 tabs

  16. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  17. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration.

    Merola, Alberto; Murphy, Kevin; Stone, Alan J; Germuska, Michael A; Griffeth, Valerie E M; Blockley, Nicholas P; Buxton, Richard B; Wise, Richard G

    2016-04-01

    Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism

  18. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  19. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  20. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  1. Computed Tomography Fractional Flow Reserve Can Identify Culprit Lesions in Aortoiliac Occlusive Disease Using Minimally Invasive Techniques.

    Ward, Erin P; Shiavazzi, Daniele; Sood, Divya; Marsden, Allison; Lane, John; Owens, Erik; Barleben, Andrew

    2017-01-01

    Currently, the gold standard diagnostic examination for significant aortoiliac lesions is angiography. Fractional flow reserve (FFR) has a growing body of literature in coronary artery disease as a minimally invasive diagnostic procedure. Improvements in numerical hemodynamics have allowed for an accurate and minimally invasive approach to estimating FFR, utilizing cross-sectional imaging. We aim to demonstrate a similar approach to aortoiliac occlusive disease (AIOD). A retrospective review evaluated 7 patients with claudication and cross-sectional imaging showing AIOD. FFR was subsequently measured during conventional angiogram with pull-back pressures in a retrograde fashion. To estimate computed tomography (CT) FFR, CT angiography (CTA) image data were analyzed using the SimVascular software suite to create a computational fluid dynamics model of the aortoiliac system. Inlet flow conditions were derived based on cardiac output, while 3-element Windkessel outlet boundary conditions were optimized to match the expected systolic and diastolic pressures, with outlet resistance distributed based on Murray's law. The data were evaluated with a Student's t-test and receiver operating characteristic curve. All patients had evidence of AIOD on CT and FFR was successfully measured during angiography. The modeled data were found to have high sensitivity and specificity between the measured and CT FFR (P = 0.986, area under the curve = 1). The average difference between the measured and calculated FFRs was 0.136, with a range from 0.03 to 0.30. CT FFR successfully identified aortoiliac lesions with significant pressure drops that were identified with angiographically measured FFR. CT FFR has the potential to provide a minimally invasive approach to identify flow-limiting stenosis for AIOD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Entrance surface dose measurements in mammography using thermoluminescence technique

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  3. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Gerbeth, G; Eckert, S [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  4. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  5. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  6. Top-quark mass measurements: Alternative techniques (LHC + Tevatron)

    Adomeit, Stefanie; The ATLAS collaboration

    2014-01-01

    Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

  7. Highlights in radiation measuring technique's - Serial Micro Channel SMC 2100

    Kandler, M.; Hoffmann, Ch.

    2002-01-01

    The Serial Micro Channel SMC 2100 offers an ''intelligent stand alone'' electronics for the radiation measuring technique's. First it is designed of being connected to a serial interface RS232 of a PC. With a RS485 serial interface on a PC, a network structure can be generated. It has all functional modules which are necessary for the measurement of detector signals. Hence it is possible to directly connect any detector for radiation measurement to a PC, laptop, or notebook. All variations can be operated without PC support too. It has a modular structure and consists of two blocks, the functional modules and the basic modules. The Serial Micro Channel SMC 2100 may be directly coupled to a detector, which therefore makes the realisation of an ''intelligent radiation detector'' with serial link RS232 or RS485. (orig.)

  8. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  9. Fraction of exhaled nitric oxide measurements in the diagnoses of asthma in elderly patients

    Godinho Netto AC

    2016-05-01

    Full Text Available Antonio Carlos Maneira Godinho Netto,1,2 Túlio Gonçalves dos Reis,1,2 Cássia Franco Matheus,1,2 Beatriz Julião Vieira Aarestrup,3,4 Fernando Monteiro Aarestrup1,2,4 1School of Medical and Health Sciences – SUPREMA, 2Maternity Hospital Terezinha de Jesus, 3Morphology Department, Federal University of Juiz de Fora, Institute of Biological Sciences, 4Laboratory of Immunopathology and Experimental Pathology, Federal University of Juiz de Fora, Reproductive Biology Center (CBR, Juiz de Fora, Brazil Objective: To assess the value of fraction of exhaled nitric oxide (FeNO measurements in the diagnosis of asthma in elderly patients. Methods: The clinical symptoms of 202 elderly patients were assessed with the asthma module of the International Study of Asthma and Allergies in Childhood test, which had been modified for the elderly patients, and the diagnostic routine for chronic obstructive pulmonary disease (COPD, which was based on the Global initiative for chronic Obstructive Lung Disease criteria. Of the 202 patients assessed, 43 were subjected to pulmonary function evaluations (spirometry and FeNO measurements. Results: Of the 202 elderly patients, 34 had asthma (23 definite and eleven probable, 20 met COPD criteria, 13 presented with an overlap of asthma and COPD, and 135 did not fit the criteria for obstructive pulmonary disease. Among the 43 elderly patients who were subjected to FeNO measurements, ten showed altered results (23.2% and 33 had normal results (76.7%. The average value of FeNO in patients with definite and probable asthma undergoing this procedure was 29.2 parts per billion whereas that in nonasthmatic patients was 17.5 parts per billion (P=0.0002. Conclusion: We show a clear relationship between FeNO levels and asthma symptoms and previous asthma diagnoses in elderly patients. Keywords: asthma, chronic obstructive pulmonary disease, elderly patients, nitric oxide

  10. Effects of caffeine on fractional flow reserve values measured using intravenous adenosine triphosphate.

    Nakayama, Masafumi; Chikamori, Taishiro; Uchiyama, Takashi; Kimura, Yo; Hijikata, Nobuhiro; Ito, Ryosuke; Yuhara, Mikio; Sato, Hideaki; Kobori, Yuichi; Yamashina, Akira

    2018-04-01

    We investigated the effects of caffeine intake on fractional flow reserve (FFR) values measured using intravenous adenosine triphosphate (ATP) before cardiac catheterization. Caffeine is a competitive antagonist for adenosine receptors; however, it is unclear whether this antagonism affects FFR values. Patients were evenly randomized into 2 groups preceding the FFR study. In the caffeine group (n = 15), participants were given coffee containing 222 mg of caffeine 2 h before the catheterization. In the non-caffeine group (n = 15), participants were instructed not to take any caffeine-containing drinks or foods for at least 12 h before the catheterization. FFR was performed in patients with more than intermediate coronary stenosis using the intravenous infusion of ATP at 140 μg/kg/min (normal dose) and 170 μg/kg/min (high dose), and the intracoronary infusion of papaverine. FFR was followed for 30 s after maximal hyperemia. In the non-caffeine group, the FFR values measured with ATP infusion were not significantly different from those measured with papaverine infusion. However, in the caffeine group, the FFR values were significantly higher after ATP infusion than after papaverine infusion (P = 0.002 and P = 0.007, at normal and high dose ATP vs. papaverine, respectively). FFR values with ATP infusion were significantly increased 30 s after maximal hyperemia (P = 0.001 and P < 0.001 for normal and high dose ATP, respectively). The stability of the FFR values using papaverine showed no significant difference between the 2 groups. Caffeine intake before the FFR study affected FFR values and their stability. These effects could not be reversed by an increased ATP dose.

  11. Left ventricular ejection fraction and volumes as measured by 3D echocardiography and ultrafast computed tomography

    Vieira, Marcelo Luiz Campos; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Passos, Rodrigo B.D.; Funari, Marcelo B. G.; Fischer, Claudio H.; Morhy, Samira S.

    2009-01-01

    Background: Real-time three-dimensional echocardiography (RT-3D-Echo) and ultrafast computed tomography (CT) are two novel methods for the analysis of LV ejection fraction and volumes. Objective: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. Methods: Thirty nine consecutive patients (27 men, mean age of 57+- 12 years) were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson), Bland-Altman analysis, linear regression analysis, 95% CI, p 5 .58)%; end-diastolic volume ranged from 49.6 to 178.2 (87+-27.8) ml; end-systolic volume ranged from 11.4 to 78 (33.1+-13.6) ml. CT scan measurements: LVEF ranged from 53 to 86% (67.8+-7.78); end-diastolic volume ranged from 51 to 186 (106.5+-30.3) ml; end-systolic volume ranged from 7 to 72 (35.5+-13.4)ml. Correlations between RT-3D-Echo and CT were: LVEF (r: 0.7888, p<0.0001, 95% CI 0.6301 to 0.8843); end-diastolic volume (r: 0.7695, p<0.0001, 95% CI 0.5995 to 0.8730); end-systolic volume (r: 0.8119, p<0.0001, 95% CI 0.6673 to 0.8975). Conclusion: Good correlation between LVEF and ventricular volume parameters as measured by RT-3D-Echo and 64-slice ultrafast CT was found in the present case series. (author)

  12. Automatic ultrasound technique to measure angle of progression during labor.

    Conversano, F; Peccarisi, M; Pisani, P; Di Paola, M; De Marco, T; Franchini, R; Greco, A; D'Ambrogio, G; Casciaro, S

    2017-12-01

    To evaluate the accuracy and reliability of an automatic ultrasound technique for assessment of the angle of progression (AoP) during labor. Thirty-nine pregnant women in the second stage of labor, with fetus in cephalic presentation, underwent conventional labor management with additional translabial sonographic examination. AoP was measured in a total of 95 acquisition sessions, both automatically by an innovative algorithm and manually by an experienced sonographer, who was blinded to the algorithm outcome. The results obtained from the manual measurement were used as the reference against which the performance of the algorithm was assessed. In order to overcome the common difficulties encountered when visualizing by sonography the pubic symphysis, the AoP was measured by considering as the symphysis landmark its centroid rather than its distal point, thereby assuring high measurement reliability and reproducibility, while maintaining objectivity and accuracy in the evaluation of progression of labor. There was a strong and statistically significant correlation between AoP values measured by the algorithm and the reference values (r = 0.99, P < 0.001). The high accuracy provided by the automatic method was also highlighted by the corresponding high values of the coefficient of determination (r 2  = 0.98) and the low residual errors (root mean square error = 2°27' (2.1%)). The global agreement between the two methods, assessed through Bland-Altman analysis, resulted in a negligible mean difference of 1°1' (limits of agreement, 4°29'). The proposed automatic algorithm is a reliable technique for measurement of the AoP. Its (relative) operator-independence has the potential to reduce human errors and speed up ultrasound acquisition time, which should facilitate management of women during labor. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  13. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  15. Comparison of current tonometry techniques in measurement of intraocular pressure.

    Kouchaki, Behrooz; Hashemi, Hassan; Yekta, Abbasali; Khabazkhoob, Mehdi

    2017-06-01

    To compare four tonometry techniques: Goldmann applanation tonometer (GAT), Dynamic contour tonometer (DCT), Non-contact tonometer (NCT), and Ocular Response Analyzer (ORA) in the measurement of intraocular pressure (IOP) and the impact of some corneal biomechanical factors on their performance. In this cross-sectional study, volunteers with normal ophthalmic examination and no history of eye surgery (except for uncomplicated cataract surgery) or trauma were selected. Twenty-five subjects were male, and 21 were female. The mean age was 48 ± 19.2 years. Anterior segment parameters were measured with Scheimpflug imaging. IOP was measured with GAT, DCT, NCT, and ORA in random order. A 95% limit of agreement of IOPs was analyzed. The impact of different parameters on the measured IOP with each device was evaluated by regression analysis. The average IOP measured with GAT, DCT, NCT, and ORA was 16.4 ± 3.5, 18.1 ± 3.4, 16.2 ± 3.9, and 17.3 ± 3.4 mmHg, respectively. The difference of IOP measured with NCT and GAT was not significant ( P  = 0.382). Intraocular pressure was significantly different between GAT with DCT and IOP CC ( P  tonometers.

  16. Proton current measurements using the prompt gamma ray diagnostic technique

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  17. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  18. Comparisons between different techniques for measuring mass segregation

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  19. Protocol of measurement techniques - Project colored solar collectors

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2004-08-15

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) takes a look at work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on multi-layer, thin-film interference coatings for solar collector glazing. The correct combinations of refractive indices and film thickness are discussed. The authors state that corresponding multi-layered thin film stacks will have to be realised experimentally in a controlled and reproducible way. New thin film materials are to be tailored to exhibit optimised optical and ageing properties. The development of these coatings is to be based on various measurement techniques, such as spectro-photometry, measurements of total power throughput by means of a solar simulator, spectroscopic ellipsometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The paper provides many examples of typical data and explains which film properties can be inferred from each method and thus describes both the function and purpose of the different measurement techniques.

  20. Experimental comparison of particle interaction measurement techniques using optical traps

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values