Relative Hazard Calculation Methodology
International Nuclear Information System (INIS)
DL Strenge; MK White; RD Stenner; WB Andrews
1999-01-01
The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)
Methodologies of Uncertainty Propagation Calculation
International Nuclear Information System (INIS)
Chojnacki, Eric
2002-01-01
After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory
The fractional scaling methodology (FSM) Part 1. methodology development
International Nuclear Information System (INIS)
Novak Zuber; Ivan Catton; Upendra S Rohatgi; Wolfgang Wulff
2005-01-01
Full text of publication follows: a quantitative methodology is developed, based on the concepts of hierarchy and synthesis, to integrate and organize information and data. The methodology uses scaling to synthesize experimental data and analytical results, and to provide quantitative criteria for evaluating the effects of various design and operating parameters that influence processes in a complex system such as a nuclear power plant or a related test facility. Synthesis and scaling are performed on three hierarchical levels: the process, component and system levels. Scaling on the process level determines the effect of a selected process on a particular state variable during a selected scenario. At the component level this scaling determines the effects various processes have on a state variable, and it ranks the processes according to their importance by the magnitude of the fractional change they cause on that state variable. At the system level the scaling determines the governing processes and corresponding components, ranking these in the order of importance according to their effect on the fractional change of system-wide state variables. The scaling methodology reveals on all levels the fractional change of state variables and is called therefore the Fractional Scaling Methodology (FSM). FSM synthesizes process parameters and assigns to each thermohydraulic process a dimensionless effect metric Ω = ωt, that is the product of the specific rate of fractional change ω and the characteristic time t. The rate of fractional change ω is the ratio of process transport rate over content of a preserved quantity in a component. The effect metric Ω quantifies the contribution of the process to the fractional change of a state variable in a given component. Ordering of a component effect metrics provides the hierarchy of processes in a component, then in all components and the system. FSM separates quantitatively dominant from minor processes and components and
Pregnant woman mode for absorbed fraction calculations
International Nuclear Information System (INIS)
Cloutier, R.J.; Snyder, W.S.; Watson, E.E.
1977-01-01
The most radiation-sensitive segment of our population is the developing fetus. Until recently, methods available for calculating the dose to the fetus were inadequate because a model for the pregnant woman was not available. Instead, the Snyder and Fisher model of Reference Man, which includes a uterus, was frequently used to calculate absorbed fractions when the source was in various organs of the body and the nongravid uterus was the target. These values would be representative of the dose to the embryo during the early stages of pregnancy. Unfortunately, Reference Man is considerable larger than Reference Woman. The authors recently reported on the design of a Reference Woman phantom that has dimensions quite similar to the ICRP Reference Woman. This phantom was suitable for calculating the dose to the embryo during early stages of pregnancy (0 to 3 mo.), but was not suitable for the later stages of pregnancy because of the changing shape of the mother and the displacement of several abdominal organs brought about by the growth of the uterus and fetus. The models of Reference Woman that were subsequently developed for each month of pregnancy are described. The models take into account the growth of the uterus and fetus and the repositioning of the various abdominal organs. These models have been used to calculate absorbed fractions for the fetus as a target and the gastrointestinal tract as a source of radiation for twelve photon energies ranging from 10 keV to 4 MeV
76 FR 71431 - Civil Penalty Calculation Methodology
2011-11-17
... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration Civil Penalty Calculation... is currently evaluating its civil penalty methodology. Part of this evaluation includes a forthcoming... civil penalties. UFA takes into account the statutory penalty factors under 49 U.S.C. 521(b)(2)(D). The...
Methodology of shielding calculation for nuclear reactors
International Nuclear Information System (INIS)
Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo
1982-01-01
A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt
Selection of skin dose calculation methodologies
International Nuclear Information System (INIS)
Farrell, W.E.
1987-01-01
This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing
Error analysis of pupils in calculating with fractions
Uranič, Petra
2016-01-01
In this thesis I examine the correlation between the frequency of errors that seventh grade pupils make in their calculations with fractions and their level of understanding of fractions. Fractions are a relevant and demanding theme in the mathematics curriculum. Although we use fractions on a daily basis, pupils find learning fractions to be very difficult. They generally do not struggle with the concept of fractions itself, but they frequently have problems with mathematical operations ...
Estimation's Role in Calculations with Fractions
Johanning, Debra I.
2011-01-01
Estimation is more than a skill or an isolated topic. It is a thinking tool that needs to be emphasized during instruction so that students will learn to develop algorithmic procedures and meaning for fraction operations. For students to realize when fractions should be added, subtracted, multiplied, or divided, they need to develop a sense of…
Generating bessel functions in mie scattering calculations using continued fractions.
Lentz, W J
1976-03-01
A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The continued fraction representations for both spherical Bessel functions and ratios of Bessel functions of consecutive order are presented.
A Methodology for Calculating Radiation Signatures
Energy Technology Data Exchange (ETDEWEB)
Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Relative Hazard and Risk Measure Calculation Methodology
International Nuclear Information System (INIS)
Stenner, Robert D.; Strenge, Dennis L.; Elder, Matthew S.; Andrews, William B.; Walton, Terry L.
2003-01-01
The RHRM equations, as represented in methodology and code presented in this report, are primarily a collection of key factors normally used in risk assessment that are relevant to understanding the hazards and risks associated with projected mitigation, cleanup, and risk management activities. The RHRM code has broad application potential. For example, it can be used to compare one mitigation, cleanup, or risk management activity with another, instead of just comparing it to just the fixed baseline. If the appropriate source term data are available, it can be used in its non-ratio form to estimate absolute values of the associated controlling hazards and risks. These estimated values of controlling hazards and risks can then be examined to help understand which mitigation, cleanup, or risk management activities are addressing the higher hazard conditions and risk reduction potential at a site. Graphics can be generated from these absolute controlling hazard and risk values to graphically compare these high hazard and risk reduction potential conditions. If the RHRM code is used in this manner, care must be taken to specifically define and qualify (e.g., identify which factors were considered and which ones tended to drive the hazard and risk estimates) the resultant absolute controlling hazard and risk values
Development of a computational methodology for internal dose calculations
International Nuclear Information System (INIS)
Yoriyaz, Helio
2000-01-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)
Void fraction calculation in a channel containing boiling coolant
International Nuclear Information System (INIS)
Norelli, F.
1978-01-01
The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations
Calculation of Steam Volume Fraction in Subcooled Boiling
Energy Technology Data Exchange (ETDEWEB)
Rouhani, S Z
1967-06-15
An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.
Audit calculation for the LOCA methodology for KSNP
Energy Technology Data Exchange (ETDEWEB)
Lee, Un Chul; Park, Chang Hwan; Choi, Yong Won; Yoo, Jun Soo [Seoul National Univ., Seoul (Korea, Republic of)
2006-11-15
The objective of this research is to perform the audit regulatory calculation for the LOCA methodology for KSNP. For LBLOCA calculation, several uncertainty variables and new ranges of those are added to those of previous KINS-REM to improve the applicability of KINS-REM for KSNP LOCA. And those results are applied to LBLOCA audit calculation by statistical method. For SBLOCA calculation, after selecting BATHSY9.1.b, which is not used by KHNP, the results of RELAP5/Mod3.3 and RELAP5/MOD3.3ef-sEM for KSNP SBLOCA are compared to evaluate the conservativeness or applicability of RELAP5/MOD3.3ef-sEM code for KSNP SBLOCA. The result of this research can be used to support the activities of KINS for reviewing the LOCA methodology for KSNP proposed by KHNP.
Development of Audit Calculation Methodology for RIA Safety Analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Joosuk; Kim, Gwanyoung; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2015-05-15
The interim criteria contain more stringent limits than previous ones. For example, pellet-to-cladding mechanical interaction(PCMI) was introduced as a new failure criteria. And both short-term (e.g. fuel-to coolant interaction, rod burst) and long-term(e.g., fuel rod ballooning, flow blockage) phenomena should be addressed for core coolability assurance. For dose calculations, transient-induced fission gas release has to be accounted additionally. Traditionally, the approved RIA analysis methodologies for licensing application are developed based on conservative approach. But newly introduced safety criteria tend to reduce the margins to the criteria. Thereby, licensees are trying to improve the margins by utilizing a less conservative approach. In this situation, to cope with this trend, a new audit calculation methodology needs to be developed. In this paper, the new methodology, which is currently under developing in KINS, was introduced. For the development of audit calculation methodology of RIA safety analysis based on the realistic evaluation approach, preliminary calculation by utilizing the best estimate code has been done on the initial core of APR1400. Followings are main conclusions. - With the assumption of single full-strength control rod ejection in HZP condition, rod failure due to PCMI is not predicted. - And coolability can be assured in view of entalphy and fuel melting. - But, rod failure due to DNBR is expected, and there is possibility of fuel failure at the rated power conditions also.
A gamma heating calculation methodology for research reactor application
International Nuclear Information System (INIS)
Lee, Y.K.; David, J.C.; Carcreff, H.
2001-01-01
Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)
ANL calculational methodologies for determining spent nuclear fuel source term
International Nuclear Information System (INIS)
McKnight, R. D.
2000-01-01
Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements
RAMA Methodology for the Calculation of Neutron Fluence
International Nuclear Information System (INIS)
Villescas, G.; Corchon, F.
2013-01-01
he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.
Calculating the mass fraction of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Young, Sam; Byrnes, Christian T. [Department of Physics and Astronomy, University of Sussex, North-South Road, Brighton (United Kingdom); Sasaki, Misao, E-mail: sy81@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-07-01
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R{sub c} in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k{sup 2}. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.
Calculating the mass fraction of primordial black holes
International Nuclear Information System (INIS)
Young, Sam; Byrnes, Christian T.; Sasaki, Misao
2014-01-01
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k 2 . We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes
Methodology for calculating power consumption of planetary mixers
Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.
2018-03-01
The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.
Study on calculation methods for the effective delayed neutron fraction
International Nuclear Information System (INIS)
Irwanto, Dwi; Obara, Toru; Chiba, Go; Nagaya, Yasunobu
2011-03-01
The effective delayed neutron fraction β eff is one of the important neutronic parameters from a view point of a reactor kinetics. Several Monte-Carlo-based methods to estimate β eff have been proposed to date. In order to quantify the accuracy of these methods, we study calculation methods for β eff by analyzing various fast neutron systems including the bare spherical systems (Godiva, Jezebel, Skidoo, Jezebel-240), the reflective spherical systems (Popsy, Topsy, Flattop-23), MASURCA-R2 and MASURCA-ZONA2, and FCA XIX-1, XIX-2 and XIX-3. These analyses are performed by using SLAROM-UF and CBG for the deterministic method and MVP-II for the Monte Carlo method. We calculate β eff with various definitions such as the fundamental value β 0 , the standard definition, Nauchi's definition and Meulekamp's definition, and compare these results with each other. Through the present study, we find the following: The largest difference among the standard definition of β eff , Nauchi's β eff and Meulekamp's β eff is approximately 10%. The fundamental value β 0 is quite larger than the others in several cases. For all the cases, Meulekamp's β eff is always higher than Nauchi's β eff . This is because Nauchi's β eff considers the average neutron multiplicity value per fission which is large in the high energy range (1MeV-10MeV), while the definition of Meulekamp's β eff does not include this parameter. Furthermore, we evaluate the multi-generation effect on β eff values and demonstrate that this effect should be considered to obtain the standard definition values of β eff . (author)
International Nuclear Information System (INIS)
Talamo, A.; Gohar, Y.; Aliberti, G.; Zhong, Z.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.; Serafimovich, I.
2010-01-01
In 1997, Bretscher calculated the effective delayed neutron fraction by the k-ratio method. The Bretscher's approach is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Bretscher evaluated the effective delayed neutron fraction as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as k-ratio method). In the present work, the k-ratio method is applied by deterministic nuclear codes. The ENDF/B nuclear data library of the fuel isotopes ( 238 U and 238 U) have been processed by the NJOY code with and without the delayed neutron data to prepare multigroup WIMSD nuclear data libraries for the DRAGON code. The DRAGON code has been used for preparing the PARTISN macroscopic cross sections. This calculation methodology has been applied to the YALINA-Thermal assembly of Belarus. The assembly has been modeled and analyzed using PARTISN code with 69 energy groups and 60 different material zones. The deterministic and Monte Carlo results for the effective delayed neutron fraction obtained by the k-ratio method agree very well. The results also agree with the values obtained by using the adjoint flux. (authors)
Validating analysis methodologies used in burnup credit criticality calculations
International Nuclear Information System (INIS)
Brady, M.C.; Napolitano, D.G.
1992-01-01
The concept of allowing reactivity credit for the depleted (or burned) state of pressurized water reactor fuel in the licensing of spent fuel facilities introduces a new challenge to members of the nuclear criticality community. The primary difference in this analysis approach is the technical ability to calculate spent fuel compositions (or inventories) and to predict their effect on the system multiplication factor. Isotopic prediction codes are used routinely for in-core physics calculations and the prediction of radiation source terms for both thermal and shielding analyses, but represent an innovation for criticality specialists. This paper discusses two methodologies currently being developed to specifically evaluate isotopic composition and reactivity for the burnup credit concept. A comprehensive approach to benchmarking and validating the methods is also presented. This approach involves the analysis of commercial reactor critical data, fuel storage critical experiments, chemical assay isotopic data, and numerical benchmark calculations
Methodology of dose calculation for the SRS SAR
International Nuclear Information System (INIS)
Price, J.B.
1991-07-01
The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided
Hot channel calculation methodologies in case of Gd burnable poison
International Nuclear Information System (INIS)
Panka, I.; Kereszturi, A.
2008-01-01
The final step in the safety analysis is the investigation of the fulfilment of the acceptance criteria using hot channel calculations. Recently, there has been under way at Paks NPP to introduce a new, higher enriched (4.2 %) fuel type containing Gd burnable poison. To do that, for some transients the DBA analyses must be repeated and last year, as one of the first steps in this process, it was needed to review the hot channel calculation methodologies used in the analyses. The goal of the paper is to summarize some aspects of the hot channel calculation methodologies using different lattice pitches and different fuel types (Gd or non Gd and different enrichments). Mainly, three topics are discussed. First, the influence of the radial power distribution (and other burnup dependent parameters) inside the fuel pin are investigated, and then we discuss the problem of the selection of the appropriate 'frame parameter' in connection with the initial power level at the initial stationary state of DBA transients. Finally, we are trying to answer the question: is it possible to build up a conservative single closed sub-channel approach against multi channel approach?(Authors)
REVIEW OF METHODOLOGIES FOR COSTS CALCULATING OF RUMINANTS IN SLOVAKIA
Directory of Open Access Journals (Sweden)
Zuzana KRUPOVÁ
2012-09-01
Full Text Available The objective of this work was to synthesise and analyse the methodologies and the biological aspects of the costs calculation in ruminants in Slovakia. According to literature, the account classification of cost items is most often considered for construction of costing formula. The costs are mostly divided into fixed (costs independent from volume of herd’s production and variable ones (costs connected with improvement of breeding conditions. Cost for feeds and beddings, labour costs, other direct costs and depreciations were found as the most important cost items in ruminants. It can be assumed that including the depreciations into costs of the basic herd takes into consideration the real costs simultaneously invested into raising of young animals in the given period. Costs are calculated for the unit of the main and by-products and their classification is influenced mainly by the type of livestock and production system. In dairy cows is usually milk defined as the main product, and by- products are live born calf and manure. The base calculation unit is kilogram of milk (basic herd of cows and kilogram of gain and kilogram of live weight (young breeding cattle. In suckler cows is a live-born calf the main product and manure is the by-product. The costs are mostly calculated per suckler cow, live-born calf and per kilogram of live weight of weaned calf. Similar division of products into main and by-products is also in cost calculation for sheep categories. The difference is that clotted cheese is also considered as the main product of basic herd in dairy sheep and greasy wool as the by-products in all categories. Definition of the base calculation units in sheep categories followed the mentioned classification. The value of a by-product in cattle and sheep is usually set according to its quantity and intra- plant price of the by-product. In the calculation of the costs for sheep and cattle the “structural ewe” and “structural cow
One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity
Energy Technology Data Exchange (ETDEWEB)
Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry, E-mail: zzhong@anl.gov, E-mail: alby@anl.gov, E-mail: gohar@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, IL (United States)
2011-07-01
The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β{sub eff} has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β{sub eff} was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β{sub eff}, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have
One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity
International Nuclear Information System (INIS)
Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry
2011-01-01
The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β_e_f_f has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β_e_f_f was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β_e_f_f, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have been
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.
1994-01-01
A new methodology for equivalent dose calculations has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neutral network. The research was orientated towards the optimization of the whole set of parameters involves in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neutral network was performed by taking the readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation. (author)
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.; Campos, L.L.
1994-01-01
A new methodology for equivalent dose calculation has been developed at IPEN-CNEN/SP to be applied at the Photographic Dosimetry Laboratory using artificial intelligence techniques by means of neural network. The research was oriented towards the optimization of the whole set of parameters involved in the film processing going from the irradiation in order to obtain the calibration curve up to the optical density readings. The learning of the neural network was performed by taking readings of optical density from calibration curve as input and the effective energy and equivalent dose as output. The obtained results in the intercomparison show an excellent agreement with the actual values of dose and energy given by the National Metrology Laboratory of Ionizing Radiation
Methodology of calculation in one-dimensional kinetic
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
This paper resulted from a study of the WIGLE's program calculation method ]1], which is RESTRICTED to USA users. In view of this fact, a successful attempt was made to fully understand and reproduce the WIGLE methodology, thus providing support for national development on the subject. After finishing the theoretical study, CITER-1D, a program for search of control rod position in PWR slabs under steady-state conditions was written and is supposed to correctly reproduce WIGL3 ]4] version behavior. Program restriction to steady-state conditions was due to scarcity of examples, thought to be intentional, as well as to time limitations for conclusion of a M.Sc. Thesis ]2], which originated this work. Results obtained with CITER-1D agree very well with the ones found in the the available literature pertaining to WIGL3. Further work on CITER-1D is being pursued, in order to complete the program. (Author) [pt
A Methodology Proposal to Calculate the Externalities of Liquid Biofuels
Energy Technology Data Exchange (ETDEWEB)
Galan, A.; Gonzalez, R.; Varela, M. [Ciemat. Madrid (Spain)
1999-05-01
The aim of the survey is to propose a methodology to calculate the externalities associated with the liquid bio fuels cycle. The report defines the externalities from a theoretical point of view and classifies them. The reasons to value the externalities are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalities is also presented. The report reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExternE and ExternE-transport projects related the externalities of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.
Parameters calculation of a shielding experiment and evaluation of calculation methodology
International Nuclear Information System (INIS)
Gavazza, S.; Otto, A.C.; Gomes, I.C.; Maiorino, J.R.
1986-01-01
In this text is carried out the evaluation of radiation transport methodology, comparying the calculated reactions and dose rates, for neutrons and gamma-rays, with the experimental measurements obtained on iron shield, irradiated in YAYOI reactor. Were employed the ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system for generation of cross sections, collapsed by the ANISN code. The transport calculation were made by using the DOT 3.5 code, adjusting the spectrum of the iron shield boundary source to the reactions and dose rates, measured at the beginning of shield. The distributions calculated for neutrons and gamma-rays, on iron shield, presented coherence with the experimental measurements. (Author) [pt
Methodology for calculating guideline concentrations for safety shot sites
International Nuclear Information System (INIS)
1997-06-01
Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination
Methodology for calculating guideline concentrations for safety shot sites
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-06-01
Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination.
Relative Hazard and Risk Measure Calculation Methodology Rev 1
International Nuclear Information System (INIS)
Stenner, Robert D.; White, Michael K.; Strenge, Dennis L.; Aaberg, Rosanne L.; Andrews, William B.
2000-01-01
Documentation of the methodology used to calculate relative hazard and risk measure results for the DOE complex wide risk profiles. This methodology is used on major site risk profiles. In February 1997, the Center for Risk Excellence (CRE) was created and charged as a technical, field-based partner to the Office of Science and Risk Policy (EM-52). One of the initial charges to the CRE is to assist the sites in the development of ''site risk profiles.'' These profiles are to be relatively short summaries (periodically updated) that present a broad perspective on the major risk related challenges that face the respective site. The risk profiles are intended to serve as a high-level communication tool for interested internal and external parties to enhance the understanding of these risk-related challenges. The risk profiles for each site have been designed to qualitatively present the following information: (1) a brief overview of the site, (2) a brief discussion on the historical mission of the site, (3) a quote from the site manager indicating the site's commitment to risk management, (4) a listing of the site's top risk-related challenges, (5) a brief discussion and detailed table presenting the site's current risk picture, (6) a brief discussion and detailed table presenting the site's future risk reduction picture, and (7) graphic illustrations of the projected management of the relative hazards at the site. The graphic illustrations were included to provide the reader of the risk profiles with a high-level mental picture to associate with all the qualitative information presented in the risk profile. Inclusion of these graphic illustrations presented the CRE with the challenge of how to fold this high-level qualitative risk information into a system to produce a numeric result that would depict the relative change in hazard, associated with each major risk management action, so it could be presented graphically. This report presents the methodology developed
International Nuclear Information System (INIS)
Bandi, F.; Khan, A.; Phillips, C.R.
1987-01-01
Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol
Amato, Ernesto; Italiano, Antonio; Baldari, Sergio
2014-01-01
We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'general...
International Nuclear Information System (INIS)
Olsen, D.R.
1995-01-01
The total effect (TE) has been calculated for two different fractionation formalisms: the consecutive and repetitive fractionation mechanism, using a modified linear quadratic (LQ) model which includes the effect of apoptosis. For a given total dose, an increase in TE is seen when increasing the dose per fraction as well as the apoptotic fraction (F a ). Also, the TE increases with increasing α/β ratio (of the modified LQ model). The ratio of TE for tumour tissue and TE for late reacting tissue is calculated assuming the absence of apoptosis in late reacting tissue and a common value of α/β (of the modified LQ model). The biological effect ratio (BR) is higher for a large F a and low doses per fraction, than for large doses per fraction and a small F a . Assuming a consecutive fractionation mechanism, the TE formalism is unable to predict a log cell kill of more than 3 for β values of 0.010-0.028. It is less dependent on dose per fraction and F a than the repetitive fractionation mechanism. The biological effect ratio is only slightly higher than 1, and is less influenced by F a , dose per fraction and α/β ratio. A repetitive fractionation mechanism is also consistent with the preliminary results of published fractionation experiments. The calculations indicate that designing fractionation regimes for optimization of biological effect is a process where the role of apoptotic cell inactivation must be maximized, and where the influence of mitotic cell inactivation may be of less importance. (author)
Equations for calculating interfacial drag and shear from void fraction correlations
International Nuclear Information System (INIS)
Putney, J.M.
1988-12-01
Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)
Burnup calculation methodology in the serpent 2 Monte Carlo code
International Nuclear Information System (INIS)
Leppaenen, J.; Isotalo, A.
2012-01-01
This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)
Research on calculation of mixing fraction for natural uranium equivalent fuel
International Nuclear Information System (INIS)
Huang Shien; Wang Lianjie; Wei Yanqin; Li Qing; Zheng Jiye
2013-01-01
Based on the first-order perturbation theory and reasonable approximations, the calculation method of recycled uranium (RU) and depleted uranium (DU) mixing fraction for natural uranium equivalent (NUE) fuel was studied, so the equivalence between NUE fuel and natural uranium (NU) fuel was assured. The adopted calculation method accurately takes the variation of micro cross sections alone with fuel depletion into account. A computer code named ALPHA was programmed to execute the calculation procedure. Then the ALPHA code and the WIMS-AECL code compose a processing system, which is applicable to the mixing fraction calculation for heavy water reactor NUE fuel. The validation shows that the processing system can accurately calculate the mixing fraction for NUE fuel. (authors)
Methodology for Calculating Latency of GPS Probe Data
Energy Technology Data Exchange (ETDEWEB)
Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Zhongxiang [University of Maryland; Hamedi, Masoud [University of Maryland
2017-10-01
Crowdsourced GPS probe data, such as travel time on changeable-message signs and incident detection, have been gaining popularity in recent years as a source for real-time traffic information to driver operations and transportation systems management and operations. Efforts have been made to evaluate the quality of such data from different perspectives. Although such crowdsourced data are already in widespread use in many states, particularly the high traffic areas on the Eastern seaboard, concerns about latency - the time between traffic being perturbed as a result of an incident and reflection of the disturbance in the outsourced data feed - have escalated in importance. Latency is critical for the accuracy of real-time operations, emergency response, and traveler information systems. This paper offers a methodology for measuring probe data latency regarding a selected reference source. Although Bluetooth reidentification data are used as the reference source, the methodology can be applied to any other ground truth data source of choice. The core of the methodology is an algorithm for maximum pattern matching that works with three fitness objectives. To test the methodology, sample field reference data were collected on multiple freeway segments for a 2-week period by using portable Bluetooth sensors as ground truth. Equivalent GPS probe data were obtained from a private vendor, and their latency was evaluated. Latency at different times of the day, impact of road segmentation scheme on latency, and sensitivity of the latency to both speed-slowdown and recovery-from-slowdown episodes are also discussed.
Evaluation and reffinement of the neutronic calculation methodology
International Nuclear Information System (INIS)
Conti Filho, P.
1984-01-01
A computational code that has the homogenized cross section given by the LEOPARD code as input was developed. The code gives polinomial coefficients that represent the homogenized cross section as a function of the local burnup and the boron concentration for the assembly, for each step in the reactor Burnup. Lately, were developed an interface between the LEOPARD code Polinomiun Generator program and CITATION code to became possible to CITATION code to set the homogenized microscopic cross section as function of the local caracteristics of the assembly on the way to make the calculation of the reactor Burnup. For a choosen reactor (1900MWth) have been done the inicial calculation (super-cells calculation and others Input) and after that were done the calculation with and without the polinomia. The analyses of the results of the CITATION code were done and the principal results were presented here. (Author) [pt
Recent progress and developments in LWR-PV calculational methodology
International Nuclear Information System (INIS)
Maerker, R.E.; Broadhead, B.L.; Williams, M.L.
1984-01-01
New and improved techniques for calculating beltline surveillance activities and pressure vessel fluences with reduced uncertainties have recently been developed. These techniques involve the combining of monitored in-core power data with diffusion theory calculated pin-by-pin data to yield absolute source distributions in R-THETA and R-Z geometries suitable for discrete ordinate transport calculations. Effects of finite core height, whenever necessary, can be considered by the use of a three-dimensional fluence rate synthesis procedure. The effects of a time-dependent spatial source distribution may be readily evaluated by applying the concept of the adjoint function, and simplifying the procedure to such a degree that only one forward and one adjoint calculation are required to yield all the dosimeter activities for all beltline surveillance locations at once. The addition of several more adjoint calculations using various fluence rates as responses is all that is needed to determine all the pressure vessel group fluences for all beltline locations for an arbitrary source distribution
Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening
International Nuclear Information System (INIS)
Heasler, P.G.; Gao, F.; Toth, J.J.
1998-08-01
This report describes how in-tank measurements of moisture (H 2 O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis
Augmented wave ab initio EFG calculations: some methodological warnings
International Nuclear Information System (INIS)
Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.
2007-01-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects
Augmented wave ab initio EFG calculations: some methodological warnings
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Alternative methodology for irradiation reactor experimental shielding calculation
International Nuclear Information System (INIS)
Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho
1996-01-01
Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)
Methodology to calculate wall thickness in metallic pipes
International Nuclear Information System (INIS)
Ramirez, G.F.; Feliciano, H.J.
1992-01-01
The principal objective in the developing of the activities of industrial type is to carry out a efficient and productive task: that implies necessarily to know the best working conditions of the equipment and installations to be concerned. The applications of the radioisotope techniques have a long time as useful tools in several fields of human work. For example, in the Petroleos Mexicanos petrochemical complexes, by safety reasons and for to avoid until maximum the losses, it must be know with a high possible precision the operation regimes of the lines of tubes that they conduce the hydrocarbons, with the purpose to know when they should be replaced the defective or wasted pieces. In the Mexican Petroleum Institute is carrying out a work that it has by objective to develop a methodology bases in the use of radioisotopes that permits to determine the average thickness of the metallic tubes wall, that they have thermic insulator, with a precision of ±0.127 mm (±5 thousandth inch). The method is based in the radiation use emitted by Cs-137 sources. In this work it is described the methodology development so as the principal results obtained. (Author)
A methodology for constructing the calculation model of scientific spreadsheets
Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.
2015-01-01
Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are
IRT-type research reactor physical calculation methodology
International Nuclear Information System (INIS)
Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.
1990-01-01
In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs
Methodological problems in pressure profile calculations for lipid bilayers
DEFF Research Database (Denmark)
Sonne, Jacob; Hansen, Flemming Yssing; Peters, Günther H.J.
2005-01-01
calculations: The first problem is that the pressure profile is not uniquely defined since the expression for the local pressure involves an arbitrary choice of an integration contour. We have investigated two different choices leading to the Irving-Kirkwood (IK) and Harasima (H) expressions for the local...
Application of a Methodology to calculate logistical cost
Directory of Open Access Journals (Sweden)
Joaquín Mock-Díaz
2017-12-01
Full Text Available At present time, the managerial environment constantly becomes more aggressive and unstable. For that reason, companies are forced to improve on a regular basis their management, to increase their economic efficiency and their effectiveness and have a better performance. Within this context, the objective of this research is to apply a methodology to determine logistical costs, in a service−providing company, which allows assessing the behavior of such costs during the year 2016. A financial assessment performed to the logistical activities proved the existence of a high cost of opportunity, element mainly dependent on inventory rotation. For the purposes of this study, several scientific methods were used; the historical−logical method, to analyze the historical evolution of logistics; and the analysis−synthesis method to gather the elements and main ideas that characterize it.
Directory of Open Access Journals (Sweden)
Ernesto Amato
2014-03-01
Full Text Available We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'generalized radius', calculated as 3V/S, where V is the ellipsoid volume and S its surface. Radiation-specific parametric functions were obtained in order to calculate the absorbed fraction of a given radiation in a generic ellipsoidal volume. The dose from a generic radionuclide can be calculated through a process of summation and integration over the whole radionuclide emission spectrum, profitably implemented in an electronic spreadsheet. We compared the results of our analytical calculation approach with those obtained from the OLINDA/EXM computer software, finding a good agreement in a wide range of sphere radii, for the high-energy pure beta emitter 90Y, the commonly employed beta-gamma emitter 131I, and the pure alpha emitter 213Po. The generality of our approach makes it useful an easy to implement in clinical dosimetry calculations as well as in radiation safety estimations when doses from internal radionuclide uptake are to be taken into account.
Volume fraction calculation in multiphase system such as oil-water-gas using neutron
Energy Technology Data Exchange (ETDEWEB)
Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: robson@ien.gov.br; brandao@ien.gov.br; otero@ien.gov.br; cmnap@ien.gov.br; Schirru, Roberto; Silva, Ademir Xavier da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: schirru@lmp.ufrj.br; ademir@con.ufrj.br
2007-07-01
Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic {sup 241}Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)
Volume fraction calculation in multiphase system such as oil-water-gas using neutron
International Nuclear Information System (INIS)
Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da
2007-01-01
Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241 Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)
Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
Energy Technology Data Exchange (ETDEWEB)
Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica
1996-07-01
We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.
Development of new methodology for dose calculation in photographic dosimetry
International Nuclear Information System (INIS)
Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.
1996-01-01
The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)
Accurate alpha sticking fractions from improved calculations relevant for muon catalyzed fusion
International Nuclear Information System (INIS)
Szalewicz, K.
1990-05-01
Recent experiments have shown that under proper conditions a single muon may catalyze almost two hundred fusions in its lifetime. This process proceeds through formation of muonic molecular ions. Properties of these ions are central to the understanding of the phenomenon. Our work included the most accurate calculations of the energy levels and Coulombic sticking fractions for tdμ and other muonic molecular ions, calculations of Auger transition rates, calculations of corrections to the energy levels due to interactions with the most molecule, and calculation of the reactivation of muons from α particles. The majority of our effort has been devoted to the theory and computation of the influence of the strong nuclear forces on fusion rates and sticking fractions. We have calculated fusion rates for tdμ including the effects of nuclear forces on the molecular wave functions. We have also shown that these results can be reproduced to almost four digit accuracy by using a very simple quasifactorizable expression which does not require modifications of the molecular wave functions. Our sticking fractions are more accurate than any other theoretical values. We have used a more sophisticated theory than any other work and our numerical calculations have converged to at least three significant digits
International Nuclear Information System (INIS)
Mahoney, Lenna A.
2006-01-01
The toxicological source terms used for potential accident assessment in the Hanford Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated based on the Best Basis Inventory (BBI) from May 2002, using a method that depended on thermodynamic equilibrium calculations of the compositions of liquid and solid phases. The present report describes a simplified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method.
Analysis of offsite dose calculation methodology for a nuclear power reactor
International Nuclear Information System (INIS)
Moser, D.M.
1995-01-01
This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected
Regulatory guides for qualifying the calculation methodology of Furnas by CNEN
International Nuclear Information System (INIS)
1987-10-01
Regulatory guides are presented which will be used for qualifying the calculation methodology of FURNAS by CNEN, in the areas of Neutronics, Thermohydraulics, Accident Analysis and Fuel Rod Performance, as applied to Angra 1 NPP. (Author) [pt
A mathematical model of the nine-month pregnant woman for calculating specific absorbed fractions
International Nuclear Information System (INIS)
Watson, E.E.; Stabin, M.G.
1987-01-01
Existing models which allow calculation of internal doses from radionuclide intakes by both men and women are based on a mathematical model of Reference Man. No attempt has been made to allow for the changing geometric relationships that occur during pregnancy which would affect the doses to the mother's organs and to the fetus. As pregnancy progresses, many of the mother's abdominal organs are repositioned, and their shapes may be somewhat changed. Estimation of specific absorbed fractions requires that existing mathematical models be modified to accommodate these changes. Specific absorbed fractions for Reference Woman at three, six and nine months of pregnancy should be sufficient for estimating the doses to the pregnant woman and the fetus. This report describes a model for the pregnant woman at nine months. An enlarged uterus was incorporated into a model for Reference Woman. Several abdominal organs as well as the exterior of the trunk were modified to accommodate the new uterus. This model will allow calculation of specific absorbed fractions for the fetus from photon emitters in maternal organs. Specific absorbed fractions for the repositioned maternal organs from other organs can also be calculated. 14 refs.; 2 figs
A mathematical model of the nine-month pregnant woman for calculating specific absorbed fractions
International Nuclear Information System (INIS)
Watson, E.E.; Stabin, M.G.
1986-01-01
Existing models that allow calculation of internal doses from radionuclide intakes by both men and women are based on a mathematical model of Reference Man. No attempt has been made to allow for the changing geometric relationships that occur during pregnancy which would affect the doses to the mother's organs and to the fetus. As pregnancy progresses, many of the mother's abdominal organs are repositioned, and their shapes may be somewhat changed. Estimation of specific absorbed fractions requires that existing mathematical models be modified to accommodate these changes. Specific absorbed fractions for Reference Woman at three, six, and nine months of pregnancy should be sufficient for estimating the doses to the pregnant woman and the fetus. This report describes a model for the pregnant woman at nine months. An enlarged uterus was incorporated into a model for Reference Woman. Several abdominal organs as well as the exterior of the trunk were modified to accommodate the new uterus. This model will allow calculation of specific absorbed fractions for the fetus from photon emitters in maternal organs. Specific absorbed fractions for the repositioned maternal organs from other organs can also be calculated. 14 refs., 2 figs
Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction
International Nuclear Information System (INIS)
Hawkins, T.; Keavey, P.M.
1984-01-01
Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)
International Nuclear Information System (INIS)
Kim, Kyu Tae; Kim, Oh Hwan
1999-01-01
A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs
Calculation of Site-specific Carbon-isotope Fractionation in Pedogenic Oxide Minerals
Energy Technology Data Exchange (ETDEWEB)
Rustad, James R.; Zarzycki, Piotr
2008-07-29
Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.
Recoilless fractions calculated with the nearest-neighbour interaction model by Kagan and Maslow
Kemerink, G. J.; Pleiter, F.
1986-08-01
The recoilless fraction is calculated for a number of Mössbauer atoms that are natural constituents of HfC, TaC, NdSb, FeO, NiO, EuO, EuS, EuSe, EuTe, SnTe, PbTe and CsF. The calculations are based on a model developed by Kagan and Maslow for binary compounds with rocksalt structure. With the exception of SnTe and, to a lesser extent, PbTe, the results are in reasonable agreement with the available experimental data and values derived from other models.
Possibilities of delayed neutron fraction (βeff) calculation and measurement
International Nuclear Information System (INIS)
Michalek, S.; Hascik, J.; Farkas, G.
2008-01-01
The influence of the delayed neutrons on the reactor dynamics can be understood through their impact on the reactor power change rate. In spite of the fact that delayed neutrons constitute only a very small fraction of the total number of neutrons generated from fission, they play a dominant role in the fission chain reaction control. If only the prompt neutrons existed, the reactor operation would become impossible due to the fast reactor power changes. The exact determination of delayed neutrons main parameter, the delayed neutron fraction (β eff ), is very important in the field of reactor physics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of calculations and experiments. In consequence of difficulties in β eff experimental measurement, this value in exact state use to be determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. Determination of β eff requires criticality calculations. In the past, k eff used to be traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum- weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. In this work, a summary of possible β eff calculation methods can be found and a calculation of β eff for VR-1 training reactor in one operation state is made using the prompt method, by MCNP5 code. Also a method of β eff kinetic measurement on VR-1 training reactor at Czech Technical University in Prague using in-pile kinetic technique is outlined (authors)
International Nuclear Information System (INIS)
Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William
2002-01-01
Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)
Directory of Open Access Journals (Sweden)
Sikandar Hayat Khan
2017-01-01
Full Text Available Background. Recent literature in lipidology has identified LDL-fractions to be more atherogenic. In this regard, small density LDL-cholesterol (sdLDLc has been considered to possess more atherogenicity than other LDL-fractions like large buoyant LDL-cholesterol (lbLDLc. Recently, Srisawasdi et al. have developed a method for calculating sdLDLc and lbLDLc based upon a regression equation. Using that in developing world may provide us with a valuable tool for ASCVD risk prediction. Objective. (1 To correlate directly measured and calculated lipid indices with insulin resistance, UACR, glycated hemoglobin, anthropometric indices, and blood pressure. (2 To evaluate these lipid parameters in subjects with or without metabolic syndrome, nephropathy, and hypertension and among various groups based upon glycated hemoglobin results. Design. Cross-sectional study. Place and Duration of Study. From Jan 2016 to 15 April 2017. Subjects and Methods. Finally enrolled subjects (male: 110, female: 122 were evaluated for differences in various lipid parameters, including measured LDL-cholesterol (mLDLc, HDLc and calculated LDL-cholesterol (cLDLc, non-HDLc, sdLDLC, lbLDLC, and their ratio among subjects with or without metabolic syndrome, nephropathy, glycation index, anthropometric indices, and hypertension. Results. Significant but weak correlation was mainly observed between anthropometric indices, insulin resistance, blood pressure, and nephropathy for non-HDLc, sdLDLc, and sdLDLc/lbLDLc. Generally lipid indices were higher among subjects with metabolic syndrome [{sdLDLc: 0.92 + 0.33 versus 0.70 + 0.29 (p 7.0%. Subjects having nephropathy (UACR > 2.4 mg/g had higher concentration of non-HDLc levels in comparison to sdLDLc [{non-HDLc: 3.68 + 0.59 versus 3.36 + 0.43} (p=0.007, {sdLDLc: 0.83 + 0.27 versus 0.75 + 0.35 (p=NS}]. Conclusion. Lipid markers including cLDLc and mLDLc are less associated with traditional ASCVD markers than non-HDLc, sdLDLc, and sd
A methodology for calculating photovoltaic field output and effect of solar tracking strategy
International Nuclear Information System (INIS)
Hu, Yeguang; Yao, Yingxue
2016-01-01
Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
Energy Technology Data Exchange (ETDEWEB)
Rouhani, S Z; Axelsson, E
1968-10-15
The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm{sup 2} with many different subcoolings and mass velocities. The agreement is generally very good.
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
International Nuclear Information System (INIS)
Rouhani, S.Z.; Axelsson, E.
1968-10-01
The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm 2 with many different subcoolings and mass velocities. The agreement is generally very good
Calculation of the substitutional fraction of ion-implanted He in an α-Fe target
Erhart, Paul; Marian, Jaime
2011-07-01
Ion-implantation is a useful technique to study irradiation damage in nuclear materials. To study He effects in nuclear fusion conditions, He is co-implanted with damage ions to reproduce the correct He/dpa ratios in the desired or available depth range. However, the short-term fate of these He ions, i.e. over the time scales of their own collisional phase, has not been yet unequivocally established. Here we present a computational study of the short-term evolution of He implantation in an Fe substrate at 700 K to approximate the conditions encountered in dual ion-implantation studies in ferritic materials. Using a combination of SRIM, molecular dynamics and kinetic Monte Carlo (kMC), we calculate the fraction of He atoms that end up in substitutional sites shortly after implantation, i.e. before they contribute to long-term microstructural evolution. We find that fractions of at most 3% should be expected for most implantation studies. Additionally, to inform the kMC calculations, we carry out an exhaustive calculation of interstitial He migration energy barriers in the vicinity of matrix vacancies and find that they vary from approximately 20-60 meV depending on the separation and orientation of the He-vacancy pair.
Calculation of the substitutional fraction of ion-implanted He in an α-Fe target
International Nuclear Information System (INIS)
Erhart, Paul; Marian, Jaime
2011-01-01
Ion-implantation is a useful technique to study irradiation damage in nuclear materials. To study He effects in nuclear fusion conditions, He is co-implanted with damage ions to reproduce the correct He/dpa ratios in the desired or available depth range. However, the short-term fate of these He ions, i.e. over the time scales of their own collisional phase, has not been yet unequivocally established. Here we present a computational study of the short-term evolution of He implantation in an Fe substrate at 700 K to approximate the conditions encountered in dual ion-implantation studies in ferritic materials. Using a combination of SRIM, molecular dynamics and kinetic Monte Carlo (kMC), we calculate the fraction of He atoms that end up in substitutional sites shortly after implantation, i.e. before they contribute to long-term microstructural evolution. We find that fractions of at most 3% should be expected for most implantation studies. Additionally, to inform the kMC calculations, we carry out an exhaustive calculation of interstitial He migration energy barriers in the vicinity of matrix vacancies and find that they vary from approximately 20-60 meV depending on the separation and orientation of the He-vacancy pair.
International Nuclear Information System (INIS)
Bécares, V.; Pérez-Martín, S.; Vázquez-Antolín, M.; Villamarín, D.; Martín-Fuertes, F.; González-Romero, E.M.; Merino, I.
2014-01-01
Highlights: • Review of several Monte Carlo effective delayed neutron fraction calculation methods. • These methods have been implemented with the Monte Carlo code MCNPX. • They have been benchmarked against against some critical and subcritical systems. • Several nuclear data libraries have been used. - Abstract: The calculation of the effective delayed neutron fraction, β eff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for β eff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of β eff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of β eff
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.
2009-01-01
One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: atalamo@anl.gov; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Rabiti, C. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences (Belarus)
2009-07-21
One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.
Schumacher, Robin F; Malone, Amelia S
2017-09-01
The goal of the present study was to describe fraction-calculation errors among 4 th -grade students and determine whether error patterns differed as a function of problem type (addition vs. subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-achievement status (low- vs. average- vs. high-achieving). We specifically addressed whether mathematics-achievement status was related to students' tendency to operate with whole number bias. We extended this focus by comparing low-performing students' errors in two instructional settings that focused on two different types of fraction understandings: core instruction that focused on part-whole understanding vs. small-group tutoring that focused on magnitude understanding. Results showed students across the sample were more likely to operate with whole number bias on problems with unlike denominators. Students with low or average achievement (who only participated in core instruction) were more likely to operate with whole number bias than students with low achievement who participated in small-group tutoring. We suggest instruction should emphasize magnitude understanding to sufficiently increase fraction understanding for all students in the upper elementary grades.
International Nuclear Information System (INIS)
Carluccio, Thiago
2011-01-01
This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)
Legault, A.; Scott, L.; Rosemann, A.L.P.; Hopkins, M.
2014-01-01
CSA C873 Building Energy Estimation Methodology (BEEM) is a new series of (10) standards that is intended to simplify building energy calculations. The standard is based upon the German DIN Standard 18599 that has 8 years of proven track record and has been modified for the Canadian market. The BEEM
Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor
International Nuclear Information System (INIS)
Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.
2008-01-01
Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)
Barber, Duncan Henry
benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program. The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format. The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern. Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.
International Nuclear Information System (INIS)
Japiassu, Fernando Parois
2013-01-01
When designing radiotherapy treatment rooms, the dimensions of barriers are established on the basis of American calculation methodologies specifically; NCRP Report N° 49, NCRP Report N° 51, and more recently, NCRP Report N° 151. Such barrier calculations are based on parameters reflecting predictions of treatments to be performed within the room; which, in tum, reftect a specific reality found in a country. There exists, however, a variety of modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy (IMRT); Total Body Irradiation (TBl) and radiosurgery (SRS); where patierits are treated in a much different way than during more conventional treatrnents, which are not taken into account the traditional shielding calculation methodology. This may lead to a faulty design of treattnent rooms. In order to establish a comparison between the methodology used to calculate shielding design and the reality of treatments performed in Brazil, two radiotherapy facilitie were selected, both of them offering traditional and modern treatment techniqued as described above. Data in relation with reatments perfotmed over a period of six (6)months of operations in both institutions were collected. Based on tlis informaton, a new set of realistic parameters required for shielding design was estãblished, whicb in turn allowed for a nwe caculation of barrier thickness for both facilities. The barrier thickness resultaing from this calculation was then compared with the barrier thickness propose as part of the original shielding design, approved by the regulatory authority. First, concerning the public facility, the thickness of all primary barriers proposed in the shielding design was actually larger than the thickness resulting from calculations based on realistic parameters. Second, concerning the private facility, the new data show that the thickness of three out of the four primary barriers described in the project is larger than the thickness oresulting from
International Nuclear Information System (INIS)
Rossini, M.R.
1992-01-01
An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)
International Nuclear Information System (INIS)
Amin, E.; Hathout, A.M.; Shouman, S.
1997-01-01
The kyoto university reactor physics experiments on the university critical assembly is used to benchmark validate the NCNSRC calculations methodology. This methodology has two lines, diffusion and Monte Carlo. The diffusion line includes the codes WIMSD4 for cell calculations and the two dimensional diffusion code DIXY2 for core calculations. The transport line uses the MULTIKENO-Code vax Version. Analysis is performed for the criticality, and the temperature coefficients of reactivity (TCR) for the light water moderated and reflected cores, of the different cores utilized in the experiments. The results of both Eigen value and TCR approximately reproduced the experimental and theoretical Kyoto results. However, some conclusions are drawn about the adequacy of the standard wimsd4 library. This paper is an extension of the NCNSRC efforts to assess and validate computer tools and methods for both Et-R R-1 and Et-MMpr-2 research reactors. 7 figs., 1 tab
International Nuclear Information System (INIS)
Vasko, Marek; Daniska, Vladimir; Rehak, Ivan; Necas, Vladimir
2011-01-01
Calculation of personnel exposure is a one of the main parameters being evaluated within the pre-decommissioning plans together with other decommissioning drivers such as costs, manpower, amounts of RAW and conventional waste and amount of discharged gaseous and liquid effluents. Alongside with manpower, the exposure is an indicator of the decommissioning process for need of staff, and quantifies impact of decommissioning on personnel from the radio hygienic point of view. At the same time it indicates suitability of individual work procedures use for decommissioning activities. For this reason it is important to estimate as precise as possible demands on personnel exposure even during preparatory decommissioning phase to quantify impact of decommissioning on personnel and eventually optimize the decommissioning process, if needed. The most appropriate way of staff exposure estimation during decommissioning preparatory phases is its calculation based on radiological and physical characteristics of equipment to be decommissioned and also quantitative and qualitative characterisation of typical decommissioning activities. On one hand, the methodology of exposure calculation should allow as much as possible realistic description and algorithmisation of exposure ways during decommissioning activities. On the other hand the calculation have to be systematic, well-arranged and clearly definable by appropriate mathematic relations. Calculation can be made by various approaches using more or less sophisticated software solutions from classic MS Excel sheets up to the complex calculation codes. In this paper, a methodology used for personnel exposure calculation and optimization implemented within the complex computer code OMEGA developed at DECOM, a.s. is described. (author)
Monte Carlo calculation of the photo-fraction R(E) of NaI(Tl) scintillation spectrometer
Guo Chun Ying; Lin Yuan Ge
2002-01-01
The detecting principle of NaI(Tl) scintillation spectrometer is briefly analysed and the photo-fraction of the spectrometer to various point sources is calculated by using the MCNP code. Besides, comparison of the calculated results with experiment data available is made, and the reason why the calculated results are usually higher is also given
Practical methodologies for the calculation of capacity in electricity markets for wind energy
International Nuclear Information System (INIS)
Botero B, Sergio; Giraldo V, Luis Alfonso; Isaza C, Felipe
2008-01-01
Determining the real capacity of the generators in a power market is an essential task in order to estimate the actual system reliability, and to estimate the reward for generators due to their capacity in the firm energy market. In the wind power case, which is an intermittent resource, several methodologies have been proposed to estimate the capacity of a wind power emplacement, not only for planning but also for firm energy remuneration purposes. This paper presents some methodologies that have been proposed or implemented around the world in order to calculate the capacity of this energy resource.
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention delivered as part of the larger program. At-risk 4th graders (n = 213) were randomly assigned at the individual…
International Nuclear Information System (INIS)
Karriem, Z.; Zamonsky, O.M.
2014-01-01
The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)
Assessment of New Calculation Method for Toxicological Sums-of-Fractions for Hanford Tank Wastes
International Nuclear Information System (INIS)
Mahoney, Lenna A.
2006-01-01
The toxicological source terms used for potential accident assessment in the Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated in fiscal years 2002 and 2003 based on the Best Basis Inventory (BBI) from May 2002, using the method described by Cowley et al. (2003). The present report describes a modified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method. The new method generally calculated different (usually larger) SOFs than the old. The dominant reason was the more conservative way in which the new method represents concentration variability, in that it uses the waste layer with the maximum SOF to represent the tank SOF. The old method had used a tank-average waste composition and SOF. Differences between thermodynamically modeled and BBI solubilities were the next most common reason for differences between old (modeled) and new (BBI) SOFs, particularly in the liquid phase. The solubility-related changes in SOF were roughly equally distributed between increases and decreases. Changes in the effective toxicities of TOC and lead, which resulted from changes in the compounds in which these analytes were considered to be present, were the third most common reason. These toxicity changes increased SOFs and therefore were in a conservative direction.
A code for the calculation of self-absorption fractions of photons
International Nuclear Information System (INIS)
Jaegers, P.; Landsberger, S.
1988-01-01
Neutron activation analysis (NAA) is now a well-established technique used by many researchers and commercial companies. It is often wrongly assumed that these NAA methods are matrix independent over a wide variety of samples. Accuracy at the level of a few percent is often difficult to achieve, since components such as timing, pulse pile-up, high dead-time corrections, sample positioning, and chemical separations may severely compromise the results. One area that has received little attention is the calculation of the effect of self-absorption of gamma-rays (including low-energy ones) in samples, particularly those with major components of high-Z values. The analysis of trace components in lead samples is an obvious example, but other high-Z matrices such as various permutations and combinations of zinc, tin, lead, copper, silver, antimony, etc.; ore concentrates; and meteorites are also affected. The authors have developed a simple but effective personal-computer-compatible user-friendly code, however, which can calculate the amount of energy signal that is lost due to the presence of any amount of one or more Z components. The program is based on Dixon's paper of 1951 for the calculation of self-absorption corrections for linear, cylindrical, and spherical sources. To determine the self-absorption fraction of a photon in a source, the FORTRAN computer code SELFABS was written
Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.
Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R
2000-07-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.
Isotopic fractionation of NBS oxalic acid and its influence in the calculated age of materials
International Nuclear Information System (INIS)
Nehmi, V.A.
1979-10-01
The intensity of the isotopic fractionation during the oxidation of NBS oxalic acid to carbon dioxide was checked. 30 reactions of oxidation of NBS oxalic acid with potassium permanganate were made. The resultant isotopic composition of CO 2 has been determined with a mass-spectrometer. A conclusion has been reached that the average of Δ 13 C is - 18.9% o with variation between - 17.7 and - 21.2%o. For values of Δ 13 C equal to - 22.0%o, the calculated age with isotopic correction shows the following deviations in relation to non-corrected age: 4% for materials of 1,000 years and 0.3% for 20,000 years.(Author) [pt
Directory of Open Access Journals (Sweden)
Eugene Oteng-Ntim
Full Text Available OBJECTIVES: To quantify the proportion of adverse pregnancy outcome attributable to maternal obesity. DESIGN: Cross sectional analysis of routine obstetric dataset. SETTING: Guy's and St Thomas's NHS Foundation Trust (GSTFT. POPULATION: 23,668 women who had singleton deliveries at GSTFT between 2004 and 2008. METHODS: Logistic regression was used to estimate the association between BMI and outcome in different ethnic groups. Adjusted odds ratios, and the proportions of obese women, were used to calculate population attributable risk fractions (PAFs. MAIN OUTCOME MEASURES: (I MATERNAL OUTCOMES: diabetes, type of delivery, post-partum haemorrhage, and preterm delivery. (ii Perinatal outcomes: macrosomia, low birth weight, admission to neonatal intensive care/special care baby unit, and perinatal death. RESULTS: The prevalence of maternal obesity was 14%. Increasing BMI was independently associated with increasing risk of adverse obstetric and neonatal outcome. At the individual level, the effect of obesity on diabetes was highest in Asian women compared to white women (p for interaction = 0.03. Calculation of population attributable risk fractions demonstrated that one third of diabetes cases and one in six Caesarean sections could be avoided in this population if all obese women were of normal BMI. At the population level, the contribution of obesity to diabetes was highest for Black women (42%, and lowest for oriental women (8%. Seven percent of neonatal macrosomia in all the population, and 13% in Black mothers, were attributable to obesity. CONCLUSIONS: Preventing obesity prior to pregnancy will substantially reduce the burden of obstetric and neonatal morbidity in this population. This reduction will be higher in Black women.
An Assessment of Existing Methodologies to Retrieve Snow Cover Fraction from MODIS Data
Directory of Open Access Journals (Sweden)
Théo Masson
2018-04-01
Full Text Available The characterization of snow extent is critical for a wide range of applications. Since 1966, snow maps at different spatial resolutions have been produced using various satellite sensor images. Nowadays, the most widely used products are likely those derived from Moderate-Resolution Imaging Spectroradiometer (MODIS data, which cover the whole Earth at a near-daily frequency. There are a variety of snow mapping methods for MODIS data, based on different methodologies and applied at different spatial resolutions. Up to now, all these products have been tested and evaluated separately. This study aims to compare the methods currently available for retrieving snow from MODIS data. The focus is on fractional snow cover, which represents the snow cover area at the subpixel level. We examine the two main approaches available for generating such products from MODIS data; namely, linear regression of the Normalized Difference Snow Index (NDSI and spectral unmixing (SU. These two approaches have resulted in several methods, such as MOD10A1 (the NSIDC MODIS snow product for NDSI regression, and MODImLAB for SU. The assessment of these approaches was carried out using higher resolution binary snow maps (i.e., showing the presence or absence of snow at spatial resolutions of 10, 20, and 30 m, produced by SPOT 4, SPOT 5, and LANDSAT-8, respectively. Three areas were selected in order to provide landscape diversity: the French Alps (117 dates, the Pyrenees (30 dates, and the Moroccan Atlas (24 dates. This study investigates the impact of reference maps on accuracy assessments, and it is suggested that NDSI-based high spatial resolution reference maps advantage NDSI medium-resolution snow maps. For MODIS snow maps, the results show that applying an NDSI approach to accurate surface reflectance corrected for topographic and atmospheric effects generally outperforms other methods for the global retrieval of snow cover area. The improvements to the newer version
Development of a Seismic Setpoint Calculation Methodology Using a Safety System Approach
International Nuclear Information System (INIS)
Lee, Chang Jae; Baik, Kwang Il; Lee, Sang Jeong
2013-01-01
The Automatic Seismic Trip System (ASTS) automatically actuates reactor trip when it detects seismic activities whose magnitudes are comparable to a Safe Shutdown Earthquake (SSE), which is the maximum hypothetical earthquake at the nuclear power plant site. To ensure that the reactor is tripped before the magnitude of earthquake exceeds the SSE, it is crucial to reasonably determine the seismic setpoint. The trip setpoint and allowable value for the ASTS for Advanced Power Reactor (APR) 1400 Nuclear Power Plants (NPPs) were determined by the methodology presented in this paper. The ASTS that trips the reactor when a large earthquake occurs is categorized as a non safety system because the system is not required by design basis event criteria. This means ASTS has neither specific analytical limit nor dedicated setpoint calculation methodology. Therefore, we developed the ASTS setpoint calculation methodology by conservatively considering that of PPS. By incorporating the developed methodology into the ASTS for APR1400, the more conservative trip setpoint and allowable value were determined. In addition, the ZPA from the Operating Basis Earthquake (OBE) FRS of the floor where the sensor module is located is 0.1g. Thus, the allowance of 0.17g between OBE of 0.1 g and ASTS trip setpoint of 0.27 g is sufficient to prevent the reactor trip before the magnitude of the earthquake exceeds the OBE. In result, the developed ASTS setpoint calculation methodology is evaluated as reasonable in both aspects of the safety and performance of the NPPs. This will be used to determine the ASTS trip setpoint and allowable for newly constructed plants
Calculation and evaluation methodology of the flawed pipe and the compute program development
International Nuclear Information System (INIS)
Liu Chang; Qian Hao; Yao Weida; Liang Xingyun
2013-01-01
Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)
Development of 3D pseudo pin-by-pin calculation methodology in ANC
International Nuclear Information System (INIS)
Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B.
2012-01-01
Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000 R plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)
International Nuclear Information System (INIS)
Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques
2002-01-01
In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)
Konovodov, V. V.; Valentov, A. V.; Kukhar, I. S.; Retyunskiy, O. Yu; Baraksanov, A. S.
2016-08-01
The work proposes the algorithm to calculate strength under alternating stresses using the developed methodology of building the diagram of limiting stresses. The overall safety factor is defined by the suggested formula. Strength calculations of components working under alternating stresses in the great majority of cases are conducted as the checking ones. It is primarily explained by the fact that the overall fatigue strength reduction factor (Kσg or Kτg) can only be chosen approximately during the component design as the engineer at this stage of work has just the approximate idea on the component size and shape.
International Nuclear Information System (INIS)
Beatovic, S.Lj.; Jaksic, E. D.; Hari, R. S.
2004-01-01
The purpose of this study was to set up normal values of the fractional uptake (FU) of technetium-99m dimercaptosuccinic acid in adults and in the pediatric population, as well as to evaluate the validity of this parameter at different levels of renal function. A total of 86 subjects was divided into seven groups. In group A there were 23 potential kidney donors and in group B, 18 children in remission after a first urinary tract infection. Another three groups consisted of patients with diabetes i.e. group C, seven patients with normal values of albuminuria, group D, 16 patients with microalbuminuria and group E, five patients with macroalbuminuria. In group F, there were ten patients with a well-functioning transplanted kidney and in group G, seven patients with suspected acute rejection. The procedure began with the quantification of the doses of 99m Tc-DMSA to be injected and the measurement of the empty syringe lying on the gamma camera collimator. Thereafter, four planar views of the kidneys were acquired three hours after the injection. The counts from the posterior and anterior views were subtracted for background and corrected for radioactive decay time and patient thickness. The FU was calculated by the geometric mean of counts per second from the posterior and anterior view. It was expressed as a fraction of the injected dose. The mean values of FU in healthy adults were 0.227 ± 0.077 for one kidney and 0.454 ± 0.146 for both kidneys. The mean values of FU for the left and right kidney were 0.225± 0.071 and 0.229 ± 0.079, respectively. In children, the mean values were 0.220 ± 0.092 for one kidney and 0.432 ± 0.094 for both kidneys. The highest values of FU of 0.322 ± 0.078 (0.644 ± 0.138 for both kidneys) were measured in group C. In group D, FU was 0.185 ± 0.065 (0.361 ± 0.125 for both kidneys) and in group E 0.082 ± 0.040 (0.163 ± 0.080 total). In patients with a transplanted kidney, fractional uptake was 0.162 ± 0.039 in group F and 0
Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor
Energy Technology Data Exchange (ETDEWEB)
Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2011-07-01
The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)
International Nuclear Information System (INIS)
Dini, F.; Khorasani, S.
2007-01-01
Configuration of Tokamak plasma has a dominant effect on its parameters. In the calculation of transport, there are some transport coefficients and quantities, where the knowledge of their precise values, according to the system of equations, is essential to be realized. Tokamak has a toroidal configuration, in addition to classical effects, it is necessary to study the neoclassical effects due to the field curvature. The trapped particles in strong electromagnetic fields oscillate on banana-shaped orbits which in turn affect many other collisional transport parameters. Here, a precise estimation of trapped particles based on the standard equilibrium model for an elliptical shape of Tokamak plasma has been carried out using Lin-Liu model. It should be added that in this calculation, the profile of the averaged magnetic field on the flux surfaces has been derived using analytical integration and consideration of an elliptic shape for ellipticity function in the limit of large aspect ratio and zero shift of magnetic flux surfaces. Having the fraction of the trapped particles, by ,following the formulation and using an appropriate model in various collisional regimes, the neoclassical conductivity of plasma in Damavand Tokamak is obtained and the respective variations have been found. The presented results can exploit the computation of transport and other quantities of Damavand Tokamak
International Nuclear Information System (INIS)
Hommer, E.
1981-01-01
An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de
International Nuclear Information System (INIS)
Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng
2002-01-01
The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle
Ben Mosbah, Abdallah
In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their
International Nuclear Information System (INIS)
Zhong, Z.; Gohar, Y.; Talamo, A.
2009-01-01
Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)
Development of a calculation methodology for potential flow over irregular topographies
International Nuclear Information System (INIS)
Del Carmen, Alejandra F.; Ferreri, Juan C.; Boutet, Luis I.
2003-01-01
Full text: Computer codes for the calculation of potential flow fields over surfaces with irregular topographies have been developed. The flows past multiple simple obstacles and past the neighboring region of the Embalse Nuclear Power Station have been considered. The codes developed allow the calculation of velocities quite near the surface. It, in turn, imposed developing high accuracy techniques. The Boundary Element Method, using a linear approximation on triangular plane elements and an analytical integration methodology has been applied. A particular and quite efficient technique for the calculation of the solid angle at each node vertex was also considered. The results so obtained will be applied to predict the dispersion of passive pollutants coming from discontinuous emissions. (authors)
42 CFR 484.230 - Methodology used for the calculation of the low-utilization payment adjustment.
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Methodology used for the calculation of the low... Prospective Payment System for Home Health Agencies § 484.230 Methodology used for the calculation of the low... amount is determined by using cost data set forth in § 484.210(a) and adjusting by the appropriate wage...
International Nuclear Information System (INIS)
Hoseyni, Seyed Mohsen; Pourgol-Mohammad, Mohammad; Tehranifard, Ali Abbaspour; Yousefpour, Faramarz
2014-01-01
This paper describes a systematic framework for characterizing important phenomena and quantifying the degree of contribution of each parameter to the output in severe accident uncertainty assessment. The proposed methodology comprises qualitative as well as quantitative phases. The qualitative part so called Modified PIRT, being a robust process of PIRT for more precise quantification of uncertainties, is a two step process for identifying and ranking based on uncertainty importance in severe accident phenomena. In this process identified severe accident phenomena are ranked according to their effect on the figure of merit and their level of knowledge. Analytical Hierarchical Process (AHP) serves here as a systematic approach for severe accident phenomena ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the severe accident model(s) used to represent the important phenomena. The methodology uses subjective justification by evaluating available information and data from experiments, and code predictions for this step. The quantitative part utilizes uncertainty importance measures for the quantification of the effect of each input parameter to the output uncertainty. A response surface fitting approach is proposed for estimating associated uncertainties with less calculation cost. The quantitative results are used to plan in reducing epistemic uncertainty in the output variable(s). The application of the proposed methodology is demonstrated for the ACRR MP-2 severe accident test facility. - Highlights: • A two stage framework for severe accident uncertainty analysis is proposed. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • Uncertainty importance measure quantitatively calculates effect of each uncertainty source. • Methodology is applied successfully on ACRR MP-2 severe accident test facility
International Nuclear Information System (INIS)
Ondra, Frantisek; Vasko, Marek; Necas, Vladimir
2012-01-01
The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage
Methodological advances in unit cost calculation of psychiatric residential care in Spain.
Moreno, Karen; Sanchez, Eduardo; Salvador-Carulla, Luis
2008-06-01
The care of the severe mentally ill who need intensive support for their daily living (dependent persons), accounts for an increasingly large proportion of public expenditure in many European countries. The main aim of this study was the design and implementation of solid methodology to calculate unit costs of different types of care. To date, methodologies used in Spain have produced inaccurate figures, suggesting few variations in patient consumption of the same service. An adaptation of the Activity-Based-Costing methodology was applied in Navarre, a region in the North of Spain, as a pilot project for the public mental health services. A unit cost per care process was obtained for all levels of care considered in each service during 2005. The European Service Mapping Schedule (ESMS) codes were used to classify the services for later comparisons. Finally, in order to avoid problems of asymmetric cost distribution, a simple Bayesian model was used. As an illustration, we report the results obtained for long-term residential care and note that there are important variations between unit costs when considering different levels of care. Considering three levels of care (Level 1-low, Level 2-medium and Level 3-intensive), the cost per bed in Level 3 was 10% higher than that of Level 2. The results obtained using the cost methodology described provide more useful information than those using conventional methods, although its implementation requires much time to compile the necessary information during the initial stages and the collaboration of staff and managers working in the services. However, in some services, if no important variations exist in patient care, another method would be advisable, although our system provides very useful information about patterns of care from a clinical point of view. Detailed work is required at the beginning of the implementation in order to avoid the calculation of distorted figures and to improve the levels of decision making
New methodology for analytical calculation of resonance integrals in an heterogeneous medium
International Nuclear Information System (INIS)
Campos, T.P.R. de; Martinez, A.S.
1986-01-01
A new methodology for analytical calculation of Resonance Integral in a typical fuel cell is presented. The expression obtained for the Resonance Integral presents the advantage of being analytical. Its constituent terms are combinations of the well known function J(xi,β) with its partial derivatives in regard to β. This is a general expression for all types of resonance. The parameters used in this method depend on the resonance type and are obtained as a function of the parameter lambda. A simple expression, depending on resonance parameters is proposed for this variable. (Author) [pt
First principles calculations using density matrix divide-and-conquer within the SIESTA methodology
International Nuclear Information System (INIS)
Cankurtaran, B O; Gale, J D; Ford, M J
2008-01-01
The density matrix divide-and-conquer technique for the solution of Kohn-Sham density functional theory has been implemented within the framework of the SIESTA methodology. Implementation details are provided where the focus is on the scaling of the computation time and memory use, in both serial and parallel versions. We demonstrate the linear-scaling capabilities of the technique by providing ground state calculations of moderately large insulating, semiconducting and (near-) metallic systems. This linear-scaling technique has made it feasible to calculate the ground state properties of quantum systems consisting of tens of thousands of atoms with relatively modest computing resources. A comparison with the existing order-N functional minimization (Kim-Mauri-Galli) method is made between the insulating and semiconducting systems
International Nuclear Information System (INIS)
Licks, Leticia A.; Pires, Marcal
2008-01-01
This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country
Methodology and conclusions of activation calculations of WWER-440 type nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Babcsány, Boglárka, E-mail: boglarka.babcsany@reak.bme.hu; Czifrus, Szabolcs; Fehér, Sándor
2015-04-01
Highlights: • Activation calculation of two WWER-440 type nuclear power plants. • Detailed description of the applied activation calculation methodology. • Graphical results for total activity and waste index categorization. • General conclusions for activation applicable in the case of PWR reactors. - Abstract: Activation calculations for two nuclear power plants of WWER-440 type have been performed by the authors in order to assist the decommissioning planning by assessing the radioactive inventory present at the time of and at different times after the final shutdown. According to related international literature and studies performed earlier by the authors, considering the activity more than 99% of this inventory is concentrated in the materials directly surrounding the reactor core, where the predominant evolution of radionuclides is generated by neutron induced nuclear reactions. In order to obtain the highest possible accuracy in modelling, three-dimensional Monte Carlo neutron transport calculations were performed. Besides the methods and models applied to these analyses, the paper also summarizes the results that can be generally applied to such nuclear power plant types. At the time of shutdown, the total activity of the stainless steel components is about 6 × 10{sup 16} Bq and 1.3 × 10{sup 17} Bq for the two NPPs considered. The biological shielding concrete constitutes approximately 7 × 10{sup 13} Bq and 1.1 × 10{sup 14} Bq.
International Nuclear Information System (INIS)
Zubelzu, Sergio; Álvarez, Roberto
2015-01-01
In this paper we present a methodology for calculating the carbon footprint of the industrial sector during the urban planning stage in order to clearly develop and implement preventive measures. The methodology created focuses on industrial urban planning procedures and takes into account urban infrastructure in the characterization of GHG emissions. It allows for the implementation of preventive measures based on sustainability design criteria. The methodology was derived for specific industrial activity categories and was tested on a group of municipalities in a province south of Madrid, Spain. The results indicate that the average carbon footprint of industrial activities varies between 137.36 kgCO 2eq /m 2 e and 607.25 kgCO 2eq /m 2 e depending on the activity. Gas and electricity are the most important emissions sources for the most polluting industrial activities (chemical and nonmetal mineral products), while transportation is the most important source for every other activity. Municipalities can have a decisive influence on the industrial carbon footprint because, except for waste management and two industrial activities related to electricity, the majority of reductions can be achieved through urban planning decision variables. -- Highlights: •Model to calculate industrial carbon footprint in urban planning stage is proposed. •Specific industrial activities planned have a strong effect on carbon footprint. •Gas and electricity are the most relevant sources for the most pollutant industries. •Transport is relevant source for the less pollutant industries. •Municipalities can decisively influence on industrial carbon footprint
International Nuclear Information System (INIS)
2001-12-01
The following study deals with the development of methodology for cost calculations and financial planning of decommissioning operations. It has been carried out by EDF / FRAMATOME / VUJE / SCK-CEN in the frame of the contract B7-032/2000/291058/MAR/C2 awarded by the European Commission. This study consists of 4 parts. The first task objective is to develop a reliable and transparent methodology for cost assessment and financial planning sufficient precise but without long and in depth investigations and studies. This methodology mainly contains: Calculation methods and algorithms for the elaboration of costs items making up the whole decommissioning cost. Estimated or standard values for the parameters and for the cost factors to be used in the above-mentioned algorithms Financial mechanism to be applied as to establish a financial planning. The second part task is the provision of standard values for the different parameters and costs factors described in the above-mentioned algorithms. This provision of data is based on the own various experience acquired by the members of the working team and on existing international references (databases, publications and reports). As decommissioning operations are spreading over several dozens of years, the scope of this task the description of the financial mechanisms to be applied to the different cost items as to establish a complete financial cost. It takes into account the financial schedule issued in task 1. The scope of this task consists in bringing together in a guideline all the information collected before: algorithms, data and financial mechanisms. (A.L.B.)
2011-03-09
... Trend Factor Methodology Used in the Calculation of Fair Market Rents AGENCY: Office of the Assistant... used to calculate the trend factor component of the Fair Market Rent estimates. SUMMARY: Section 8(c)(1... comment regarding the manner in which HUD calculates the trend factor used in the Fair Market Rent (FMR...
Improvement in decay ratio calculation in LAPUR5 methodology for BWR instability
International Nuclear Information System (INIS)
Li Hsuannien; Yang Tzungshiue; Shih Chunkuan; Wang Jongrong; Lin Haotzu
2009-01-01
LAPUR5, based on frequency domain approach, is a computer code that analyzes the core stability and calculates decay ratios (DRs) of boiling water nuclear reactors. In current methodology, one set of parameters (three friction multipliers and one density reactivity coefficient multiplier) is chosen for LAPUR5 input files, LAPURX and LAPURW. The calculation stops and DR for this particular set of parameters is obtained when the convergence criteria (pressure, mass flow rate) are first met. However, there are other sets of parameters which could also meet the same convergence criteria without being identified. In order to cover these ranges of parameters, we developed an improved procedure to calculate DR in LAPUR5. First, we define the ranges and increments of those dominant input parameters in the input files for DR loop search. After LAPUR5 program execution, we can obtain all DRs for every set of parameters which satisfy the converge criteria in one single operation. The part for loop search procedure covers those steps in preparing LAPURX and LAPURW input files. As a demonstration, we looked into the reload design of Kuosheng Unit 2 Cycle 22. We found that the global DR has a maximum at exposure of 9070 MWd/t and the regional DR has a maximum at exposure of 5770 MWd/t. It should be noted that the regional DR turns out to be larger than the global ones for exposures less than 5770 MWd/t. Furthermore, we see that either global or regional DR by the loop search method is greater than the corresponding values from our previous approach. It is concluded that the loop search method can reduce human error and save human labor as compared with the previous version of LAPUR5 methodology. Now the maximum DR can be effectively obtained for a given plant operating conditions and a more precise stability boundary, with less uncertainty, can be plotted on plant power/flow map. (author)
Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm
Directory of Open Access Journals (Sweden)
Laura Castro-Santos
2016-04-01
Full Text Available This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.
Study of the methodology for sensitivity calculations of fast reactors integral parameters
International Nuclear Information System (INIS)
Renke, C.A.C.
1981-06-01
A study of the methodology for sensitivity calculations of integral parameters of fast reactors for the adjustment of multigroup cross sections is presented. A description of several existent methods and theories is given, with special emphasis being regarded to variational perturbation theory, integrant of the sensitivity code VARI-1D used in this work. Two calculational systems are defined and a set of procedures and criteria is structured gathering the necessary conditions for the determination of the sensitivity coefficients. These coefficients are then computed by both the direct method and the variational perturbation theory. A reasonable number of sensitivity coefficients are computed and analyzed for three fast critical assemblies, covering a range of special interest of the spectrum. These coefficients are determined for severa integral parameters, for the capture and fission cross sections of the U-238 and Pu-239, covering all the energy up to 14.5 MeV. The nuclear data used were obtained the CARNAVAL II calculational system of the Instituto de Engenharia Nuclear. An optimization for sensitivity computations in a chainned sequence of procedures is made, yielding the sensitivities in the energy macrogroups as the final stage. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)
2002-09-01
Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and
International Nuclear Information System (INIS)
Griffiths, M.R.; Miles, K.A.; Keith, C.J.
2002-01-01
Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and
A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels
International Nuclear Information System (INIS)
Galan, A.; Gonzalez, R.; Varela, M.
1999-01-01
The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs
Implementation and adaptation of a macro-scale methodology to calculate direct economic losses
Natho, Stephanie; Thieken, Annegret
2017-04-01
As one of the 195 member countries of the United Nations, Germany signed the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR). With this, though voluntary and non-binding, Germany agreed to report on achievements to reduce disaster impacts. Among other targets, the SFDRR aims at reducing direct economic losses in relation to the global gross domestic product by 2030 - but how to measure this without a standardized approach? The United Nations Office for Disaster Risk Reduction (UNISDR) has hence proposed a methodology to estimate direct economic losses per event and country on the basis of the number of damaged or destroyed items in different sectors. The method bases on experiences from developing countries. However, its applicability in industrial countries has not been investigated so far. Therefore, this study presents the first implementation of this approach in Germany to test its applicability for the costliest natural hazards and suggests adaptations. The approach proposed by UNISDR considers assets in the sectors agriculture, industry, commerce, housing, and infrastructure by considering roads, medical and educational facilities. The asset values are estimated on the basis of sector and event specific number of affected items, sector specific mean sizes per item, their standardized construction costs per square meter and a loss ratio of 25%. The methodology was tested for the three costliest natural hazard types in Germany, i.e. floods, storms and hail storms, considering 13 case studies on the federal or state scale between 1984 and 2016. Not any complete calculation of all sectors necessary to describe the total direct economic loss was possible due to incomplete documentation. Therefore, the method was tested sector-wise. Three new modules were developed to better adapt this methodology to German conditions covering private transport (cars), forestry and paved roads. Unpaved roads in contrast were integrated into the agricultural and
A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels
Energy Technology Data Exchange (ETDEWEB)
Galan, A.; Gonzalez, R.; Varela, M.
1999-07-01
The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.
International Nuclear Information System (INIS)
Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.
1994-01-01
Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de
SCALE6 Hybrid Deterministic-Stochastic Shielding Methodology for PWR Containment Calculations
International Nuclear Information System (INIS)
Matijevic, Mario; Pevec, Dubravko; Trontl, Kresimir
2014-01-01
CADIS and also analog MC simulations, the FW-CADIS drastically improved MC dose rate calculations in quality as well in quantity. Large shielding problems such as portions and complete PWR facility require not only extensive computational resources but also understanding of the underlying physics, which is inevitable in interpreting results of hybrid deterministic-stochastic methodology. (authors)
Directory of Open Access Journals (Sweden)
Mariya Vishnevskaya
2017-12-01
Full Text Available Two main components of the problem studied in the article are revealed. At the practical level, the provision of the convenient tools allowing a comprehensive evaluation the proposed innovative project in terms of its possibilities for inclusion in the portfolio or development program, and on the level of science – the need for improvement and complementing the existing methodology of assessment of innovative projects attractiveness in the context of their properties and a specific set of components. The research is scientifically applied since the problem solution involves the science-based development of a set of techniques, allowing the practical use of knowledge gained from large information arrays at the initialization stage. The purpose of the study is the formation of an integrated indicator of the project innovation, with a substantive justification of the calculation method, as a tool for the evaluation and selection of projects to be included in the portfolio of projects and programs. The theoretical and methodological basis of the research is the conceptual provisions and scientific developments of experts on project management issues, published in monographs, periodicals, materials of scientific and practical conferences on the topic of research. The tasks were solved using the general scientific and special methods, mathematical modelling methods based on the system approach. Results. A balanced system of parametric single indicators of innovation is presented – the risks, personnel, quality, innovation, resources, and performers, which allows getting a comprehensive idea of any project already in the initial stages. The choice of a risk tolerance as a key criterion of the “risks” element and the reference characteristics is substantiated, in relation to which it can be argued that the potential project holds promise. A tool for calculating the risk tolerance based on the use of matrices and vector analysis is proposed
Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.
2018-04-01
Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.
Methodology for calculation of doses to man and implementation in Pandora
Energy Technology Data Exchange (ETDEWEB)
Avila, Rodolfo [Facilia AB, Bromma (Sweden); Bergstroem, Ulla [Swepro Project Management AB, Solna (Sweden)
2006-07-15
This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP; the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different food-stuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that SKB and Posiva currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by SKB and Posiva.
Methodology for calculation of doses to man and implementation in Pandora
International Nuclear Information System (INIS)
Avila, R.; Bergstroem, U.
2006-07-01
This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP, the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different foodstuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that Posiva and SKB currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by Svensk Kaernbraenslehantering AB (SKB) and Posiva. The report will be printed also as a SKB report R-06-68. (orig.)
Methodology for calculation of doses to man and implementation in Pandora
International Nuclear Information System (INIS)
Avila, Rodolfo; Bergstroem, Ulla
2006-07-01
This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP; the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different food-stuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that SKB and Posiva currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by SKB and Posiva
METHODOLOGY FOR HYDRAULIC CALCULATION OF RIVER REGULATION AND DETERMINATION OF DIKE PARAMETERS
Directory of Open Access Journals (Sweden)
E. I. Mikhnevich
2017-01-01
Full Text Available Territory protection against flood water inundation and creation of polder systems are carried out with the help of protection dikes. One of the main requirements to the composition of polder systems in flood plains is a location of border dikes beyond meander belt in order to avoid their erosion when meander development occurs. Meander belt width can be determined on the basis of the analysis of multi-year land surveying pertaining top river-bed building and in the case when such data is not available this parameter is calculated in accordance with the Snishchenko formula. While banking-up a river bed a flooded area is decreasing and, consequently, water level in inter-dike space and rate of flood water are significantly increasing. For this reason it is necessary to locate dikes at a such distance from a river bed which will not cause rather high increase in water level and flow velocity in the inter-dike space. Methodology for hydraulic calculation of river regulation has been developed in order to substantiate design parameters for levee systems, creation of favourable hydraulic regime in these systems and provision of sustainability for dikes. Its main elements are calculations of pass-through capacity of the leveed channel and rise of water level in inter-dike space, and distance between dikes and their crest level. Peculiar feature of the proposed calculated formulae is an interaction consideration of channel and inundated flows. Their mass-exchanging process results in slowing-down of the channel flow and acceleration of the inundated flow. This occurrence is taken into account and coefficients of kinematic efficiency are introduced to the elements of water flow rate in the river channel and flood plain, respectively. The adduced dependencies for determination of a dike crest level (consequently their height take into consideration a rise of water level in inter-dike space for two types of polder systems: non-inundable (winter dikes with
International Nuclear Information System (INIS)
Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da
2009-01-01
Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241 Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)
Energy Technology Data Exchange (ETDEWEB)
Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A., E-mail: robson@ien.gov.b, E-mail: brandao@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos; Schirru, Roberto; Silva, Ademir Xavier da, E-mail: schirru@lmp.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Dept.
2009-07-01
Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a {sup 241}Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)
Methodology comparison for gamma-heating calculations in material-testing reactors
Energy Technology Data Exchange (ETDEWEB)
Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A. [CEA, DEN, DER, Cadarache F-13108 Saint Paul les Durance (France); Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France)
2015-07-01
The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physical models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear
International Nuclear Information System (INIS)
Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee
2015-01-01
The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen
An actual load forecasting methodology by interval grey modeling based on the fractional calculus.
Yang, Yang; Xue, Dingyü
2017-07-17
The operation processes for thermal power plant are measured by the real-time data, and a large number of historical interval data can be obtained from the dataset. Within defined periods of time, the interval information could provide important information for decision making and equipment maintenance. Actual load is one of the most important parameters, and the trends hidden in the historical data will show the overall operation status of the equipments. However, based on the interval grey parameter numbers, the modeling and prediction process is more complicated than the one with real numbers. In order not lose any information, the geometric coordinate features are used by the coordinates of area and middle point lines in this paper, which are proved with the same information as the original interval data. The grey prediction model for interval grey number by the fractional-order accumulation calculus is proposed. Compared with integer-order model, the proposed method could have more freedom with better performance for modeling and prediction, which can be widely used in the modeling process and prediction for the small amount interval historical industry sequence samples. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Ritin [ORNL; Dill, Brian [ORNL; Chourey, Karuna [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL
2012-01-01
The expanding use of surfactants for proteome sample preparations has prompted the need to systematically optimize the application and removal of these MS-deleterious agents prior to proteome measurements. Here we compare four different detergent clean-up methods (Trichloroacetic acid (TCA) precipitation, Chloroform/Methanol/Water (CMW) extraction, commercial detergent removal spin column method (DRS) and filter-aided sample preparation(FASP)) with respect to varying amounts of protein biomass in the samples, and provide efficiency benchmarks with respect to protein, peptide, and spectral identifications for each method. Our results show that for protein limited samples, FASP outperforms the other three clean-up methods, while at high protein amount all the methods are comparable. This information was used in a dual strategy of comparing molecular weight based fractionated and unfractionated lysates from three increasingly complex samples (Escherichia coli, a five microbial isolate mixture, and a natural microbial community groundwater sample), which were all lysed with SDS and cleaned up using FASP. The two approaches complemented each other by enhancing the number of protein identifications by 8%-25% across the three samples and provided broad pathway coverage.
International Nuclear Information System (INIS)
Fetter, S.
1985-01-01
A methodology has been developed for calculating indices of three classes of radiological hazards: reactor accidents, occupational exposures, and waste-disposal hazards. Radionuclide inventories, biological hazard potentials (BHP), and various dose-related indices are calculated. In the case of reactor accidents, the critical, 50-year and chronic dose are computed, as well as the number of early deaths and illnesses and late cancer fatalities. For occupational exposure, the contact dose rate is calculated for several times after reactor shutdown. In the case of waste-disposal hazards, the intruder dose and the intruder hazard potential (IHP) are calculated. Sample calculations for the MARS reactor design show the usefulness of the methodology in exploring design improvements
International Nuclear Information System (INIS)
Caplin, J.L.; Flatman, W.D.; Dymond, D.S.
1985-01-01
There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)
Matrix continued-fraction calculation of localization length in disordered systems
International Nuclear Information System (INIS)
Pastawski, H.M.; Weisz, J.F.
1983-01-01
A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystals with disorder given by the Anderson model. It is found that exponentially localized states which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the resuts found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt
Matrix continued-fraction calculation of localization length in disordered systems
International Nuclear Information System (INIS)
Pastawski, H.M.; Weisz, J.F.
1983-01-01
A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystal with disorder given by the Anderson model. It is found that exponentially localized states, which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the results found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt
SAS Macros for Calculation of Population Attributable Fraction in a Cohort Study Design
Directory of Open Access Journals (Sweden)
Maarit A. Laaksonen
2011-08-01
Full Text Available The population attributable fraction (PAF is a useful measure for quantifying the impact of exposure to certain risk factors on a particular outcome at the population level. Recently, new model-based methods for the estimation of PAF and its confidence interval for different types of outcomes in a cohort study design have been proposed. In this paper, we introduce SAS macros implementing these methods and illustrate their application with a data example on the impact of different risk factors on type 2 diabetes incidence.
Some remarks on sticking fraction calculations in muon-catalyzed deuterium-tritium fusion
International Nuclear Information System (INIS)
Biedenharn, L.C.; Ciftci, A.K.
1992-01-01
The sticking coefficient in muon catalyzed dt fusion is an important parameter affecting feasibility for practical applications. This paper discusses a procedure, developed for an accurate calculation of this parameter, and show that a well-defined limit produces precisely the often-criticized heuristic sudden approximation. Why this should be is discussed in some detail from a very different, possibly surprising, point of view
International Nuclear Information System (INIS)
Aufiero, Manuele; Brovchenko, Mariya; Cammi, Antonio; Clifford, Ivor; Geoffroy, Olivier; Heuer, Daniel; Laureau, Axel; Losa, Mario; Luzzi, Lelio; Merle-Lucotte, Elsa; Ricotti, Marco E.; Rouch, Hervé
2014-01-01
Highlights: • Calculation of effective delayed neutron fraction in circulating-fuel reactors. • Extension of the Monte Carlo SERPENT-2 code for delayed neutron precursor tracking. • Forward and adjoint multi-group diffusion eigenvalue problems in OpenFOAM. • Analytical approach for β eff calculation in simple geometries and flow conditions. • Good agreement among the three proposed approaches in the MSFR test-case. - Abstract: This paper deals with the calculation of the effective delayed neutron fraction (β eff ) in circulating-fuel nuclear reactors. The Molten Salt Fast Reactor is adopted as test case for the comparison of the analytical, deterministic and Monte Carlo methods presented. The Monte Carlo code SERPENT-2 has been extended to allow for delayed neutron precursors drift, according to the fuel velocity field. The forward and adjoint eigenvalue multi-group diffusion problems are implemented and solved adopting the multi-physics tool-kit OpenFOAM, by taking into account the convective and turbulent diffusive terms in the precursors balance. These two approaches show good agreement in the whole range of the MSFR operating conditions. An analytical formula for the circulating-to-static conditions β eff correction factor is also derived under simple hypotheses, which explicitly takes into account the spatial dependence of the neutron importance. Its accuracy is assessed against Monte Carlo and deterministic results. The effects of in-core recirculation vortex and turbulent diffusion are finally analysed and discussed
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-05-01
Knowing the quantities of certain substances discharged into the atmosphere is a necessary and fundamental stage in any environmental protection policy to tackle today's problems such as acid rain, the degradation of air quality, global warming and climate change, the depletion of the ozone layer, etc. This quantification, usually known as an 'emission inventory', is built on a set of specific rules which may vary from one inventory to another. This state of affairs presents the enormous disadvantage that the data available are not comparable. At the international level, an attempt at harmonization has been going on for some years between the various international bodies. This work is being pursued in parallel with the improvement of methodologies to estimate discharges from various types of source. To take account of changes in specifications and of improvements in our understanding of phenomena giving rise to atmospheric pollution, the results of inventories of emissions need to be regularly revised, even retrospectively, to maintain a consistent series. CITEPA, which acts as a National Reference Centre, has developed a system of inventories as part of the CORALIE programme with financial help from the French Ministry for Planning and the Environment. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-05-01
Knowing the quantities of certain substances discharged into the atmosphere is a necessary and fundamental stage in any environmental protection policy to tackle today's problems such as acid rain, the degradation of air quality, global warming and climate change, the depletion of the ozone layer, etc. This quantification, usually known as an 'emission inventory', is built on a set of specific rules which may vary from one inventory to another. This state of affairs presents the enormous disadvantage that the data available are not comparable. At the international level, an attempt at harmonization has been going on for some years between the various international bodies. This work is being pursued in parallel with the improvement of methodologies to estimate discharges from various types of source. To take account of changes in specifications and of improvements in our understanding of phenomena giving rise to atmospheric pollution, the results of inventories of emissions need to be regularly revised, even retrospectively, to maintain a consistent series. CITEPA, which acts as a National Reference Centre, has developed a system of inventories as part of the CORALIE programme with financial help from the French Ministry for Planning and the Environment. (author)
International Nuclear Information System (INIS)
Lee, Y.K.; Hugot, F.X.
2011-01-01
The effective delayed neutron fraction βeff is an important reactor physics parameter. Its calculation within the multi-group deterministic transport code can be performed with the aid of adjoint flux weighted integrations. However, in continuous energy Monte Carlo transport code, the adjoint weighted βeff calculation becomes complicated due to the backward treatment of the anisotropy scattering. In TRIPOLI-4 continuous energy Monte Carlo code, the βeff calculation was performed by a two-run method, one run with delayed neutrons and second with only the contribution from prompt fission neutrons. To improve the uncertainty of the βeff two-run calculation for the experimental reactors, two simple and fast one-run methods to estimate the βeff in the continuous energy simulation have been implemented into the TRIPOLI-4 code. First approach is an improved one of the Bretscher's prompt method and second one based on the proposal of Nauchi and Kameyama. In these one-run methods, the prompt and the delayed neutrons are first tagged. Their tracking and statistics are separated performed. The new βeff calculations have been optimized in the power iteration cycles so as to estimate the production of prompt and delayed neutrons from the prompt and delayed neutrons of previous generation. To validate the new βeff calculation by TRIPOLI-4, several benchmarks including fast and thermal systems have been considered. In this paper the recent measurements of βeff in the research reactor IPEN/MB-01 have been benchmarked. The basic components of the βeff and the Keff have been also calculated so as to understand the influences of the cross sections and the delayed neutron yields on the reactor reactivity calculations. Three nuclear data libraries, ENDF/BVI.r4, ENDF/B-VII.0, and JEFF-3.1 were taken into account in this study. (author)
International Nuclear Information System (INIS)
Lombardo, S.; Costa, F.H.; Hashimoto, T.M.; Pereira, M.S.; Abdalla, A.J.
2010-01-01
In order to calculate the volume fraction of the retained austenite in aeronautic multiphase steels, it was used a digital analysis software for image processing. The materials studied were steels AISI 43XX with carbon content between 30, 40 and 50%, heat treated by conventional quenching and isothermal cooling in bainitic and intercritical region, characterized by optical microscopy, etching by reagent Sodium Metabisulfite (10%) for 30 seconds, with forced drying. The results were compared with the methods of X-Ray Diffraction and Magnetic Saturation through photomicrographs, showing that with this technic it is possible to quantify the percentage of retained austenite in the martensitic matrix, in the different types of steels. (author)
International Nuclear Information System (INIS)
Vaeth, L.
1993-02-01
A simple model has been developed for estimating, under steady-state irradiation conditions and for operational transients, the fraction of intergranular gas residing in fast reactor fuel and the intragranular gas driven swelling. The total gas retention in the fuel, the grain size and the irradiation conditions (mainly time dependent temperatures) must be known. Use has been made of parts of the fission gas model contained in the code LAKU and of results calculated with this code. The routine (named ZEISIG) is intended for insertion into the fast reactor accident model SAS4A as an extension of its fission gas model for steady-state reactor operation. (orig.) [de
2011-06-13
... requirement. The Department plans to promulgate regulations about this methodology in the near future. In the...--Methodology for Calculating ``on'' or ``off'' Total Unemployment Rate Indicators for Purposes of Determining..., Labor. ACTION: Notice. SUMMARY: UIPL 16-11 informs states of the methodology used to calculate the ``on...
THE METHODOLOGY FOR CALCULATING OF LABOR COSTS OF MEDICAL PERSONNEL IN MARKET CONDITIONS
Directory of Open Access Journals (Sweden)
S. V. Katasonov
2015-01-01
Full Text Available The article presents the approximate calculations of working time of physician to work with the patient and documentation. On the base of these calculations they outline the possible ways to optimize the work of the medical staff.
Energy Technology Data Exchange (ETDEWEB)
Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)
2012-08-15
Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.
International Nuclear Information System (INIS)
Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.
2012-01-01
Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.
Energy Technology Data Exchange (ETDEWEB)
Villescas, G.; Corchon, F.
2013-07-01
he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Directory of Open Access Journals (Sweden)
Giuseppe Palmiotti
2012-01-01
Full Text Available The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
Energy Technology Data Exchange (ETDEWEB)
Muir, G.K.P., E-mail: Graham.Muir@glasgow.ac.uk [SUERC Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Hayward, S. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom); Tripney, B.G.; Cook, G.T.; Naysmith, P. [SUERC Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Herbert, B.M.J. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom); Garnett, M.H [NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Wilkinson, M. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom)
2015-01-15
Highlights: • Compares industry standard and {sup 14}C methods for determining bioenergy content of MSW. • Differences quantified through study at an operational energy from waste plant. • Manual sort and selective dissolution are unreliable measures of feedstock bioenergy. • {sup 14}C methods (esp. AMS) improve precision and reliability of bioenergy determination. • Implications for electricity generators and regulators for award of bio-incentives. - Abstract: {sup 14}C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). {sup 14}C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.
30 CFR 206.173 - How do I calculate the alternative methodology for dual accounting?
2010-07-01
... measured at facility measurement points whose quality exceeds 1,000 Btu/cf are subject to dual accounting... for dual accounting? 206.173 Section 206.173 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... the alternative methodology for dual accounting? (a) Electing a dual accounting method. (1) If you are...
International Nuclear Information System (INIS)
Jachic, J.
1985-01-01
It is presented the ONEDM neutronic simulator for RZ spatial calculation, two energy groups, aiming at researching and optimization of a low power fast reactor design. The simulator's methodology is based in RZ calculation from radial and axial calculation iteractively coupled and in macroscopic cross sections corrected by power density and asymmetry of the spectrum in the feedback process with phase library for reference neutronic state. The transversal area which are determined by energy groups and material region in the iteration are introduced in the spatial calculation. The simulator efficiency is tested and compared with the CITATION and 2DB codes. The cross sections are generated by 1DX code. (M.C.K.) [pt
International Nuclear Information System (INIS)
Horas, Jorge A; Olguin, Osvaldo R; Rizzotto, Marcos G
2005-01-01
We model the heterogeneous response to radiation of multicellular tumour spheroids assuming position- and volume-dependent radiosensitivity. We propose a method to calculate the overall radiosensitivity parameters to obtain the surviving fraction of tumours. A mathematical model of a spherical tumour with a hypoxic core and a viable rim which is a caricature of a real tumour is constructed. The model is embedded in a two-compartment linear-quadratic (LQ) model, assuming a mixed bivariated Gaussian distribution to attain the radiosensitivity parameters. Ergodicity, i.e., the equivalence between ensemble and volumetric averages is used to obtain the overall radiosensitivities for the two compartments. We obtain expressions for the overall radiosensitivity parameters resulting from the use of both a linear and a nonlinear dependence of the local radiosensitivity with position. The model's results are compared with experimental data of surviving fraction (SF) for multicellular spheroids of different sizes. We make one fit using only the smallest spheroid data and we are able to predict the SF for the larger spheroids. These predictions are acceptable particularly using bounded sensitivities. We conclude with the importance of taking into account the contribution of clonogenic hypoxic cells to radiosensitivity and with the convenience of using bounded local sensitivities to predict overall radiosensitivity parameters
International Nuclear Information System (INIS)
Rutt, H.N.
2003-01-01
The modified Bessel functions of the second kind and fractional order K 1/3 (x) and K 2/3 (x) are of importance in the calculation of the frequency spectrum of synchrotron radiation. The parameter range of interest is typically 10 -6 x10. Recently, there has been particular interest in the generation of 'terahertz' radiation, which can be coherently enhanced by many orders of magnitude when the electron bunch length is shorter than the terahertz wavelength. This requires evaluation of the Bessel functions for small values of the argument. It is shown that the series commonly used to evaluate these functions has poor convergence properties under these conditions. An alternative series is derived which has much better convergence for x1
Calculation methodology of the thermal margin in the CAREM 25 reactor
International Nuclear Information System (INIS)
Mazufri, Claudio M.
1995-01-01
According to the nuclear reactors characteristics, can be found different methodologies to appraise the thermal margin available in the core. In the particular case of the CAREM (25 MWe) reactor, where the core is cooled by low mass flux and there are zones with positive steam quality, such evaluation is critical. Due to these characteristics, it was necessary to develop one proper methodology. In the present work, the different steps of that development are described: the election of figures of merit for measure the thermal margin, the hypothesis to use, the election of the critical heat flux prediction model, model qualification and the specification of the core wide procedure. In each step assume criteria are discussed. (author). 9 refs, 1 tab, 1 fig
Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B
2009-10-28
Recently, we have proposed an approach for finding the valence anion ground state, based on the stabilization exerted by a polar solvent; the methodology used standard DFT methods and relatively inexpensive basis sets and yielded correct electron affinity (EA) values by gradually decreasing the dielectric constant of the medium. In order to address the overall performance of the new methodology, to find the best conditions for stabilizing the valence state and to evaluate its scope and limitations, we gathered a pool of 60 molecules, 25 of them bearing the conventional valence state as the ground anion and 35 for which the lowest anion state found holds the extra electron in a diffuse orbital around the molecule (non valence state). The results obtained by testing this representative set suggest a very good performance for most species having an experimental EA less negative than -3.0 eV; the correlation at the B3LYP/6-311+G(2df,p) level being y = 1.01x + 0.06, with a correlation index of 0.985. As an alternative, the time dependent DFT (TD-DFT) approach was also tested with both B3LYP and PBE0 functionals. The methodology we proposed shows a comparable or better accuracy with respect to TD-DFT, although the TD-DFT approach with the PBE0 functional is suggested as a suitable estimate for species with the most negative EAs (ca.-2.5 to -3.5 eV), for which stabilization strategies can hardly reach the valence state. As an application, a pool of 8 compounds of key biological interest with EAs which remain unknown or unclear were predicted using the new methodology.
Proposal of a calculation methodology for the preliminary design of a coalescing filter
International Nuclear Information System (INIS)
Gonzalez Dobrosky, Cintia
2015-01-01
Coalescing filters are described which are equipments for capture and recovery of mist most efficient, inexpensive and have fewer limitations of application. The operation, equations and ideal characteristics of filter media of these models are explained. A methodology for design and scale-up of this type of equipment for liquid recovery in gaseous currents is proposed from experimental tests, in order to guide the interested reader in its making. (author) [es
ON IMPROVEMENT OF METHODOLOGY FOR CALCULATING THE INDICATOR «AVERAGE WAGE»
Directory of Open Access Journals (Sweden)
Oksana V. Kuchmaeva
2015-01-01
Full Text Available The article describes the approaches to the calculation of the indicator of average wages in Russia with the use of several sources of information. The proposed method is based on data collected by Rosstat and the Pension Fund of the Russian Federation. The proposed approach allows capturing data on the wages of almost all groups of employees. Results of experimental calculations on the developed technique are present in this article.
Calculation of t8/5 by response surface methodology for electric arc welding applications
Directory of Open Access Journals (Sweden)
Meseguer-Valdenebro José Luis
2014-01-01
Full Text Available One of the greatest difficulties traditionally found in stainless steel constructions has been the execution of welding parts in them. At the present time, the available technology allows us to use arc welding processes for that application without any disadvantage. Response surface methodology is used to optimise a process in which the variables that take part in it are not related to each other by a mathematical law. Therefore, an empiric model must be formulated. With this methodology the optimisation of one selected variable may be done. In this work, the cooling time that takes place from 800 to 500ºC, t8/5, after TIG welding operation, is modelled by the response surface method. The arc power, the welding velocity and the thermal efficiency factor are considered as the variables that have influence on the t8/5 value. Different cooling times,t8/5, for different combinations of values for the variables are previously determined by a numerical method. The input values for the variables have been experimentally established. The results indicate that response surface methodology may be considered as a valid technique for these purposes.
Templeton, D.M.; Ariese, F.; Cornelis, R.; Danielsson, L.G.; Muntau, H.; Leeuwen, van H.P.; Lobínski, R.
2000-01-01
This paper presents definitions of concepts related to speciation of elements, more particularly speciation analysis and chemical species. Fractionation is distinguished from speciation analysis, and a general outline of fractionation procedures is given. We propose a categorization of species
Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead
2007-01-01
Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...
Directory of Open Access Journals (Sweden)
Aikfei Ang
2015-06-01
Full Text Available The glyoxalation of a methanol-fractionated alkali lignin was executed at 60 °C for 8 h with different amounts of glyoxal (40% in water and 30% NaOH. The weights of the lignin and water were fixed at 10.0 and 15.0 g, respectively. The gel permeation chromatography (GPC results indicated that depolymerization of lignin molecules occurred during the glyoxalation process. However, a higher polydispersity index (Mw/Mn of all glyoxalated lignins compared to the unmodified lignin (ML showed that lignin polymers with a variety of chain lengths were generated through the crosslinking and through the repolymerization of lignin molecules via methylene (CH2 bridges and new, strong C-C bonds after the condensation reaction. This was confirmed by thermogravimetry analysis (TGA. Optimum amounts of glyoxal and NaOH to be used in the glyoxalation process were ascertained by quantifying the intensity of relative absorbance for the CH2 bands obtained from FT-IR spectra and by using response surface methodology (RSM and central composite design (CCD, which facilitated the development of a lignin with appropriate reactivity for wood adhesive formulation. The experimental values were in good agreement with the predicted ones, and the model was highly significant, with a coefficient of determination of 0.9164. The intensity of the relative absorbance for the CH2 band of 0.42 was obtained when the optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353, respectively, were used in the glyoxalation process.
METHODOLOGY FOR CALCULATION OF HORIZONTAL WATER PERMEABILITY COEFFICIENT IN SOIL CAPILLARY BORDER
Directory of Open Access Journals (Sweden)
E. I. Michnevich
2011-01-01
Full Text Available The paper shows that for overall estimation of soil water permeability it is necessary to know a horizontal water permeability value of a soil capillary border in addition to coefficients of filtration and permeability. Relations allowing to determine soil permeability in the area of incomplete saturation, are given in the paper. For a fully developed capillary border some calculation formulae have been obtained in the form of algebraic polynomial versus soil grading (grain composition. These formulae allow to make more accurate calculations while designing and operating reclamation works.
International Nuclear Information System (INIS)
Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin
2011-01-01
Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.
International Nuclear Information System (INIS)
Botto, D.; Zucca, S.; Gola, M.M.
2003-01-01
In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions
Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize
Energy Technology Data Exchange (ETDEWEB)
Driscoll, Frederick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bull, Dianna [Sandia National Laboratories; Dallman, Ann [Sandia National Laboratories; Gunawan, Budi [Sandia National Laboratories; Ruehl, Kelley [Sandia National Laboratories; Newborn, David [Naval Surface Warfare Center, Carderock Division; Quintero, Miguel [Naval Surface Warfare Center, Carderock Division; LaBonte, Alison [U.S. Department of Energy; Karwat, Darshan [U.S. Department of Energy; Beatty, Scott [Cascadia Coast Research Ltd.
2018-03-08
The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width to the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.
High performance shape annealing matrix (HPSAM) methodology for core protection calculators
International Nuclear Information System (INIS)
Cha, K. H.; Kim, Y. H.; Lee, K. H.
1999-01-01
In CPC(Core Protection Calculator) of CE-type nuclear power plants, the core axial power distribution is calculated to evaluate the safety-related parameters. The accuracy of the CPC axial power distribution highly depends on the quality of the so called shape annealing matrix(SAM). Currently, SAM is determined by using data measured during startup test and used throughout the entire cycle. An issue concerned with SAM is that it is fairly sensitive to measurements and thus the fidelity of SAM is not guaranteed for all cycles. In this paper, a novel method to determine a high-performance SAM (HPSAM) is proposed, where both measured and simulated data are used in determining SAM
A coupled RELAPS-3D/CFD methodology with a proof-of-principle calculation; TOPICAL
International Nuclear Information System (INIS)
Aumiller, D.L.; Tomlinson, E.T.; Bauer, R.C.
2000-01-01
The RELAP5-3D computer code was modified to make the explicit coupling capability in the code fully functional. As a test of the modified code, a coupled RELAP5/RELAP5 analysis of the Edwards-O'Brien blowdown problem was performed which showed no significant deviations from the standard RELAP5-3D predictions. In addition, a multiphase Computational Fluid Dynamics (CFD) code was modified to permit explicit coupling to RELAP5-3D. Several calculations were performed with this code. The first analysis used the experimental pressure history from a point just upstream of the break as a boundary condition. This analysis showed that a multiphase CFD code could calculate the thermodynamic and hydrodynamic conditions during a rapid blowdown transient. Finally, a coupled RELAP5/CFD analysis was performed. The results are presented in this paper
International Nuclear Information System (INIS)
Abreu, M.P. de.
1988-01-01
An alternative pseudo-harmonics method for two-dimensional reactor calculations is presented together with some one-energy group results, namely, eigenvalue and flux reconstruction. A brief description of the Standard and Modified versions of the method is presented for critical purposes, i.e., it was intended to discuss the previously developed versions and in some sense to improve the solution of the K-th eigenvalue and flux terms of the corresponding expansions. Intense and localized perturbations, where a significant imbalance between neutron production and destruction rates exists, were simulated. Since convergence in flux and eigenvalue were achieved for all test-cases, there is a tendency to consider the alternative method to be very promising for two-dimensional calculations. (author)
International Nuclear Information System (INIS)
Conti Filho, P.; Oliveira Barroso, A.C. de
1985-01-01
It was developed a computer code to generate polynomial coefficients which represent homogenized microscopic cross sections in function of the local accumulated burnup and concentration of soluble boron, presented in fuel element, for each step of burnup reactor. Afterward, it was developed a coupling between LEOPARD-GERADOR DE POLINOMIOS - CITATION computer codes to interpret and build homogenized microscopic cross sections according with local characteristics of each fuel element during the burnup calculation of reactor core. (M.C.K.) [pt
International Nuclear Information System (INIS)
Lee, Seung Min
2009-01-01
This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)
Directory of Open Access Journals (Sweden)
Stephen Carstens
2008-11-01
Full Text Available Companies tend to outsource transport to fleet management companies to increase efficiencies if transport is a non-core activity. The provision of fleet management services on contract introduces a certain amount of financial risk to the fleet management company, specifically fixed rate maintenance contracts. The quoted rate needs to be sufficient and also competitive in the market. Currently the quoted maintenance rates are based on the maintenance specifications of the manufacturer and the risk management approach of the fleet management company. This is usually reflected in a contingency that is included in the quoted maintenance rate. An alternative methodology for calculating the average maintenance cost for a vehicle fleet is proposed based on the actual maintenance expenditures of the vehicles and accepted statistical techniques. The proposed methodology results in accurate estimates (and associated confidence limits of the true average maintenance cost and can beused as a basis for the maintenance quote.
International Nuclear Information System (INIS)
Gritzay, O.; Kalchenko, O.
2010-01-01
Full text: Scientific support of NPPs has to cover several important aspects of scientific and organization activity, namely:1.Training for group of high skilled specialists to do the following work: o nuclear data generation for engineer calculations; o engineer calculations to ensure the safety operation of NPPs; o experimental-calculation support of fluence dosimetry at NPP. 2.Development of up-to-date computer base, equipped with necessary program packages for nuclear data generation and engineer calculations. 3.The updated Libraries of Evaluated Nuclear Data (ENDF), such as ENDF/B-VII (USA), JENDL-3.3 (Japan) and JEFF-3.1 (Europe), RUSFOND ( Russia) and as a result the generation of specialized nuclear data multi-group libraries for special purpose engineer calculations.To reach these purposes, the Ukrainian Nuclear Data Center (UKRNDC) was organized and developed for more, than 10 years (since 1996).The capabilities of the UKRNDC are detailed below. o Modern ENDF libraries, first of all the general purpose libraries, such as ENDF/B-7.0, -6.8, JEFF-3.1.1, JENDL-3.3, etc. These databases contain recommended, evaluated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions.o Codes for processing these data, updated to the last versions of ENDF and other libraries. First of all these are PREPRO 2007 package (Updated March 17, 2007) and NJOY package updated to versions NJOY-158 and NJOY-253 (in 2009). These codes may give the possibilities to produce the multi-group data for needed spectrum of interacting particles (neutrons, protons, gammas) and temperatures.o Computer base of several specialized server stations, such as ESCALA- S120 (analogous to IBM -240 with RISC 6000 processor) operating under OS under OS UNIX (version AIX 5.1) and IBM PC operating under Linux Red Hat 7.2.o The set of PC computers joined in UKRNDC network, operating mainly in OS Windows
International Nuclear Information System (INIS)
Nes, Razvan; Benke, Roland R.
2008-01-01
The U.S. Department of Energy (DOE) is currently considering design options for preclosure facilities in a license application for a geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the PCSA Tool Version 3.0.0 software for the U.S. Nuclear Regulatory Commission (NRC) to aid in the regulatory review of a potential DOE license application. The objective of this paper is to demonstrate PCSA Tool modeling capabilities (i.e., a generic two-compartment, mass-balance model) for estimating radionuclide concentrations in air and radiological dose consequences to indoor workers in a control room from potential leakage of radioactively contaminated air from an adjacent handling area. The presented model computes internal and external worker doses from inhalation and submersion in a finite cloud of contaminated air in the control room and augments previous capabilities for assessing indoor worker dose. As a complement to the example event sequence frequency analysis in the companion paper, example consequence calculations are presented in this paper for the postulated event sequence. In conclusion: this paper presents a model for estimating radiological doses to indoor workers for the leakage of airborne radioactive material from handling areas. Sensitivity of model results to changes in various input parameters was investigated via illustrative example calculations. Indoor worker dose estimates were strongly dependent on the duration of worker exposure and the handling-area leakage flow rate. In contrast, doses were not very sensitive to handling-area exhaust ventilation flow rates. For the presented example, inhalation was the dominant radiological dose pathway. The two companion papers demonstrate independent analysis capabilities of the regulator for performing confirmatory calculations of frequency and consequence, which assist the assessment of worker
A source term and risk calculations using level 2+PSA methodology
International Nuclear Information System (INIS)
Park, S. I.; Jea, M. S.; Jeon, K. D.
2002-01-01
The scope of Level 2+ PSA includes the assessment of dose risk which is associated with the exposures of the radioactive nuclides escaping from nuclear power plants during severe accidents. The establishment of data base for the exposure dose in Korea nuclear power plants may contribute to preparing the accident management programs and periodic safety reviews. In this study the ORIGEN, MELCOR and MACCS code were employed to produce a integrated framework to assess the radiation source term risk. The framework was applied to a reference plant. Using IPE results, the dose rate for the reference plant was calculated quantitatively
DEFF Research Database (Denmark)
Gurtovenko, Andrey A; Vattulainen, Ilpo
2009-01-01
of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...... systems). For symmetric bilayers we demonstrate that both approaches give essentially the same potential profiles, provided that simulations are long enough (a production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer are properly accounted for. In contrast...
International Nuclear Information System (INIS)
Nunez, M.; Beretta, M.; Alonso, O.; Alvarez, B.; Canepa, J.; Mut, F.
2002-01-01
Aim: To compare left ventricular ejection fraction (LVEF), end-diastolic volumes (EDV) and end-systolic volumes (ESV) measured by quantitative gated SPECT (QGSPECT) in studies acquired with and without magnification factor (zoom). Material and Methods: We studied 30 consecutive patients (17 men, ages 61±14 years) referred for myocardial perfusion evaluation with a 2-day protocol. Studies were performed after injection of 925 MBq (25 mCi) of 99mTc-MIBI in the resting state. Gated SPECT was first acquired using a x2 zoom factor and immediately repeated with x1 zoom (no magnification), using a 64x64 matrix and 8 frames/cardiac cycle. Patients with arrhythmia were not included in the investigation. According to the median EDV calculated with the x2 zoom acquisition, the population was further divided in two sub-groups regarding the size of the LV cavity. Average LVEF, EDV, ESV and difference between values (delta) were then calculated for the total population and for each sub-group (a and b). Results: For the total population, results are expressed.Pearson correlation showed r=0.954 between LVEF with and without zoom (p<0.0001), but linear regression analysis did not fit a specific model (p=0.18). Median EDV with zoom was 92.5 ml, allowing to separate 15 cases with EDV above (a) and 15 below that value (b). Results for both sub-groups are presented. Conclusion: Calculated LVEF is higher with no zoom, at the expense of decreasing both EDV and ESV. Although differences were very significant for all parameters, ESV changes were specially relevant with no zoom, particularly in patients with smaller hearts. Although good correlation was found between LVEF with and without zoom, no specific correction factor was found to convert one value into the other. Magnification factor should be kept constant in gated SPECT if calculated LVEF values QGSPECT are expected to be reliable, and validation of the method using different zoom factors should be considered
International Nuclear Information System (INIS)
De Roo, Guillaume; Parsons, John E.
2011-01-01
In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.
Energy Technology Data Exchange (ETDEWEB)
Fisher, N. S.; Baumann, Z. [School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY (United States)
2013-07-15
To evaluate the extent to which contaminated sediments could introduce metals into marine food chains, gamma emitting radioisotopes of arsenic, cadmium and chromium were used to study their geochemical fractionation in estuarine sediments and bioavailability to deposit feeding polychaetes. Radioisotopes were added to sediments directly or via planktonic debris and were then fractionated with a sequential extraction scheme after aging for up to 90 days. The assimilation of ingested metals was positively related to their partitioning in the two most readily extractable (labile) sediment fractions and negatively related to refractory organic fractions, oxides, and pyrite. In comparison to uptake from ingested sediment, metal uptake from pore water was negligible. A metal bioaccumulation model, modified to consider their geochemical fractionation, was found to quantitatively predict metal concentrations in benthic polychaetes better than total metal concentrations in sediment. Metals need to desorb from ingested particles into gut fluid within the polychaete gut before they can be assimilated. (author)
Energy Technology Data Exchange (ETDEWEB)
Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)
2014-07-14
Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.
Weissmannová, Helena Doležalová; Pavlovský, Jiří
2017-11-07
This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.
International Nuclear Information System (INIS)
Le Borgne, E.; Mattei, A.; Rome, M.; Rodriguez, J.M.
2004-01-01
The determination of hydraulic characteristics for fuel subassembly components is dependent on the hypotheses and the methodology considered. The results of hydraulic compatibility calculations using input data from different sources may thus be difficult to analyse, and their reliability will consequently be reduced. Electricite de France (EDF) and Commissariat a l'Energie Atomique (CEA) have initiated a common program aiming at controlling the consequences of such a situation, increasing the reliability of the values used in the hydraulic compatibility calculations, and proposing a standardization of the operating procedures. In a first step, this program is based on the measurements performed in the CEA HERMES P facility. Extension of this program is expected to the equivalent experimental facilities for which sufficient information will be made available. (author)
Directory of Open Access Journals (Sweden)
Möhlenkamp Stefan
2006-06-01
Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal
International Nuclear Information System (INIS)
Cintra, Felipe Belonsi de
2010-01-01
This study made a comparison between some of the major transport codes that employ the Monte Carlo stochastic approach in dosimetric calculations in nuclear medicine. We analyzed in detail the various physical and numerical models used by MCNP5 code in relation with codes like EGS and Penelope. The identification of its potential and limitations for solving microdosimetry problems were highlighted. The condensed history methodology used by MCNP resulted in lower values for energy deposition calculation. This showed a known feature of the condensed stories: its underestimates both the number of collisions along the trajectory of the electron and the number of secondary particles created. The use of transport codes like MCNP and Penelope for micrometer scales received special attention in this work. Class I and class II codes were studied and their main resources were exploited in order to transport electrons, which have particular importance in dosimetry. It is expected that the evaluation of available methodologies mentioned here contribute to a better understanding of the behavior of these codes, especially for this class of problems, common in microdosimetry. (author)
International Nuclear Information System (INIS)
Verduzco, Laura E.; Duffey, Michael R.; Deason, Jonathan P.
2007-01-01
At this time, hydrogen-based power plants and large hydrogen production facilities are capital intensive and unable to compete financially against hydrocarbon-based energy production facilities. An option to overcome this problem and foster the introduction of hydrogen technology is to introduce small and medium-scale applications such as residential and community hydrogen refueling units. Such units could potentially be used to generate both electricity and heat for the home, as well as hydrogen fuel for the automobile. Cost modeling for the integration of these three forms of energy presents several methodological challenges. This is particularly true since the technology is still in the development phase and both the financial and the environmental cost must be calculated using mainly secondary sources. In order to address these issues and aid in the design of small and medium-scale hydrogen systems, this study presents a computer model to calculate financial and environmental costs of this technology using different hydrogen pathways. The model can design and compare hydrogen refueling units against hydrocarbon-based technologies, including the 'gap' between financial and economic costs. Using the methodology, various penalties and incentives that can foster the introduction of hydrogen-based technologies can be added to the analysis to study their impact on financial cost
Hale, Lucas M.; Trautt, Zachary T.; Becker, Chandler A.
2018-07-01
Atomistic simulations using classical interatomic potentials are powerful investigative tools linking atomic structures to dynamic properties and behaviors. It is well known that different interatomic potentials produce different results, thus making it necessary to characterize potentials based on how they predict basic properties. Doing so makes it possible to compare existing interatomic models in order to select those best suited for specific use cases, and to identify any limitations of the models that may lead to unrealistic responses. While the methods for obtaining many of these properties are often thought of as simple calculations, there are many underlying aspects that can lead to variability in the reported property values. For instance, multiple methods may exist for computing the same property and values may be sensitive to certain simulation parameters. Here, we introduce a new high-throughput computational framework that encodes various simulation methodologies as Python calculation scripts. Three distinct methods for evaluating the lattice and elastic constants of bulk crystal structures are implemented and used to evaluate the properties across 120 interatomic potentials, 18 crystal prototypes, and all possible combinations of unique lattice site and elemental model pairings. Analysis of the results reveals which potentials and crystal prototypes are sensitive to the calculation methods and parameters, and it assists with the verification of potentials, methods, and molecular dynamics software. The results, calculation scripts, and computational infrastructure are self-contained and openly available to support researchers in performing meaningful simulations.
Energy Technology Data Exchange (ETDEWEB)
Okhrimenko, N.V.; Dorodnova, V.S.; Martynenko, A.G.; Shiryayeva, G.P.
1983-01-01
The possibility is shown of using an equation proposed by Weigl and Dvayvedi for calculated identification of the outputs of a refinate in furfurol purification of gas oil fractions as applied to the purification of distillate oil fractions (350 to 420 and 420 to 500 degrees of a mixture of Eastern Ukrainian oils from the Druzhba pipeline with a content of 43.6 and 53.8 percent aromatic hydrocarbons (ArU). The deviations between the calculated values of the refinate output and the actual do not exceed 0.5 to 1.5 percent.
International Nuclear Information System (INIS)
Camacho O, Juana; Burgos S, Javier Dario
2006-01-01
The aim of this work is to provide a practical tool to carry out environmental planning and management processes regarding the use of space, in a complex way including not only biophysical but socioeconomic criteria. In the context of river basin management the Environmental Social Pressure Index was created. This paper presents an Environmental Planning and Management definition, based on the Ecological Supporting Structure, as well as one of sustainability, worked out of several authors. This work offers the methodological sequence to design and calculate a customized Environmental Social Pressure Index according to the specific features of any given territory, using the conceptual framework developed earlier and the multivariate analysis and power laws tools. Finally we present an exercise to illustrate this process, developed for Cundinamarca for 1995
International Nuclear Information System (INIS)
Spanos, G.; Geltmacher, A.B.; Lewis, A.C.; Bingert, J.F.; Mehl, M.; Papaconstantopoulos, D.; Mishin, Y.; Gupta, A.; Matic, P.
2007-01-01
This paper provides a brief overview of a multidisciplinary effort at the Naval Research Laboratory aimed at developing a computationally-based methodology to assist in the design of advanced Naval steels. This program uses multiple computational techniques ranging from the atomistic length scale to continuum response. First-principles electronic structure calculations using density functional theory were employed, semi-empirical angular dependent potentials were developed based on the embedded atom method, and these potentials were used as input into Monte-Carlo and molecular dynamics simulations. Experimental techniques have also been applied to a super-austenitic stainless steel (AL6XN) to provide experimental input, guidance, verification, and enhancements to the models. These experimental methods include optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, and serial sectioning in conjunction with computer-based three-dimensional reconstruction and quantitative analyses. The experimental results are also used as critical input into mesoscale finite element models of materials response
International Nuclear Information System (INIS)
Casado Sanchez, C.; Rubio Oviedo, P.
2014-01-01
This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)
International Nuclear Information System (INIS)
Aydogdu, K.
1998-01-01
Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)
International Nuclear Information System (INIS)
Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.
1986-05-01
In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained
International Nuclear Information System (INIS)
Garcia Gutierrez, M.E.; Sustacha Duo, D.
1993-01-01
The ODCM (Offsite Dose Calculation Manual), the official operational document for all nuclear power plants develops the details for the technical specifications for discharges and governs their practical application. The use of ODCM methodology for managing and controlling data associated with radioactive discharges, as well as the subsequent processing of this data to assess the radiological impact, requires and generates a large volume of data, which demands the frequent application of laborious and complex calculation processes, making computerization necessary. The computer application created for Almaraz NPP has the capacity to store and manage data on all discharges, evaluate their effects, presents reports and copies the information to be sent periodically to the CSN (Spanish Nuclear Regulatory Commission) on a magnetic tape. The radiological impact of an actual or possible discharge can be evaluated at anytime and, furthermore, general or particular reports and graphs on the discharges and doses over time can be readily obtained. The application is run on a personal computer under a relational database management system. This interactive application is based on menus and windows. (author)
International Nuclear Information System (INIS)
Changala, P. Bryan
2014-01-01
The bending and torsional degrees of freedom in S 1 acetylene, C 2 H 2 , are subject to strong vibrational resonances and rovibrational interactions, which create complex vibrational polyad structures even at low energy. As the internal energy approaches that of the barrier to cis-trans isomerization, these energy level patterns undergo further large-scale reorganization that cannot be satisfactorily treated by traditional models tied to local minima of the potential energy surface for nuclear motion. Experimental spectra in the region near the cis-trans transition state have revealed these complicated new patterns. In order to understand near-barrier spectroscopic observations and to predict the detailed effects of cis-trans isomerization on the rovibrational energy level structure, we have performed reduced dimension rovibrational variational calculations of the S 1 state. In this paper, we present the methodological details, several of which require special care. Our calculation uses a high accuracy ab initio potential surface and a fully symmetrized extended complete nuclear permutation inversion group theoretical treatment of a multivalued internal coordinate system that is appropriate for large amplitude bending and torsional motions. We also discuss the details of the rovibrational basis functions and their symmetrization, as well as the use of a constrained reduced dimension rovibrational kinetic energy operator
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Bøgh, David; Karakatsani, Eirini
2014-01-01
with different ethanol content as inhibitor. There are some differences in the performance of CPA with the two sets but on average the results are similar. This may indicate that monomer fraction data are not very useful in this case or that ethanol monomer fraction data are not accurate and both possibilities...... accurate and how useful are such data today and how successful is their use in the context of association models? In this work we attempt to answer these questions in the case of the CPA model and for ethanol. CPA has been already successfully used to describe thermodynamic properties of many ethanol...... containing mixtures, using an ethanol parameter set that was adjusted to experimental vapor pressure and liquid density data. We present in this work a new parameter set for ethanol which is estimated using experimental vapor pressure, liquid density data as well as the experimental monomer fractions...
International Nuclear Information System (INIS)
Liang, T.K.S.; Huan-Jen, Hung; Chin-Jang, Chang; Lance, Wang
2001-01-01
In light water reactors, particularly the pressurized water reactor (PWR), the severity of a LOCA (loss of coolant accident) will limit how high the reactor power can operate. Although the best-estimate LOCA licensing methodology can provide the greatest margin on the PCT (peak cladding temperature) evaluation during LOCA, it generally takes more resources to develop. Instead, implementation of evaluation models required by the Appendix K of 10 CFR 50 upon an advanced thermal-hydraulic platform can also enlarge significant margin between the highest calculated PCT and the safety limit of 2200 F. The compliance of the current RELAP5-3D code with Appendix K of 10 CFR50 has been evaluated, and it was found that there are ten areas where code assessment and/or further modifications were required to satisfy the requirements set forth in the Appendix K of 10 CFR 50. The associated models for LOCA consequent phenomenon analysis should follow the major concern of regulation and be expected to give more conservative results than those by the best-estimate methodology. They were required to predict the decay power level, the blowdown hydraulics, the blowdown heat transfer, the flooding rate, and the flooding heat transfer. All of the ten areas included in above classified simulations have been further evaluated and the RELAP5-3D has been successfully modified to fulfill the associated requirements. In addition, to verify and assess the development of the Appendix K version of RELAP5-3D, nine separate-effect experiments were adopted. Through the assessments against separate-effect experiments, the success of the code modification in accordance with the Appendix K of 10 CFR 50 was demonstrated. We will apply another six sets of integral-effect experiments in the next step to assure the integral conservatism of the Appendix K version of RELAP5-3D on LOCA licensing evaluation. (authors)
Zhu, Jian; Bai, Tong; Gu, Jiabing; Sun, Ziwen; Wei, Yumei; Li, Baosheng; Yin, Yong
2018-04-27
To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of 'fine', 'normal' and 'coarse' were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. MVCT scanning time with pitch of 'fine' was approximately twice of 'normal' and 3 times more than 'coarse' setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of 'fine', only 0.2% or 1.1% of the points analyzed on MVCT of 'normal' or 'coarse' do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI
A flow-based methodology for the calculation of TSO to TSO compensations for cross-border flows
International Nuclear Information System (INIS)
Glavitsch, H.; Andersson, G.; Lekane, Th.; Marien, A.; Mees, E.; Naef, U.
2004-01-01
In the context of the development of the European internal electricity market, several methods for the tarification of cross-border flows have been proposed. This paper presents a flow-based method for the calculation of TSO to TSO compensations for cross-border flows. The basic principle of this approach is the allocation of the costs of cross-border flows to the TSOs who are responsible for these flows. This method is cost reflective, non-transaction based and compatible with domestic tariffs. It can be applied when limited data are available. Each internal transmission network is then modelled as an aggregated node, called 'supernode', and the European network is synthesized by a graph of supernodes and arcs, each arc representing all cross-border lines between two adjacent countries. When detailed data are available, the proposed methodology is also applicable to all the nodes and lines of the transmission network. Costs associated with flows transiting through supernodes or network elements are forwarded through the network in a way reflecting how the flows make use of the network. The costs can be charged either towards loads and exports or towards generations and imports. Combination of the two charging directions can also be considered. (author)
Energy Technology Data Exchange (ETDEWEB)
BARKER, S.A.
2006-07-27
Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.
Jonny Nordström; Tanja Kero; Hendrik Johannes Harms; Charles Widström; Frank A. Flachskampf; Jens Sörensen; Mark Lubberink
2017-01-01
BACKGROUND: Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). (15)O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard (15)O-water uptake images. The purpose of the present work was to investigate the possibility...
Hassanzadeh, Iman; Tabatabaei, Mohammad
2017-03-28
In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong
2007-04-01
Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment.
Qiu, Ling-Ling; Chen, Long-Hu; Yan, Dan; Zhang, Ping; Tan, Man-Rong; Li, Zheng-Ming; Xiao, Xiao-He
2012-04-01
This study aimed to establish a novel method to screen out the combined components of multi-fractions traditional Chinese medicine (TCM), so that the internal relationship between multi-ingredients could be objectively assessed and the proportioning ratio could be optimized. Taking antiviral effect on neuraminidase activity of influenza virus as the evaluating indicator and using Box-Behnken response surface methodology, the main effective ingredients of Shuanghuanglian injection (SHL) were screened. Meanwhile, the relationship between active ingredients was discussed. Taking SHL as a comparison, the optimum proportioning ratio was predicted. The results indicated that chlorogenic acid, cryptochlorogenic acid, caffeic acid and baicalin have comparatively strong antiviral activity against influenza virus. Moreover, antagonistic action existed between chlorogenic acid and cryptochlorogenic acid, whereas synergistic action between caffeic acid and other components. The optimum proportioning ratio resulted from fitted model is: chlorogenic acid, cryptochlorogenic acid, caffeic acid and baicalin (107 microg x mL(-1) : 279 microg x mL(-1) : 7.99 microg x mL(-1) : 92 microg x mL(-1)). The antiviral activity of the recombined components is stronger than that of SHL, which was consistent with the experiment results (P < 0.05). Box-Behnken response surface methodology has the advantages of general-screening, high-performance and accurate-prediction etc, which is appropriate for screening the combined components of multi-fractions TCM and the optimization of the proportioning ratio. The proposed method can serve as a technological support for the development of modern multi-fractions TCM.
Cutajar, Marica; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D; Thomas, David L; Banks, Tina; Clark, Christopher A; Gordon, Isky
2015-08-01
Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.
Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A
2016-03-15
This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Ellen A Struijk
Full Text Available BACKGROUND: Disability-Adjusted Life Years (DALYs have the advantage that effects on total health instead of on a specific disease incidence or mortality can be estimated. Our aim was to address several methodological points related to the computation of DALYs at an individual level in a follow-up study. METHODS: DALYs were computed for 33,507 men and women aged 20-70 years when participating in the EPIC-NL study in 1993-7. DALYs are the sum of the Years Lost due to Disability (YLD and the Years of Life Lost (YLL due to premature mortality. Premature mortality was defined as death before the estimated date of individual Life Expectancy (LE. Different methods to compute LE were compared as well as the effect of different follow-up periods using a two-part model estimating the effect of smoking status on health as an example. RESULTS: During a mean follow-up of 12.4 years, there were 69,245 DALYs due to years lived with a disease or premature death. Current-smokers had lost 1.28 healthy years of their life (1.28 DALYs 95%CI 1.10; 1.46 compared to never-smokers. The outcome varied depending on the method used for estimating LE, completeness of disease and mortality ascertainment and notably the percentage of extinction (duration of follow-up of the cohort. CONCLUSION: We conclude that the use of DALYs in a cohort study is an appropriate way to assess total disease burden in relation to a determinant. The outcome is sensitive to the LE calculation method and the follow-up duration of the cohort.
International Nuclear Information System (INIS)
Ximenes, Edmir; Guimaraes, Maria Ines C. C.
2008-01-01
The theme of this work is the study of the concept of mathematical dummy - also called phantoms - used in internal dosimetry and radiation protection, from the perspective of computer simulations. In this work he developed the mathematical phantom of the Brazilian woman, to be used as the basis of calculations of Specific Absorbed Fractions (AEDs) in the body's organs and skeleton by virtue of goals with regarding the diagnosis or therapy in nuclear medicine. The phantom now developed is similar, in form, to Snyder phantom making it more realistic for the anthropomorphic conditions of Brazilian women. For so we used the Monte Carlo method of formalism, through computer modeling. As a contribution to the objectives of this study, it was developed and implemented the computer system cFAE - consultation Fraction Specific Absorbed, which makes it versatile for the user's query researcher
Energy Technology Data Exchange (ETDEWEB)
Gurevich, M. I.; Oleynik, D. S. [RRC Kurchatov Inst., Kurchatov Sq., 1, 123182, Moscow (Russian Federation); Russkov, A. A.; Voloschenko, A. M. [Keldysh Inst. of Applied Mathematics, Miusskaya Sq., 4, 125047, Moscow (Russian Federation)
2006-07-01
The tracing algorithm that is implemented in the geometrical module of Monte-Carlo transport code MCU is applied to calculate the volume fractions of original materials by spatial cells of the mesh that overlays problem geometry. In this way the 3D combinatorial geometry presentation of the problem geometry, used by MCU code, is transformed to the user defined 2D or 3D bit-mapped ones. Next, these data are used in the volume fraction (VF) method to approximate problem geometry by introducing additional mixtures for spatial cells, where a few original materials are included. We have found that in solving realistic 2D and 3D core problems a sufficiently fast convergence of the VF method takes place if the spatial mesh is refined. Virtually, the proposed variant of implementation of the VF method seems as a suitable geometry interface between Monte-Carlo and S{sub n} transport codes. (authors)
International Nuclear Information System (INIS)
Pirotta, M.; Aquilina, D.; Bhikha, T.; Georg, D.
2005-01-01
The ESTRO formalism for monitor unit (MU) calculations was evaluated and implemented to replace a previous methodology based on dosimetric data measured in a full-scatter phantom. This traditional method relies on data normalised at the depth of dose maximum (z m ), as well as on the utilisation of the BJR 25 table for the conversion of rectangular fields into equivalent square fields. The treatment planning system (TPS) was subsequently updated to reflect the new beam data normalised at a depth z R of 10 cm. Comparisons were then carried out between the ESTRO formalism, the Clarkson-based dose calculation algorithm on the TPS (with beam data normalised at z m and z R ), and the traditional ''full-scatter'' methodology. All methodologies, except for the ''full-scatter'' methodology, separated head-scatter from phantom-scatter effects and none of the methodologies; except for the ESTRO formalism, utilised wedge depth dose information for calculations. The accuracy of MU calculations was verified against measurements in a homogeneous phantom for square and rectangular open and wedged fields, as well as blocked open and wedged fields, at 5, 10, and 20 cm depths, under fixed SSD and isocentric geometries for 6 and 10 MV. Overall, the ESTRO Formalism showed the most accurate performance, with the root mean square (RMS) error with respect to measurements remaining below 1% even for the most complex beam set-ups investigated. The RMS error for the TPS deteriorated with the introduction of a wedge, with a worse RMS error for the beam data normalised at z m (4% at 6 MV and 1.6% at 10 MV) than at z R (1.9% at 6 MV and 1.1% at 10 MV). The further addition of blocking had only a marginal impact on the accuracy of this methodology. The ''full-scatter'' methodology showed a loss in accuracy for calculations involving either wedges or blocking, and performed worst for blocked wedged fields (RMS errors of 7.1% at 6 MV and 5% at 10 MV). The origins of these discrepancies were
Heijkenskjöld-Rentzhog, Charlotte; Alving, Kjell; Kalm-Stephens, Pia; Lundberg, Jon O; Nordvall, Lennart; Malinovschi, Andrei
2012-10-01
This study investigated the oral contribution to exhaled NO in young people with asthma and its potential effects on estimated alveolar NO (Calv(NO) ), a proposed marker of inflammation in peripheral airways. Secondary aims were to investigate the effects of various exhalation flow-rates and the feasibility of different proposed adjustments of (Calv(NO) ) for trumpet model and axial diffusion (TMAD). Exhaled NO at flow rates of 50-300 ml/sec, and salivary nitrite was measured before and after antibacterial mouthwash in 29 healthy young people (10-20 years) and 29 with asthma (10-19 years). Calv(NO) was calculated using the slope-intercept model with and without TMAD adjustment. Exhaled NO at 50 ml/sec decreased significantly after mouthwash, to a similar degree in asthmatic and healthy subjects (8.8% vs. 9.8%, P = 0.49). The two groups had similar salivary nitrite levels (56.4 vs. 78.4 µM, P = 0.25). Calv(NO) was not significantly decreased by mouthwash. Calv(NO) levels were similar when flow-rates between 50-200 or 100-300 ml/sec were used (P = 0.34 in asthmatics and P = 0.90 in healthy subjects). A positive association was found between bronchial and alveolar NO in asthmatic subjects and this disappeared after the TMAD-adjustment. Negative TMAD-adjusted Calv(NO) values were found in a minority of the subjects. Young people with and without asthma have similar salivary nitrite levels and oral contributions to exhaled NO and therefore no antibacterial mouthwash is necessary in routine use. TMAD corrections of alveolar NO could be successfully applied in young people with asthma and yielded negative results only in a minority of subjects. Copyright © 2012 Wiley Periodicals, Inc.
Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus
2004-06-01
The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.
International Nuclear Information System (INIS)
Szalewicz, K.; Monkhorst, H.J.
1986-04-01
A solution of the Coulomb three-body problem is the beginning point for calculations of sticking fractions in muon catalyzed fusion. The basis set is constructed from the following functions xi/sup r/n/sup s/e/sup - αxi - β n/R/sup -3 /2//H/sub eta/(x)exp(-x 2 /2), where xi and eta are elliptic coordinates of muon, R is the internuclear distance, H/sub eta/ is the nth Hermite polynomial, and x = γ (R-R/sub e/). The nonlinear parameters α, β, γ, and R/sub e/ are to be optimized. 21 refs., 1 tab
Tavano, Olga Luisa; Neves, Valdir Augusto; da Silva Júnior, Sinézio Inácio
2016-11-01
Seven different in vitro methods to determine the protein digestibility for chickpea proteins were considered and also the application of these methodologies for calculating PDCAAS (protein digestibility-corrected amino acid score), seeking their correlations with the in vivo methodology. In vitro digestibility of raw and heated samples were determined using pepsin-pancreatin hydrolysis, considering soluble nitrogen via Kjeldahl (ppKJ) and hydrolysed peptide linkages using trinitrobenzenesulfonic acid and o-phthaldialdehyde. In vitro digestibility was also determined using trypsin, chymotrypsin and peptidase (3-Enz) or trypsin, chymotrypsin, peptidase and pronase solution (4-Enz). None of the correlations between in vitro and in vivo digestibilities were significant (at p<0.0500), but, strong correlations were observed between PDCAAS calculated by in vitro and in vivo results. PDCAAS-ppKJ, PDCAAS-3-Enz and PDCAAS-4-Enz presented the highest correlations with in vivo method, r=0.9316, 0.9442 and 0.9649 (p<0.0500), respectively. The use of in vitro methods for calculating PDCAAS may be promising and deserves more discussions. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Kyncl, J.
2001-04-01
Comparison calculations were performed for 8 experiments accomplished in 2000 on the LR-0 reactor. The MCNP4a code was applied using effective cross section data in the continuous representation as per the ENDF/B-VI library. (P.A.)
International Nuclear Information System (INIS)
Fukushi, Shoji; Teraoka, Satomi.
1997-01-01
A new method which calculate end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) of the left ventricle from myocardial short axis images of ECG-gated SPECT using 99m Tc myocardial perfusion tracer has been designed. Eight frames per cardiac cycle ECG-gated 180 degrees SPECT was performed. Threshold method was used to detect myocardial borders automatically. The optimal threshold was 45% by myocardial SPECT phantom. To determine if EDV, ESV and LVEF can also be calculated by this method, 12 patients were correlated ventriculography (LVG) for 10 days each. The correlation coefficient with LVG was 0.918 (EDV), 0.935 (ESV) and 0.900 (LVEF). This method is excellent at objectivity and reproductivity because of the automatic detection of myocardial borders. It also provides useful information on heart function in addition to myocardial perfusion. (author)
Directory of Open Access Journals (Sweden)
E. V. Semenov
2015-01-01
Full Text Available Summary. The process of separation bulk mixtures in the air stream is widespread in production associated with the cleaning of grain from impurity. In doing so, in order to effectively use the force of gravity appropriate cleaning grain in vertical air stream. Quantitative analysis of the separation process considering based on the model of the motion of an isolated particles in the stream. We used law of conservation of impulse in the form of the second law of Newton. Movement of particles in the air stream develops in conditions of large of number Reynolds. Therefore, the resistance force particles chosen by quadratic depending on its relative speed. Based on the quantitative analysis of the equations of motion of a particle moving on a specific trajectory, determine the critical diameter of the particles. As a process control setting chosen by the speed of the airflow. Based on the dispersion factor mixture of granular calculated coefficient of lightening. A specific example of equipment based on geometrical and physical-mechanical parameters of the process graphically presents the results of a qualitative and meaningful analysis on trajectories and velocities of the particles, the critical diameter of particle, coefficient of lightening.
International Nuclear Information System (INIS)
Lopez Aldama, D.; Rodriguez Gual, R.
1998-01-01
Presently work intends to validate the models and programs used in the Nuclear Technology Center for calculating the critical position of control rods by means of the analysis of the measurements performed at the critical facility IPEN/MB-01. The lattice calculations were carried out with the WIMS/D4 code and for the global calculations the diffusion code SNAP-3D was used
Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark
2017-11-14
Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p 0.86, p dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.
2010-10-01
... rate under the ESRD prospective payment system effective January 1, 2011. 413.220 Section 413.220...-treatment base rate under the ESRD prospective payment system effective January 1, 2011. (a) Data sources. The methodology for determining the per treatment base rate under the ESRD prospective payment system...
International Nuclear Information System (INIS)
Ximenes, Edmir
2006-01-01
Tools for dosimetric calculations are of the utmost importance for the basic principles of radiological protection, not only in nuclear medicine, but also in other scientific calculations. In this work a mathematical model of the Brazilian woman is developed in order to be used as a basis for calculations of Specific Absorbed Fractions (SAFs) in internal organs and in the skeleton, in accord with the objectives of diagnosis or therapy in nuclear medicine. The model developed here is similar in form to that of Snyder, but modified to be more relevant to the case of the Brazilian woman. To do this, the formalism of the Monte Carlo method was used by means of the ALGAM- 97 R computational code. As a contribution to the objectives of this thesis, we developed the computational system cSAF - consultation for Specific Absorbed Fractions (cFAE from Portuguese acronym) - which furnishes several 'look-up' facilities for the research user. The dialogue interface with the operator was planned following current practices in the utilization of event-oriented languages. This interface permits the user to navigate by means of the reference models, choose the source organ, the energy desired, and receive an answer through an efficient and intuitive dialogue. The system furnishes, in addition to the data referring to the Brazilian woman, data referring to the model of Snyder and to the model of the Brazilian man. The system makes available not only individual data to the SAFs of the three models, but also a comparison among them. (author)
Directory of Open Access Journals (Sweden)
Jonny Nordström
2017-11-01
Full Text Available Abstract Background Quantitative measurement of myocardial blood flow (MBF is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD. 15O-water positron emission tomography (PET is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV volumes and ejection fraction (EF is not possible from standard 15O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B 15O-water images and from first pass (FP images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV, end-diastolic volume (EDV, stroke volume (SV and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Results Using V B images, high correlations between PET and MRI ESV (r = 0.89, p 0.86, p < 0.001. Conclusion Calculation of LV volumes and LVEF from dynamic 15O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.
International Nuclear Information System (INIS)
Pecchia, Marco; Vasiliev, Alexander; Leray, Olivier; Ferroukhi, Hakim; Pautz, Andreas
2015-01-01
A new methodology, referred to as manufacturing and technological parameters uncertainty quantification (MTUQ), is under development at Paul Scherrer Institut (PSI). Based on uncertainty and global sensitivity analysis methods, MTUQ aims at advancing state-of-the-art for the treatment of geometrical/material uncertainties in light water reactor computations, using the MCNPX Monte Carlo neutron transport code. The development is currently focused primarily on criticality safety evaluations (CSE). In that context, the key components are a dedicated modular interface with the MCNPX code and a user-friendly interface to model functional relationship between system variables. A unique feature is an automatic capability to parameterize variables belonging to so-called “repeated structures” such as to allow for perturbations of each individual element of a given system modelled with MCNPX. Concerning the statistical analysis capabilities, these are currently implemented through an interface with the ROOT platform to handle the random sampling design. This paper presents the current status of the MTUQ methodology development and a first assessment of an ongoing organisation for economic cooperation and development/nuclear energy agency benchmark dedicated to uncertainty analyses for CSE. The presented results illustrate the overall capabilities of MTUQ and underline its relevance in predicting more realistic results compared to a methodology previously applied at PSI for this particular benchmark. (author)
Energy Technology Data Exchange (ETDEWEB)
Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.
2011-01-01
Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.
Energy Technology Data Exchange (ETDEWEB)
Cutajar, Marica; Clark, Christopher A.; Gordon, Isky [University College London, Imaging and Biophysics Unit, Institute of Child Health, London (United Kingdom); Hilton, Rachel; Olsburgh, Jonathon [Renal Unit, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Marks, Stephen D. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Paediatric Nephrology, London (United Kingdom); Thomas, David L. [University College London, Department of Brain Repair and Rehabilitation, Institute of Neurology, London (United Kingdom); Banks, Tina [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom)
2015-08-15
Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ({sup 51}Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kilin, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Lazarev, D.V.; Lazarev, Dm.A.; Zelichenko, V.M. [Tomsk Pedagogic University, Tomsk (Russian Federation); Amusia, M. Ya. [A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Schartner, K.-H. [I Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ehresmann, A.; Schmoranzer, H. [Fachbereich Physik, Universitaet Kaiserslautern, Kaiserslautern (Germany)
2001-10-28
The approach of a parametric V{sup (N-q)} Hartree-Fock potential with fractional q is developed and applied for the first time for the calculation of the double photoionization cross sections of Ne. A minimum of the squared difference between the length-form and velocity-form cross sections is used as a criterion for calculating the values of q. It is found that the minimization procedure leads to a practically exact equality of the length-form and velocity-form cross sections for the Ne III 2s{sup 2}2p{sup 4}[{sup 3}P,{sup 1}D,{sup 1}S], 2s{sup 1}2p{sup 5}[{sup 3}P,{sup 1}P] and 2s{sup 0}2p{sup 6}[{sup 1}S] states in the exciting-photon energy region from the double-ionization threshold up to 325 eV, if q is considered as a function of the exciting-photon energy. The calculated V{sup (N-q)} cross sections are in better agreement with the experimental data than those for the V{sup (N-1)} and V{sup (N-2)} potentials. (author)
International Nuclear Information System (INIS)
Cutajar, Marica; Clark, Christopher A.; Gordon, Isky; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D.; Thomas, David L.; Banks, Tina
2015-01-01
Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ( 51 Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Stathakis, Sotirios [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)], E-mail: stathakis@uthscsa.edu; Esquivel, Carlos; Gutierrez, Alonso N.; Shi, ChengYu; Papanikolaou, Niko [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)
2009-10-15
Purpose: In this paper, we present an alternative to the originally proposed technique for the delivery of spatially fractionated radiation therapy (GRID) using multi-leaf collimator (MLC) shaped fields. We employ the MLC to deliver various pattern GRID treatments to large solid tumors and dosimetrically characterize the GRID fields. Methods and materials: The GRID fields were created with different open to blocked area ratios and with variable separation between the openings using a MLC. GRID designs were introduced into the Pinnacle{sup 3} treatment planning system, and the dose was calculated in a water phantom. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a SolidWater phantom to determine the relative output of each GRID design as well as its spatial dosimetric characteristics. Results: Agreement within 5.0% was observed between the Pinnacle{sup 3} predicted dose distributions and the measurements for the majority of experiments performed. A higher magnitude of discrepancy (15%) was observed using a high photon beam energy (18 MV) and small GRID opening. Skin dose at the GRID openings was higher than the corresponding open field by a factor as high as three for both photon energies and was found to be independent of the open-to-blocked area ratio. Conclusion: In summary, we reaffirm that the MLC can be used to deliver spatially fractionated GRID therapy and show that various GRID patterns may be generated. The Pinnacle{sup 3} TPS can accurately calculate the dose of the different GRID patterns in our study to within 5% for the majority of the cases based on film and ion chamber measurements. Disadvantages of MLC-based GRID therapy are longer treatment times and higher surface doses.
International Nuclear Information System (INIS)
Lima Filho, R.M.; Oliveira, L.F.S. de
1984-01-01
A general method for the calculation of the time evolution of source terms related to irradiated fuel is presented. Some applications are discussed which indicated that the method can provide important informations for the engineering design and safety analysis of a temporary storage facility of irradiated fuel elements. (Author) [pt
Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman
2018-06-01
The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.
2011-01-01
The invention relates to a method for calculating perception of the user experience of the quality of monitored integrated telecommunications operator services. For this purpose, data from the monitoring of user services is used, along with questionnaires previously completed by a representative
International Nuclear Information System (INIS)
Coelho, C.P.
1983-01-01
A methodology for estimating the radiation doses to the members of the general public, in the vicinity of uranium mines and mills is presented. The data collected in the surveys performed to characterize the neighborhood of the site, and used in this work to estimate the radiation dose, are required by the Regulatory Body, for the purpose of Licensing. Initially, a description is shown of the main processing steps to obtain the uranium concentrate and the critical instalation radionuclides are identified. Following, some studies required to characterize the facility neighborhood are presented, specially those related to geography, demography, metheorology, hydrology and environmental protection. Also, the basic programs for monitoring the facility neighborhood in the pre-operational and operational phases are included. It is then proposed a procedure to estimate inhalation, ingestion and external doses. As an example, the proposed procedure is applied to a hypotetical site. Finally, some aspects related to the applicability of this work are discussed. (Author) [pt
International Nuclear Information System (INIS)
Caneparo, B.; Zirilli, S.
1987-01-01
In this work relating to support structures for seismic tests, the authors present a mixed procedure necessitating the experimental measurement of natural frequencies, dampings, and the response to impulse stresses (in the case of a seismic stress, the subject of this study, a single impulse is sufficient) in the zone in question. Experimental measurements are used to adjust the finite elements model; it may then be used for later studies. In the presence of interaction with structures not included in the model, such as, for example, the means used for the actual test, it is impossible to adjust it according to the methods proposed and it is up to the experienced author to introduce the modifications judged opportune to take into account everything which is not a part of the model. The authors have, however, carried out a programme based on the local modification of Young's module, which uses only natural frequencies, useful in the adjustment process. Once the zone of poor modelling has been found, this programme enables optimizing the value of E as a function of the experimental data, whilst also furnishing an estimate of residual differences. Dynamic tests have shown that the model thus obtained can be refined by the forced impulse to an impulse stress. In addition to setting out the theories and formulae used, we then give account of verification of the methodology using a plate, and of its application to a support structure in the form of a frame for seismic tests. The appendices include both experimental measurements and tests. The authors carried out the modal analysis with even greater care than necessary in view of the methodology verification phase
Energy Technology Data Exchange (ETDEWEB)
Niquet, Yann-Michel, E-mail: yniquet@cea.fr; Nguyen, Viet-Hung; Duchemin, Ivan [L-Sim, SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble (France); Triozon, François [CEA, LETI-MINATEC, Grenoble (France); Nier, Olivier; Rideau, Denis [ST Microelectronics, Crolles (France)
2014-02-07
We discuss carrier mobilities in the quantum Non-Equilibrium Green's Functions (NEGF) framework. We introduce a method for the extraction of the mobility that is free from contact resistance contamination and with minimal needs for ensemble averages. We focus on silicon thin films as an illustration, although the method can be applied to various materials such as semiconductor nanowires or carbon nanostructures. We then introduce a new paradigm for the definition of the partial mobility μ{sub M} associated with a given elastic scattering mechanism “M,” taking phonons (PH) as a reference (μ{sub M}{sup −1}=μ{sub PH+M}{sup −1}−μ{sub PH}{sup −1}). We argue that this definition makes better sense in a quantum transport framework as it is free from long range interference effects that can appear in purely ballistic calculations. As a matter of fact, these mobilities satisfy Matthiessen's rule for three mechanisms [e.g., surface roughness (SR), remote Coulomb scattering (RCS) and phonons] much better than the usual, single mechanism calculations. We also discuss the problems raised by the long range spatial correlations in the RCS disorder. Finally, we compare semi-classical Kubo-Greenwood (KG) and quantum NEGF calculations. We show that KG and NEGF are in reasonable agreement for phonon and RCS, yet not for SR. We discuss the reasons for these discrepancies.
International Nuclear Information System (INIS)
Sievers, Juergen; Heckmann, Klaus; Blaesius, Christoph
2015-06-01
For the demonstration of break preclusion for pressure retaining components in nuclear power plants, the nuclear safety standard KTA 3206 determines also the requirements for the leak-before-break verification. For this procedure, it has to be ensured that a wall-penetrating crack is subcritical with respect to instable growth, and that the resulting leakage under stationary operation conditions can be detected by a leak detection system. Within the scope of the project 3613R01332 analyses with respect to conservative estimates of the leak rates in case of detections regarding break preclusion were performed by means of leak rate models being available at GRS. For this purpose, conservative assumptions in the procedure were quantified by comparative calculations concerning selected leak rate experiments and the requirements regarding the determination of leak rates indicated in the KTA 3206 were verified and specified. Moreover, the models were extended and relevant recommendations for the calculation procedure were developed. During the investigations of leak rate tests the calculation methods were validated, qualified by means of both examples indicated in KTA 3206 and applied to a postulated leak accident in the cooling circuit of a PWR. For the calculation of leak rates several simplified solution methods which are included in the GRS program WinLeck were applied, and for the simulation of a leak accident the large-scale programs ANSYS Mechanical and ATHLET (thermohydraulics program developed by GRS) were used. When applying simplified methods for the calculation of leak rates using the limiting curve for the friction factor which has been derived during the project and which is included in the KTA 3206 attention has to be paid to the fact that in case of small flow lengths the entrance loss can dominate compared to the friction loss. However, the available data do not suffice in order to make a quantitative statement with respect to limits of applicability
Energy Technology Data Exchange (ETDEWEB)
Mead, H [Christian Brothers University, Memphis, TN (United States); St. Jude Children’s Research Hospital, Memphis, TN (United States); Brady, S; Kaufman, R [St. Jude Children’s Research Hospital, Memphis, TN (United States)
2016-06-15
Purpose: To discover if a previously published methodology for estimating patient-specific organ dose in a pediatric population (5–55kg) is translatable to the adult sized patient population (> 55 kg). Methods: An adult male anthropomorphic phantom was scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations in the chest and abdominopelvic regions to determine absolute organ dose. Organ-dose-to-SSDE correlation factors were developed by dividing individual phantom organ doses by SSDE of the phantom; where SSDE was calculated at the center of the scan volume of the chest and abdomen/pelvis separately. Organ dose correlation factors developed in phantom were multiplied by 28 chest and 22 abdominopelvic patient SSDE values to estimate organ dose. The median patient weight from the CT examinations was 68.9 kg (range 57–87 kg) and median age was 17 years (range 13–28 years). Calculated organ dose estimates were compared to published Monte Carlo simulated patient and phantom results. Results: Organ-dose-to-SSDE correlation was determined for a total of 23 organs in the chest and abdominopelvic regions. For organs fully covered by the scan volume, correlation in the chest (median 1.3; range 1.1–1.5) and abdominopelvic (median 0.9; range 0.7–1.0) was 1.0 ± 10%. For organs that extended beyond the scan volume (i.e. skin bone marrow and bone surface) correlation was determined to be a median of 0.3 (range 0.1–0.4). Calculated patient organ dose using patient SSDE agreed to better than 6% (chest) and 15% (abdominopelvic) to published values. Conclusion: This study demonstrated that our previous published methodology for calculating organ dose using patient-specific SSDE for the chest and abdominopelvic regions is translatable to adult sized patients for organs fully covered by the scan volume.
van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.
2017-10-01
The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some
International Nuclear Information System (INIS)
García, L.; Pérez, J.; García, C.; Escrivá, A.; Rosales, J.; Abánades, A.
2012-01-01
Highlights: ► We based our study on an ADS for TRU transmutation and high temperature production. ► We calculated the number of pebbles that fit in a cylindrical ADS core. ► In both ADS design options studied, the mass of Pu isotopes reduces considerably. ► The system can reach coolant outlet temperatures high enough for hydrogen production. ► The maximum temperature values obtained in the ADS are not dangerous for TRISO fuel. - Abstract: One of the main problems that should be addressed in the use of nuclear fuels for heat and electricity production is the management of nuclear waste from conventional nuclear power plants and its inventory minimization. Fast reactors and Accelerator Driven Systems (ADSs) are the main options for reducing the long-lived radioactive waste inventory. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite; it uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles. It has been conceived for Plutonium (Pu) and Minor Actinides (MA) transmutation and for achieving very high helium temperatures at the core's outlet to match the thermal requirements for hydrogen production by high temperature electrolysis (HTE) or by the iodine-sulfur (I–S) thermo-chemical cycle. In this paper, a geometrical method for calculating the real number of pebbles that fit in a cylindrical ADS core, according to its size and pebble configuration, is described. Based on its results, the packing fraction influence on the TADSEA's main work parameters is studied, and the redesign of the previous configuration is done in order to maintain the exit thermal power established in the preliminary design. Results have shown the capability of the system to reach coolant outlet temperatures high enough for its application to hydrogen
Fulkerson, David E.
2010-02-01
This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.
International Nuclear Information System (INIS)
Kythreotou, Nicoletta; Florides, Georgios; Tassou, Savvas A.
2012-01-01
On-farm energy consumption is becoming increasingly important in the context of rising energy costs and concerns over greenhouse gas emissions. For farmers throughout the world, energy inputs represent a major and rapidly increasing cost. In many countries such as Cyprus, however, there is lack of systematic research on energy use in agriculture, which hinders benchmarking end evaluation of approaches and investment decisions for energy improvement. This study established a methodology for the estimation of the direct consumption of fossil fuels and electricity for livestock breeding, excluding transport, for locations where full data sets are not available. This methodology was then used to estimate fossil fuel and electricity consumption for livestock breeding in Cyprus. For 2008, this energy was found to be equivalent to 40.3 GWh that corresponds to 8% of the energy used in agriculture. Differences between the energy consumption per animal in Cyprus and other countries was found to be mainly due to differences in climatic conditions and technologies used in the farms. -- Highlights: ► A methodology to calculate energy consumption in farming applied to Cyprus. ► Annual consumption per animal was estimated to be 565 kWh/cow, 537 kWh/sow and 0.677 kWh/chicken. ► Direct energy consumption in livestock breeding is estimated at 40.3 GWh in 2008.
Energy Technology Data Exchange (ETDEWEB)
Gaeta, Michele; Mileto, Achille; Minutoli, Fabio; Settineri, Nicola; Donato, Rocco; Ascenti, Giorgio; Blandino, Alfredo [Policlinico ' ' G. Martino' ' , Dipartimento di Scienze Radiologiche, Messina (Italy); Mazzeo, Anna; Di Leo, Rita [Policlinico ' ' G. Martino' ' , Dipartimento di Neuroscienze, Scienze Psichiatriche ed Anestesiologiche, Messina (Italy)
2012-05-15
To describe the magnetic resonance imaging (MRI) pattern of muscle involvement and disease progression in five patients with late-onset Charcot-Marie-Tooth (CMT) disease type 2 F, due to a previously unknown mutation. Five patients (three males, two females) underwent MRI of the lower limbs to define the pattern of muscle involvement and evaluate the muscle fat fraction (MFF) of residual thigh muscle with gradient-echo (GRE) dual-echo dual-flip angle technique. Evaluation of fatty infiltration both by visual inspection and MFF calculation was performed. A proximal-to-distal gradient of muscle involvement was depicted in male patients with extensive muscle wasting of lower legs, less severe impairment of distal thigh muscles, and sparing of proximal thigh muscles. A peculiar phenotype finding was that no or only slight muscle abnormalities could be found in the two female patients. We described the pattern of muscle involvement and disease progression in a family with CMT disease type 2 F. GRE dual-echo dual-flip angle MRI technique is a valuable technique to obtain a rapid quantification of MFF. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)
2007-07-01
Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
Energy Technology Data Exchange (ETDEWEB)
Teke, T; Milette, MP [BC Cancer Agency Centre for the Southern Interior (Canada); Huang, V; Thomas, SD [BC Cancer Agency Fraser Valley Cancer Centre (Canada)
2014-08-15
The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.
Energy Technology Data Exchange (ETDEWEB)
WEBER RA
2009-01-16
a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.
Energy Technology Data Exchange (ETDEWEB)
FOWLER KD
2007-12-27
This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient
Energy Technology Data Exchange (ETDEWEB)
Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)
2011-05-15
On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and
International Nuclear Information System (INIS)
Botero, Camilo; Yuri, Hurtado; Gonzalez, Jose
2008-01-01
This paper presents a new methodology to calculate carrying capacity in tourist beaches, further than merely environmental issues. Moreover, it understands beaches as complex systems towards its sustainable development. Five beaches in the North Caribbean coast of Colombia were chosen and classified in four tourism beach sorts: intensive, conservation, shared and ethnic. The analysis was done with legal framework review, fieldwork and indicators design, within three components: environmental support, urban infrastructure and tourist services. A new model to calculate carrying capacity in tourist beaches was created, and later applied on the study beaches. Current conditions of the five beaches were highlighted, their tourist carrying capacity were calculated and more important actions in each component were recommended. The main conclusion foster to take in consideration natural conditions as a core factor in beach management, but including a holistic approach in making decision process. Also this paper showed the current conditions of Colombian beaches as a warning, giving recommendations in short and medium term. This document is result of the project Determinacion de un sistema de calificacion y certificacion de playas turisticas.
Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun
2018-04-01
As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.
Energy Technology Data Exchange (ETDEWEB)
Garcia, L., E-mail: maiden@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Perez, J., E-mail: jcurbelo@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Garcia, C., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Escriva, A., E-mail: aescriva@iqn.upv.es [Instituto de Ingenieria Energetica (IIE), Universidad Politecnica de Valencia (UPV), Camino de Vera s/n, 46022 Valencia (Spain); Rosales, J., E-mail: jrosales@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Abanades, A., E-mail: abanades@etsii.upm.es [Escuela Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), J. Gutierrez Abascal, 2, 28006 Madrid (Spain)
2012-12-15
Highlights: Black-Right-Pointing-Pointer We based our study on an ADS for TRU transmutation and high temperature production. Black-Right-Pointing-Pointer We calculated the number of pebbles that fit in a cylindrical ADS core. Black-Right-Pointing-Pointer In both ADS design options studied, the mass of Pu isotopes reduces considerably. Black-Right-Pointing-Pointer The system can reach coolant outlet temperatures high enough for hydrogen production. Black-Right-Pointing-Pointer The maximum temperature values obtained in the ADS are not dangerous for TRISO fuel. - Abstract: One of the main problems that should be addressed in the use of nuclear fuels for heat and electricity production is the management of nuclear waste from conventional nuclear power plants and its inventory minimization. Fast reactors and Accelerator Driven Systems (ADSs) are the main options for reducing the long-lived radioactive waste inventory. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite; it uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles. It has been conceived for Plutonium (Pu) and Minor Actinides (MA) transmutation and for achieving very high helium temperatures at the core's outlet to match the thermal requirements for hydrogen production by high temperature electrolysis (HTE) or by the iodine-sulfur (I-S) thermo-chemical cycle. In this paper, a geometrical method for calculating the real number of pebbles that fit in a cylindrical ADS core, according to its size and pebble configuration, is described. Based on its results, the packing fraction influence on the TADSEA's main work parameters is studied, and the redesign of the previous configuration is done in order to maintain the exit thermal power established in the preliminary design
International Nuclear Information System (INIS)
Stefani, Giovanni Laranjo de
2009-01-01
This work proceeds the elaboration of a computational program for execution of various neutron and thermalhydraulic calculation methodology programs of the IEA-R1-Sao Paulo, Brazil, making the process more practical and safe, besides transforming de output data of each program an automatic process. This reactor is largely used for production of radioisotopes for medical use, material irradiation, personnel training and also for basic research. For that purposes it is necessary to change his core configuration in order to adapt the reactor for different uses. The work will transform various existent programs into subroutines of a principal program, i.e.,a program which call each of the programs automatically when necessary, and create another programs for manipulation the output data and therefore making practical the process
International Nuclear Information System (INIS)
Prodea, Iosif; Patrulescu, Ilie; Rizoiu, Andrei; Danila, Nicolae; Prisecaru, Ilie
2007-01-01
One of the most important CANDU reactor regulation system is the Adjuster Rods System (ADJ). The individual and bank calibration and performance evaluation of this system is carried out during the Phase B commissioning. The ADJ rods are grouped into seven banks based on full power reactivity control requirements. The Cernavoda Unit 2 adjuster rods characteristics were designed more than twenty years ago at INR Pitesti in the end of a fruitful collaboration between INR Pitesti (as designer) and Bristol Aerospace Limited (as manufacturer). In 1996, during the Phase B commissioning tests only AECL diffusion and Westcott approximation methodology was used. An alternative integral transport and high-modes diffusion approximation methodology was developed in INR Pitesti during the last years. As a result, the first collision probability code PIJXYZ was created and developed to carry out the supercell calculations as well as the code DIREN for 3D diffusion-based core simulations. The aim of this work was to evaluate comparatively the two adjuster rods systems (from Unit 1 and 2) in commissioning conditions. The concrete results will consist of individual, bank and total adjuster rods reactivity estimations with an emphasis on the differences and similarities between them. (authors)
International Nuclear Information System (INIS)
Tsiakalos, Miltiadis F.; Theodorou, Kiki; Kappas, Constantin; Zefkili, Sofia; Rosenwold, Jean-Claude
2004-01-01
It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect. A methodology has been developed for assessing the dose calculation algorithms in the lung region where lateral electronic disequilibrium exists, based on the Quality Index (QI) of the incident beam. A phantom, consisting of layers of polystyrene and lung material, has been irradiated using photon beams of 4, 6, 15, and 20 MV. The cross-plane profiles of each beam for 5x5, 10x10, and 25x10 fields have been measured at the middle of the phantom with the use of films. The penumbra (20%-80%) and fringe (50%-90%) enlargement was measured and the ratio of the widths for the lung to that of polystyrene was defined as the Correction Factor (CF). Monte Carlo calculations in the two phantoms have also been performed for energies of 6, 15, and 20 MV. Five commercial TPS's algorithms were tested for their ability to predict the penumbra and fringe enlargement. A linear relationship has been found between the QI of the beams and the CF of the penumbra and fringe enlargement for all the examined fields. Monte Carlo calculations agree very well (less than 1% difference) with the film measurements. The CF values range between 1.1 for 4 MV (QI 0.620) and 2.28 for 20 MV (QI 0.794). Three of the tested TPS's algorithms could not predict any enlargement at all for all energies and all fields and two of them could predict the penumbra enlargement to some extent. The proposed methodology can help any user or developer to check the accuracy of its algorithm for lung cases, based on a simple phantom geometry and the QI of the incident beam. This check is
Meulemans, O.
A new method of calculating the percentages of serum protein is discussed. This method has a smaller distribution curve than the factor that is generally used for the correction of the extinction of the albumin fraction obtained with the elution method. The magnitude of the new factor is 1.22 ±
Smarandache Continued Fractions
Ibstedt, H.
2001-01-01
The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.
Higher fractions theory of fractional hall effect
International Nuclear Information System (INIS)
Kostadinov, I.Z.; Popov, V.N.
1985-07-01
A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)
Energy Technology Data Exchange (ETDEWEB)
Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.
Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.
2014-05-01
We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes
Directory of Open Access Journals (Sweden)
Melikhova Tetiana O.
2018-03-01
Full Text Available The aim of the article is to improve the methodological approaches to calculating the payback period for investment in order to determine the payback period for expenses on establishing the economic security service of an enterprise. It is found that the source of payback of investment at the enterprise level is cash flow product. These revenues (the result go to formation of a cash flow (expenses used to finance investment and financial activities. There proposed methods for determining the gross, net, actual, and specified payback periods for advanced investments in the long-term, which use the accumulated product of cash flow or accumulated cash flow as a source of financing. Analytic relationships between the gross, net, current, and specified payback periods for advanced investments that take into account the relationship between the accumulated gross, net, current and specified cash flows are proposed. The considered options for payback of advanced investment at the enterprise level will provide an opportunity to develop methods for determining the payback period for expenses on establishing the economic security service of an enterprise.
Coyne, Cody P; Rashmir-Raven, Ann; Jones, Toni; Mochal, Cathleen; Linford, Robert L; Brashier, Michael; Eddy, Alison
2009-01-01
Limited research to date has characterized the potential for HRPO to function as a primary molecular probe. Pulmonary airway fluid was developed by non-reducing far-Western (ligand) blot analyses utilizing conjugated HRPO-strepavidin or non-conjugated HRPO without the presence of primary immunoglobulin. Endogenous esterase-like biochemical activity of fractions within pulmonary airway fluid was inactivated to determine if they were capable of biochemically converting HRPO chemiluminescent substrate. Complementary analyses modified pulmonary fluid and HRPO with beta-galactosidase and alpha-mannosidase respectively, in addition to determining the influence of mannose and maltose competitive binding on HRPO far-Western (ligand) blot analyses. Identification of pulmonary fluid fractions detected by HRPO far-Western blot analyses was determined by mass spectrometry. Modification of pulmonary fluid with beta-galactosidase, and HRPO with alpha-mannosidase in concert with maltose and mannose competitive binding analyses altered the intensity and spectrum of pulmonary fluid fractions detected by HRPO far-Western blot analysis. Identity of pulmonary airway fluid fractions detected by HRPO far-Western (ligand) blot analysis were transferrin, dynein, albumin precursor, and two 156 kDa equine peptide fragments. HRPO can function as a partially-selective primary molecular probe when applied in either a conjugated or non-conjugated form. Some protein fractions can form complexes with HRPO through molecular mechanisms that involve physical interactions at the terminal alpha-mannose-rich regions of HRPO glycan side-chains. Based on its known molecular composition and structure, HRPO provides an opportunity for the development of diagnostics methodologies relevant to disease biomarkers that possess mannose-binding avidity.
Energy Technology Data Exchange (ETDEWEB)
Vianna, E.A.L. [Centrais Eletricas do Norte (ELETRONORTE), Porto Velho, RO (Brazil)], E-mail: elainelimavianna@yahoo.com.br; Lambert-Torres, G.; Silva, L.E.B. da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], Emails: germanoltorres@gmail.com, leborges@unifei.edu.br; Rissino, S.; Silva, M.F. da [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil)], Emails: srissino@gmail.com, felipe@unir.br
2009-07-01
Disturbances recorded in a electric power system compromise the quality and continuity energy supply and are measured by means of performance indicators. This article defines the attributes that contribute to increased the severity of disturbances recorded in an Electrical Power Transmission and proposes a methodology for calculating the degree of impact caused each of them. The proposed methodology allows quantification of the impact caused by a disturbance, and its comparison with other disturbance, in one system or distinct systems.
Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.
2011-01-01
Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of
Directory of Open Access Journals (Sweden)
Marcos A. Golato
2008-07-01
based on the resolution of matter and energy balances for each of the system components. This methodology can be applied to steam generators using bagasse, natural gas or both (as a blend as fuels. Examples of thermal efficiency calculations, using data from several experimental tests on steam generators where each type of fuel processing occurs, are presented. The resolution of matter and energy balances in a boiler fired by bagasse gave a thermal efficiency of 53.2% and a rate of 1.38 kg of steam/ kg of bagasse. For a boiler fired by natural gas, a thermal efficiency of 76.7% and an index of 9.8 kg of steam/ Nm³ of natural gas, were obtained. For a boiler fired simultaneously by bagasse and natural gas, a yield of 68.3% and an index of 1.87 kg of steam/ kg of equivalent bagasse were recorded. To validate this methodology, these values were contrasted with the efficiency values obtained in accordance with the American Society of Mechanical Engineers (ASME code.
International Nuclear Information System (INIS)
Rojo, Ana M.; Gomez Parada, Ines
2004-01-01
The MIRD (Medical Internal Radiation Dose) system was established by the Society of Nuclear Medicine of USA in 1960 to assist the medical community in the estimation of the dose in organs and tissues due to the incorporation of radioactive materials. Since then, 'MIRD Dose Estimate Report' (from the 1 to 12) and 'Pamphlets', of great utility for the dose calculations, were published. The MIRD system was planned essentially for the calculation of doses received by the patients during nuclear medicine diagnostic procedures. The MIRD methodology for the absorbed doses calculations in different tissues is explained
Advances in robust fractional control
Padula, Fabrizio
2015-01-01
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...
On matrix fractional differential equations
Adem Kılıçman; Wasan Ajeel Ahmood
2017-01-01
The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...
On matrix fractional differential equations
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2017-01-01
Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.
Directory of Open Access Journals (Sweden)
D. Topping
2010-11-01
Full Text Available Calculating the equilibrium composition of atmospheric aerosol particles, using all variations of Köhler theory, has largely assumed that the total solute concentrations define both the water activity and surface tension. Recently however, bulk to surface phase partitioning has been postulated as a process which significantly alters the predicted point of activation. In this paper, an analytical solution to calculate the removal of material from a bulk to a surface layer in aerosol particles has been derived using a well established and validated surface tension framework. The applicability to an unlimited number of components is possible via reliance on data from each binary system. Whilst assumptions regarding behaviour at the surface layer have been made to facilitate derivation, it is proposed that the framework presented can capture the overall impact of bulk-surface partitioning. Demonstrations of the equations for two and five component mixtures are given while comparisons are made with more detailed frameworks capable at modelling ternary systems at higher levels of complexity. Predictions made by the model across a range of surface active properties should be tested against measurements. Indeed, reccomendations are given for experimental validation and to assess sensitivities to accuracy and required level of complexity within large scale frameworks. Importantly, the computational efficiency of using the solution presented in this paper is roughly a factor of 20 less than a similar iterative approach, a comparison with highly coupled approaches not available beyond a 3 component system.
Maria Klimikova
2010-01-01
Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.
Povstenko, Yuriy
2015-01-01
This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research. The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators. This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...
International Nuclear Information System (INIS)
Polley, M.V.
1988-07-01
Boron is used as a chemical shim in PWRs for reactivity control and is added in the form of boric acid to the primary coolant. The 10 B(n,α) 7 Li reaction leads to a continuous increase in 7 Li in the primary coolant and to a continuous decrease in 10 B the isotope of boron responsible for control of reactivity. The rate of increase in coolant pH due to 7 Li production is calculated for the Sizewell 'B' PWR to enable judgements to be made on the frequency of sampling and removal of lithium required to maintain the pH of the primary coolant within the desired limits. Calculations are contrasted for the cases of natural boron and 100% 10 B chemical shims, for both a normal cycle and an extended 18 month cycle. Calculations of 10 B depletion over 30 years of operation as a function of the quantity of boron discharged to waste are also presented. 10 B isotopic fractions are calculated for the reactor coolant (RC), boric acid tanks (BATs) and refuelling water storage tank (RWST) assuming rapid mixing of BAT and RC boron for tritium control and other reasons. Such predictions enable assessments of the reactor physics implications of 10 B consumption to be made. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos, Rubens Souza dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2002-07-01
In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)
International Nuclear Information System (INIS)
Gomez-Magan, J. J.; Fernandez, I.; Gil, J.; Marrao, H.; Queral, C.; Gonzalez-Cadelo, J.; Montero-Mayorga, J.; Rivas, J.; Ibane-Llano, C.; Izquierdo, J. M.; Sanchez-Perea, M.; Melendez, E.; Hortal, J.
2013-01-01
The Integrated Safety Analysis (ISA) methodology, developed by the Spanish Nuclear Safety council (CSN), has been applied to obtain the dynamic Event Trees (DETs) for full spectrum Loss of Coolant Accidents (LOCAs) of a Westinghouse 3-loop PWR plant. The purpose of this ISA application is to obtain the Damage Excedence Frequency (DEF) for the LOCA Event Tree by taking into account the uncertainties in the break area and the operator actuation time needed to cool down and de pressurize reactor coolant system by means of steam generator. Simulations are performed with SCAIS, a software tool which includes a dynamic coupling with MAAP thermal hydraulic code. The results show the capability of the ISA methodology to obtain the DEF taking into account the time uncertainty in human actions. (Author)
International Nuclear Information System (INIS)
Stefani, Giovanni Laranjo de; Conti, Thadeu das Neves; Fedorenko, Giuliana G.; Castro, Vinicius A.; Maio, Mireia F.; Santos, Thiago Augusto dos
2011-01-01
This work objective was to create a manager program that would automate the programs and computer codes in use for neutronic calculation and thermo-hydraulic in IEA-R1 reactor thus making the process for calculation of safety parameters and for configuration change up to 98% faster than that used in the reactor today. This process was tested in combination with the reactor operators and is being implemented by the quality department. The main codes and programs involved in the calculations of configuration change are Leopard, Hammier-Technion, Twodb, Citation and Cobra. Calculations of delayed neutron and criticality coefficients given in the process of safety parameters calculation are given by the Hammer-Technion and Citation in a process that involves about eleven repetitions so that it meets all the necessary conditions (such different temperatures of the moderator and fuel). The results are entirely consistent with the expected and absolutely the same as those given by manual process. Thus the work shows its reliability as well the advantage of saving time, once a process that could take up to four hours was turned in one that takes around five minutes when done in a home computer. Much of this advantage is due to the fact that were created subprograms to treat the output of each program used and transform them into the input of the other programs, removing from it the intermediate essential data for this to occur, thus avoiding also a possible human error by handling the various data supplied. (author)
International Nuclear Information System (INIS)
Halsnaes, K.; Callaway, J.M.; Meyer, H.J.
1999-01-01
The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs
Energy Technology Data Exchange (ETDEWEB)
Halsnaes, K.; Callaway, J.M.; Meyer, H.J.
1999-04-01
The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs.
International Nuclear Information System (INIS)
Shevenell, L.; Hoffman, F.O.; MacIntosh, D.
1992-03-01
The Waste Area Groupings (WAGs) at the Oak Ridge National Laboratory (ORNL) were reranked with respect to on- and off-site human health risks using two different methods. Risks associated with selected contaminants from each WAG for occupants of WAG 2 or an off-site area were calculated using a modified formulation of the Multimedia Environmental Pollutant Assessment System (MEPAS) and a method suitable for screening, referred to as the ORNL/ESD method (the method developed by the Environmental Sciences Division at ORNL) in this report. Each method resulted in a different ranking of the WAGs. The rankings from the two methods are compared in this report. All risk assessment calculations, except the original MEPAS calculations, indicated that WAGs 1; 2, 6, 7 (WAGs 2, 6 and 7 as one combined WAG); and 4 pose the greatest potential threat to human health. However, the overall rankings of the WAGs using constant parameter values in the different methods were inconclusive because uncertainty in parameter values can change the calculated risk associated with particular pathways, and hence, the final rankings. Uncertainty analysis using uncertainties about all model parameters were used to reduce biases associated with parameter selection and to more reliably rank waste sites according to potential risks associated with site contaminants. Uncertainty analysis indicates that the WAGs should be considered for further investigation, or remediation, in the following order: (1) WAG 1; (2) WAGs 2, 6, and 7 (combined); and 4; (3) WAGs 3, 5, and 9; and, (4) WAG 8
Energy Technology Data Exchange (ETDEWEB)
Te Buck, S.; Van Keulen, B.; Bosselaar, L.; Gerlagh, T.; Skelton, T.
2010-07-15
This is the fifth, updated edition of the Dutch Renewable Energy Monitoring Protocol. The protocol, compiled on behalf of the Ministry of Economic Affairs, can be considered as a policy document that provides a uniform calculation method for determining the amount of energy produced in the Netherlands in a renewable manner. Because all governments and organisations use the calculation methods described in this protocol, this makes it possible to monitor developments in this field well and consistently. The introduction of this protocol outlines the history and describes its set-up, validity and relationship with other similar documents and agreements. The Dutch Renewable Energy Monitoring Protocol is compiled by NL Agency, and all relevant parties were given the chance to provide input. This has been incorporated as far as is possible. Statistics Netherlands (CBS) uses this protocol to calculate the amount of renewable energy produced in the Netherlands. These data are then used by the Ministry of Economic Affairs to gauge the realisation of policy objectives. In June 2009 the European Directive for energy from renewable sources was published with renewable energy targets for the Netherlands. This directive used a different calculation method - the gross energy end-use method - whilst the Dutch definition is based on the so-called substitution method. NL Agency was asked to add the calculation according to the gross end use method, although this is not clearly defined on a number of points. In describing the method, the unanswered questions become clear, as do, for example, the points the Netherlands should bring up in international discussions.
International Nuclear Information System (INIS)
Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.
1995-01-01
A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid
International Nuclear Information System (INIS)
Song, Myung Sub; Kim, Song Hyun; Kim, Jong Kyung; Noh, Jae Man
2014-01-01
The uncertainty with the sampling-based method is evaluated by repeating transport calculations with a number of cross section data sampled from the covariance uncertainty data. In the transport calculation with the sampling-based method, the transport equation is not modified; therefore, all uncertainties of the responses such as k eff , reaction rates, flux and power distribution can be directly obtained all at one time without code modification. However, a major drawback with the sampling-based method is that it requires expensive computational load for statistically reliable results (inside confidence level 0.95) in the uncertainty analysis. The purpose of this study is to develop a method for improving the computational efficiency and obtaining highly reliable uncertainty result in using the sampling-based method with Monte Carlo simulation. The proposed method is a method to reduce the convergence time of the response uncertainty by using the multiple sets of sampled group cross sections in a single Monte Carlo simulation. The proposed method was verified by estimating GODIVA benchmark problem and the results were compared with that of conventional sampling-based method. In this study, sampling-based method based on central limit theorem is proposed to improve calculation efficiency by reducing the number of repetitive Monte Carlo transport calculation required to obtain reliable uncertainty analysis results. Each set of sampled group cross sections is assigned to each active cycle group in a single Monte Carlo simulation. The criticality uncertainty for the GODIVA problem is evaluated by the proposed and previous method. The results show that the proposed sampling-based method can efficiently decrease the number of Monte Carlo simulation required for evaluate uncertainty of k eff . It is expected that the proposed method will improve computational efficiency of uncertainty analysis with sampling-based method
International Nuclear Information System (INIS)
Saminadayar, L.
2001-01-01
20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)
International Nuclear Information System (INIS)
Blanchet, D.
2006-01-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*σ) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO 2 ). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Uneconomical top calculation method
International Nuclear Information System (INIS)
De Noord, M.; Vanm Sambeek, E.J.W.
2003-08-01
The methodology used to calculate the financial gap of renewable electricity sources and technologies is described. This methodology is used for calculating the production subsidy levels (MEP subsidies) for new renewable electricity projects in 2004 and 2005 in the Netherlands [nl
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)
International Nuclear Information System (INIS)
Farah, Jad
2011-01-01
To optimize the monitoring of female workers using in vivo spectrometry measurements, it is necessary to correct the typical calibration coefficients obtained with the Livermore male physical phantom. To do so, numerical calibrations based on the use of Monte Carlo simulations combined with anthropomorphic 3D phantoms were used. Such computational calibrations require on the one hand the development of representative female phantoms of different size and morphologies and on the other hand rapid and reliable Monte Carlo calculations. A library of female torso models was hence developed by fitting the weight of internal organs and breasts according to the body height and to relevant plastic surgery recommendations. This library was next used to realize a numerical calibration of the AREVA NC La Hague in vivo counting installation. Moreover, the morphology-induced counting efficiency variations with energy were put into equation and recommendations were given to correct the typical calibration coefficients for any monitored female worker as a function of body height and breast size. Meanwhile, variance reduction techniques and geometry simplification operations were considered to accelerate simulations. Furthermore, to determine the activity mapping in the case of complex contaminations, a method that combines Monte Carlo simulations with in vivo measurements was developed. This method consists of realizing several spectrometry measurements with different detector positioning. Next, the contribution of each contaminated organ to the count is assessed from Monte Carlo calculations. The in vivo measurements realized at LEDI, CIEMAT and KIT have demonstrated the effectiveness of the method and highlighted the valuable contribution of Monte Carlo simulations for a more detailed analysis of spectrometry measurements. Thus, a more precise estimate of the activity distribution is given in the case of an internal contamination. (author)
International Nuclear Information System (INIS)
Kadecka, P.
1995-01-01
The problem of evaluation of tolerable defects and thinning of pipe walls was analyzed. In fact, a procedure for evaluation of tolerable defects is described in ASME Code Case N 480 based on the ASME ''Rules for Construction of Nuclear Power Plant Components''. The pipe systems of the Dukovany NPP, however, were constructed to different (East European) standards, and therefore caution should be exercised when applying US standards to this plant. The report demonstrates major differences between the ASME Standard and the proposed Czech standard ''A.S.I. Standards Documentation for Strength Calculations of Equipment and Piping of WWER Type Nuclear Power Plants'' developed by the Czech Association of Mechanical Engineers (A.S.I), evaluates the applicability of Code Case N 480 to the Dukovany plant, and proposes a Czech procedure for the evaluation. The basic characteristics of materials cited by ASME II and carbon steels used in the secondary circuit of the Dukovany NPP are also compared. (P.A.). 78 tabs., 2 figs., 4 refs
International Nuclear Information System (INIS)
Sweeton, F.H.
1975-09-01
The CUEX (Cumulative Exposure Index) relates the concentrations of various nuclides in the environment to assigned annual dose limits. A computer code has been written to calculate this index for stack releases of radioactivity. This report is written to illustrate how the code in its present form can be applied to a particular reactor. The data used here are from the Haddam Neck (Connecticut Yankee) Nuclear Power Plant, a relatively large plant that has been in operation for 6 years. The results show that the highest exposure expected from the actual releases of gaseous 85 Kr, 133 Xe, 131 I, and 3 H is about 0.2 percent of the as low as practicable limits set by the Nuclear Regulatory Commission. Of the nuclides considered, 133 Xe is by far the most important; the chief mode of exposure to this nuclide is submersion in air. In the case of 131 I the main exposure route is external irradiation from the activity on the ground except for the special case of the thyroid for which about 70 per []ent of the exposure arises from ingestion. (auth)
Energy Technology Data Exchange (ETDEWEB)
Jimbert, P.; Guraya, T.; Torregary, A.; Bravo, P.
2013-06-01
To achieve the mechanical properties and corrosion resistance desired by duplex stainless steels used by the petrochemical and nuclear industry, parts are subjected to a hiperquenching heat treatment from about 1050 degree centigrade. This avoids the risk of intermetallic precipitation which drastically reduces the properties of these materials. However with increasing depth to which the deposits are present, the thicknesses for such pipes have been increased, resulting in higher levels of demand on all its manufacturing process, including the heat treatment. To avoid the precipitation of intermetallic phases such as sigma phase it is necessary to know the cooling profile in the center of the work piece and for this purpose to know the value of the Surface Heat Transfer Coefficient (h) is essential. This coefficient changes during the hiperquenching and its value is determined experimentally as it depends on several process parameters. Studies reveal that its value is stabilized within a few seconds. We can then assume that to know the cooling profile in the center of large sections it is only necessary to know the stabilized value of h. However, all the studies found in the literature are referred to diameters smaller than 100 mm. This paper has developed a methodology to predict the precipitation of intermetallic phases in duplex stainless steel parts with large thicknesses in industrial facilities from the calculation of h. This methodology allows us to calculate the cooling profiles without wasting any work piece using one or more sensorized patterns with thermocouples and a subsequent simulation with ANSYS. (Author)
A fast fractional difference algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
2014-01-01
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
A Fast Fractional Difference Algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
Energy Technology Data Exchange (ETDEWEB)
Rosenqvist, Haakan
2010-02-15
There are two main objectives to this report. The first is to describe a calculation method for both short- and long-term analysis of crops, as well as present the basis and reasoning around it. Another objective is to create an approach that lay-people can use to compare energy crops with traditional crops in a sufficiently straight-forward and believable manner. The report describes, discusses and develops the technical aspects to the calculation questions around the analysis of crops that are grown only on small area of land today, but have the potential to be grown on much larger areas in the future. The variable costing calculation approach is used in agriculture as decision-support for what should be produced. The present variable costing calculation approach has been reworked and redeveloped in order to be more applicable as a decision-support tool. This includes its use to decide which crop should be grown in both short- and long-term perspectives, as well as for perennial energy crops. A number of items that impact growing economy and how they can be interpreted in the growing calculations are discussed. Some of the examples are: Fertilization effects; Sales commissions/product prices; Storage/reestablishment; Fertilization of P and K; Crop insurance; Labor costs; Machine costs; Timeliness costs; New production chains and unutilized resources; Interest rates; Land costs; Over overhead costs; and Costs which not are annual. The main objective of this report is a methodological question and not to show the absolute profitability for each particular land use alternative. But even though the calculations have been improved for different land uses, there is material that that can even be used for profitability analyses. This has been performed to a smaller degree in this report. The profitability of Salix growing has been studied for a variety of different conditions. For part of the studies have used the entire growing period of 22 years, part with
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Fraction Reduction through Continued Fractions
Carley, Holly
2011-01-01
This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.
FRACTIONATION AND CHARACTERISATION OF TECHNICAL AMMONIUM LIGNOSULPHONATE
Directory of Open Access Journals (Sweden)
Cheryl Ann Leger
2010-08-01
Full Text Available It is difficult to use lignin in any analytical methodology without reducing its considerable polydispersity by fractionation. An ammonium lignosulphonate sample was fractionated using a method of partial solubility in solutions of isopropanol increasingly diluted with distilled water, effectively fractionating by polarity. Selected fractions were characterised by gravimetric determination of the fractions, and determination of acid insoluble lignin, soluble lignin, and carbohydrate contents. Acid-insoluble lignin content was very low, and soluble lignin provided the majority of the lignin content, as should be expected from sulphonated lignin. Carbohydrate contents were also fairly low, the highest percentage at 14.5 being in Fraction 2, with the bulk lignin and Fraction 3 having 6.5% and 3.2%, respectively. Differences in the composition of each fraction support the efficacy of the fractionation process and permitted selection of fractions for use in subsequent studies.
Energy Technology Data Exchange (ETDEWEB)
Japiassu, Fernando Parois
2013-07-01
When designing radiotherapy treatment rooms, the dimensions of barriers are established on the basis of American calculation methodologies specifically; NCRP Report N° 49, NCRP Report N° 51, and more recently, NCRP Report N° 151. Such barrier calculations are based on parameters reflecting predictions of treatments to be performed within the room; which, in tum, reftect a specific reality found in a country. There exists, however, a variety of modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy (IMRT); Total Body Irradiation (TBl) and radiosurgery (SRS); where patierits are treated in a much different way than during more conventional treatrnents, which are not taken into account the traditional shielding calculation methodology. This may lead to a faulty design of treattnent rooms. In order to establish a comparison between the methodology used to calculate shielding design and the reality of treatments performed in Brazil, two radiotherapy facilitie were selected, both of them offering traditional and modern treatment techniqued as described above. Data in relation with reatments perfotmed over a period of six (6)months of operations in both institutions were collected. Based on tlis informaton, a new set of realistic parameters required for shielding design was estãblished, whicb in turn allowed for a nwe caculation of barrier thickness for both facilities. The barrier thickness resultaing from this calculation was then compared with the barrier thickness propose as part of the original shielding design, approved by the regulatory authority. First, concerning the public facility, the thickness of all primary barriers proposed in the shielding design was actually larger than the thickness resulting from calculations based on realistic parameters. Second, concerning the private facility, the new data show that the thickness of three out of the four primary barriers described in the project is larger than the thickness oresulting from
de Assis, Thiago A.; Dall’Agnol, Fernando F.
2018-05-01
Numerical simulations are important when assessing the many characteristics of field emission related phenomena. In small simulation domains, the electrostatic effect from the boundaries is known to influence the calculated apex field enhancement factor (FEF) of the emitter, but no established dependence has been reported at present. In this work, we report the dependence of the lateral size, L, and the height, H, of the simulation domain on the apex-FEF of a single conducting ellipsoidal emitter. Firstly, we analyze the error, ε, in the calculation of the apex-FEF as a function of H and L. Importantly, our results show that the effects of H and L on ε are scale invariant, allowing one to predict ε for ratios L/h and H/h, where h is the height of the emitter. Next, we analyze the fractional change of the apex-FEF, δ, from a single emitter, , and a pair, . We show that small relative errors in (i.e. ), due to the finite domain size, are sufficient to alter the functional dependence , where c is the distance from the emitters in the pair. We show that obeys a recently proposed power law decay (Forbes 2016 J. Appl. Phys. 120 054302), at sufficiently large distances in the limit of infinite domain size (, say), which is not observed when using a long time established exponential decay (Bonard et al 2001 Adv. Mater. 13 184) or a more sophisticated fitting formula proposed recently by Harris et al (2015 AIP Adv. 5 087182). We show that the inverse-third power law functional dependence is respected for various systems like infinity arrays and small clusters of emitters with different shapes. Thus, , with m = 3, is suggested to be a universal signature of the charge-blunting effect in small clusters or arrays, at sufficient large distances between emitters with any shape. These results improve the physical understanding of the field electron emission theory to accurately characterize emitters in small clusters or arrays.
Misonidazole in fractionated radiotherapy: are many small fractions best
International Nuclear Information System (INIS)
Denekamp, J.; McNally, N.J.; Fowler, J.F.; Joiner, M.C.
1980-01-01
The largest sensitizing effect is always demonstrated with six fractions, each given with 2 g/m 2 of misonidazole. In the absence of reoxygenation a sensitizer enhancement ratio of 1.7 is predicted, but this falls to 1.1-1.2 if extensive reoxygenation occurs. Less sensitization is observed with 30 fractions, each with 0.4 g/m 2 of drug. However, for clinical use, the important question is which treatment kills the maximum number of tumour cells. Many of the simulations predict a marked disadvantage of reducing the fraction number for X rays alone. The circumstances in which this disadvantage is offset by the large Sensitizer enhancement ratio values with a six-fraction schedule are few. The model calculations suggest that many small fractions, each with a low drug dose, are safest unless the clinician has some prior knowledge that a change in fraction number is not disadvantageous. (author)
Leedham Elvidge, Emma; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Engel, Andreas; Fraser, Paul J.; Gallacher, Eileen; Langenfelds, Ray; Mühle, Jens; Oram, David E.; Ray, Eric A.; Ridley, Anna R.; Röckmann, Thomas; Sturges, William T.; Weiss, Ray F.; Laube, Johannes C.
2018-03-01
In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the mean age of air values derived from them. In this study, we investigated five potential age of air tracers - the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 - and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these new tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters - stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials - is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.
Energy Technology Data Exchange (ETDEWEB)
Garcia Gutierrez, M E [Empresarios Agrupados, A.I.E., Madrid (Spain); Sustacha Duo, D [C.N. Almaraz, Caceres (Spain)
1993-12-15
The ODCM (Offsite Dose Calculation Manual), the official operational document for all nuclear power plants develops the details for the technical specifications for discharges and governs their practical application. The use of ODCM methodology for managing and controlling data associated with radioactive discharges, as well as the subsequent processing of this data to assess the radiological impact, requires and generates a large volume of data, which demands the frequent application of laborious and complex calculation processes, making computerization necessary. The computer application created for Almaraz NPP has the capacity to store and manage data on all discharges, evaluate their effects, presents reports and copies the information to be sent periodically to the CSN (Spanish Nuclear Regulatory Commission) on a magnetic tape. The radiological impact of an actual or possible discharge can be evaluated at anytime and, furthermore, general or particular reports and graphs on the discharges and doses over time can be readily obtained. The application is run on a personal computer under a relational database management system. This interactive application is based on menus and windows. (author)
Energy Technology Data Exchange (ETDEWEB)
Casado Sanchez, C.; Rubio Oviedo, P.
2014-07-01
This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)
Calculation system for physical analysis of boiling water reactors
International Nuclear Information System (INIS)
Bouveret, F.
2001-01-01
Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)
Energy Technology Data Exchange (ETDEWEB)
Engstroem, Rebecka; Gode, Jenny; Axelsson, Ulrik
2009-01-15
The guidelines in this report have been developed by IVL Swedish Environmental Research Institute, within a project financed by the Environmental Objectives Council, the Swedish Energy Agency and the Swedish Environmental Protection Agency. The idea originated from an earlier project for the Swedish Energy Agency and the Swedish Environmental Protection Agency, where the potential of a business model for energy efficiency (Energy Performance Contracting, EPC) to contribute to fulfil the national environmental objectives was studied. When environmental impacts from the studied EPC projects was to be calculated, it was evident how many difficult methodological choices one is faced with when trying to follow up the environmental impacts from projects changing the energy use. A second project was then performed to further analyse the issues involved. The result is this guideline report. The guidelines are on the first hand directed at companies and municipalities performing projects with effects on the energy use, that want to calculate impacts from these on the Swedish environmental objectives. The guidelines can also be useful for county administrations, central authorities and other actors with interest in the issues. A starting point for the recommendations is the Swedish environmental objectives, with focus on those of special interest in relation to energy use and airborne emissions. These are Reduced climate impact, Clean air, Natural acidification only, Zero eutrophication and A good built environment. The environmental objectives are mainly concentrated on what affects the Swedish environment. However, not only emissions in Sweden cause such effects, but also emissions in other countries can be transported by air and fall down and cause impacts in Sweden. Thus, the guidelines focus on Sweden, but include to a certain extent also emissions in other countries. Another starting point is that the guidelines are developed to follow up effects from individual
Cell fractionation of parasitic protozoa: a review
Directory of Open Access Journals (Sweden)
Souza Wanderley de
2003-01-01
Full Text Available Cell fractionation, a methodological strategy for obtaining purified organelle preparations, has been applied successfully to parasitic protozoa by a number of investigators. Here we present and discuss the work of several groups that have obtained highly purified subcellular fractions from trypanosomatids, Apicomplexa and trichomonads, and whose work have added substantially to our knowledge of the cell biology of these parasites.
Fractional vector calculus for fractional advection dispersion
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
On Generalized Fractional Differentiator Signals
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2013-01-01
Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Bergstra, Jan A.
2015-01-01
In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.
Özlek, Bülent; Özlek, Eda; Çelik, Oğuzhan; Çil, Cem; Doğan, Volkan; Tekinalp, Mehmet; Zencirkıran Ağuş, Hicaz; Kahraman, Serkan; Ösken, Altuğ; Rencüzoğulları, İbrahim; Tanık, Veysel Ozan; Bekar, Lütfü; Çakır, Mustafa Ozan; Kaya, Bedri Caner; Tibilli, Hakan; Çelik, Yunus; Başaran, Özcan; Mert, Kadir Uğur; Sevinç, Samet; Demirci, Erkan; Dondurmacı, Engin; Biteker, Murat
2018-05-01
Although almost half of chronic heart failure (HF) patients have mid-range (HFmrEF) and preserved left-ventricular ejection fraction (HFpEF), no studies have been carried out with these patients in our country. This study aims to determine the demographic characteristics and current status of the clinical background of HFmrEF and HFpEF patients in a multicenter trial. A comPrehensive, ObservationaL registry of heart faiLure with mid range and preserved ejectiON fraction (APOLLON) trial will be an observational, multicenter, and noninterventional study conducted in Turkey. The study population will include 1065 patients from 12 sites in Turkey. All data will be collected at one point in time and the current clinical practice will be evaluated (ClinicalTrials.gov number NCT03026114). We will enroll all consecutive patients admitted to the cardiology clinics who were at least 18 years of age and had New York Heart Association class II, III, or IV HF, elevated brain natriuretic peptide levels within the last 30 days, and an left ventricular ejection fraction (LVEF) of at least 40%. Patients fulfilling the exclusion criteria will not be included in the study. Patients will be stratified into two categories according to LVEF: mid-range EF (HFmrEF, LVEF 40%-49%) and preserved EF (HFpEF, LVEF ≥50%). Regional quota sampling will be performed to ensure that the sample was representative of the Turkish population. Demographic, lifestyle, medical, and therapeutic data will be collected by this specific survey. The APOLLON trial will be the largest and most comprehensive study in Turkey evaluating HF patients with a LVEF ≥40% and will also be the first study to specifically analyze the recently designated HFmrEF category.
International Nuclear Information System (INIS)
Gomez Parada, Ines
2004-01-01
This paper develops the MIRD (Medical Internal Radiation Dose) methodology for the evaluation of the internal dose due to the administration of radiopharmaceuticals. In this second part, different methods for the calculation of the accumulated activity are presented, together with the effective half life definition. Different forms of Retention Activity curves are also shown. (author)
Utilization of Different Corn Fractions by Broilers
Directory of Open Access Journals (Sweden)
SIFR Costa
2015-09-01
Full Text Available ABSTRACTThis study was conducted to evaluate the nutritional values of fractions of damaged corn. One hundred and eighty 22-d-old Cobb 500 male broilers were distributed in batteries according to a completely randomized design with six treatments of six replicates each. The treatments consisted of diets containing five corn fractions, classified as sound, fermented, insect-damaged, mold-damaged, or reference corn. The test diets consisted of 60% of reference diet + 40% of each corn fraction. Only the reference corn fraction included all the fractions at different proportions (0.8% fermented, 0.05% insect-damaged, 3.3% mold-damaged, and 95.85% sound grains. The method of total excreta collection was used to determine AMEn values and metabolizability coefficients of dry matter (MDM, crude protein (MCP, ether extract (MEE, and gross energy (MGE of the reference corn and its fractions. The density values of the corn fractions were used to calculate the correlations among the evaluated parameters. The evaluated corn fractions presented different compositions values. The insect-damaged and mold-damaged grains presented higher CP level, lower density, and MDM and MCP coefficients compared with the other fractions. However, calculated AMEn values were not significantly different (p>0.05 among corn fractions. A low correlation between density and AMEn content (r0.8 were calculated. Although the evaluated corn fractions presented different nutritional values, there were no marked differences in their utilization by broilers.
MIRD methodology; Metodologia MIRD
Energy Technology Data Exchange (ETDEWEB)
Rojo, Ana M [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Gomez Parada, Ines [Sociedad Argentina de Radioproteccion, Buenos Aires (Argentina)
2004-07-01
The MIRD (Medical Internal Radiation Dose) system was established by the Society of Nuclear Medicine of USA in 1960 to assist the medical community in the estimation of the dose in organs and tissues due to the incorporation of radioactive materials. Since then, 'MIRD Dose Estimate Report' (from the 1 to 12) and 'Pamphlets', of great utility for the dose calculations, were published. The MIRD system was planned essentially for the calculation of doses received by the patients during nuclear medicine diagnostic procedures. The MIRD methodology for the absorbed doses calculations in different tissues is explained.
Fractional Vector Calculus and Fractional Special Function
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2010-01-01
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
DEFF Research Database (Denmark)
Cheesman, Robin; Faraone, Roque
2002-01-01
This is an English version of the methodology chapter in the authors' book "El caso Berríos: Estudio sobre información errónea, desinformación y manipulación de la opinión pública".......This is an English version of the methodology chapter in the authors' book "El caso Berríos: Estudio sobre información errónea, desinformación y manipulación de la opinión pública"....
Energy Technology Data Exchange (ETDEWEB)
Cadenas Mendicoa, A. M.; Benito Hernandez, M.; Barreira Pereira, P.
2012-07-01
This study involves the development of the methodology and three-dimensional models to estimate the damage to the vessel internals of a commercial PWR reactor from irradiation history of operating cycles.
A risk-based sensor placement methodology
International Nuclear Information System (INIS)
Lee, Ronald W.; Kulesz, James J.
2008-01-01
A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
Fractional statistics and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1985-01-01
The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Energy Technology Data Exchange (ETDEWEB)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
International Nuclear Information System (INIS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
State-Space Modelling of Loudspeakers using Fractional Derivatives
DEFF Research Database (Denmark)
King, Alexander Weider; Agerkvist, Finn T.
2015-01-01
This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...
International Nuclear Information System (INIS)
Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge
2002-01-01
In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Magne, L
1997-12-31
The purpose of this text is first to ask a certain number of questions on the methods related to PSAs. Notably we will explore the positioning of the French methodological approach - as applied in the EPS 1300{sup 1} and EPS 900{sup 2} PSAs - compared to other approaches (Part One). This reflection leads to more general reflection: what contents, for what PSA? This is why, in Part Two, we will try to offer a framework for definition of the criteria a PSA should satisfy to meet the clearly identified needs. Finally, Part Three will quickly summarize the questions approached in the first two parts, as an introduction to the debate. 15 refs.
International Nuclear Information System (INIS)
Magne, L.
1996-01-01
The purpose of this text is first to ask a certain number of questions on the methods related to PSAs. Notably we will explore the positioning of the French methodological approach - as applied in the EPS 1300 1 and EPS 900 2 PSAs - compared to other approaches (Part One). This reflection leads to more general reflection: what contents, for what PSA? This is why, in Part Two, we will try to offer a framework for definition of the criteria a PSA should satisfy to meet the clearly identified needs. Finally, Part Three will quickly summarize the questions approached in the first two parts, as an introduction to the debate. 15 refs
Asphalt chemical fractionation
International Nuclear Information System (INIS)
Obando P, Klever N.
1998-01-01
Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)
Generalized hydrodynamic correlations and fractional memory functions
Rodríguez, Rosalio F.; Fujioka, Jorge
2015-12-01
A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.
The fractional oscillator process with two indices
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
We introduce a new fractional oscillator process which can be obtained as a solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short-range dependence of the process are studied by considering the asymptotic properties of its covariance function. By considering the fractional oscillator process as the velocity of a diffusion process, we derive the corresponding diffusion constant, fluctuation-dissipation relation and mean-square displacement. The fractional oscillator process can also be regarded as a one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique
Temperature dependence of recoilless fraction in tungsten
Energy Technology Data Exchange (ETDEWEB)
Baijal, J S; Kumar, R [Delhi Univ. (India). Dept. of Physics and Astrophysics
1977-11-14
The Moessbauer recoilless fractions of /sup 182/W, /sup 183/W, /sup 184/W and /sup 186/W have been calculated by using Born-von Karman model of lattice vibrations. There is a good agreement between the experimental and calculated results.
Energy Technology Data Exchange (ETDEWEB)
Ximenes, Edmir
2006-07-01
Tools for dosimetric calculations are of the utmost importance for the basic principles of radiological protection, not only in nuclear medicine, but also in other scientific calculations. In this work a mathematical model of the Brazilian woman is developed in order to be used as a basis for calculations of Specific Absorbed Fractions (SAFs) in internal organs and in the skeleton, in accord with the objectives of diagnosis or therapy in nuclear medicine. The model developed here is similar in form to that of Snyder, but modified to be more relevant to the case of the Brazilian woman. To do this, the formalism of the Monte Carlo method was used by means of the ALGAM- 97{sup R} computational code. As a contribution to the objectives of this thesis, we developed the computational system cSAF - consultation for Specific Absorbed Fractions (cFAE from Portuguese acronym) - which furnishes several 'look-up' facilities for the research user. The dialogue interface with the operator was planned following current practices in the utilization of event-oriented languages. This interface permits the user to navigate by means of the reference models, choose the source organ, the energy desired, and receive an answer through an efficient and intuitive dialogue. The system furnishes, in addition to the data referring to the Brazilian woman, data referring to the model of Snyder and to the model of the Brazilian man. The system makes available not only individual data to the SAFs of the three models, but also a comparison among them. (author)
Energy Technology Data Exchange (ETDEWEB)
Ximenes, Edmir
2006-07-01
Tools for dosimetric calculations are of the utmost importance for the basic principles of radiological protection, not only in nuclear medicine, but also in other scientific calculations. In this work a mathematical model of the Brazilian woman is developed in order to be used as a basis for calculations of Specific Absorbed Fractions (SAFs) in internal organs and in the skeleton, in accord with the objectives of diagnosis or therapy in nuclear medicine. The model developed here is similar in form to that of Snyder, but modified to be more relevant to the case of the Brazilian woman. To do this, the formalism of the Monte Carlo method was used by means of the ALGAM- 97{sup R} computational code. As a contribution to the objectives of this thesis, we developed the computational system cSAF - consultation for Specific Absorbed Fractions (cFAE from Portuguese acronym) - which furnishes several 'look-up' facilities for the research user. The dialogue interface with the operator was planned following current practices in the utilization of event-oriented languages. This interface permits the user to navigate by means of the reference models, choose the source organ, the energy desired, and receive an answer through an efficient and intuitive dialogue. The system furnishes, in addition to the data referring to the Brazilian woman, data referring to the model of Snyder and to the model of the Brazilian man. The system makes available not only individual data to the SAFs of the three models, but also a comparison among them. (author)
Shamim, Atif
2011-03-01
For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
LITERATURE SURVEY FOR FRACTIONAL CRYSTALLIZATION STUDY
International Nuclear Information System (INIS)
PERSON, J.C.
2004-01-01
The literature survey for the fractional crystallization study of material from tank 241-S-112 is completed, fulfilling the requirements of the Test Plan for Tank 241-S-112 Fractional Crystallization Study (Herting 2003). Crystallization involves the formation of one or more solid phases from a fluid phase or an amorphous solid phase. It is applied extensively in the chemical industry, both as a purification process and a separation process. The main advantage of crystallization over distillation is the production of substances with a very high purity, at a low level of energy consumption, and at relatively mild process conditions. Crystallization is one of the older operations in the chemical industry; therefore, practical experience can usually be used for the design and operation of industrial crystallizers. In addition, advances in the understanding of crystallization kinetics can be useful in the control, design, and scale-up of industrial crystallizers. Research work is currently underway; e.g., the CrysCODE (Crystallizer Control and Design) project, littu://www.aui.tudelft.nl/uroiect/Cn/scode/crvscode.htm, at the Delft University of Technology, with the goal of improving the performance and controllability of industrial crystallizers by means of better control and improved design methodologies. Recent developments in fluid dynamics and reactor technology (e.g., compartment approaches) have led to a better understanding of processes and scale-up phenomena. The ultimate aim of such research is to develop a knowledge-based design frame for optimization of industrial crystallization units. Development work is in progress on a rigorous design analysis model for the description of the crystallization process as a function of the reactor geometry, crystallization kinetics, and operating conditions. One modeling effort is aimed at improving the predictive crystallizer model by implementing a population balance equation that depends on two variables: the size and
Dey, Aloke
2009-01-01
A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...
Fractional Dynamics and Control
Machado, José; Luo, Albert
2012-01-01
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics Develops new methods for control and synchronization of...
Energy Technology Data Exchange (ETDEWEB)
Bender, M.A.
1990-01-01
Several methodologies are available for screening human populations for exposure to ionizing radiation. Of these, aberration frequency determined in peripheral blood lymphocytes is the best developed. Individual exposures to large doses can easily be quantitated, and population exposures to occupational levels can be detected. However, determination of exposures to the very low doses anticipated from a low-level radioactive waste disposal site is more problematical. Aberrations occur spontaneously, without known cause. Exposure to radiation induces no new or novel types, but only increases their frequency. The limitations of chromosomal aberration dosimetry for detecting low level radiation exposures lie mainly in the statistical signal to noise'' problem, the distribution of aberrations among cells and among individuals, and the possible induction of aberrations by other environmental occupational or medical exposures. However, certain features of the human peripheral lymphocyte-chromosomal aberration system make it useful in screening for certain types of exposures. Future technical developments may make chromosomal aberration dosimetry more useful for low-level radiation exposures. Other methods, measuring gene mutations or even minute changes on the DNA level, while presently less will developed techniques, may eventually become even more practical and sensitive assays for human radiation exposure. 15 refs.
International Nuclear Information System (INIS)
Bender, M.A.
1990-01-01
Several methodologies are available for screening human populations for exposure to ionizing radiation. Of these, aberration frequency determined in peripheral blood lymphocytes is the best developed. Individual exposures to large doses can easily be quantitated, and population exposures to occupational levels can be detected. However, determination of exposures to the very low doses anticipated from a low-level radioactive waste disposal site is more problematical. Aberrations occur spontaneously, without known cause. Exposure to radiation induces no new or novel types, but only increases their frequency. The limitations of chromosomal aberration dosimetry for detecting low level radiation exposures lie mainly in the statistical ''signal to noise'' problem, the distribution of aberrations among cells and among individuals, and the possible induction of aberrations by other environmental occupational or medical exposures. However, certain features of the human peripheral lymphocyte-chromosomal aberration system make it useful in screening for certain types of exposures. Future technical developments may make chromosomal aberration dosimetry more useful for low-level radiation exposures. Other methods, measuring gene mutations or even minute changes on the DNA level, while presently less will developed techniques, may eventually become even more practical and sensitive assays for human radiation exposure. 15 refs
International Nuclear Information System (INIS)
Scholtyssek, W.
1995-01-01
In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)
Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim
2003-01-01
We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...
Dividing Fractions: A Pedagogical Technique
Lewis, Robert
2016-01-01
When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…
Energy Technology Data Exchange (ETDEWEB)
de Vernejoul, P; Fauchet, M; Rimbert, J -N; Gambini, D; Agnely, J [Hopital Necker-Enfants-Malades, 75 - Paris (France)
1976-03-01
Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference.
International Nuclear Information System (INIS)
Vernejoul, Pierre de; Fauchet, Michel; Rimbert, J.-N.; Gambini, Denis; Agnely, Jacqueline
1976-01-01
Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference [fr
Energy Technology Data Exchange (ETDEWEB)
Sievers, Juergen; Heckmann, Klaus; Blaesius, Christoph
2015-06-15
For the demonstration of break preclusion for pressure retaining components in nuclear power plants, the nuclear safety standard KTA 3206 determines also the requirements for the leak-before-break verification. For this procedure, it has to be ensured that a wall-penetrating crack is subcritical with respect to instable growth, and that the resulting leakage under stationary operation conditions can be detected by a leak detection system. Within the scope of the project 3613R01332 analyses with respect to conservative estimates of the leak rates in case of detections regarding break preclusion were performed by means of leak rate models being available at GRS. For this purpose, conservative assumptions in the procedure were quantified by comparative calculations concerning selected leak rate experiments and the requirements regarding the determination of leak rates indicated in the KTA 3206 were verified and specified. Moreover, the models were extended and relevant recommendations for the calculation procedure were developed. During the investigations of leak rate tests the calculation methods were validated, qualified by means of both examples indicated in KTA 3206 and applied to a postulated leak accident in the cooling circuit of a PWR. For the calculation of leak rates several simplified solution methods which are included in the GRS program WinLeck were applied, and for the simulation of a leak accident the large-scale programs ANSYS Mechanical and ATHLET (thermohydraulics program developed by GRS) were used. When applying simplified methods for the calculation of leak rates using the limiting curve for the friction factor which has been derived during the project and which is included in the KTA 3206 attention has to be paid to the fact that in case of small flow lengths the entrance loss can dominate compared to the friction loss. However, the available data do not suffice in order to make a quantitative statement with respect to limits of applicability
Study of volume fractions on biphasic stratified regime using gamma ray
Energy Technology Data Exchange (ETDEWEB)
Salgado, William L.; Brandão, Luis E.B., E-mail: william.otero@hotmail.com, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contamination. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNPX code measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%. (author)
Study of volume fractions on biphasic stratified regime using gamma ray
International Nuclear Information System (INIS)
Salgado, William L.; Brandão, Luis E.B.
2017-01-01
In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contamination. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNPX code measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%. (author)
Fractional distillation of oil
Energy Technology Data Exchange (ETDEWEB)
Jones, L D
1931-10-31
A method of dividing oil into lubricating oil fractions without substantial cracking by introducing the oil in a heated state into a fractionating column from which oil fractions having different boiling points are withdrawn at different levels, while reflux liquid is supplied to the top of the column, and additional heat is introduced into the column by contacting with the oil therein a heated fluid of higher monlecular weight than water and less susceptible to thermal decomposition than is the highest boiling oil fraction resulting from the distillation, or of which any products produced by thermal decomposition will not occur in the highest boiling distillate withdrawn from the column.
Software quality assurance plan for void fraction instrument
International Nuclear Information System (INIS)
Gimera, M.
1994-01-01
Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101
Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio
2016-10-01
We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Escandon Jimenez, Alejandro C. [Mexico, D.F. (Mexico)
2004-06-15
The importance of knowing the performance of the companies within a productive sector has increased in the last years, demonstrating the necessity of knowing and applying tools that help us to know the performance of a company with respect to the others with which it is competing. Recently, a great variety of tools have been developed to know the efficiency or productivity of a company in a certain sector. Nevertheless, the two more used, up to now, are those that will be described in the present in study. Finally, one practical example of the two methodologies will be presented, applied to the natural gas industry for distributing companies of this energy in Latin America. [Spanish] La importancia de conocer el desempeno de las empresas dentro de un sector productivo ha incrementado en los ultimos anos, demostrando la necesidad de conocer y aplicar herramientas que nos ayuden a conocer el desempeno de una empresa con respecto a las demas con las cuales se esta compitiendo. Recientemente, se han desarrollado gran variedad de herramientas para conocer la eficiencia o productividad de una compania en un determinado sector. Sin embargo, las dos mas utilizadas, hasta el momento, son las que se describiran en el presente estudio. Finalmente, se presentara un ejemplo practico de las dos metodologias, aplicado a la industria del gas natural para companias distribuidoras de este energetico en Latinoamerica.
Analytical Approach to Space- and Time-Fractional Burgers Equations
International Nuclear Information System (INIS)
Yıldırım, Ahmet; Mohyud-Din, Syed Tauseef
2010-01-01
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane
2012-01-01
This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…
Can Kindergartners Do Fractions?
Cwikla, Julie
2014-01-01
Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
International Nuclear Information System (INIS)
Li, D.
1980-01-01
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru
Directory of Open Access Journals (Sweden)
C. Moni
2012-12-01
Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of ^{15}N labelled litter.
Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.
Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.
Fractional order differentiation by integration: An application to fractional linear systems
Liu, Dayan
2013-02-04
In this article, we propose a robust method to compute the output of a fractional linear system defined through a linear fractional differential equation (FDE) with time-varying coefficients, where the input can be noisy. We firstly introduce an estimator of the fractional derivative of an unknown signal, which is defined by an integral formula obtained by calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then approximate the FDE by applying to each fractional derivative this formal algebraic integral estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi polynomials and then we need to identify the unknown coefficients of the truncated series expansion of the solution. Modulating functions method is used to estimate these coefficients by solving a linear system issued from the approximated FDE and some initial conditions. A numerical result is given to confirm the reliability of the proposed method. © 2013 IFAC.
The Fractional Ornstein-Uhlenbeck Process
DEFF Research Database (Denmark)
Høg, Esben; Frederiksen, Per H.
The paper revisits dynamic term structure models (DTSMs) and proposes a new way in dealing with the limitation of the classical affine models. In particular, this paper expands the flexibility of the DTSMs by applying a fractional Brownian motion as the governing force of the state variable inste...... of the bond is recovered by solving a fractional version of the fundamental bond pricing equation. Besides this theoretical contribution, the paper proposes an estimation methodology based on the Kalman filter approach, which is applied to the US term structure of interest rates....
Geochemical importance of isotopic fractionation during respiration
International Nuclear Information System (INIS)
Schleser, G.; Foerstel, H.
1975-01-01
In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes
Fractional Order Generalized Information
Directory of Open Access Journals (Sweden)
José Tenreiro Machado
2014-04-01
Full Text Available This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
Social Trust and Fractionalization:
DEFF Research Database (Denmark)
Bjørnskov, Christian
2008-01-01
This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....
International Nuclear Information System (INIS)
Petersen, K.E.
1986-03-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Directory of Open Access Journals (Sweden)
Sead Rešić
2016-09-01
Full Text Available Fractions represent the manner of writing parts of whole numbers (integers. Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered, which are essentially related to visualizing operations with fractions.
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Shamim, Atif; Radwan, Ahmed Gomaa; Salama, Khaled N.
2011-01-01
matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Intracellular Cadmium Isotope Fractionation
Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.
2011-12-01
Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.
Calculating radiation exposure and dose
International Nuclear Information System (INIS)
Hondros, J.
1987-01-01
This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...
Fractional laser skin resurfacing.
Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A
2012-11-01
Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.
The GPT methodology. New fields of application
International Nuclear Information System (INIS)
Gandini, A.; Gomit, J.M.; Abramytchev, V.
1996-01-01
The GPT (Generalized Perturbation Theory) methodology is described, and a new application is discussed. The results obtained for a simple model (zero dimension, six parameters of interest) show that the expressions obtained using the GPT methodology, lead to results close to those obtained through direct calculations. The GPT methodology is useful to be used for radioactive waste disposal problems. The potentiality of the method linked to zero dimension model can be extended to radionuclide migration problems with space description. (K.A.)
Propagation calculation for reactor cases
Energy Technology Data Exchange (ETDEWEB)
Yang Yanhua [School of Power and Energy Engineering, Shanghai Jiao Tong Univ., Shanghai (China); Moriyama, K.; Maruyama, Y.; Nakamura, H.; Hashimoto, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2000-11-01
The propagation of steam explosion for real reactor geometry and conditions are investigated by using the computer code JASMINE-pro. The ex-vessel steam explosion is considered, which is described as follow: during the accident of reactor core meltdown, the molten core melts a hole at the bottom of reactor vessel and causes the higher temperature core fuel being leaked into the water pool below reactor vessel. During the melt-water mixing interaction process, the high temperature melt evaporates the cool water at an extreme high rate and might induce a steam explosion. A steam explosion could experience first the premixing phase and then the propagation explosion phase. For a propagation calculation, we should know the information about the initial fragmentation time, the total melt mass, premixing region size, initial void fraction and distribution of the melt volume fraction, and so on. All the initial conditions used in this calculation are based on analyses from some simple assumptions and the observation from the experiments. The results show that the most important parameter for the initial condition of this phase is the total mass and its initial distribution. This gives the requirement for a premixing calculation. On the other hand, for higher melt volume fraction case, the fragmentation is strong so that the local pressure can exceed over the EOS maximum pressure of the code, which lead to the incorrect calculation or divergence of the calculation. (Suetake, M.)
Void fraction prediction in saturated flow boiling
International Nuclear Information System (INIS)
Francisco J Collado
2005-01-01
Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal
On the singular perturbations for fractional differential equation.
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
On the Singular Perturbations for Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Abdon Atangana
2014-01-01
Full Text Available The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
National Research Council Canada - National Science Library
Peace, Karl E; Chen, Ding-Geng
2011-01-01
... in the pharmaceutical industry, Clinical trial methodology emphasizes the importance of statistical thinking in clinical research and presents the methodology as a key component of clinical research...
Tunneling time in space fractional quantum mechanics
Hasan, Mohammad; Mandal, Bhabani Prasad
2018-02-01
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.
Intervals between multiple fractions per day
International Nuclear Information System (INIS)
Fowler, J.F.
1988-01-01
Assuming the linear quadratic model for dose-response curves enables the proportion of repairable damage to be calculated for any size of dose per fraction. It is given by the beta (dose squared) term, and represents a larger proportion of the total damage for larger doses per fraction, but also for late-reacting than for early-reacting tissues. For example at 2 Gy per fraction, repairable damage could represent nearly half the total damage in late-reacting tissues but only one fifth in early-reacting tissues. Even if repair occurs at the same rate in both tissues, it will obviously take longer for 50% of the damage to fade to an undetectable level (3 or 5%) than for 20% to do so. This means that late reactions require longer intervals than early reactions when multiple fraction per day radiotherapy is planned, even if the half-lives of repair are not different. (orig.)
Comparative study of void fraction models
International Nuclear Information System (INIS)
Borges, R.C.; Freitas, R.L.
1985-01-01
Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt
Developmental Predictors of Fraction Concepts and Procedures
Jordan, Nancy C.; Hansen, Nicole; Fuchs, Lynn S.; Siegler, Robert S.; Gersten, Russell; Micklos, Deborah
2013-01-01
Developmental predictors of children's fraction concepts and procedures at the end of fourth grade were investigated in a 2-year longitudinal study. Participants were 357 children who started the study in third grade. Attentive behavior, language, nonverbal reasoning, number line estimation, calculation fluency, and reading fluency each…
Hidden supersymmetry and Fermion number fractionalization
International Nuclear Information System (INIS)
Akhoury, R.
1985-01-01
This paper discusses how a hidden supersymmetry of the underlying field theories can be used to interpret and to calculate fermion number fractionalization in different dimensions. This is made possible by relating it to a corresponding Witten index of the hidden supersymmetry. The closely related anomalies in odd dimensions are also discussed
Series expansion in fractional calculus and fractional differential equations
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2009-01-01
Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce fractional series expansion method to fractional calculus. We define a kind of fractional Taylor series of an infinitely fractionally-differentiable function. Further, based on our definition we generalize hypergeometric functio...
Energy Technology Data Exchange (ETDEWEB)
Blanchet, D
2006-07-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*{sigma}) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO{sub 2}). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Energy Technology Data Exchange (ETDEWEB)
Blanchet, D
2006-07-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*{sigma}) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO{sub 2}). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Sead Rešić; Ismet Botonjić; Maid Omerović
2016-01-01
Fractions represent the manner of writing parts of whole numbers (integers). Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered...
Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António
2017-01-01
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...
Accurate quantum chemical calculations
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Electronic structure of fractionally nuclear charged atoms
International Nuclear Information System (INIS)
Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.
2008-01-01
Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)
Fractional path planning and path tracking
International Nuclear Information System (INIS)
Melchior, P.; Jallouli-Khlif, R.; Metoui, B.
2011-01-01
This paper presents the main results of the application of fractional approach in path planning and path tracking. A new robust path planning design for mobile robot was studied in dynamic environment. The normalized attractive force applied to the robot is based on a fictitious fractional attractive potential. This method allows to obtain robust path planning despite robot mass variation. The danger level of each obstacles is characterized by the fractional order of the repulsive potential of the obstacles. Under these conditions, the robot dynamic behavior was studied by analyzing its X - Y path planning with dynamic target or dynamic obstacles. The case of simultaneously mobile obstacles and target is also considered. The influence of the robot mass variation is studied and the robustness analysis of the obtained path shows the robustness improvement due to the non integer order properties. Pre shaping approach is used to reduce system vibration in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual vibration. This technique, developed by N.C. Singer and W.P.Seering, is used for flexible structure control, particularly in the aerospace field. In a previous work, this method was extended for explicit fractional derivative systems and applied to second generation CRONE control, the robustness was also studied. CRONE (the French acronym of C ommande Robuste d'Ordre Non Entier ) control system design is a frequency-domain based methodology using complex fractional integration.
Dependence of stability of metastable superconductors on copper fraction
International Nuclear Information System (INIS)
Elrod, S.A.; Lue, J.W.; Miller, J.R.; Dresner, L.
1980-12-01
The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
Development of guide thimble stress peaking factor calculation methodology
International Nuclear Information System (INIS)
Lee, Seong Ki; Jeon, Sang Youn; Kim, Jae Ik; Jeon, Kyeong Lak; Kim, Kyu Tae
2004-01-01
The Nuclear Fuel Assembly for light water reactor which provides for 236 fuel rods consists of guide tubes, spacer grids, top/bottom nozzles. The guide tubes form the main structural components in conjunction with the grids, act as the main load carrying members of fuel assembly and serve as a support structure and a guide path for the control element, neutron sources and incore instruments after they are secured to upper and lower end areas. Top/bottom nozzles make the end parts of fuel assembly. And the spacer girds maintain the fuel rod array by providing positive lateral restraint to the fuel rod to the fuel rod but only frictional restraint to axial fuel rod motion. When the fuel assembly is in reactor, the tensional and compressional forces are applied to guide thimble through the top nozzle. The stresses vary with the location of guide thimble on the top nozzle plate since the different flow plate thickness between center and outer areas causes a different flexibility. The relative stress shall be considered during designing this kind of structure. And it is useful to know a coefficient to represent this relative stress difference and this value is called stress peaking factor
42 CFR 413.312 - Methodology for calculating rates.
2010-10-01
... Determined Payment Rates for Low-Volume Skilled Nursing Facilities, for Cost Reporting Periods Beginning... routine service cost limits; (ii) A wage index to adjust for area wage differences; and (iii) The most... of rates published in the Federal Register under the authority of § 413.320, CMS announces the wage...
Revisiting the dose calculation methodologies in European decision support systems
DEFF Research Database (Denmark)
Andersson, Kasper Grann; Roos, Per; Hou, Xiaolin
2012-01-01
The paper presents examples of current needs for improvement and extended applicability of the European decision support systems. The systems were originally created for prediction of the radiological consequences of accidents at nuclear installations. They could however also be of great value in...... for, to introduce new knowledge and thereby improve prognoses....
Methodology for calculating shear stress in a meandering channel
Kyung-Seop Sin; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt
2012-01-01
Natural channels never stop changing their geomorphic characteristics. Natural alluvial streams are similar to living creatures because they generate water flow, develop point bars, alter bed profile, scour the bed, erode the bank, and cause other phenomena in the stream system. The geomorphic changes in a natural system lead to a wide array of research worldwide,...
Methodology for Structural Calculation of Gear Teeth with Unconventional Profile
Directory of Open Access Journals (Sweden)
Radicella Andrea Chiaramonte
2016-01-01
Full Text Available After having made reference to the structural analysis used in the study of gear wheel teeth, we then move on to the state of the art on the topic. We proceed to identify the boundary conditions used in the structural analysis of unconventional teeth with sides having a profile of an involute of a circle but with different pressure angles in each of the two sides. A procedure for the discretization of traditional teeth and of innovative teeth is presented and compared with the discretization obtained using current software.
Current state of copper stabilizers and methodology towards calculating risk
Koratzinos, M
2011-01-01
The talk will start by reviewing the landscape: a brief mention of the results of the warm copper stabilizer measurements and the results of the splice measurements at cold will be shown. The preliminary results of the recent RRR measurements will then be presented. Then, together with the limits presented from talk no. 2, the probability of an incident will be presented for beam energies between 3.5 and 5TeV. The available methods at our disposal for addressing the limiting factors and operating at a higher energy will then be reviewed: a complete circuit qualification method coined the Thermal Amplifier can define the maximum safe energy of the LHC in case of a quench next to a defective joint. Ways of avoiding magnet quenches, another critical element of the analysis, for instance by optimizing BLM settings will then be shown. Finally, a proposal of a strategy for running at the highest possible energy compatible with a pre-defined level of risk will be presented. As a case study, the method will also be a...
Analysis of Solar Census Remote Solar Access Value Calculation Methodology
Energy Technology Data Exchange (ETDEWEB)
Nangle, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Van Geet, O. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2015-03-01
The costs of photovoltaic (PV) system hardware (PV panels, inverters, racking, etc.) have fallen dramatically over the past few years. Nonhardware (soft) costs, however, have failed to keep pace with the decrease in hardware costs, and soft costs have become a major driver of U.S. PV system prices. Upfront or 'sunken' customer acquisition costs make up a portion of an installation's soft costs and can be addressed through software solutions that aim to streamline sales and system design aspects of customer acquisition. One of the key soft costs associated with sales and system design is collecting information on solar access for a particular site. Solar access, reported in solar access values (SAVs), is a measurement of the available clear sky over a site and is used to characterize the impacts of local shading objects. Historically, onsite shading studies have been required to characterize the SAV of the proposed array and determine the potential energy production of a photovoltaic system.
Developing a Repeatable Methodology to Calculate Retrograde Planning Factors
2015-01-01
supply chain inefficiencies, changes in demand xiv rates, operational tempo, task force organization, drawdown, and redeployment, for which the...and its causes, most notably the effect of supply chain inefficiencies on serviceable retrograde. It should be noted that, because of data limitations... supplies and equipment, and housekeeping supplies and equipment Class IIIP Packaged petroleum products; includes fuel in collapsible containers less
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer
2017-07-12
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer; Lucchesi, Marco; Maî tre, O. P. Le; Mustapha, K. A.; Knio, Omar
2017-01-01
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green's function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Vinogradova, Natalya; Blaine, Larry
2013-01-01
Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…
Fermion Number Fractionization
Indian Academy of Sciences (India)
Srimath
1 . In tro d u ctio n. T he N obel P rize in C hem istry for the year 2000 w as aw arded to A lan J H ... soliton, the ground state of the ferm ion-soliton system can have ..... probability density,in a heuristic w ay that a fractional ferm ion num ber m ay ...
Momentum fractionation on superstrata
International Nuclear Information System (INIS)
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-01-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Moustafa El-Shahed
2007-01-01
where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.
Vapor liquid fraction determination
International Nuclear Information System (INIS)
1980-01-01
This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)
Brewing with fractionated barley
Donkelaar, van L.H.G.
2016-01-01
Brewing with fractionated barley
Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental
Fractionation and rectification apparatus
Energy Technology Data Exchange (ETDEWEB)
Sauerwald, A
1932-05-25
Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.
International Nuclear Information System (INIS)
Innes, W.; Klein, S.; Perl, M.; Price, J.C.
1982-06-01
A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour
Ultrasonographic ejection fraction of normal gallbladder
Energy Technology Data Exchange (ETDEWEB)
Park, Jin Hun; Kim, Seung Yup; Park, Yaung Hee; Kang, Ik Won; Yoon, Jong Sup [Hangang Sacred Heart Hospital, Halym College, Chuncheon (Korea, Republic of)
1984-06-15
Real-time ultrasonography is a simple, accurate, noninvasive and potentially valuable means of studying gallbladder size and emptying. The authors calculated ultrasonographically the ejection fraction of 80 cases of normally functioning gallbladder on oral cholecystography, from June 1983 to April 1984, at the department of radiology, Hangang Sacred Heart Hospital. The results were obtained as follows; 1. Ultrasonographic Ejection Fraction at 30 minutes after the fatty meal was 73.1{+-}16.85. 2. There was no significant difference in age and sex, statistically.
Proliferation studies for different radiotherapy fractionation regimes
International Nuclear Information System (INIS)
Jones, L.
1996-01-01
Full text: This study was undertaken to investigate extended treatment schedules and compare the differences between schedules for highly proliferative tumours. Treatment schedules can be extended for various reasons e.g. public holidays, early side effects. For highly proliferative tumours this can dramatically reduce the effective dose delivered to the tumour. To deduce the most effective schedule fractionation regimes are compared to a common schedule so that the effects can be understood. Thus an equation to allow this to be done for the proliferative case has been derived. (i) The linear quadratic model with proliferation has been used to investigate the effect on biological effective dose (BED) when treatment schedules are extended. (ii) An equation was derived for comparison with a standard effective dose (SED) of 2Gy/fraction given daily 5 days per week, this is a common schedule in most radiotherapy centres. The SED equation derived for the proliferative case is where n 1 and n 2 are the number of fractions for the initial and equivalent schedules respectively, d 1 is the dose delivered per fraction for the initial schedules. T 1 is the time taken for the initial schedule (in days) and T p is the proliferation half life for the tumour involved. SEDs were calculated for the CHART regime of 36 fractions at 1.5 Gy in 12 days (Saunders et al. 1988, cited in Fowler J F, Brit. J. Radiol. 62: 679-694, 1989) and various other schedules. Late effects of these schedules and their standard equivalents were compared. The dose required to achieve the same BED when a treatment schedule is extended has been found to be quite large in some circumstances. For breast tumours a loss of 2Gy 10 BED to tumour occurs after ten days extension of treatment time (T p =12 days,T k =12 days). For head and neck tumours a loss of 2Gy 10 BED occurs after only three and a half days (T p =3 days). From these results it seems that an accelerated fractionation schedule would be advantageous
Concept of fractional parentage for arbitrary molecular point groups
International Nuclear Information System (INIS)
Koenig, E.; Kremer, S.
1977-01-01
The method of fractional parentage is extended to the general case of mixed configurations in arbitrary nonsimply reducible groups, G is contained in SO(3). Particular attention is devoted to the calculation of coefficients of fractional parentage (CFP) and expressions are provided for the matrix elements of F and G type operators between N electron functions. 29 references
On stability of fixed points and chaos in fractional systems
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0chaos is impossible in the corresponding continuous fractional systems.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Fractional order differentiation and robust control design crone, h-infinity and motion control
Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain
2015-01-01
This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...
Starck, Patricia L; Love, Karen; McPherson, Robert
2008-01-01
In recent years, the focus has been on increasing the number of registered nurse (RN) graduates. Numerous states have initiated programs to increase the number and quality of students entering nursing programs, and to expand the capacity of their programs to enroll additional qualified students. However, little attention has been focused on an equally, if not more, effective method for increasing the number of RNs produced-increasing the graduation rate of students enrolling. This article describes a project that undertook the task of compiling graduation data for 15 entry-level programs, standardizing terms and calculations for compiling the data, and producing a regional report on graduation rates of RN students overall and by type of program. Methodology is outlined in this article. This effort produced results that were surprising to program deans and directors and is expected to produce greater collaborative efforts to improve these rates both locally and statewide.
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Void fraction instrument software, Version 1,2, Acceptance test report
International Nuclear Information System (INIS)
Gimera, M.
1995-01-01
This provides the report for the void fraction instrument acceptance test software Version 1.2. The void fraction will collect data that will be used to calculate the quantity of gas trapped in waste tanks
International Nuclear Information System (INIS)
Berico, M.; Luciani, A.; Formignani, M.
1996-07-01
In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model
The Local Fractional Bootstrap
DEFF Research Database (Denmark)
Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger
We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our...... new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method...
Fractionalization and Entrepreneurial Activities
Awaworyi Churchill, Sefa
2015-01-01
The vast majority of the literature on ethnicity and entrepreneurship focuses on the construct of ethnic entrepreneurship. However, very little is known about how ethnic heterogeneity affects entrepreneurship. This study attempts to fill the gap, and thus examines the effect of ethnic heterogeneity on entrepreneurial activities in a cross-section of 90 countries. Using indices of ethnic and linguistic fractionalization, we show that ethnic heterogeneity negatively influences entrepreneurship....
Fractional Number Operator and Associated Fractional Diffusion Equations
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
CARBON ISOTOPE FRACTIONATION IN PROTOPLANETARY DISKS
International Nuclear Information System (INIS)
Woods, Paul M.; Willacy, Karen
2009-01-01
We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk (PPD) using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of PPDs. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12 C/ 13 C, of the system varies with radius and height in the disk. Different behavior is seen in the fractionation of different species. We compare our results with 12 C/ 13 C ratios in the solar system comets, and find a stark contrast, indicative of reprocessing.
Theory of fractional quantum hall effect
International Nuclear Information System (INIS)
Kostadinov, I.Z.
1985-08-01
A theory of the Fractional Quantum Hall Effect is constructed based on magnetic flux fractionization, which lead to instability of the system against selfcompression. A theorem is proved stating that arbitrary potentials fail to lift a specific degeneracy of the Landau level. For the case of 1/3 fractional filling a model 3-particles interaction is constructed breaking the symmetry. The rigid 3-particles wave function plays the role of order parameter. In a BCS type of theory the gap in the single particles spectrum is produced by the 3-particles interaction. The mean field critical behaviour and critical parameters are determined as well as the Ginsburg-Landau equation coefficients. The Hall conductivity is calculated from the first principles and its temperature dependence is found. The simultaneous tunnelling of 3,5,7 etc. electrons and quantum interference effects are predicted. (author)
On the solution of fractional evolution equations
International Nuclear Information System (INIS)
Kilbas, Anatoly A; Pierantozzi, Teresa; Trujillo, Juan J; Vazquez, Luis
2004-01-01
This paper is devoted to the solution of the bi-fractional differential equation ( C D α t u)(t, x) = λ( L D β x u)(t, x) (t>0, -∞ 0 and λ ≠ 0, with the initial conditions lim x→±∞ u(t,x) = 0 u(0+,x)=g(x). Here ( C D α t u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 L D β x u)(t, x)) is the Liouville partial fractional derivative ( L D β t u)(t, x)) of order β > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case α = 1/2 and β = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation
International Nuclear Information System (INIS)
1994-12-01
This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: identification of a consequence determination methodology in which the information can be used; discussion of the applicability of the information and its general technical limits; identification of specific accident phenomena of interest for which the information is applicable; and examples of use of the consequence determination methodology and airborne release and respirable fraction information
Jeon, Jae-Hyung; Metzler, Ralf
2010-02-01
Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.
Energy Technology Data Exchange (ETDEWEB)
Bouveret, F
2001-07-01
Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)
Energy Technology Data Exchange (ETDEWEB)
Bouveret, F
2001-07-01
Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)
International Nuclear Information System (INIS)
Jones, D.B.
1986-01-01
EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations
Zhao, Jianping; Tang, Bo; Kumar, Sunil; Hou, Yanren
2012-01-01
An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powe...
Oscillation results for certain fractional difference equations
Directory of Open Access Journals (Sweden)
Zhiyun WANG
2017-08-01
Full Text Available Fractional calculus is a theory that studies the properties and application of arbitrary order differentiation and integration. It can describe the physical properties of some systems more accurately, and better adapt to changes in the system, playing an important role in many fields. For example, it can describe the process of tumor growth (growth stimulation and growth inhibition in biomedical science. The oscillation of solutions of two kinds of fractional difference equations is studied, mainly using the proof by contradiction, that is, assuming the equation has a nonstationary solution. For the first kind of equation, the function symbol is firstly determined, and by constructing the Riccati function, the difference is calculated. Then the condition of the function is used to satisfy the contradiction, that is, the assumption is false, which verifies the oscillation of the solution. For the second kind of equation with initial condition, the equivalent fractional sum form of the fractional difference equation are firstly proved. With considering 0<α≤1 and α>1, respectively, by using the properties of Stirling formula and factorial function, the contradictory is got through enhanced processing, namely the assuming is not established, and the sufficient condition for the bounded solutions of the fractional difference equation is obtained. The above results will optimize the relevant conclusions and enrich the relevant results. The results are applied to the specific equations, and the oscillation of the solutions of equations is proved.
Study of the AC machines winding having fractional q
Bespalov, V. Y.; Sidorov, A. O.
2018-02-01
The winding schemes with a fractional numbers of slots per pole and phase q have been known and used for a long time. However, in the literature on the low-noise machines design there are not recommended to use. Nevertheless, fractional q windings have been realized in many applications of special AC electrical machines, allowing to improve their performance, including vibroacoustic one. This paper deals with harmonic analysis of windings having integer and fractional q in permanent magnet synchronous motors, a comparison of their characteristics is performed, frequencies of subharmonics are revealed. Optimal winding pitch design is found giving reduce the amplitudes of subharmonics. Distribution factors for subharmonics, fractional and high-order harmonics are calculated, results analysis is represented, allowing for giving recommendations how to calculate distribution factors for different harmonics when q is fractional.
Functional Fractional Calculus
Das, Shantanu
2011-01-01
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with 'ordinary' differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematic
Andreasen, Niels; Bjerregaard, Mads; Lund, Jonas; Olsen, Ove Bitsch; Rasmussen, Andreas Dalgas
2012-01-01
Projektet er bygget op omkring kritisk realisme, som er det gennemgående videnskabelige fundament til undersøgelsen af hvilke strukturelle grunde der er til finansiel ustabilitet i Danmark. Projektet går i dybden med Fractional Reserve Banking og incitamentsstrukturen i banksystemet. Vi bevæger os både på det makro- og mikroøkonomiske niveau i analysen. På makro niveau bruger vi den østrigske skole om konjunktur teori (The Positive Theory of the Cycle). På mikro niveau arbejder vi med princip...
Farrugia, Albert; Evers, Theo; Falcou, Pierre-Francois; Burnouf, Thierry; Amorim, Luiz; Thomas, Sylvia
2009-04-01
Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.
A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations
Directory of Open Access Journals (Sweden)
Gautham Krishnamoorthy
2014-01-01
Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.
Update of Part 61 impacts analysis methodology
International Nuclear Information System (INIS)
Oztunali, O.I.; Roles, G.W.
1986-01-01
The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project
Update of Part 61 impacts analysis methodology
International Nuclear Information System (INIS)
Oztunali, O.I.; Roles, G.W.; US Nuclear Regulatory Commission, Washington, DC 20555)
1985-01-01
The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 regulation to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project
International Nuclear Information System (INIS)
Turner, R.E.
1984-01-01
A search was made for fractional charges of the form Z plus two-thirds e, where Z is an integer. It was assumed that the charges exist in natural form bound with other fractional charges in neutral molecules. It was further assumed that these neutral molecules are present in air. Two concentration schemes were employed. One sample was derived from the waste gases from a xenon distillation plant. This assumes that high mass, low vapor pressure components of air are concentrated along with the xenon. The second sample involved ionizing air, allowing a brief recombination period, and then collecting residual ions on the surface of titanium discs. Both samples were analyzed at the University of Rochester in a system using a tandem Van de Graff to accelerate particles through an essentially electrostatic beam handling system. The detector system employed both a Time of Flight and an energy-sensitive gas ionization detector. In the most sensitive mode of analysis, a gas absorber was inserted in the beam path to block the intense background. The presence of an absorber limited the search to highly penetrating particles. Effectively, this limited the search to particles with low Z and masses greater than roughly fifty GeV. The final sensitivities attained were on the order of 1 x 10 -20 for the ionized air sample and 1 x 10 -21 for the gas sample. A discussion of the caveats that could reduce the actual level of sensitivity is included
Fractional Reserve in Banking System
Valkonen, Maria
2016-01-01
This thesis is aimed to provide understanding of the role of the fractional reserve in the mod-ern banking system worldwide and particularly in Finland. The fractional reserve banking is used worldwide, but the benefits of this system are very disputable. On the one hand, experts say that the fractional reserve is a necessary instrument for the normal business and profit making. On the other hand, sceptics openly criticize the fractional reserve system and blame it for fiat money (money n...
Request for approval, vented container annual release fraction
International Nuclear Information System (INIS)
HILL, J.S.
1999-01-01
In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative
Request for approval, vented container annual release fraction; FINAL
International Nuclear Information System (INIS)
HILL, J.S.
1999-01-01
In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative
USGS Methodology for Assessing Continuous Petroleum Resources
Charpentier, Ronald R.; Cook, Troy A.
2011-01-01
The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.
A systematic examination of a random sampling strategy for source apportionment calculations.
Andersson, August
2011-12-15
Estimating the relative contributions from multiple potential sources of a specific component in a mixed environmental matrix is a general challenge in diverse fields such as atmospheric, environmental and earth sciences. Perhaps the most common strategy for tackling such problems is by setting up a system of linear equations for the fractional influence of different sources. Even though an algebraic solution of this approach is possible for the common situation with N+1 sources and N source markers, such methodology introduces a bias, since it is implicitly assumed that the calculated fractions and the corresponding uncertainties are independent of the variability of the source distributions. Here, a random sampling (RS) strategy for accounting for such statistical bias is examined by investigating rationally designed synthetic data sets. This random sampling methodology is found to be robust and accurate with respect to reproducibility and predictability. This method is also compared to a numerical integration solution for a two-source situation where source variability also is included. A general observation from this examination is that the variability of the source profiles not only affects the calculated precision but also the mean/median source contributions. Copyright © 2011 Elsevier B.V. All rights reserved.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
The random continued fraction transformation
Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny
2017-03-01
We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.
How Weird Are Weird Fractions?
Stuffelbeam, Ryan
2013-01-01
A positive rational is a weird fraction if its value is unchanged by an illegitimate, digit-based reduction. In this article, we prove that each weird fraction is uniquely weird and initiate a discussion of the prevalence of weird fractions.
Do Children Understand Fraction Addition?
Braithwaite, David W.; Tian, Jing; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Photovoltaic module energy rating methodology development
Energy Technology Data Exchange (ETDEWEB)
Kroposki, B.; Myers, D.; Emery, K.; Mrig, L. [National Renewable Energy Lab., Golden, CO (United States); Whitaker, C.; Newmiller, J. [Endecon Engineering, San Ramon, CA (United States)
1996-05-01
A consensus-based methodology to calculate the energy output of a PV module will be described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.
Analyzing inflation in Nigeria: a fractionally integrated ARFIMA ...
African Journals Online (AJOL)
The study looked into the stochastic properties of CPI-inflation rate for Nigeria from 1995Q1 to 2016Q4. The study employed an autoregressive fractionally integrated moving average and a general autoregressive conditional heteroskedasticity (ARFIMA-GARCH) methodology as well as ADF/KPSS to investigate the ...
Scenario development methodologies
International Nuclear Information System (INIS)
Eng, T.; Hudson, J.; Stephansson, O.
1994-11-01
In the period 1981-1994, SKB has studied several methodologies to systematize and visualize all the features, events and processes (FEPs) that can influence a repository for radioactive waste in the future. All the work performed is based on the terminology and basic findings in the joint SKI/SKB work on scenario development presented in the SKB Technical Report 89-35. The methodologies studied are a) Event tree analysis, b) Influence diagrams and c) Rock Engineering Systems (RES) matrices. Each one of the methodologies is explained in this report as well as examples of applications. One chapter is devoted to a comparison between the two most promising methodologies, namely: Influence diagrams and the RES methodology. In conclusion a combination of parts of the Influence diagram and the RES methodology is likely to be a promising approach. 26 refs
Reliability Centered Maintenance - Methodologies
Kammerer, Catherine C.
2009-01-01
Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.
Revised models of interstellar nitrogen isotopic fractionation
Wirström, E. S.; Charnley, S. B.
2018-03-01
Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirström et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of >2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.
Residual radioactive material guidelines: Methodology and applications
International Nuclear Information System (INIS)
Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III.
1989-01-01
A methodology to calculate residual radioactive material guidelines was developed for the US Department of Energy (DOE). This methodology is coded in a menu-driven computer program, RESRAD, which can be run on IBM or IBM-compatible microcomputers. Seven pathways of exposure are considered: external radiation, inhalation, and ingestion of plant foods, meat, milk, aquatic foods, and water. The RESRAD code has been applied to several DOE sites to calculate soil cleanup guidelines. This experience has shown that the computer code is easy to use and very user-friendly. 3 refs., 8 figs
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
Membrane Assisted Enzyme Fractionation
DEFF Research Database (Denmark)
Yuan, Linfeng
to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...
Fraction Reduction in Membrane Systems
Directory of Open Access Journals (Sweden)
Ping Guo
2014-01-01
Full Text Available Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to performing the rational computation in P systems since the rational operands can be given in the form of fraction.
Thermochemical transformations of anthracite fractions
Energy Technology Data Exchange (ETDEWEB)
Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.
1979-08-01
Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
International Nuclear Information System (INIS)
Fernández-Fernández, Mario; Rodríguez-González, Pablo; Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M.; García Alonso, J. Ignacio
2017-01-01
This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on "1"3C/"1"2C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of "1"3C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of "1"3C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of "1"3C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of "1"3C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS. • Validation of the method by
Energy Technology Data Exchange (ETDEWEB)
Fernández-Fernández, Mario [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Rodríguez-González, Pablo, E-mail: rodriguezpablo@uniovi.es [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M. [University Institute of Oncology (IUOPA), University of Oviedo, Julián Clavería 6, 33006 Oviedo (Spain); García Alonso, J. Ignacio [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain)
2017-05-29
This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on {sup 13}C/{sup 12}C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of {sup 13}C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of {sup 13}C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of {sup 13}C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of {sup 13}C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS.
Parameters calculation of shielding experiment
International Nuclear Information System (INIS)
Gavazza, S.
1986-02-01
The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt
A method for calculation of dose per unit concentration values for aquatic biota
International Nuclear Information System (INIS)
Batlle, J Vives i; Jones, S R; Gomez-Ros, J M
2004-01-01
A dose per unit concentration database has been generated for application to ecosystem assessments within the FASSET framework. Organisms are represented by ellipsoids of appropriate dimensions, and the proportion of radiation absorbed within the organisms is calculated using a numerical method implemented in a series of spreadsheet-based programs. Energy-dependent absorbed fraction functions have been derived for calculating the total dose per unit concentration of radionuclides present in biota or in the media they inhabit. All radionuclides and reference organism dimensions defined within FASSET for marine and freshwater ecosystems are included. The methodology has been validated against more complex dosimetric models and compared with human dosimetry based on ICRP 72. Ecosystem assessments for aquatic biota within the FASSET framework can now be performed simply, once radionuclide concentrations in target organisms are known, either directly or indirectly by deduction from radionuclide concentrations in the surrounding medium
Introduction to LCA Methodology
DEFF Research Database (Denmark)
Hauschild, Michael Z.
2018-01-01
In order to offer the reader an overview of the LCA methodology in the preparation of the more detailed description of its different phases, a brief introduction is given to the methodological framework according to the ISO 14040 standard and the main elements of each of its phases. Emphasis...
Methodologies, languages and tools
International Nuclear Information System (INIS)
Amako, Katsuya
1994-01-01
This is a summary of the open-quotes Methodologies, Languages and Toolsclose quotes session in the CHEP'94 conference. All the contributions to methodologies and languages are relevant to the object-oriented approach. Other topics presented are related to various software tools in the down-sized computing environment
Archetype modeling methodology.
Moner, David; Maldonado, José Alberto; Robles, Montserrat
2018-03-01
Clinical Information Models (CIMs) expressed as archetypes play an essential role in the design and development of current Electronic Health Record (EHR) information structures. Although there exist many experiences about using archetypes in the literature, a comprehensive and formal methodology for archetype modeling does not exist. Having a modeling methodology is essential to develop quality archetypes, in order to guide the development of EHR systems and to allow the semantic interoperability of health data. In this work, an archetype modeling methodology is proposed. This paper describes its phases, the inputs and outputs of each phase, and the involved participants and tools. It also includes the description of the possible strategies to organize the modeling process. The proposed methodology is inspired by existing best practices of CIMs, software and ontology development. The methodology has been applied and evaluated in regional and national EHR projects. The application of the methodology provided useful feedback and improvements, and confirmed its advantages. The conclusion of this work is that having a formal methodology for archetype development facilitates the definition and adoption of interoperable archetypes, improves their quality, and facilitates their reuse among different information systems and EHR projects. Moreover, the proposed methodology can be also a reference for CIMs development using any other formalism. Copyright © 2018 Elsevier Inc. All rights reserved.
Menopause and Methodological Doubt
Spence, Sheila
2005-01-01
Menopause and methodological doubt begins by making a tongue-in-cheek comparison between Descartes' methodological doubt and the self-doubt that can arise around menopause. A hermeneutic approach is taken in which Cartesian dualism and its implications for the way women are viewed in society are examined, both through the experiences of women…
VEM: Virtual Enterprise Methodology
DEFF Research Database (Denmark)
Tølle, Martin; Vesterager, Johan
2003-01-01
This chapter presents a virtual enterprise methodology (VEM) that outlines activities to consider when setting up and managing virtual enterprises (VEs). As a methodology the VEM helps companies to ask the right questions when preparing for and setting up an enterprise network, which works...
Data Centric Development Methodology
Khoury, Fadi E.
2012-01-01
Data centric applications, an important effort of software development in large organizations, have been mostly adopting a software methodology, such as a waterfall or Rational Unified Process, as the framework for its development. These methodologies could work on structural, procedural, or object oriented based applications, but fails to capture…
Carter, Susan
2014-01-01
Arts/Humanities researchers frequently do not explain methodology overtly; instead, they "perform" it through their use of language, textual and historic cross-reference, and theory. Here, methodologies from literary studies are shown to add to Higher Education (HE) an exegetical and critically pluralist approach. This includes…
Mouse skin damages caused by fractionated irradiation with carbon ions
Energy Technology Data Exchange (ETDEWEB)
Ando, K; Chen, Y J; Ohira, C; Nojima, K; Ando, S; Kobayashi, N; Ohbuchi, T; Shimizu, W [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S; Kanai, T [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics
1997-09-01
We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)
Mouse skin damages caused by fractionated irradiation with carbon ions
International Nuclear Information System (INIS)
Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.
1997-01-01
We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)